TWI441456B - Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter - Google Patents

Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter Download PDF

Info

Publication number
TWI441456B
TWI441456B TW100131873A TW100131873A TWI441456B TW I441456 B TWI441456 B TW I441456B TW 100131873 A TW100131873 A TW 100131873A TW 100131873 A TW100131873 A TW 100131873A TW I441456 B TWI441456 B TW I441456B
Authority
TW
Taiwan
Prior art keywords
capacitor
coupled
voltage
capacitance
comparator
Prior art date
Application number
TW100131873A
Other languages
Chinese (zh)
Other versions
TW201312946A (en
Original Assignee
Univ Nat Taiwan Normal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Normal filed Critical Univ Nat Taiwan Normal
Priority to TW100131873A priority Critical patent/TWI441456B/en
Publication of TW201312946A publication Critical patent/TW201312946A/en
Application granted granted Critical
Publication of TWI441456B publication Critical patent/TWI441456B/en

Links

Description

可降低能量耗損之逐次逼近暫存式類比數位轉換器Successive approximation temporary storage analog converter for reducing energy consumption

本發明係有關於逐次逼近暫存式類比數位轉換器,特別是一種可使能量耗損極小化之逐次逼近暫存式類比數位轉換器。The present invention relates to a successive approximation temporary analog analog-to-digital converter, and more particularly to a successive approximation temporary analog analog-to-digital converter that minimizes energy loss.

隨著可攜式電子產品之蓬勃發展,低功耗─其可延長電池的供電時間─已成為電子產品之趨勢。在眾多類比數位轉換器中,逐次逼近式類比數位轉換器(successive approximation register analog-to-digital converter,SAR ADC)由於具有省電的優勢─其類比數位轉換僅需用到一個比較器,架構簡單,元件數目少,故已被廣泛應用於電子產品中。With the booming of portable electronic products, low power consumption, which extends battery life, has become a trend in electronics. Among the many analog-to-digital converters, the successive approximation register analog-to-digital converter (SAR ADC) has the advantage of power saving - its analog-to-digital conversion requires only one comparator, and the architecture is simple. The number of components is small, so it has been widely used in electronic products.

請參照圖1,其繪示一習知N位元SAR ADC之方塊圖。如圖1所示,該SAR ADC包含一位元值決定單元100、以及一逐次逼近暫存器140,其中所述的位元值決定單元100包含一取樣保持電路110、一數位類比轉換電路120、及一比較器130。Please refer to FIG. 1 , which is a block diagram of a conventional N-bit SAR ADC. As shown in FIG. 1, the SAR ADC includes a bit value decision unit 100 and a successive approximation register 140, wherein the bit value decision unit 100 includes a sample hold circuit 110 and a digital analog conversion circuit 120. And a comparator 130.

取樣保持電路110係用以在一取樣階段對一類比輸入信號VA 進行取樣並保持之操作以產生一取樣信號VA1The sample and hold circuit 110 is operative to sample and hold an analog input signal V A during a sampling phase to generate a sample signal V A1 .

數位類比轉換電路120係用以在一參考電壓VREF 及一接地電壓VGND 之偏壓下,依複數個開關控制信號SWN ~SW1 產生一量化電壓VA2The digital analog conversion circuit 120 is configured to generate a quantized voltage V A2 according to a plurality of switching control signals SW N to SW 1 under a bias voltage of a reference voltage V REF and a ground voltage V GND .

比較器130係用以對取樣信號VA1 與量化電壓VA2 進行電壓比較以產生一位元輸出值B。The comparator 130 is configured to compare the voltage of the sampling signal V A1 with the quantized voltage V A2 to generate a one-bit output value B.

逐次逼近暫存器140係用以在一電壓比較階段逐次變更開關控制信號SWN ~SW1 之內容以改變量化電壓VA2 ,以及逐次讀取位元輸出值B以產生一數位輸出碼DOUTThe successive approximation register 140 is configured to sequentially change the contents of the switch control signals SW N ~SW 1 to change the quantization voltage V A2 in a voltage comparison phase, and sequentially read the bit output value B to generate a digital output code D OUT .

當處於所述電壓比較階段時,首先,逐次逼近暫存器140會透過開關控制信號SWN ~SW1 輸出一組預測數碼,通常是令最大位元(MSB)為1,以對數位類比轉換電路120進行充、放電,從而使量化電壓VA2 產生一對應之準位。接著,比較器130會對取樣信號VA1 與量化電壓VA2 進行電壓比較,以決定位元輸出值B之內容─其為0或1。然後,逐次逼近暫存器140會將位元輸出值B儲存於一暫存器中,且會依位元輸出值B之內容輸出下一組預測數碼以決定下一位元的內容。依此方式反覆進行N次,即可產生取樣信號VA1 之N位元數位輸出碼DOUTWhen in the voltage comparison phase, first, the successive approximation register 140 outputs a set of prediction numbers through the switch control signals SW N ~SW 1 , usually by making the maximum bit (MSB) 1 to log-to-digital analog conversion. The circuit 120 is charged and discharged to generate a corresponding level of the quantized voltage V A2 . Next, the comparator 130 compares the voltage between the sampled signal V A1 and the quantized voltage V A2 to determine the content of the bit output value B - which is 0 or 1. Then, the successive approximation register 140 stores the bit output value B in a temporary register, and outputs the next set of prediction numbers according to the content of the bit output value B to determine the content of the next bit. By repeating N times in this manner, the N-bit digital output code D OUT of the sampled signal V A1 can be generated.

在產生數位輸出碼DOUT 的過程中,由數位類比轉換電路120所產生之量化電壓VA2 會以二位元權重(binary-weighted)的方式,逐漸往取樣信號VA1 逼近。亦即,N位元的SAR ADC會產生N次不同的量化電壓VA2 ,若分別以VA2(1) ,VA2(2) ,VA2(3) ,…,VA2(N) 代表其值,則VA2(K) 與VA2(K-1) 之電壓差會等於VA2(K-1) 與VA2(K-2) 之電壓差的一半,其中k=3~N。In the process of generating the digital output code D OUT , the quantized voltage V A2 generated by the digital analog conversion circuit 120 is gradually approached to the sampling signal V A1 in a binary-weighted manner. That is, the N-bit SAR ADC generates N different quantized voltages V A2 , if V A2(1) , V A2(2) , V A2(3) , ..., V A2(N) respectively For the value, the voltage difference between V A2(K) and V A2(K-1) will be equal to half the voltage difference between V A2(K-1) and V A2(K-2) , where k=3~N.

由於數位類比轉換電路120會透過開關的切換,對不同權重的電容進行充、放電,因此大部份的能量損耗會發生在切換的過程中。Since the digital analog conversion circuit 120 charges and discharges the capacitors of different weights through the switching of the switches, most of the energy loss occurs during the switching process.

有關一般數位類比轉換電路之電路架構,請參照圖2,其繪示包含一數位類比轉換電路之一習知位元值決定單元之方塊圖。如圖2所示,該習知位元值決定單元包含一開關單元210、一數位類比轉換電路220、以及一比較器230,其中數位類比轉換電路220具有一第一電容陣列221、一第二電容陣列222、一電壓選擇電路223、以及一電壓選擇電路224。For a circuit architecture of a general digital analog conversion circuit, please refer to FIG. 2, which illustrates a block diagram of a conventional bit value decision unit including a digital analog conversion circuit. As shown in FIG. 2, the conventional bit value determining unit includes a switching unit 210, a digital analog conversion circuit 220, and a comparator 230. The digital analog conversion circuit 220 has a first capacitor array 221 and a second. A capacitor array 222, a voltage selection circuit 223, and a voltage selection circuit 224.

開關單元210具有一對取樣開關,其一側具有一第一接點及一第二接點,分別耦接至一參考電壓VREF ,另一側具有一第三接點及一第四接點,分別耦接第一電容陣列221及第二電容陣列222。The switch unit 210 has a pair of sampling switches, one side of which has a first contact and a second contact, respectively coupled to a reference voltage V REF , and the other side has a third contact and a fourth contact The first capacitor array 221 and the second capacitor array 222 are coupled respectively.

第一電容陣列221及第二電容陣列222各具有N+1個電容,其電容值分別為C,C,2C,4C,8C,…,2N-1 C。第一電容陣列221之所述N+1個電容具有一共同接點以耦接開關單元210之所述第三接點,及N+1個偏壓接點以耦接電壓選擇電路223。第二電容陣列222之所述N+1個電容具有一共同接點以耦接開關單元210之所述第四接點,及N+1個偏壓接點以耦接電壓選擇電路224。The first capacitor array 221 and the second capacitor array 222 each have N+1 capacitors, and their capacitance values are C, C, 2C, 4C, 8C, ..., 2 N-1 C, respectively. The N+1 capacitors of the first capacitor array 221 have a common contact to couple the third contact of the switch unit 210, and N+1 bias contacts to couple the voltage selection circuit 223. The N+1 capacitors of the second capacitor array 222 have a common contact to couple the fourth contact of the switch unit 210, and N+1 bias contacts to couple the voltage selection circuit 224.

電壓選擇電路223係用以依開關控制信號SWN ~SW1 輸出N+1個偏壓電壓給第一電容陣列221之所述N+1個偏壓接點,其中,電壓選擇電路223所輸出的各所述偏壓電壓均來自一負類比輸入電壓VAN ,所述的參考電壓VREF ,或一接地電壓VGND 。選擇電路224係用以依開關控制信號SWN ~SW1 輸出N+1個偏壓電壓給第二電容陣列222之所述N+1個偏壓接點,其中,電壓選擇電路224所輸出的各所述偏壓電壓均來自一正類比輸入電壓VAP ,所述的參考電壓VREF ,或一接地電壓VGNDThe voltage selection circuit 223 is configured to output N+1 bias voltages to the N+1 bias contacts of the first capacitor array 221 according to the switch control signals SW N SWSW 1 , wherein the voltage selection circuit 223 outputs Each of the bias voltages is derived from a negative analog input voltage V AN , the reference voltage V REF , or a ground voltage V GND . The selection circuit 224 is configured to output N+1 bias voltages to the N+1 bias contacts of the second capacitor array 222 according to the switch control signals SW N ~SW 1 , wherein the voltage selection circuit 224 outputs Each of the bias voltages is derived from a positive analog input voltage V AP , the reference voltage V REF , or a ground voltage V GND .

比較器230具有一正輸入端、一負輸入端、以及一輸出端,其中所述正輸入端係與開關單元210之所述第三接點耦接,所述負輸入端係與開關單元210之所述第四接點耦接。比較器230係用以依所述正輸入端及所述負輸入端間的電壓差─其值可表為VAP -VAN -γVREF ,0≦γ<1─產生一位元輸出值B。當VAP -VAN -γVREF >0,B=1;當VAP -VAN -γVREF <0,B=0。The comparator 230 has a positive input terminal, a negative input terminal, and an output terminal, wherein the positive input terminal is coupled to the third contact of the switch unit 210, and the negative input terminal is coupled to the switch unit 210. The fourth contact is coupled. The comparator 230 is configured to use a voltage difference between the positive input terminal and the negative input terminal - the value can be expressed as V AP -V AN -γV REF , 0 ≦ γ<1 - generating a one-element output value B . When V AP -V AN -γV REF >0, B=1; when V AP -V AN -γV REF <0, B=0.

請參照圖3,其繪示圖2習知位元值決定單元處於一取樣階段之電路組態。如圖3所示,當處於所述的取樣階段時,第一電容陣列221及第二電容陣列222之共同接點均耦接至VREF ,第一電容陣列221之N+1個偏壓接點均耦接至負類比輸入電壓VAN ,而第二電容陣列222之N+1個偏壓接點均耦接至正類比輸入電壓VAP 。在所述取樣階段結束前,第一電容陣列221會儲存有(VREF -VAN )之電壓,而第二電容陣列222會儲存有(VREF -VAP )之電壓。Please refer to FIG. 3, which illustrates the circuit configuration of the conventional bit value determining unit of FIG. 2 in a sampling phase. As shown in FIG. 3, when in the sampling phase, the common contacts of the first capacitor array 221 and the second capacitor array 222 are coupled to V REF , and the N+1 bias terminals of the first capacitor array 221 are connected. The points are both coupled to the negative analog input voltage V AN , and the N+1 bias contacts of the second capacitor array 222 are coupled to the positive analog input voltage V AP . Before the end of the sampling phase, the first capacitor array 221 stores a voltage of (V REF - V AN ), and the second capacitor array 222 stores a voltage of (V REF - V AP ).

請參照圖4,其繪示圖2習知位元值決定單元處於一電壓比較階段之電路組態。如圖4所示,當處於所述的電壓比較階段時,開關單元210係呈斷開之狀態;第一電容陣列221具有電容量為KC之第一等效電容及電容量為(2N -K)C之第二等效電容;而第二電容陣列222具有電容量為KC之第三等效電容及電容量為(2N -K)C之第四等效電容,其中,K,N均為正整數,K=1~2N -1,且所述第一等效電容之偏壓接點係耦接至VREF ,所述第二等效電容之偏壓接點係耦接至VGND ,所述第三等效電容之偏壓接點係耦接至VGND ,及所述第四等效電容之偏壓接點係耦接至VREFPlease refer to FIG. 4, which illustrates the circuit configuration of the conventional bit value determining unit of FIG. 2 in a voltage comparison phase. As shown in FIG. 4, when in the voltage comparison phase, the switching unit 210 is in an off state; the first capacitor array 221 has a first equivalent capacitance with a capacitance of KC and a capacitance of (2 N - K) the second equivalent capacitance of C; and the second capacitor array 222 has a third equivalent capacitance of capacitance KC and a fourth equivalent capacitance of capacitance (2 N -K) C, where K, N A positive integer, K=1~2 N -1, and the biasing contact of the first equivalent capacitor is coupled to V REF , and the bias contact of the second equivalent capacitor is coupled to V GND , a bias contact of the third equivalent capacitor is coupled to V GND , and a bias contact of the fourth equivalent capacitor is coupled to V REF .

在所述電壓比較階段中,比較器230之正輸入端會呈現VREF -VAN +(K/2N )VREF 之電壓,負輸入端會呈現VREF -VAP +(1-K/2N )VREF 之電壓,亦即,比較器230之正輸入端與負輸入端間會有VAP -VAN -(1-K/2N-1 )VREF 之電壓差。以N=4為例,當K=1時,該電壓差等於VAP -VAN -(7/8)VREF ;當K=2時,該電壓差等於VAP -VAN -(3/4)VREF ;當K=3時,該電壓差等於VAP -VAN -(5/8)VREF ;當K=4時,該電壓差等於VAP -VAN -(1/2)VREF ;當K=5時,該電壓差等於VAP -VAN -(3/8)VREF ;當K=6時,該電壓差等於VAP -VAN -(1/4)VREF ;當K=7時,該電壓差等於VAP -VAN -(1/8)VREF ;當K=8時,該電壓差等於VAP -VAN -0;當K=9時,該電壓差等於VAP -VAN -(-1/8)VREF ;當K=10時,該電壓差等於VAP -VAN -(-1/4)VREF ;當K=11時,該電壓差等於VAP -VAN -(-3/8)VREF ;當K=12時,該電壓差等於VAP -VAN -(-1/2)VREF ;當K=13時,該電壓差等於VAP -VAN -(-5/8)VREF ;當K=14時,該電壓差等於VAP -VAN -(-3/4)VREF ;當K=15時,該電壓差等於VAP -VAN -(-7/8)VREF 。在所述電壓比較階段中,K值會先被設為8以使VAP -VAN 與零伏特做比較,若VAP -VAN 大於零伏特,則接下來K值會變為4以使VAP -VAN 與(1/2)VREF 做比較,若VAP -VAN 小於(1/2)VREF ,則接下來K值會變為6以使VAP -VAN 與(1/4)VREF 做比較,依此類推,其中,當K=8時,(第一等效電容,第二等效電容)會形成(8C,8C)之組合;當K=4時,(第一等效電容,第二等效電容)會形成(4C,12C)之組合;當K=6時,(第一等效電容,第二等效電容)會形成(6C,10C)之組合。During the voltage comparison phase, the positive input of comparator 230 exhibits a voltage of V REF -V AN +(K/2 N )V REF , and the negative input presents V REF -V AP +(1-K/ The voltage of 2 N )V REF , that is, the voltage difference between V AP -V AN -(1-K/2 N-1 )V REF between the positive input terminal and the negative input terminal of the comparator 230. Taking N=4 as an example, when K=1, the voltage difference is equal to V AP -V AN -(7/8)V REF ; when K=2, the voltage difference is equal to V AP -V AN -(3/ 4) V REF ; when K=3, the voltage difference is equal to V AP -V AN -(5/8)V REF ; when K=4, the voltage difference is equal to V AP -V AN -(1/2) V REF ; when K=5, the voltage difference is equal to V AP -V AN -(3/8)V REF ; when K=6, the voltage difference is equal to V AP -V AN -(1/4)V REF When K=7, the voltage difference is equal to V AP -V AN -(1/8)V REF ; when K=8, the voltage difference is equal to V AP -V AN -0; when K=9, the The voltage difference is equal to V AP -V AN -(-1/8)V REF ; when K=10, the voltage difference is equal to V AP -V AN -(-1/4)V REF ; when K=11, the The voltage difference is equal to V AP -V AN -(-3/8)V REF ; when K=12, the voltage difference is equal to V AP -V AN -(-1/2)V REF ; when K=13, the The voltage difference is equal to V AP -V AN -(-5/8)V REF ; when K=14, the voltage difference is equal to V AP -V AN -(-3/4)V REF ; when K=15, the The voltage difference is equal to V AP -V AN -(-7/8)V REF . In the voltage comparison phase, the K value is first set to 8 to compare V AP -V AN with zero volts. If V AP -V AN is greater than zero volts, then the K value will be changed to 4 to make V AP -V AN is compared with (1/2)V REF . If V AP -V AN is less than (1/2)V REF , then the K value will be changed to 6 to make V AP -V AN and (1 /4) V REF is compared, and so on. When K=8, (first equivalent capacitor, second equivalent capacitor) will form a combination of (8C, 8C); when K=4, ( The first equivalent capacitor, the second equivalent capacitor) forms a combination of (4C, 12C); when K=6, the (first equivalent capacitor, the second equivalent capacitor) forms a combination of (6C, 10C) .

因此,假設VAP -VAN =(9/32)VREF ,則一開始在K=8時,因(9/32)VREF -0大於零伏特,故比較器230輸出1,且接著K會被更改為4;在K=4時,因(9/32)VREF -(1/2)VREF 小於零伏特,故比較器230輸出0,且接著K會被更改為6;在K=6時,因(9/32)VREF -(1/4)VREF 大於零伏特,故比較器230輸出1,且接著K會被更改為5;在K=5時,因(9/32)VREF -(3/8)VREF 小於零伏特,故比較器230輸出0。依此,即可產生(9/32)VREF 之數位輸出(1010)。Therefore, assuming V AP -V AN =(9/32)V REF , at the beginning K = 8, since (9/32)V REF -0 is greater than zero volts, comparator 230 outputs 1 and then K Will be changed to 4; at K=4, since (9/32)V REF -(1/2)V REF is less than zero volts, comparator 230 outputs 0, and then K is changed to 6; When =6, since (9/32)V REF -(1/4)V REF is greater than zero volts, comparator 230 outputs 1 and then K is changed to 5; at K=5, due to (9/ 32) V REF -(3/8)V REF is less than zero volts, so comparator 230 outputs zero. Accordingly, a digital output (1010) of (9/32) V REF can be generated.

另外,由於N位元SAR ADC在每一個N位元數碼的產生過程中都會有N次動態能量耗損,其中所述的動態能量耗損等於參考電壓VREF 與自參考電壓VREF 流出之電量的乘積,故在給定參考電壓VREF 之情況下,如何降低自參考電壓VREF 流出之電量已成為降低SAR類比數位轉換之動態能量耗損的關鍵。依前述習知SAR ADC之架構,要降低動態能量耗損只能減少其基本電容值C。然而,減少基本電容值C會劣化訊雜比(Signal to Noise Ratio─SNR),從而影響SAR ADC之類比數位轉換精度。In addition, since the N-bit SAR ADC has N dynamic energy losses during the generation of each N-bit number, the dynamic energy loss is equal to the product of the reference voltage V REF and the amount of electricity flowing from the reference voltage V REF . Therefore, how to reduce the amount of power flowing out of the reference voltage V REF has become the key to reduce the dynamic energy loss of the SAR analog-to-digital conversion given the reference voltage V REF . According to the above-mentioned structure of the SAR ADC, the dynamic energy loss can only be reduced by reducing the basic capacitance value C. However, reducing the basic capacitance value C degrades the Signal to Noise Ratio (SNR), thereby affecting the analog digital conversion accuracy of the SAR ADC.

有鑒於前述之問題,吾人亟需一種新穎的SAR類比數位轉換架構,以在不影響SNR之情形下降低動態能量耗損。In view of the foregoing problems, we need a novel SAR analog-to-digital conversion architecture to reduce dynamic energy consumption without affecting SNR.

本發明之一目的在於提供一種可使能量耗損極小化之逐次逼近暫存式類比數位轉換器,其具有一新穎的電容陣列架構,其中該電容陣列之最大電容值為其最小電容值的2N-2 倍,其中N為該類比數位轉換器之數位輸出位元數。It is an object of the present invention to provide a successive approximation temporary analog digital converter that minimizes energy consumption, and has a novel capacitor array architecture in which the maximum capacitance of the capacitor array is 2 N of its minimum capacitance value. -2 times, where N is the number of digit output bits of the analog to digital converter.

本發明之另一目的在於提供一種可使能量耗損極小化之逐次逼近暫存式類比數位轉換器,其採用一新穎的輸入電壓取樣模式及一新穎的電壓比較模式以降低動態能量耗損,其中該新穎的電壓比較模式可使二電容陣列所含的大部分電容具有浮接的選項。Another object of the present invention is to provide a successive approximation temporary analog digital converter capable of minimizing energy consumption, which adopts a novel input voltage sampling mode and a novel voltage comparison mode to reduce dynamic energy consumption, wherein The novel voltage comparison mode allows most of the capacitors contained in the two capacitor arrays to have floating options.

本發明之又一目的在於提供一種可使能量耗損極小化之逐次逼近暫存式類比數位轉換器,其採用一新穎的輸入電壓取樣模式及一新穎的電壓比較模式以降低動態能量耗損,其中該新穎的輸入電壓取樣模式及新穎的電壓比較模式均有採用一共模電壓,該共模電壓係介於一參考電壓及一接地電壓之間。It is still another object of the present invention to provide a successive approximation temporary analog digital converter that minimizes energy consumption, using a novel input voltage sampling mode and a novel voltage comparison mode to reduce dynamic energy consumption, wherein Both the novel input voltage sampling mode and the novel voltage comparison mode use a common mode voltage between a reference voltage and a ground voltage.

為達成前述之目的,本發明乃提出一種可降低能量耗損之逐次逼近暫存式類比數位轉換器,其具有:一比較器,具有一正輸入端、一負輸入端、以及一比較輸出端;一電容電路,其具有一第一電容陣列及一第二電容陣列,該第一電容陣列及第二電容陣列各具有N組電容,在所述N組電容中:第一組及第二組均具有1個電容,其電容量為C;第三組具有1個電容,其電容量為2C;第K組具有K-2個電容,其電容量分別為2C、21 C、22 C、…2K3 C,K=4~N,其中,該第一電容陣列所含之各電容均以一電極耦接至該比較器之所述正輸入端,該第二電容陣列所含之各電容均以一電極耦接至該比較器之所述負輸入端;一對取樣開關,其一側係耦接至一正輸入電壓及一負輸入電壓,而其另一側則耦接至該比較器之所述正輸入端及所述負輸入端;一邏輯電路,其具有一位元輸出值輸入端、N個位元輸出端、以及複數個開關控制輸出端,其中該位元輸出值輸入端係與該比較器之所述比較輸出端耦接,而所述的開關控制輸出端係用以輸出複數個開關控制信號;以及一電壓選擇電路,用以依所述開關控制信號使該電容電路所含各電容之另一電極呈浮接狀態或連接至一參考電壓、一共模電壓、或一接地電壓。In order to achieve the foregoing object, the present invention provides a successive approximation temporary analog digital converter capable of reducing energy consumption, comprising: a comparator having a positive input terminal, a negative input terminal, and a comparison output terminal; a capacitor circuit having a first capacitor array and a second capacitor array, the first capacitor array and the second capacitor array each having N sets of capacitors, in the N sets of capacitors: the first group and the second group It has one capacitor and its capacitance is C; the third group has one capacitor and its capacitance is 2C; the Kth group has K-2 capacitors, and its capacitance is 2C, 2 1 C, 2 2 C, ... 2 K3 C, K=4~N, wherein each capacitor included in the first capacitor array is coupled to the positive input terminal of the comparator by an electrode, and the capacitors included in the second capacitor array Each of the two sides is coupled to the negative input terminal of the comparator; a pair of sampling switches having one side coupled to a positive input voltage and a negative input voltage, and the other side coupled to the comparison The positive input terminal and the negative input terminal; a logic circuit having a one-bit output value An input terminal, N bit output terminals, and a plurality of switch control output terminals, wherein the bit output value input end is coupled to the comparison output end of the comparator, and the switch control output end is used And outputting a plurality of switch control signals; and a voltage selection circuit for causing the other electrode of each capacitor included in the capacitor circuit to be in a floating state or connected to a reference voltage, a common mode voltage, or A ground voltage.

為使 貴審查委員能進一步瞭解本發明之結構、特徵及其目的,茲附以圖式及較佳具體實施例之詳細說明如后。The detailed description of the drawings and the preferred embodiments are set forth in the accompanying drawings.

請參照圖5,其繪示本發明可降低能量耗損之逐次逼近暫存式類比數位轉換器其一較佳實施例之方塊圖。如圖5所示,該類比數位轉換器包含一開關單元510、一第一電容陣列521、一第二電容陣列522、一電壓選擇電路523、一比較器530、以及一邏輯電路540,其中開關單元510、第一電容陣列521、第二電容陣列522、電壓選擇電路523、以及比較器530係用以形成一位元值決定單元。Referring to FIG. 5, a block diagram of a preferred embodiment of a successive approximation temporary analog digital converter capable of reducing energy consumption is illustrated. As shown in FIG. 5, the analog-to-digital converter includes a switch unit 510, a first capacitor array 521, a second capacitor array 522, a voltage selection circuit 523, a comparator 530, and a logic circuit 540, wherein the switch The unit 510, the first capacitor array 521, the second capacitor array 522, the voltage selection circuit 523, and the comparator 530 are used to form a one-bit value decision unit.

開關單元510具有一對取樣開關,其一側具有一第一接點及一第二接點,分別耦接至一正類比輸入電壓VAP 及一負類比輸入電壓VAN ,另一側具有一第三接點及一第四接點,分別耦接第一電容陣列521及第二電容陣列522。The switch unit 510 has a pair of sampling switches, one side of which has a first contact and a second contact, respectively coupled to a positive analog input voltage V AP and a negative analog input voltage V AN , and the other side has a The third contact and the fourth contact are respectively coupled to the first capacitor array 521 and the second capacitor array 522.

第一電容陣列521及第二電容陣列522各具有N組電容,在所述N組電容中:第一組及第二組均具有1個電容,其電容量為C;第三組具有1個電容,其電容量為2C;第K組具有K-2個電容,其電容量分別為2C、21 C、22 C、…2K-3 C,K=4~N,其中,該第一電容陣列521之各電容均以一電極耦接至該開關單元510之所述第三接點,而各電容之另一電極則為一偏壓接點,各所述偏壓接點分別耦接至偏壓信號VU (1)、VU (2)、VU (3)、VU (4,1)、VU (4,2)、VU (5,1)、VU (5,2)、VU (5,3)...、VU (N,1)、VU (N,2)、…VU (N,N-3)、VU (N,N-2);該第二電容陣列之各電容均以一電極耦接至該開關單元510之所述第四接點,而各電容之另一電極則為一偏壓接點,各所述偏壓接點分別耦接至偏壓信號VD (1)、VD (2)、VD (3)、VD (4,1)、VD (4,2)、VD (5,1)、VD (5,2)、VD (5,3)…、VD (N,1)、VD (N,2)、…VD (N,N-3)、VD (N,N-2)。The first capacitor array 521 and the second capacitor array 522 each have N sets of capacitors. Among the N sets of capacitors, the first group and the second group each have one capacitor, and the capacitance is C; the third group has one. The capacitance has a capacitance of 2C; the Kth group has K-2 capacitors, and the capacitances thereof are 2C, 2 1 C, 2 2 C, ... 2 K-3 C, K=4~N, wherein the capacitor Each of the capacitors of the capacitor array 521 is coupled to the third contact of the switch unit 510 by an electrode, and the other electrode of each capacitor is a bias contact, and each of the bias contacts is coupled Connected to bias signals V U (1), V U (2), V U (3), V U (4,1), V U (4,2), V U (5,1), V U ( 5,2), V U (5,3)..., V U (N,1), V U (N,2),...V U (N,N-3), V U (N,N- 2); each capacitor of the second capacitor array is coupled to the fourth contact of the switch unit 510 by an electrode, and the other electrode of each capacitor is a bias contact, each of the bias The contacts are respectively coupled to the bias signals V D (1), V D (2), V D (3), V D (4, 1), V D (4, 2), V D (5, 1) , V D (5, 2), V D (5, 3)..., V D (N, 1), V D (N, 2), ... V D (N, N-3), V D (N, N-2).

電壓選擇電路523係用以依開關控制信號SWN ~SW1 輸出偏壓信號VU (1)、VU (2)、VU (3)、VU (4,1)、VU (4,2)、VU (5,1)、VU (5,2)、VU (5,3)…、VU (N,1)、VU (N,2)、…VU (N,N-3)、VU (N,N-2)給第一電容陣列521之所述偏壓接點,及輸出偏壓信號VD (1)、VD (2)、VD (3)、VD (4,1)、VD (4,2)、VD (5,1)、VD (5,2)、VD (5,3)…、VD (N,1)、VD (N,2)、…VD (N,N-3)、VD (N,N-2)給第二電容陣列522之所述偏壓接點,以使第一電容陣列521及第二電容陣列522之各所述偏壓接點呈浮接狀態或連接至一參考電壓VREF ,一共模電壓VCM ,或一接地電壓VGND 。其中,共模電壓VCM 低於參考電壓VREF 且高於接地電壓VGND ,其較佳之電壓值為VREF /2。The voltage selection circuit 523 is configured to output the bias signals V U (1), V U (2), V U (3), V U (4, 1), V U (4) according to the switch control signals SW N ~ SW 1 . , 2), V U (5,1), V U (5,2), V U (5,3)..., V U (N,1), V U (N,2),...V U (N , N-3), V U (N, N-2) to the bias contact of the first capacitor array 521, and output bias signals V D (1), V D (2), V D (3 ), V D (4,1), V D (4,2), V D (5,1), V D (5,2), V D (5,3)..., V D (N,1) V D (N, 2), ... V D (N, N-3), V D (N, N-2) are applied to the bias contact of the second capacitor array 522 to make the first capacitor array 521 Each of the bias contacts of the second capacitor array 522 is in a floating state or connected to a reference voltage V REF , a common mode voltage V CM , or a ground voltage V GND . Wherein, the common mode voltage V CM is lower than the reference voltage V REF and higher than the ground voltage V GND , and the preferred voltage value is V REF /2.

比較器530具有一正輸入端、一負輸入端、以及一輸出端,其中所述正輸入端係與開關單元510之所述第三接點耦接,所述負輸入端係與開關單元510之所述第四接點耦接。比較器530係用以依所述正輸入端及所述負輸入端間的電壓差產生一位元輸出值B。The comparator 530 has a positive input terminal, a negative input terminal, and an output terminal, wherein the positive input terminal is coupled to the third contact of the switch unit 510, and the negative input terminal is coupled to the switch unit 510. The fourth contact is coupled. The comparator 530 is configured to generate a one-bit output value B according to a voltage difference between the positive input terminal and the negative input terminal.

邏輯電路540具有一位元輸出值輸入端、N個位元輸出端、以及複數個開關控制輸出端,其中該位元輸出值輸入端係與該比較器530之所述比較輸出端耦接,所述N個位元輸出端係用以輸出一數碼DOUT ,而所述的開關控制輸出端係用以輸出開關控制信號SWN ~SW1 。其中,邏輯電路540內含一暫存器以暫存數碼DOUTThe logic circuit 540 has a one-bit output value input terminal, N bit output terminals, and a plurality of switch control output terminals, wherein the bit output value input terminal is coupled to the comparison output terminal of the comparator 530. The N bit outputs are used to output a digital D OUT , and the switch control output is used to output the switch control signals SW N ~SW 1 . The logic circuit 540 includes a register to temporarily store the digital D OUT .

請參照圖6,其繪示圖5之所述位元值決定單元處於一取樣階段之電路組態。如圖6所示,當處於所述的取樣階段時,第一電容陣列521及第二電容陣列522之共同接點分別耦接至VAP 及VAN ,第一電容陣列521及第二電容陣列522之複數個偏壓接點均耦接至共模電壓VCM 。在所述取樣階段結束前,第一電容陣列521會儲存有(VAP -VCM )之電壓,第二電容陣列522會儲存有(VAN -VCM )之電壓,而比較器530之正輸入端與負輸入端間會有VAP -VAN -0之電壓差。Please refer to FIG. 6 , which illustrates the circuit configuration of the bit value determining unit of FIG. 5 in a sampling phase. As shown in FIG. 6, when in the sampling phase, the common contacts of the first capacitor array 521 and the second capacitor array 522 are coupled to V AP and V AN , respectively, the first capacitor array 521 and the second capacitor array. A plurality of bias contacts of 522 are coupled to a common mode voltage V CM . Before the end of the sampling phase, the first capacitor array 521 stores a voltage of (V AP -V CM ), the second capacitor array 522 stores a voltage of (V AN -V CM ), and the comparator 530 is positive. There is a voltage difference between V AP -V AN -0 between the input and the negative input.

當圖5之所述位元值決定單元處於一電壓比較階段時,若VAP -VAN >0,則其係以一第一電路組態進行VAP -VAN 與((2m-1)/2n )VREF 之電壓比較;若VAP -VAN <0,則其係以一第二電路組態進行VAP -VAN 與((1-2m)/2n )VREF 之電壓比較,其中,m、n均為正整數,m≦2n-1 ,n≦N-1。When the bit value determining unit of FIG. 5 is in a voltage comparison phase, if V AP -V AN >0, it is V AP -V AN and ((2m-1) in a first circuit configuration. /2 n )V REF voltage comparison; if V AP -V AN <0, it is a voltage of V AP -V AN and ((1-2m)/2 n )V REF in a second circuit configuration In comparison, m and n are positive integers, m≦2 n-1 , n≦N-1.

請參照圖7(a),其為所述第一電路組態之示意圖。如圖7(a)所示,當所述位元值決定單元形成所述之第一電路組態時,開關單元510係呈斷開之狀態;第一電容陣列521具有電容量為(2m-1)C之第一等效電容、電容量為(2n -2m+1)C之第二等效電容、及電容量為(2N-1 -2n )C之第三等效電容;而第二電容陣列522具有電容量為(2m-1)C之第四等效電容、電容量為(2n -2m+1)C之第五等效電容、及電容量為(2N-1 -2n )C之第六等效電容。所述第一等效電容之偏壓接點係耦接至VGND ,所述第二等效電容之偏壓接點係耦接至VCM ,所述第三等效電容之偏壓接點係呈浮接狀態,所述第四等效電容之偏壓接點係耦接至VREF ,所述第五等效電容之偏壓接點係耦接至VCM ,及所述第六等效電容之偏壓接點係呈浮接狀態。Please refer to FIG. 7(a), which is a schematic diagram of the first circuit configuration. As shown in FIG. 7(a), when the bit value determining unit forms the first circuit configuration, the switching unit 510 is in a disconnected state; the first capacitor array 521 has a capacitance of (2m-). 1) The first equivalent capacitance of C, the second equivalent capacitance of (2 n -2m+1)C, and the third equivalent capacitance of (2 N-1 -2 n )C; The second capacitor array 522 has a fourth equivalent capacitance of (2m-1)C, a fifth equivalent capacitance of (2 n -2m+1)C, and a capacitance of (2 N- The sixth equivalent capacitance of 1 -2 n )C. The biasing contact of the first equivalent capacitor is coupled to V GND , the biasing contact of the second equivalent capacitor is coupled to V CM , and the biasing contact of the third equivalent capacitor Is in a floating state, the biasing contact of the fourth equivalent capacitor is coupled to V REF , the biasing contact of the fifth equivalent capacitor is coupled to V CM , and the sixth The bias contact of the capacitor is floating.

在所述之第一電路組態中,比較器530之正輸入端會呈現VAP -((2m-1)/2n )VCM 之電壓,負輸入端會呈現VAN +((2m-1)/2n )(VREF -VCM )之電壓,亦即,比較器530之正輸入端與負輸入端間會有VAP -VAN -((2m-1)/2n )VREF 之電壓差。以N=4為例,當(n,m)=(1,1)時,該電壓差等於VAP -VAN -(1/2)VREF ;當(n,m)=(2,1)時,該電壓差等於VAP -VAN -(1/4)VREF ;當(n,m)=(2,2)時,該電壓差等於VAP -VAN -(3/4)VREF ;當(n,m)=(3,1)時,該電壓差等於VAP -VAN -(1/8)VREF ;當(n,m)=(3,2)時,該電壓差等於VAP -VAN -(3/8)VREF ;當(n,m)=(3,3)時,該電壓差等於VAP -VAN -(5/8)VREF ;當(n,m)=(3,4)時,該電壓差等於VAP -VAN -(7/8)VREFIn the first circuit configuration, the positive input of comparator 530 will present a voltage of V AP -((2m-1)/2 n )V CM , and the negative input will present V AN +((2m- 1) / 2 n ) (V REF - V CM ), that is, there will be V AP -V AN -((2m-1)/2 n )V between the positive input terminal and the negative input terminal of the comparator 530 The voltage difference of REF . Taking N=4 as an example, when (n, m) = (1, 1), the voltage difference is equal to V AP -V AN -(1/2)V REF ; when (n,m)=(2,1 When the voltage difference is equal to V AP -V AN -(1/4)V REF ; when (n,m)=(2,2), the voltage difference is equal to V AP -V AN -(3/4) V REF ; when (n,m)=(3,1), the voltage difference is equal to V AP -V AN -(1/8)V REF ; when (n,m)=(3,2), The voltage difference is equal to V AP -V AN -(3/8)V REF ; when (n,m)=(3,3), the voltage difference is equal to V AP -V AN -(5/8)V REF ; When (n, m) = (3, 4), the voltage difference is equal to V AP -V AN -(7/8)V REF .

請參照圖7(b),其為所述第二電路組態之示意圖。如圖7(b)所示,當所述位元值決定單元形成所述之第二電路組態時,開關單元510係呈斷開之狀態;第一電容陣列521具有電容量為(2m-1)C之第一等效電容、電容量為(2n -2m+1)C之第二等效電容、及電容量為(2N-1 -2n )C之第三等效電容;而第二電容陣列522具有電容量為(2m-1)C之第四等效電容、電容量為(2n -2m+1)C之第五等效電容、及電容量為(2N-1 -2n )C之第六等效電容。所述第一等效電容之偏壓接點係耦接至VREF ,所述第二等效電容之偏壓接點係耦接至VCM ,所述第三等效電容之偏壓接點係呈浮接狀態,所述第四等效電容之偏壓接點係耦接至VGND ,所述第五等效電容之偏壓接點係耦接至VCM ,及所述第六等效電容之偏壓接點係呈浮接狀態。Please refer to FIG. 7(b), which is a schematic diagram of the second circuit configuration. As shown in FIG. 7(b), when the bit value determining unit forms the second circuit configuration, the switching unit 510 is in a disconnected state; the first capacitor array 521 has a capacitance of (2m-). 1) The first equivalent capacitance of C, the second equivalent capacitance of (2 n -2m+1)C, and the third equivalent capacitance of (2 N-1 -2 n )C; The second capacitor array 522 has a fourth equivalent capacitance of (2m-1)C, a fifth equivalent capacitance of (2 n -2m+1)C, and a capacitance of (2 N- The sixth equivalent capacitance of 1 -2 n )C. The biasing contact of the first equivalent capacitor is coupled to V REF , the biasing contact of the second equivalent capacitor is coupled to V CM , and the biasing contact of the third equivalent capacitor Is in a floating state, the biasing contact of the fourth equivalent capacitor is coupled to V GND , the biasing contact of the fifth equivalent capacitor is coupled to V CM , and the sixth The bias contact of the capacitor is floating.

在所述之第二電路組態中,比較器530之正輸入端會呈現VAP +((2m-1)/2n )(VREF -VCM )之電壓,負輸入端會呈現VAN -((2m-1)/2n )VCM 之電壓,亦即,比較器530之正輸入端與負輸入端間會有VAP -VAN -((1-2m)/2n )VREF 之電壓差。以N=4為例,當(n,m)=(1,1)時,該電壓差等於VAP -VAN -(-1/2)VREF ;當(n,m)=(2,1)時,該電壓差等於VAP -VAN -(-1/4)VREF ;當(n,m)=(2,2)時,該電壓差等於VAP -VAN -(-3/4)VREF ;當(n,m)=(3,1)時,該電壓差等於VAP -VAN -(-1/8)VREF ;當(n,m)=(3,2)時,該電壓差等於VAP -VAN -(-3/8)VREF ;當(n,m)=(3,3)時,該電壓差等於VAP -VAN -(-5/8)VREF ;當(n,m)=(3,4)時,該電壓差等於VAP -VAN -(-7/8)VREFIn the second circuit configuration, the positive input of comparator 530 will present a voltage of V AP +((2m-1)/2 n )(V REF -V CM ), and the negative input will present V AN -((2m-1)/2 n )V CM voltage, that is, there will be V AP -V AN -((1-2m)/2 n )V between the positive input terminal and the negative input terminal of the comparator 530 The voltage difference of REF . Taking N=4 as an example, when (n, m) = (1, 1), the voltage difference is equal to V AP -V AN -(-1/2)V REF ; when (n,m)=(2, 1), the voltage difference is equal to V AP -V AN -(-1/4)V REF ; when (n,m)=(2,2), the voltage difference is equal to V AP -V AN -(-3 /4)V REF ; when (n,m)=(3,1), the voltage difference is equal to V AP -V AN -(-1/8)V REF ; when (n,m)=(3,2 When the voltage difference is equal to V AP -V AN -(-3/8)V REF ; when (n,m)=(3,3), the voltage difference is equal to V AP -V AN -(-5/ 8) V REF ; when (n, m) = (3, 4), the voltage difference is equal to V AP -V AN -(-7/8)V REF .

在所述電壓比較階段中,若VAP -VAN >0,則(n,m)會被依序設定以使VAP -VAN 先與(1/2)VREFF 做比較,接著與(1/4)VREF 或(3/4)VREF 做比較,然後再與(1/8)VREF 或(3/8)VREF 或(5/8)VREF 或(7/8)VREF 做比較。若VAP -VAN <0,則(n,m)會被依序設定以使VAP -VAN 先與(-1/2)VREFF 做比較,接著與(-1/4)VREF 或(-3/4)VREF 做比較,然後再與(-1/8)VREF 或(-3/8)VREF 或(-5/8)VREF 或(-7/8)VREF 做比較。In the voltage comparison phase, if V AP -V AN >0, then (n,m) will be sequentially set so that V AP -V AN is first compared with (1/2)V REFF , then with ( 1/4) V REF or (3/4) V REF for comparison, then with (1/8) V REF or (3/8) V REF or (5/8) V REF or (7/8) V REF is compared. If V AP -V AN <0, then (n,m) will be set sequentially so that V AP -V AN is first compared with (-1/2)V REFF , followed by (-1/4)V REF Or (-3/4)V REF for comparison, then with (-1/8)V REF or (-3/8)V REF or (-5/8)V REF or (-7/8)V REF comparing.

因此,假設VAP -VAN =(9/32)VREF ,因(9/32)VREF 大於零伏特,故比較器530輸出1,且接著(n,m)會被設為(1,1);在(n,m)=(1,1)時,因(9/32)VREF -(1/2)VREF 小於零伏特,故比較器530輸出0,且接著(n,m)會被設為(2,1);在(n,m)=(2,1)時,因(9/32)VREF -(1/4)VREF 大於零伏特,故比較器530輸出1,且接著(n,m)會被設為(3,2);在(n,m)=(3,2)時,因(9/32)VREF -(3/8)VREF 小於零伏特,故比較器530輸出0,其中,當(n,m)=(1,1)時,(第一等效電容,第二等效電容)會形成(C,C)之組合;當(n,m)=(2,1)時,(第一等效電容,第二等效電容)會形成(C,3C)之組合;及當(n,m)=(3,2)時,(第一等效電容,第二等效電容)會形成(3C,8C)之組合。依此,即可產生(9/32)VREF 之對應數位輸出(1010)。Therefore, assuming V AP -V AN =(9/32)V REF , since (9/32)V REF is greater than zero volts, comparator 530 outputs 1 and then (n,m) is set to (1, 1); at (n, m) = (1, 1), since (9/32) V REF - (1/2) V REF is less than zero volts, comparator 530 outputs 0, and then (n, m) ) will be set to (2,1); at (n,m)=(2,1), since (9/32)V REF -(1/4)V REF is greater than zero volts, comparator 530 outputs 1, and then (n, m) will be set to (3, 2); when (n, m) = (3, 2), because (9/32) V REF - (3 / 8) V REF is less than Zero volt, so comparator 530 outputs 0, where (n, m) = (1, 1), (first equivalent capacitance, second equivalent capacitance) will form a combination of (C, C); (n, m) = (2, 1), (first equivalent capacitance, second equivalent capacitance) will form a combination of (C, 3C); and when (n, m) = (3, 2) , (the first equivalent capacitor, the second equivalent capacitor) will form a combination of (3C, 8C). Accordingly, the corresponding digital output (1010) of (9/32) V REF can be generated.

至此,本發明已詳細揭露一可降低能量損耗之SAR ADC,其與習知之差異如下:So far, the present invention has disclosed in detail a SAR ADC which can reduce energy loss, and the difference from the conventional one is as follows:

1.相較於習知SAR ADC其最大電容之電容值(2N-1 C),本發明最大電容之電容值(2N-3 C)僅為習知的四分之一;又相較於習知SAR ADC之總電容值(2×2N C),本發明之總電容值(2×2N-1 C)僅為習知的二分之一,故本發明可大幅降低晶片面積。1. Compared with the capacitance value of the maximum capacitance of the conventional SAR ADC (2 N-1 C), the capacitance value of the maximum capacitance of the present invention (2 N-3 C) is only a quarter of the conventional one; According to the total capacitance value (2×2 N C) of the conventional SAR ADC, the total capacitance value (2×2 N-1 C) of the present invention is only one-half of the conventional one, so the invention can greatly reduce the wafer area. .

2.習知之SAR ADC架構係先以其最大的電容進行一電壓比較操作,而本發明則先以其最小的電容進行所述的電壓比較操作。由於在SAR類比數位轉換過程之前幾次所述電壓比較操作(例如類比輸入電壓與±(1/2)VREF 、±(1/4)VREF 之比較)中會有較大的電壓變動幅度,故本發明先以最小電容進行所述電壓比較操作之作法可大幅降低流出參考電壓VREF 之電量,從而大幅降低能量之耗損。2. The conventional SAR ADC architecture first performs a voltage comparison operation with its largest capacitance, whereas the present invention first performs the voltage comparison operation with its minimum capacitance. Since there are several voltage comparison operations (such as comparison of analog input voltage with ±(1/2)V REF and ±(1/4)V REF ) before the SAR analog digital conversion process, there will be a large voltage fluctuation range. Therefore, the present invention first performs the voltage comparison operation with a minimum capacitance to greatly reduce the amount of power flowing out of the reference voltage V REF , thereby greatly reducing the energy consumption.

3.習知之SAR ADC架構在進行所述的電壓比較操作時會用到所有的電容,而本發明則可讓部分電容呈浮接狀態以進一步降低能量之耗損。3. The conventional SAR ADC architecture uses all of the capacitances during the voltage comparison operation described above, while the present invention allows portions of the capacitors to be floated to further reduce energy losses.

4.相較於習知SAR ADC利用一參考電壓VREF 及一接地電壓以定義出-VREF 至VREF 之比較範圍的偏壓作法,本發明在所述參考電壓VREF 及所述接地電壓之間增加一共模電壓以定義出-VREF 至VREF 之比較範圍的偏壓設計可降低對一電容電路之跨壓,有助於更進一步降低能量之耗損。4. Compared to a conventional SAR ADC using a reference voltage V REF and a ground voltage to define a biasing range of -V REF to V REF , the present invention is at the reference voltage V REF and the ground voltage A bias design that adds a common-mode voltage to define a comparison range of -V REF to V REF can reduce the voltage across a capacitor circuit, helping to further reduce energy losses.

經推導得知習知N位元SAR ADC的平均消耗能量為:It is derived that the average energy consumption of a conventional N-bit SAR ADC is:

,以N=10為例,其平均消耗能量為1363.33CVREF 2 ;而本發明的平均消耗能量為:Taking N=10 as an example, the average energy consumption is 1363.33 CV REF 2 ; and the average energy consumption of the present invention is:

,以N=10為例,其平均消耗能量為31.88CVREF 2 ,與傳統架構比較,本發明可節省97.66%的能量。Taking N=10 as an example, the average energy consumption is 31.88 CV REF 2 , which can save 97.66% of energy compared with the conventional architecture.

本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。The disclosure of the present invention is a preferred embodiment. Any change or modification of the present invention originating from the technical idea of the present invention and being easily inferred by those skilled in the art will not deviate from the scope of patent rights of the present invention.

綜上所陳,本案無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。In summary, this case, regardless of its purpose, means and efficacy, is showing its technical characteristics that are different from the conventional ones, and its first invention is practical and practical, and it is also in compliance with the patent requirements of the invention. I will be granted a patent at an early date.

100...位元值決定單元100. . . Bit value decision unit

110...取樣保持電路110. . . Sample and hold circuit

120...數位類比轉換電路120. . . Digital analog conversion circuit

130、230、530...比較器130, 230, 530. . . Comparators

140...逐次逼近暫存器140. . . Successive approximation register

210、510...開關單元210, 510. . . Switch unit

220...數位類比轉換電路220. . . Digital analog conversion circuit

221、521...第一電容陣列221, 521. . . First capacitor array

222、522...第二電容陣列222, 522. . . Second capacitor array

223、224、523...電壓選擇電路223, 224, 523. . . Voltage selection circuit

540...邏輯電路540. . . Logic circuit

圖1繪示一習知N位元SAR ADC之方塊圖。1 is a block diagram of a conventional N-bit SAR ADC.

圖2繪示包含一數位類比轉換電路之一習知位元值決定單元之方塊圖。2 is a block diagram of a conventional bit value decision unit including a digital analog conversion circuit.

圖3繪示圖2習知位元值決定單元處於一取樣階段之電路組態。3 is a circuit diagram of the conventional bit value determining unit of FIG. 2 in a sampling phase.

圖4繪示圖2習知位元值決定單元處於一電壓比較階段之電路組態。4 is a circuit configuration of the conventional bit value determining unit of FIG. 2 in a voltage comparison phase.

圖5繪示本發明可降低能量耗損之逐次逼近暫存式類比數位轉換器其一較佳實施例之方塊圖。FIG. 5 is a block diagram showing a preferred embodiment of a successive approximation temporary analog digital converter capable of reducing energy consumption according to the present invention.

圖6繪示圖5所述位元值決定單元處於一取樣階段之電路組態。6 is a circuit diagram of the bit value determining unit of FIG. 5 in a sampling phase.

圖7(a)繪示圖5所述位元值決定單元處於一電壓比較階段之一第一電路組態。FIG. 7(a) illustrates a first circuit configuration of the bit value determining unit of FIG. 5 in a voltage comparison phase.

圖7(b)繪示圖5所述位元值決定單元處於一電壓比較階段之一第二電路組態。FIG. 7(b) illustrates a second circuit configuration of the bit value determining unit of FIG. 5 in a voltage comparison phase.

530...比較器530. . . Comparators

510...開關單元510. . . Switch unit

521...第一電容陣列521. . . First capacitor array

522...第二電容陣列522. . . Second capacitor array

523...電壓選擇電路523. . . Voltage selection circuit

540...邏輯電路540. . . Logic circuit

Claims (7)

一種可降低能量耗損之逐次逼近暫存式類比數位轉換器,其具有:一比較器,具有一正輸入端、一負輸入端、以及一比較輸出端;一電容電路,其具有一第一電容陣列及一第二電容陣列,該第一電容陣列及第二電容陣列各具有N組電容,在所述N組電容中:第一組及第二組均具有1個電容,其電容量為C;第三組具有1個電容,其電容量為2C;第K組具有K-2個電容,其電容量分別為2C、21 C、22 C、…2K-3 C,K=4~N,其中,該第一電容陣列所含之各電容均以一電極耦接至該比較器之所述正輸入端,該第二電容陣列所含之各電容均以一電極耦接至該比較器之所述負輸入端;一對取樣開關,其一側係耦接至一正輸入電壓及一負輸入電壓,而其另一側則耦接至該比較器之所述正輸入端及所述負輸入端;一邏輯電路,其具有一位元輸出值輸入端、N個位元輸出端、以及複數個開關控制輸出端,其中該位元輸出值輸入端係與該比較器之所述比較輸出端耦接,而所述的開關控制輸出端係用以輸出複數個開關控制信號;以及一電壓選擇電路,用以依所述開關控制信號使該電容電路所含各電容之另一電極呈浮接狀態或連接至一參考電壓、一共模電壓、或一接地電壓。A successive approximation temporary analog analog-to-digital converter capable of reducing energy consumption, comprising: a comparator having a positive input terminal, a negative input terminal, and a comparison output terminal; a capacitor circuit having a first capacitor An array and a second capacitor array, the first capacitor array and the second capacitor array each having N sets of capacitors. In the N sets of capacitors, the first group and the second group each have a capacitor, and the capacitance is C. The third group has one capacitor and its capacitance is 2C; the Kth group has K-2 capacitors, and its capacitance is 2C, 2 1 C, 2 2 C, ... 2 K-3 C, K=4 ~N, wherein each capacitor included in the first capacitor array is coupled to the positive input terminal of the comparator by an electrode, and each capacitor included in the second capacitor array is coupled to the capacitor by an electrode a negative input terminal of the comparator; a pair of sampling switches, one side of which is coupled to a positive input voltage and a negative input voltage, and the other side of which is coupled to the positive input terminal of the comparator and The negative input terminal; a logic circuit having a one-bit output value input terminal, N bit output terminals, and a complex a switch control output terminal, wherein the bit output value input end is coupled to the comparison output end of the comparator, and the switch control output end is configured to output a plurality of switch control signals; and a voltage selection And a circuit for causing another electrode of each capacitor included in the capacitor circuit to be in a floating state or connected to a reference voltage, a common mode voltage, or a ground voltage according to the switch control signal. 如申請專利範圍第1項所述之可降低能量耗損之逐次逼近暫存式類比數位轉換器,其中該邏輯電路進一步具有一暫存器。A successive approximation temporary analog digital converter capable of reducing energy consumption as described in claim 1 wherein the logic circuit further has a register. 如申請專利範圍第1項所述之可降低能量耗損之逐次逼近暫存式類比數位轉換器,其中該共模電壓低於該參考電壓且高於該接地電壓。A successive approximation temporary analog analog-to-digital converter capable of reducing energy consumption as described in claim 1 wherein the common mode voltage is lower than the reference voltage and higher than the ground voltage. 一種可降低能量耗損之逐次逼近暫存式類比數位轉換器,其具有:一比較器,具有一正輸入端、一負輸入端、以及一比較輸出端;一電容電路,其具有一第一電容陣列及一第二電容陣列;一對取樣開關,其一側係耦接至一正輸入電壓及一負輸入電壓,而其另一側則耦接至該比較器之所述正輸入端及所述負輸入端;一邏輯電路,其具有一位元輸出值輸入端、N個位元輸出端、以及複數個開關控制輸出端,其中該位元輸出值輸入端係與該比較器之所述比較輸出端耦接,而所述的開關控制輸出端係用以輸出複數個開關控制信號;以及一電壓選擇電路,用以依所述開關控制信號執行以下操作:規劃所述第一電容陣列以提供電容量為(2m-1)C之一第一等效電容,及電容量為(2n -2m+1)C之一第二等效電容,其中該第一等效電容之一電極係與該比較器之所述正輸入端耦接,而其另一電極則耦接至一參考電壓或一接地電壓,及該第二等效電容之一電極係與該比較器之所述正輸入端耦接,而其另一電極則耦接至一共模電壓;以及規劃所述第二電容陣列以提供電容量為(2m-1)C之一第四等效電容,及電容量為(2n -2m+1)C之一第五等效電容,其中該第四等效電容之一電極係與該比較器之所述負輸入端耦接,而其另一電極則耦接至所述的接地電壓或所述的參考電壓,及該第五等效電容之一電極係與該比較器之所述負輸入端耦接,而其另一電極則耦接至所述的共模電壓,其中n、m均為正整數且m≦2n-1A successive approximation temporary analog analog-to-digital converter capable of reducing energy consumption, comprising: a comparator having a positive input terminal, a negative input terminal, and a comparison output terminal; a capacitor circuit having a first capacitor An array and a second capacitor array; a pair of sampling switches, one side of which is coupled to a positive input voltage and a negative input voltage, and the other side of which is coupled to the positive input end of the comparator a negative input terminal; a logic circuit having a one-bit output value input terminal, N bit output terminals, and a plurality of switch control output terminals, wherein the bit output value input terminal is associated with the comparator The comparison output is coupled, and the switch control output is configured to output a plurality of switch control signals; and a voltage selection circuit is configured to perform the following operations according to the switch control signal: planning the first capacitor array to Providing a first equivalent capacitor having a capacitance of (2m-1)C and a second equivalent capacitor having a capacitance of (2 n -2m+1)C, wherein one of the first equivalent capacitors is Coupled with the positive input of the comparator And the other electrode is coupled to a reference voltage or a ground voltage, and one of the second equivalent capacitors is coupled to the positive input terminal of the comparator, and the other electrode is coupled To a common mode voltage; and planning the second capacitor array to provide a fourth equivalent capacitance having a capacitance of (2m - 1) C and a capacitance of (2 n - 2m + 1) C, a fifth, etc. An effective capacitor, wherein one of the fourth equivalent capacitors is coupled to the negative input of the comparator, and the other electrode is coupled to the ground voltage or the reference voltage, and One of the fifth equivalent capacitors is coupled to the negative input terminal of the comparator, and the other electrode is coupled to the common mode voltage, wherein n and m are positive integers and m≦2 N-1 . 如申請專利範圍第4項所述之可降低能量耗損之逐次逼近暫存式類比數位轉換器,其中該邏輯電路進一步具有一暫存器。A successive approximation temporary analog analog-to-digital converter capable of reducing energy consumption as described in claim 4, wherein the logic circuit further has a register. 如申請專利範圍第4項所述之可降低能量耗損之逐次逼近暫存式類比數位轉換器,其中該共模電壓低於該參考電壓且高於該接地電壓。A successive approximation temporary analog analog-to-digital converter capable of reducing energy consumption as described in claim 4, wherein the common mode voltage is lower than the reference voltage and higher than the ground voltage. 一種可降低能量耗損之逐次逼近暫存式類比數位轉換器,其具有:一比較器,具有一正輸入端、一負輸入端、以及一比較輸出端,其中該比較輸出端係用以提供一位元輸出值;以及一電壓選擇電路,用以依複數個開關控制信號執行以下操作:規劃一第一電容陣列以提供電容量為(2m-1)C之一第一等效電容,電容量為(2n -2m+1)C之一第二等效電容,及電容量為(2N-1 -2n )C之一第三等效電容,其中該第一等效電容之一電極係與該比較器之所述正輸入端耦接,而其另一電極則耦接至一參考電壓或一接地電壓,該第二等效電容之一電極係與該比較器之所述正輸入端耦接,而其另一電極則耦接至一共模電壓,及該第三等效電容之一電極係與該比較器之所述正輸入端耦接,而其另一電極則呈浮接狀態;以及規劃一第二電容陣列以提供電容量為(2m-1)C之一第四等效電容,電容量為(2n -2m+1)C之一第五等效電容,及電容量為(2N-1 -2n )C之一第六等效電容,其中該第四等效電容之一電極係與該比較器之所述負輸入端耦接,而其另一電極則耦接至所述的接地電壓或所述的參考電壓,該第五等效電容之一電極係與該比較器之所述負輸入端耦接,而其另一電極則耦接至所述的共模電壓,及該第三等效電容之一電極係與該比較器之所述正輸入端耦接,而其另一電極則呈浮接狀態,其中n、m均為正整數且m≦2n-1A successive approximation temporary analog digital converter capable of reducing energy consumption, comprising: a comparator having a positive input terminal, a negative input terminal, and a comparison output terminal, wherein the comparison output terminal is configured to provide a a bit output value; and a voltage selection circuit for performing the following operations according to the plurality of switch control signals: planning a first capacitor array to provide a first equivalent capacitance of a capacitance (2m-1) C, and a capacitance Is a second equivalent capacitor of (2 n -2m+1)C, and a third equivalent capacitor having a capacitance of (2 N-1 -2 n )C, wherein the first equivalent capacitor is one of the electrodes Connected to the positive input terminal of the comparator, and the other electrode is coupled to a reference voltage or a ground voltage, and one of the second equivalent capacitors and the positive input of the comparator The other end is coupled to a common mode voltage, and one of the third equivalent capacitors is coupled to the positive input end of the comparator, and the other electrode is floated State; and planning a second capacitor array to provide a fourth equivalent capacitance having a capacitance of (2m-1)C, The fifth equivalent capacitance of the capacitance (2 n -2m+1) C and the sixth equivalent capacitance of the capacitance (2 N-1 -2 n ) C, wherein the fourth equivalent capacitance An electrode is coupled to the negative input of the comparator, and another electrode is coupled to the ground voltage or the reference voltage, and one of the fifth equivalent capacitors is compared The negative input terminal of the device is coupled to the common mode voltage, and the other electrode of the third equivalent capacitor is coupled to the positive input terminal of the comparator. The other electrode is in a floating state, where n and m are positive integers and m≦2 n-1 .
TW100131873A 2011-09-05 2011-09-05 Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter TWI441456B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100131873A TWI441456B (en) 2011-09-05 2011-09-05 Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100131873A TWI441456B (en) 2011-09-05 2011-09-05 Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter

Publications (2)

Publication Number Publication Date
TW201312946A TW201312946A (en) 2013-03-16
TWI441456B true TWI441456B (en) 2014-06-11

Family

ID=48482699

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131873A TWI441456B (en) 2011-09-05 2011-09-05 Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter

Country Status (1)

Country Link
TW (1) TWI441456B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI650952B (en) * 2018-08-28 2019-02-11 新唐科技股份有限公司 Continuous asymptotic analog digital converter
CN111786677B (en) * 2019-04-03 2024-02-06 扬智科技股份有限公司 Continuous approximation type analog-to-digital converter

Also Published As

Publication number Publication date
TW201312946A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
US8456348B2 (en) SAR ADC capable of reducing energy consumption
CN108574487B (en) Successive approximation register analog-to-digital converter
JP5855236B2 (en) Prechargeable capacitive digital-to-analog converter
US8390502B2 (en) Charge redistribution digital-to-analog converter
CN105391451A (en) Successive approximation register analog to digital converter (SAR ADC) and switching method during analog-digital conversion thereof
KR101716782B1 (en) Digital to analog converting circuit and analog to digital converter including the same
JP5310222B2 (en) Charge distribution type digital-to-analog converter and successive approximation type analog-to-digital converter having the same
CN109120268B (en) Dynamic comparator offset voltage calibration method
CN108476024B (en) DAC capacitor array, SAR analog-to-digital converter and method for reducing power consumption
US8004448B2 (en) Dual DAC structure for charge redistributed ADC
US11418209B2 (en) Signal conversion circuit utilizing switched capacitors
JP2006303671A (en) Integrator and cyclic a/d converter using same
CN108306644B (en) Front-end circuit based on 10-bit ultra-low power consumption successive approximation type analog-to-digital converter
TWI526001B (en) Analog to digital converter
Kuo et al. A high energy-efficiency SAR ADC based on partial floating capacitor switching technique
Ma et al. A 10-bit 100-ms/s 5.23-mw sar adc in 0.18-μm cmos
TWI441456B (en) Can reduce the energy consumption of the successive approximation of the temporary analog-to-digital converter
TWI477083B (en) Successive approximation analog-to-digital converter
JP5561039B2 (en) Analog-to-digital converter and system
CN113708763B (en) Analog-to-digital conversion system and method with offset and bit weight correction mechanism
CN114024550A (en) Analog-to-digital converter and automatic power distribution equipment
CN109936370B (en) Low-power-consumption switching algorithm applied to SAR ADC
KR102089872B1 (en) Successive approximation a/d converter using d/a convertor with capacitor connected in series
CN109039338B (en) Differential capacitor array and switch switching method thereof
KR100947249B1 (en) Digital-to analog converter and analog-to-digital converter using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees