TWI437249B - Magnetic sensor apparatus - Google Patents
Magnetic sensor apparatus Download PDFInfo
- Publication number
- TWI437249B TWI437249B TW100139406A TW100139406A TWI437249B TW I437249 B TWI437249 B TW I437249B TW 100139406 A TW100139406 A TW 100139406A TW 100139406 A TW100139406 A TW 100139406A TW I437249 B TWI437249 B TW I437249B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetoresistive
- line segments
- spiral
- sensing device
- coil
- Prior art date
Links
Landscapes
- Hall/Mr Elements (AREA)
Description
本揭示內容是有關於一種磁感測裝置,且特別是有關於一種磁阻式感測裝置的線圈結構設計。The present disclosure relates to a magnetic sensing device, and more particularly to a coil structure design for a magnetoresistive sensing device.
磁阻效應(Magnetoresistance Effect,MR)是指特定磁阻材料之電阻隨著外加磁場的變化而改變的效應。由於上述特性,磁阻材料通常被應用在各種磁力或磁場的感測裝置當中,例如可用於固態羅盤定位(compassing)、金屬檢測以及位置檢測等場合。Magnetoresistance effect (MR) refers to the effect of the resistance of a specific magnetoresistive material changing with the applied magnetic field. Due to the above characteristics, magnetoresistive materials are generally used in various magnetic or magnetic field sensing devices, such as solid state compassing, metal detection, and position detection.
目前以磁阻材料進行磁感測的裝置,較常見的如巨磁阻(Giant Magnetoresistance,GMR)磁感測器與異向性磁阻(Anisotropic Magnetoresistance,AMR)磁感測器等。At present, devices for magnetic sensing using magnetoresistive materials are more common, such as Giant Magnetoresistance (GMR) magnetic sensors and Anisotropic Magnetoresistance (AMR) magnetic sensors.
巨磁阻效應存在於鐵磁性(如:Fe,Co,Ni)與非鐵磁性(如:Cr,Cu,Ag,Au)所形成的多層膜系統,由於巨磁阻(GMR)感測器需要鐵磁性與非鐵磁性材料交替設置的多層膜結構,在製造上較為複雜。The giant magnetoresistance effect exists in a multilayer film system formed by ferromagnetism (eg, Fe, Co, Ni) and non-ferromagnetic (eg, Cr, Cu, Ag, Au) due to the need for giant magnetoresistance (GMR) sensors. A multilayer film structure in which ferromagnetic and non-ferromagnetic materials are alternately disposed is complicated in manufacturing.
異向性磁阻效應存在於鐵磁性(如:Fe,Co,Ni)材料及其合金塊材或薄膜上。異向性磁阻(AMR)感測器的磁阻變化量於異向性磁阻材料上所通過的工作電流有關。The anisotropic magnetoresistance effect exists on ferromagnetic (eg, Fe, Co, Ni) materials and their alloy blocks or films. The amount of change in magnetoresistance of an anisotropic magnetoresistive (AMR) sensor is related to the operating current passed through the anisotropic magnetoresistive material.
磁阻感測器中的磁阻材料具有一磁化方向,隨著周圍環境磁場的變化,各別磁阻材料的磁化方向將相對應地改變,因此,不同的環境條件下,磁阻材料各自的初始磁化方向將有所不同。The magnetoresistive material in the magnetoresistive sensor has a magnetization direction, and the magnetization direction of each magnetoresistive material will change correspondingly with the change of the surrounding magnetic field. Therefore, under different environmental conditions, the respective magnetoresistive materials The initial magnetization direction will be different.
另一方面,溫度變化亦可能導致磁阻感測器發生磁感測上的靈敏度偏差。使得磁阻感測器在高溫與低溫操作下呈現不同的感測結果。如此一來,將導致磁阻感測器的輸出結果失真。On the other hand, temperature changes may also cause sensitivity deviations in the magnetic sensing of the magnetoresistive sensor. The magnetoresistive sensor is presented with different sensing results under high temperature and low temperature operation. As a result, the output of the magnetoresistive sensor will be distorted.
感測器的溫度漂移可透過藉由特定線圈對磁阻感測器建立正向和反向的重置磁場,並比較在正向和反向重置磁場下的感測器輸出結果來進行補償,然而,習知的補償線圈僅有約一半的線段被用來建立同向的磁場,面積利用效率僅約50%,使得補償線圈佔去不必要的空間。此外,習知的補償線圈為單螺旋式,在寬度方向上尺寸較大,使得補償線圈佔去不必要的空間。The temperature drift of the sensor can be compensated by establishing a forward and reverse reset magnetic field for the magnetoresistive sensor by a specific coil and comparing the sensor output results under the forward and reverse reset magnetic fields. However, only about half of the line segments of the conventional compensation coil are used to establish the same magnetic field, and the area utilization efficiency is only about 50%, so that the compensation coil takes up unnecessary space. In addition, the conventional compensation coil is of a single spiral type and has a large size in the width direction, so that the compensation coil takes up unnecessary space.
為解決上述問題,本發明揭露一種磁感測裝置其包含複數個磁阻感測單元、補償線圈以及重置線圈。其中,補償線圈用以導入補償電流以建立補償磁場,以校正不同溫度下的靈敏度偏差。重置線圈用以導入重置電流以建立重置磁場,藉此在進行感測之前,重置磁阻感測單元的磁化方向,使磁阻感測單元的磁化方向一致,藉此確保磁感測裝置的感測精確度。此外,本案的補償線圈之線路配置具有彼此反向的雙螺旋結構,藉此,可使補償線圈所佔用的寬度最小,並使得補償電流通過磁阻感測單元附近時具有相同的電流流向。In order to solve the above problems, the present invention discloses a magnetic sensing device including a plurality of magnetoresistive sensing units, a compensation coil, and a reset coil. The compensation coil is used to introduce a compensation current to establish a compensation magnetic field to correct the sensitivity deviation at different temperatures. The reset coil is used to introduce a reset current to establish a reset magnetic field, thereby resetting the magnetization direction of the magnetoresistive sensing unit before the sensing, so that the magnetization direction of the magnetoresistive sensing unit is uniform, thereby ensuring the magnetic sense Sensing accuracy of the measuring device. In addition, the line configuration of the compensation coil of the present case has a double helix structure opposite to each other, whereby the width occupied by the compensation coil can be minimized, and the compensation current has the same current flow direction when passing through the vicinity of the magnetoresistive sensing unit.
本揭示內容之一態樣是在提供一種磁感測裝置,其包含基板、複數個磁阻感測單元、重置線圈以及補償線圈。磁阻感測單元分別設置於該基板上。重置線圈設置於該等磁阻感測單元上方,該重置線圈用以導入一重置電流。補償線圈設置於該等磁阻感測單元上方,該補償線圈用以導入一補償電流,該補償線圈之線路配置包含彼此反向的一第一螺旋部份以及一第二螺旋部份。One aspect of the present disclosure is to provide a magnetic sensing device including a substrate, a plurality of magnetoresistive sensing units, a reset coil, and a compensation coil. The magnetoresistive sensing units are respectively disposed on the substrate. The reset coil is disposed above the magnetoresistive sensing unit, and the reset coil is used to introduce a reset current. The compensation coil is disposed above the magnetoresistive sensing unit, and the compensation coil is configured to introduce a compensation current. The circuit configuration of the compensation coil includes a first spiral portion and a second spiral portion opposite to each other.
根據本發明內容之一實施例,其中該補償線圈包含複數個主要線段以及複數個連接線段,其中該等主要線段平行排列且彼此間留有空隙,其中每一連接線段連接於其中兩個主要線段的相鄰端點之間,並使該補償線圈中的該等主要線段以及該等連接線段連接為該第一螺旋部份以及該第二螺旋部份。According to an embodiment of the present invention, the compensation coil includes a plurality of main line segments and a plurality of connecting line segments, wherein the main line segments are arranged in parallel and have a gap between each other, wherein each connecting line segment is connected to two of the main line segments Between adjacent end points, and connecting the main line segments and the connecting line segments in the compensation coil to the first spiral portion and the second spiral portion.
根據本發明內容之一實施例,其中該等主要線段之配置方向與該等磁阻感測單元之配置方向平行。According to an embodiment of the present invention, the arrangement direction of the main line segments is parallel to the arrangement direction of the magnetoresistive sensing units.
根據本發明內容之一實施例,該等連接線段之配置方向與該等磁阻感測單元之配置方向垂直。According to an embodiment of the present invention, the connection direction of the connecting line segments is perpendicular to the arrangement direction of the magnetoresistive sensing units.
根據本發明內容之一實施例,其中該等主要線段中至少一部份主要線段覆蓋該等磁阻感測單元。According to an embodiment of the present invention, at least a portion of the main line segments of the main line segments cover the magnetoresistive sensing units.
根據本發明內容之一實施例,其中當該補償電流通過覆蓋該等磁阻感測單元之該至少一部份主要線段時,該補償電流於該至少一部份主要線段上具有相同之電流流向。According to an embodiment of the present invention, when the compensation current passes over the at least a portion of the main line segments of the magnetoresistive sensing unit, the compensation current has the same current flow direction on the at least a portion of the main line segments. .
根據本發明內容之一實施例,其中該第一螺旋部份為一順時針螺旋,該第二螺旋部份為一逆時針螺旋。According to an embodiment of the invention, the first spiral portion is a clockwise spiral, and the second spiral portion is a counterclockwise spiral.
根據本發明內容之一實施例,其中該第一螺旋部份為一逆時針螺旋,該第二螺旋部份為一順時針螺旋。According to an embodiment of the invention, the first spiral portion is a counterclockwise spiral and the second spiral portion is a clockwise spiral.
根據本發明內容之一實施例,其中每一該等磁阻感應元件為一長條狀,且每一該等磁阻感應元件之兩端分別為銳角尖端。According to an embodiment of the present invention, each of the magnetoresistive sensing elements is an elongated strip, and each of the two magnetoresistive sensing elements has an acute angle tip.
根據本發明內容之一實施例,其中該磁感測裝置為一異向性磁阻(Anisotropic Magnetoresistance,AMR)感測裝置,而該等磁阻感測單元分別包含一異向性磁阻材料。According to an embodiment of the present invention, the magnetic sensing device is an anisotropic magnetoresistance (AMR) sensing device, and the magnetoresistive sensing units respectively comprise an anisotropic magnetoresistive material.
請參閱第1圖,其繪示根據本發明之一實施例中一種磁感測裝置100之俯視示意圖。如第1圖所示,磁感測裝置100至少包含基板120、複數個磁阻感測單元140a,140b、補償線圈160以及重置線圈180。Please refer to FIG. 1 , which is a top plan view of a magnetic sensing device 100 according to an embodiment of the invention. As shown in FIG. 1, the magnetic sensing device 100 includes at least a substrate 120, a plurality of magnetoresistive sensing units 140a, 140b, a compensation coil 160, and a reset coil 180.
實際應用中,磁感測裝置100可更進一步包含輸出入介面端點(未繪示)以及相對應的連接線路(未繪示),用來將電流或電壓訊號導入上述磁阻感測單元140a,140b、補償線圈160以及重置線圈180當中,由於介面端點與連接線路的設置為習知技藝之人所熟知,故在此不另贅述。In practical applications, the magnetic sensing device 100 may further include an input/output interface end point (not shown) and a corresponding connection line (not shown) for introducing a current or voltage signal into the magnetoresistive sensing unit 140a. Among the 140b, the compensation coil 160 and the reset coil 180, since the arrangement of the interface end points and the connection lines is well known to those skilled in the art, no further details are provided herein.
請一併參閱第2圖,其繪示第1圖中磁阻感測單元140a,140b其分離示意圖。如第1圖與第2圖所示,本實施例中磁感測裝置100包含多個磁阻感測單元140a,140b分別設置於基板120上。於此實施例中,磁感測裝置100共有十六組磁阻感測單元140a,140b,但本發明並不此特定數目的磁阻感測單元140a,140b為限,實際應用中,磁阻感測單元140a,140b的數量可視實際磁感應需求而訂。如第2圖所示,每一磁阻感測單元140a,140b分別為一長條狀,且磁阻感應元件140a,140b之兩端分別為銳角尖端。Please refer to FIG. 2 together, which shows a schematic diagram of the separation of the magnetoresistive sensing units 140a, 140b in FIG. As shown in FIG. 1 and FIG. 2, the magnetic sensing device 100 of the present embodiment includes a plurality of magnetoresistive sensing units 140a, 140b respectively disposed on the substrate 120. In this embodiment, the magnetic sensing device 100 has a total of sixteen sets of magnetoresistive sensing units 140a, 140b, but the present invention is not limited to this particular number of magnetoresistive sensing units 140a, 140b. In practical applications, the magnetic resistance The number of sensing units 140a, 140b can be ordered based on actual magnetic sensing requirements. As shown in FIG. 2, each of the magnetoresistive sensing units 140a, 140b is elongated, and the two ends of the magnetoresistive sensing elements 140a, 140b are acute angle tips, respectively.
由於,習知的磁阻感應元件之兩端為方形端,兩端邊線上較容易極化而形成靜態磁場,此一靜態磁場將使得磁阻感應元件的靈敏度下降。本案中的磁阻感應元件140a,140b之兩端分別為銳角尖端,藉此可減少在端線上發生極化現象並避免上述靜態磁場的發生。Since the two ends of the conventional magnetoresistive sensing element are square ends, the two end lines are more easily polarized to form a static magnetic field, and this static magnetic field will lower the sensitivity of the magnetoresistive sensing element. The two ends of the magnetoresistive sensing elements 140a, 140b in the present case are sharp-pointed ends, respectively, thereby reducing the occurrence of polarization on the end lines and avoiding the occurrence of the above-described static magnetic field.
於此實施例中,磁感測裝置100可為異向性磁阻(Anisotropic Magnetoresistance,AMR)感測裝置,而磁阻感測單元140a,140b可分別包含異向性磁阻材料。磁阻感測單元140a,140b的阻值將隨施加於其上的磁場而改變,因此,磁感測裝置100透過磁阻感測單元140a,140b可用以感測周圍的磁場。In this embodiment, the magnetic sensing device 100 may be an anisotropic magnetoresistance (AMR) sensing device, and the magnetoresistive sensing units 140a, 140b may respectively comprise an anisotropic magnetoresistive material. The resistance values of the magnetoresistive sensing units 140a, 140b will vary with the magnetic field applied thereto, and therefore, the magnetic sensing device 100 can be used to sense the surrounding magnetic field through the magnetoresistive sensing units 140a, 140b.
請一併參閱第3圖,其繪示第1圖中補償線圈160其分離示意圖。如第1圖與第3圖所示,本實施例中補償線圈160設置於該等磁阻感測單元140a,140b上方,補償線圈160的至少一部份覆蓋該等磁阻感測單元140a,140b。補償線圈160用以導入補償電流162(如第3圖所示)。補償電流162流過該補償線圈160用來建立一補償磁場至磁阻感測單元140a,140b。此補償磁場可用來校正因外部干擾磁場對磁阻感測單元140a,140b所造成的影響,其校正的效果可透過補償電流162的電流大小進行控制。Please refer to FIG. 3 together, which shows a schematic diagram of the separation of the compensation coil 160 in FIG. 1 . As shown in FIG. 1 and FIG. 3, in the present embodiment, the compensation coil 160 is disposed above the magnetoresistive sensing units 140a, 140b, and at least a portion of the compensation coil 160 covers the magnetoresistive sensing unit 140a. 140b. The compensation coil 160 is used to introduce a compensation current 162 (as shown in FIG. 3). A compensation current 162 flows through the compensation coil 160 for establishing a compensation magnetic field to the magnetoresistive sensing units 140a, 140b. This compensation magnetic field can be used to correct the influence of the external disturbance magnetic field on the magnetoresistive sensing units 140a, 140b, and the effect of the correction can be controlled by the magnitude of the current of the compensation current 162.
請一併參閱第4圖,其繪示第1圖中補償線圈160其分離示意圖。如第4圖所示,補償線圈160之線路配置包含彼此反向的第一螺旋部份160a以及第二螺旋部份160b。Please refer to FIG. 4 together, which shows a schematic diagram of the separation of the compensation coil 160 in FIG. 1 . As shown in Fig. 4, the line configuration of the compensation coil 160 includes a first spiral portion 160a and a second spiral portion 160b which are opposite to each other.
如第4圖所示,其中補償線圈160包含複數個主要線段164,165以及複數個連接線段166,其中該等主要線段164,165平行排列且彼此間留有空隙,其中每一連接線段166連接於其中兩個主要線段164,165的相鄰端點之間,並使該重置線圈中的該等主要線段164,165以及該等連接線段166連接為第一螺旋部份160a以及第二螺旋部份160b。As shown in FIG. 4, the compensation coil 160 includes a plurality of main line segments 164, 165 and a plurality of connecting line segments 166, wherein the main line segments 164, 165 are arranged in parallel and have a gap therebetween, wherein each connecting line segment 166 is connected to two of them. Between adjacent end points of the main line segments 164, 165, the main line segments 164, 165 and the connecting line segments 166 in the reset coil are connected as a first spiral portion 160a and a second spiral portion 160b.
如第3圖與第4圖所示,於此實施例中,主要線段164,165之配置方向與磁阻感測單元140a,140b之配置方向平行。連接線段166之配置方向與磁阻感測單元140a,140b之配置方向垂直。As shown in FIGS. 3 and 4, in this embodiment, the arrangement direction of the main line segments 164, 165 is parallel to the arrangement direction of the magnetoresistive sensing units 140a, 140b. The arrangement direction of the connection line segments 166 is perpendicular to the arrangement direction of the magnetoresistive sensing units 140a, 140b.
如第3圖與第4圖所示,在上述主要線段164,165之中,其中一部份主要線段(即第4圖中的主要線段164)覆蓋磁阻感測單元140a,140b。As shown in FIGS. 3 and 4, among the main line segments 164, 165, a portion of the main line segments (i.e., the main line segment 164 in FIG. 4) covers the magnetoresistive sensing units 140a, 140b.
根據本發明內容之一實施例,其中當補償電流162通過覆蓋磁阻感測單元140a,140b之部份主要線段164時,補償電流162於主要線段164上具有相同之電流流向。In accordance with an embodiment of the present invention, the compensation current 162 has the same current flow direction on the main line segment 164 when the compensation current 162 passes over a portion of the main line segment 164 that covers the magnetoresistive sensing units 140a, 140b.
須特別說明的是,本實施例中補償線圈160具有雙螺旋結構,補償線圈160左半部的第一螺旋部份160a為順時針螺旋,右半部的第二螺旋部份160b為逆時針螺旋,但本發明並不此以為限,於另一實施例中,第一螺旋部份與第二螺旋部份之螺旋方向亦可互換。It should be particularly noted that in the present embodiment, the compensation coil 160 has a double helix structure, the first spiral portion 160a of the left half of the compensation coil 160 is a clockwise spiral, and the second spiral portion 160b of the right half is a counterclockwise spiral. However, the present invention is not limited thereto. In another embodiment, the spiral directions of the first spiral portion and the second spiral portion may also be interchanged.
藉由此反向的雙螺旋設計,並配合本案中補償線圈160與磁阻感測單元140a,140b的配置關係,於此例中,通過磁阻感測單元140a,140b上方的補償電流162皆具有相同的電流流向,如第3圖之實施例中,通過磁阻感測單元140a,140b上方的補償電流162皆為由上向下流動。藉此,使補償電流162可建立同一方向的補償磁場至所有的磁阻感測單元140a,140b。此外,本案中反向雙螺旋設計的補償線圈160可節省線圈寬度與整體面積,藉此可提高磁感測裝置100的面積使用效率。With the reverse double helix design, and in conjunction with the arrangement relationship of the compensation coil 160 and the magnetoresistive sensing units 140a, 140b in this case, in this example, the compensation currents 162 above the magnetoresistive sensing units 140a, 140b are With the same current flow direction, as in the embodiment of Fig. 3, the compensation current 162 passing through the magnetoresistive sensing units 140a, 140b flows from top to bottom. Thereby, the compensation current 162 can establish a compensating magnetic field in the same direction to all of the magnetoresistive sensing units 140a, 140b. In addition, the compensation coil 160 of the reverse double helix design in the present case can save the coil width and the overall area, thereby improving the area use efficiency of the magnetic sensing device 100.
須補充說明的是,於上述實施例中,通過磁阻感測單元140a,140b上方的補償電流162係由上向下流動,但本發明並不以此為限,採用反向之補償電流亦可達到相似之效果,視實際電路需求中須補償之磁場方向而訂。It should be noted that, in the above embodiment, the compensation current 162 passing through the magnetoresistive sensing units 140a, 140b flows from top to bottom, but the invention is not limited thereto, and the reverse compensation current is also used. A similar effect can be achieved, depending on the direction of the magnetic field to be compensated for in the actual circuit requirements.
請一併參閱第5圖以及第6圖,其繪示第1圖中重置線圈180其分離示意圖。如第5圖所示,重置線圈180用以導入重置電流182,重置線圈180的至少一部份覆蓋該等磁阻感測單元140a,140b,重置電流182用以重置磁阻感測單元140a,140b。Please refer to FIG. 5 and FIG. 6 together, which shows a schematic diagram of the separation of the reset coil 180 in FIG. 1 . As shown in FIG. 5, the reset coil 180 is used to introduce a reset current 182. At least a portion of the reset coil 180 covers the magnetoresistive sensing units 140a, 140b, and the reset current 182 is used to reset the reluctance. Sensing units 140a, 140b.
如第6圖所示,重置線圈180為螺旋狀線圈。此重置線圈180的螺旋狀線圈可為一順時針螺旋或一逆時針螺旋,於此實施例中所舉例繪示的為順時針螺旋,但本發明並不以此為限。As shown in Fig. 6, the reset coil 180 is a spiral coil. The spiral coil of the reset coil 180 can be a clockwise spiral or a counterclockwise spiral. In the embodiment, a clockwise spiral is illustrated, but the invention is not limited thereto.
基於磁阻材料特性,每一磁阻感測單元140a,140b中包含許多個磁區,每一個磁區具有一個磁化方向。如第5圖所示,對位於圖示上方的八組磁阻感測單元140a而言,流經重置線圈180的重置電流182具有由左至右的電流流向,重置電流182可用以建立一重置磁場,對磁阻感測單元140a中每一磁區的磁化方向進行重置,使磁阻感測單元140a的磁化方向重置為相同的一磁化方向。Based on the characteristics of the magnetoresistive material, each of the magnetoresistive sensing units 140a, 140b includes a plurality of magnetic domains, each of which has a magnetization direction. As shown in FIG. 5, for the eight sets of magnetoresistive sensing units 140a located above the illustration, the reset current 182 flowing through the reset coil 180 has a current flow from left to right, and the reset current 182 can be used. A resetting magnetic field is established to reset the magnetization direction of each magnetic domain in the magnetoresistive sensing unit 140a, so that the magnetization direction of the magnetoresistive sensing unit 140a is reset to the same magnetization direction.
另一方面,對位於圖示下方的八組磁阻感測單元140b而言,流經重置線圈180的重置電流182具有由右至左的電流流向,此時,重置電流182可用以建立另一重置磁場,對磁阻感測單元140b中每一磁區的磁化方向進行重置,使磁阻感測單元140b的磁化方向重置為相同的另一磁化方向。On the other hand, for the eight sets of magnetoresistive sensing units 140b located below the illustration, the reset current 182 flowing through the reset coil 180 has a right-to-left current flow direction, at which time the reset current 182 can be used. Another reset magnetic field is established to reset the magnetization direction of each magnetic domain in the magnetoresistive sensing unit 140b, so that the magnetization direction of the magnetoresistive sensing unit 140b is reset to the same other magnetization direction.
藉此,磁阻感測單元140a與磁阻感測單元140b經重置後可分別具有統一的磁化方向。藉此在每一次進行感測前進行重置,或是週期性地進行重置,便可確保磁阻感測單元140a與磁阻感測單元140b各自具有一致的磁化方向一致,藉此確保磁感測裝置的感測精確度,在高精度羅盤系統或高敏感性的精密裝置中十分重要。Thereby, the magnetoresistive sensing unit 140a and the magnetoresistive sensing unit 140b can respectively have a uniform magnetization direction after being reset. Thereby, resetting is performed before each sensing is performed, or resetting is periodically performed to ensure that the magnetoresistive sensing unit 140a and the magnetoresistive sensing unit 140b each have a uniform magnetization direction, thereby ensuring magnetic The sensing accuracy of the sensing device is important in high precision compass systems or high sensitivity precision devices.
此外,如第5圖以及第6圖所示,重置線圈180中的主要線段184之線段寬度較寬,重置線圈180的主要線段184大於重置線圈180的連接線段186之線段寬度。Further, as shown in FIGS. 5 and 6 , the line segment width of the main line segment 184 in the reset coil 180 is wider, and the main line segment 184 of the reset coil 180 is larger than the line segment width of the connection line segment 186 of the reset coil 180.
在實際電流流動過程中,重置電流182會趨向較短之路徑的流動路線前進。也就是說,在一般的螺旋狀的重置線圈上,重置電流將沿著重置線圈上靠近螺旋中心的內側側邊流動,如此一來,將使得重置電流無法平均分佈於重置線圈各線段上,而集中在重置線圈的內側側邊。尤其是重置線圈180的主要線段184其寬度較寬,影響更為明顯。During the actual current flow, the reset current 182 will progress toward the flow path of the shorter path. That is to say, on a general spiral reset coil, the reset current will flow along the inner side of the reset coil near the center of the spiral, so that the reset current cannot be evenly distributed over the reset coil. On each line segment, it is concentrated on the inner side of the reset coil. In particular, the main line segment 184 of the reset coil 180 has a wider width and the effect is more pronounced.
因此,本發明的重置線圈180具有複數個缺口結構188,缺口結構188分別位於重置線圈180之轉折處。如第6圖所示,每一該等主要線段184具有內側側邊184a以及外側側邊184b。內側側邊184a鄰近螺旋狀的重置線圈180中心。如圖所示,位於重置線圈180之轉折處的缺口結構188係設置於主要線段184之內側側邊184a上。Accordingly, the reset coil 180 of the present invention has a plurality of notch structures 188 that are respectively located at the turns of the reset coil 180. As shown in Fig. 6, each of the main line segments 184 has an inner side 184a and an outer side 184b. The inner side 184a is adjacent to the center of the helical reset coil 180. As shown, the notch structure 188 at the turn of the reset coil 180 is disposed on the inner side edge 184a of the main line segment 184.
利用上述缺口結構188的設計,可避免重置電流182過度集中於主要線段184之內側側邊184a,使重置電流182於重置線圈180上流動路徑較為平均。With the design of the notch structure 188 described above, it is avoided that the reset current 182 is excessively concentrated on the inner side edge 184a of the main line segment 184 such that the reset current 182 is more evenly distributed on the reset coil 180.
實際應用中,上述磁阻感測單元140、補償線圈160以及重置線圈180可分別為一薄膜結構,設置於該基板120上,且本發明上述實施例中各薄膜的排列僅為例示性說明,並不將磁阻感測單元140、補償線圈160以及重置線圈180限定於特定的上下位置排列。In an actual application, the magnetoresistive sensing unit 140, the compensation coil 160, and the reset coil 180 may be respectively disposed on the substrate 120, and the arrangement of the films in the above embodiments of the present invention is merely an illustrative description. The magnetoresistive sensing unit 140, the compensation coil 160, and the reset coil 180 are not limited to be arranged at a specific upper and lower position.
綜上所述,本發明的磁感測裝置其包含複數個磁阻感測單元、補償線圈以及重置線圈。其中,補償線圈用以導入補償電流以建立補償磁場,以校正因外部干擾磁場對磁阻感測器輸出產生的偏差。重置線圈用以導入重置電流以建立重置磁場,藉此在進行感測之前,重置磁阻感測單元的磁化方向,使磁阻感測單元的磁化方向一致,藉此確保磁感測裝置的感測精確度。並且,磁阻感測器的溫度漂移可以通過比較在正向和反向重置磁場下的感測器輸出結果來進行校正。此外,本案的補償線圈之線路配置具有彼此反向的雙螺旋結構,藉此,可使補償線圈所佔用的寬度最小,並使得補償電流通過磁阻感測單元附近時具有相同的電流流向。In summary, the magnetic sensing device of the present invention includes a plurality of magnetoresistive sensing units, a compensation coil, and a reset coil. The compensation coil is used to introduce a compensation current to establish a compensation magnetic field to correct the deviation of the magnetoresistive sensor output due to the external interference magnetic field. The reset coil is used to introduce a reset current to establish a reset magnetic field, thereby resetting the magnetization direction of the magnetoresistive sensing unit before the sensing, so that the magnetization direction of the magnetoresistive sensing unit is uniform, thereby ensuring the magnetic sense Sensing accuracy of the measuring device. Also, the temperature drift of the magnetoresistive sensor can be corrected by comparing the sensor output results in the forward and reverse reset magnetic fields. In addition, the line configuration of the compensation coil of the present case has a double helix structure opposite to each other, whereby the width occupied by the compensation coil can be minimized, and the compensation current has the same current flow direction when passing through the vicinity of the magnetoresistive sensing unit.
雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of the disclosure is subject to the definition of the scope of the patent application.
100...磁感測裝置100. . . Magnetic sensing device
120...基板120. . . Substrate
140a,140b‧‧‧磁阻感測單元140a, 140b‧‧‧Magnetoresistive Sensing Unit
160‧‧‧補償線圈160‧‧‧Compensation coil
160a‧‧‧第一螺旋部份160a‧‧‧first spiral part
160b‧‧‧第二螺旋部份160b‧‧‧second spiral part
162‧‧‧補償電流162‧‧‧Compensation current
164‧‧‧主要線段164‧‧‧ main line segments
165‧‧‧主要線段165‧‧‧ main line segments
166‧‧‧連接線段166‧‧‧Connected line segments
180‧‧‧重置線圈180‧‧‧Reset coil
182‧‧‧重置電流182‧‧‧Reset current
184‧‧‧主要線段184‧‧‧ main line segments
186‧‧‧連接線段186‧‧‧Connected line segments
184a‧‧‧內側側邊184a‧‧‧ inside side
184b‧‧‧外側側邊184b‧‧‧ outside side
188‧‧‧缺口結構188‧‧ ‧ gap structure
為讓本揭示內容之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:The above and other objects, features, advantages and embodiments of the present disclosure will become more apparent and understood.
第1圖繪示根據本發明之一實施例中一種磁感測裝置之俯視示意圖;1 is a top plan view of a magnetic sensing device according to an embodiment of the invention;
第2圖繪示第1圖中磁阻感測單元其分離示意圖;2 is a schematic view showing the separation of the magnetoresistive sensing unit in FIG. 1;
第3圖繪示第1圖中補償線圈其分離示意圖;Figure 3 is a schematic view showing the separation of the compensation coil in Figure 1;
第4圖繪示第1圖中補償線圈其分離示意圖;Figure 4 is a schematic view showing the separation of the compensation coil in Figure 1;
第5圖繪示第1圖中重置線圈其分離示意圖;以及Figure 5 is a schematic view showing the separation of the reset coil in Figure 1;
第6圖繪示第1圖中重置線圈其分離示意圖。Fig. 6 is a schematic view showing the separation of the reset coil in Fig. 1.
160‧‧‧補償線圈160‧‧‧Compensation coil
160a‧‧‧第一螺旋部份160a‧‧‧first spiral part
160b‧‧‧第二螺旋部份160b‧‧‧second spiral part
164‧‧‧主要線段164‧‧‧ main line segments
165‧‧‧主要線段165‧‧‧ main line segments
166‧‧‧連接線段166‧‧‧Connected line segments
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100139406A TWI437249B (en) | 2011-10-28 | 2011-10-28 | Magnetic sensor apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100139406A TWI437249B (en) | 2011-10-28 | 2011-10-28 | Magnetic sensor apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201317604A TW201317604A (en) | 2013-05-01 |
TWI437249B true TWI437249B (en) | 2014-05-11 |
Family
ID=48871864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100139406A TWI437249B (en) | 2011-10-28 | 2011-10-28 | Magnetic sensor apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI437249B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI693418B (en) * | 2019-03-22 | 2020-05-11 | 宇能電科技股份有限公司 | Device for generating magnetic field of calibration and built-in self-calibration magnetic sensor and calibration method using the same |
-
2011
- 2011-10-28 TW TW100139406A patent/TWI437249B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI693418B (en) * | 2019-03-22 | 2020-05-11 | 宇能電科技股份有限公司 | Device for generating magnetic field of calibration and built-in self-calibration magnetic sensor and calibration method using the same |
US11067642B2 (en) | 2019-03-22 | 2021-07-20 | Voltafield Technology Corporation | Device for generating a magnetic field of calibration and built-in self-calibration magnetic sensor and calibration method using the same |
Also Published As
Publication number | Publication date |
---|---|
TW201317604A (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6247631B2 (en) | Single-chip reference full-bridge magnetic field sensor | |
JP4259937B2 (en) | Angle detection sensor | |
EP2664940B1 (en) | Magnetic sensor | |
JP5786884B2 (en) | Magnetic sensor | |
US20120217961A1 (en) | Magnetic sensor | |
JP5888402B2 (en) | Magnetic sensor element | |
JP6842741B2 (en) | Magnetic sensor | |
JP2017072375A (en) | Magnetic sensor | |
JP2011047930A (en) | Magnetoresistance effect element and sensor | |
JP6900936B2 (en) | Magnetic detector | |
JP2015219227A (en) | Magnetic sensor | |
CN103091647A (en) | Magnetic sensing device | |
JP6321323B2 (en) | Magnetic sensor | |
JP5802565B2 (en) | Magnetic sensor | |
CN103091649A (en) | Magnetic sensing device | |
WO2016017490A1 (en) | Magnetic switch | |
WO2015156260A1 (en) | Current detection device | |
TWI420128B (en) | Magnetic sensor apparatus | |
TW201318237A (en) | Magnetic sensor apparatus | |
TWI437249B (en) | Magnetic sensor apparatus | |
JP6525314B2 (en) | Magnetic field detector | |
US20130207645A1 (en) | Magnetic sensor apparatus | |
US20130207646A1 (en) | Magnetic sensor apparatus | |
JP6828676B2 (en) | Magnetic sensor | |
JP2017040628A (en) | Magnetic sensor |