TWI436578B - Motor control and regenerative braking system - Google Patents

Motor control and regenerative braking system Download PDF

Info

Publication number
TWI436578B
TWI436578B TW098134781A TW98134781A TWI436578B TW I436578 B TWI436578 B TW I436578B TW 098134781 A TW098134781 A TW 098134781A TW 98134781 A TW98134781 A TW 98134781A TW I436578 B TWI436578 B TW I436578B
Authority
TW
Taiwan
Prior art keywords
control
motor
circuit
signal
recharging system
Prior art date
Application number
TW098134781A
Other languages
Chinese (zh)
Other versions
TW201114163A (en
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW098134781A priority Critical patent/TWI436578B/en
Publication of TW201114163A publication Critical patent/TW201114163A/en
Application granted granted Critical
Publication of TWI436578B publication Critical patent/TWI436578B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

馬達控制與煞車回充系統Motor control and brake recharging system

本發明有關於一種馬達控制系統,尤指一種可將煞車時的能量儲存再利用的馬達控制系統。The present invention relates to a motor control system, and more particularly to a motor control system that can utilize energy storage during braking.

常見的馬達控制系統是基於定速控制電機產品的需要,如殘障代步車或是電動腳踏車,這類的電機產品提供可靠而安全的電子控速,且直流無刷馬達可同時用於將電能轉換為動能,或將動能轉換成電能,隨著能源的再利用逐漸被重視,提昇電動車的能源使用效率是此領域研究的目標。Common motor control systems are based on the needs of fixed speed control motor products, such as handicapped scooters or electric bicycles, which provide reliable and safe electronic speed control, and DC brushless motors can be used to convert electrical energy at the same time. For kinetic energy, or the conversion of kinetic energy into electrical energy, as energy reuse is gradually taken seriously, improving the energy efficiency of electric vehicles is the goal of research in this field.

將煞車時的能量儲存再利用的傳統控制方法為將馬達驅動控制與再生煞車系統分開設計,但其成本較高,而以三相功率模組作為馬達驅動控制及昇降壓轉換器整合在系統中,其元件成本雖較低,但受限於三相功率模組的電路架構與工作特性,不易達到最佳效率之充電控制,且習知作法為當系統工作於再生煞車模式時,昇降壓轉換器操作在昇壓模式,將能量回充至電能儲存單元,而當系統工作於馬達驅動模式時,昇降壓轉換器操作在降壓模式,驅動馬達運轉,如此將在能量回充時因為降壓而損失一部分能量,造成能量轉換效率不佳。The traditional control method for the energy storage and reuse of the brakes is to separate the motor drive control from the regenerative brake system, but the cost is high, and the three-phase power module is used as the motor drive control and the buck-boost converter is integrated in the system. Although the component cost is low, it is limited by the circuit structure and working characteristics of the three-phase power module, and it is difficult to achieve the best efficiency charging control, and the conventional method is that when the system works in the regenerative braking mode, the buck-boost conversion The device operates in the boost mode to recharge the energy to the electrical energy storage unit. When the system is operating in the motor drive mode, the buck-boost converter operates in the buck mode, and the drive motor operates, so that the energy is recharged due to the buck. Loss of some energy, resulting in poor energy conversion efficiency.

本發明所欲解決的技術問題,在於提供一種馬達控制與煞車回充系統,以解決習知電子剎車充電效率不佳的問題。The technical problem to be solved by the present invention is to provide a motor control and brake recharging system to solve the problem of poor charging efficiency of the conventional electronic brake.

為了解決上述技術問題,本發明之一技術方案係提供一種馬達控制與煞車回充系統,適用於電動車馬達,其包括一霍爾感測單元、一控制模組、一雙向轉換電路、一驅動功率模組及一整流電路,其中該控制模組與該霍爾感測單元耦接;該雙向轉換電路與該控制模組及該整流電路耦接;該驅動功率模組分別與該控制模組及該雙向轉換電路耦接。In order to solve the above technical problem, one technical solution of the present invention provides a motor control and brake recharging system, which is applicable to an electric vehicle motor, and includes a Hall sensing unit, a control module, a bidirectional conversion circuit, and a driving device. a power module and a rectifier circuit, wherein the control module is coupled to the Hall sensing unit; the bidirectional conversion circuit is coupled to the control module and the rectifier circuit; and the driving power module and the control module respectively And the bidirectional conversion circuit is coupled.

該霍爾感測單元根據一馬達的運轉產生一霍爾訊號;該控制模組根據該霍爾訊號輸出一第一控制訊號及一第二控制訊號;該雙向轉換電路根據該第一控制訊號輸出一操作電壓;該驅動功率模組根據該操作電壓及該第二控制訊號來控制該馬達的轉速;該整流電路將該馬達的一反電動勢轉換為一直流電壓,該雙向轉換電路將該直流電壓進行昇壓後輸出至一儲能單元。The Hall sensing unit generates a Hall signal according to the operation of a motor; the control module outputs a first control signal and a second control signal according to the Hall signal; the bidirectional conversion circuit outputs the first control signal according to the first control signal An operating voltage; the driving power module controls the rotation speed of the motor according to the operating voltage and the second control signal; the rectifier circuit converts a back electromotive force of the motor into a DC voltage, and the bidirectional conversion circuit converts the DC voltage After boosting, it is output to an energy storage unit.

藉此,本發明之馬達控制與煞車回充系統透過雙向轉換電路根據馬達運轉的狀態操作在降壓模式或昇壓模式,並在馬達煞車時操作在昇壓模式並對儲能單元充電,因而可以達到有效的利用能源目的,並利用較簡單的六步方波訊號控制驅動功率模組,以降低漣波轉矩與電流漣波。如此,可以解決習知馬達控制系統充電效率不佳的問題,且得以增加電池的續航力。Thereby, the motor control and brake recharging system of the present invention operates in the buck mode or the boost mode according to the state of the motor operation through the bidirectional conversion circuit, and operates in the boost mode and charges the energy storage unit when the motor brakes, thereby It can achieve effective energy use and control the drive power module with a simple six-step square wave signal to reduce chopping torque and current ripple. In this way, the problem of poor charging efficiency of the conventional motor control system can be solved, and the battery life can be increased.

以上的概述與接下來的詳細說明皆為示範性質,是為了進一步說明本發明的申請專利範圍。而有關本發明的其他目的與優點,將在後續的說明與圖示加以闡述。The above summary and the following detailed description are exemplary in order to further illustrate the scope of the claims. Other objects and advantages of the present invention will be described in the following description and drawings.

本發明係以一馬達控制與煞車回充系統控制一直流無刷馬達,並利用該馬達煞車時所產生之反電動勢經昇壓後對一儲能單元充電,以達到有效利用能源的效果。The invention controls the brushless motor by a motor control and brake recharging system, and uses the counter electromotive force generated when the motor is braked to be charged to charge an energy storage unit to achieve the effect of effectively utilizing energy.

為了提供更詳盡的說明與解釋,以下將配合方塊圖針對本發明進行解說,以便更為明確而清楚地揭露本發明所使用的技術及手段,以彰顯本發明所具有的優點及其所能達成的功效。In order to provide a more detailed description and explanation, the present invention will be described with reference to the accompanying drawings in order to illustrate The effect.

請參考第一圖,為本發明所提供的一種馬達控制與煞車回充系統之一實施例之方塊圖。如第一圖所示,馬達控制系統20與馬達10耦接,藉由馬達控制與煞車回充系統20控制馬達10的轉速並將馬達10煞車時的能量回收再利用以供驅動馬達10。Please refer to the first figure, which is a block diagram of an embodiment of a motor control and brake recharging system provided by the present invention. As shown in the first figure, the motor control system 20 is coupled to the motor 10, and the motor control and brake recharging system 20 controls the rotational speed of the motor 10 and recovers the energy of the motor 10 when the vehicle is braked for driving the motor 10.

在一實施例中,馬達10為直流無刷馬達,具有高效率、低雜音及壽命長等特點,馬達控制與煞車回充系統20包括一霍爾感測單元201、一控制模組203、一儲能單元205、一輔助電源2051、一雙向轉換電路207、一驅動功率模組209及一整流電路211,霍爾感測單元201與馬達10耦接;控制模組203分別與霍爾感測單元201及雙向轉換電路207耦接;輔助電源2051分別與控制模組203及儲能單元耦接;雙向轉換電路207與儲能單元205耦接;驅動功率模組209分別與雙向轉換電路207及控制模組203耦接;整流電路211分別與馬達10及雙向轉換電路207耦接。In one embodiment, the motor 10 is a DC brushless motor, which has the characteristics of high efficiency, low noise and long life. The motor control and brake recharging system 20 includes a Hall sensing unit 201, a control module 203, and a The energy storage unit 205, an auxiliary power source 2051, a bidirectional conversion circuit 207, a driving power module 209 and a rectifier circuit 211, the Hall sensing unit 201 is coupled to the motor 10; and the control module 203 and Hall sensing respectively The unit 201 and the bidirectional conversion circuit 207 are coupled to each other; the auxiliary power source 2051 is coupled to the control module 203 and the energy storage unit; the bidirectional conversion circuit 207 is coupled to the energy storage unit 205; and the driving power module 209 is coupled to the bidirectional conversion circuit 207 and The control module 203 is coupled; the rectifier circuit 211 is coupled to the motor 10 and the bidirectional conversion circuit 207, respectively.

霍爾感測單元201偵測馬達10之運轉並產生一霍爾訊號,該霍爾訊號可為轉速回授;儲能單元205儲存一電能,在一實施例中,儲能單元205為一電容與一電池並聯(圖未示),且該電容為超級電容而該電池為鉛酸電池,利用超級電容作為一電能輔助儲存單元,而鉛酸電池作為輔助電力源;控制模組203根據霍爾訊號輸出一第一控制訊號及第二控制訊號;雙向轉換電路207根據該第一控制訊號將該電壓降壓後輸出一操作電壓;驅動功率模組209根據該操作電壓及該第二控制訊號來控制馬達10的轉速;整流電路211將馬達10的一反電動勢轉換為一直流電壓,而雙向轉換電路207將該直流電壓昇壓後對儲能單元205充電;輔助電源2051接收儲能單元205之電能,並提供控制模組203一操作電源。The Hall sensing unit 201 detects the operation of the motor 10 and generates a Hall signal. The Hall signal can be the speed feedback. The energy storage unit 205 stores an electric energy. In an embodiment, the energy storage unit 205 is a capacitor. Parallel to a battery (not shown), and the capacitor is a super capacitor and the battery is a lead-acid battery, using a super capacitor as an auxiliary power storage unit, and a lead-acid battery as an auxiliary power source; the control module 203 is based on Hall The signal outputting a first control signal and a second control signal; the bidirectional conversion circuit 207 steps down the voltage according to the first control signal to output an operating voltage; the driving power module 209 is configured according to the operating voltage and the second control signal. The rotation speed of the motor 10 is controlled; the rectifier circuit 211 converts a back electromotive force of the motor 10 into a DC voltage, and the bidirectional conversion circuit 207 boosts the DC voltage to charge the energy storage unit 205; the auxiliary power source 2051 receives the energy storage unit 205. The electrical energy is provided, and the control module 203 is provided to operate the power.

復參考第一圖,控制模組203包括一微控制電路2031及一驅動電路2033,微控制電路2031分別與霍爾感測單元201及驅動電路2033耦接,驅動電路2033與雙向轉換電路207耦接,而微控制電路2031根據霍爾訊號輸出一脈寬調變訊號,驅動電路2033根據該脈寬調變訊號控制雙向轉換電路207操作在降壓模式或昇壓模式,此兩種模式分別說明如下。Referring to the first figure, the control module 203 includes a micro control circuit 2031 and a driving circuit 2033. The micro control circuit 2031 is coupled to the Hall sensing unit 201 and the driving circuit 2033, respectively. The driving circuit 2033 is coupled to the bidirectional conversion circuit 207. The micro-control circuit 2031 outputs a pulse width modulation signal according to the Hall signal, and the driving circuit 2033 controls the bidirectional conversion circuit 207 to operate in the buck mode or the boost mode according to the pulse width modulation signal. as follows.

請參考第二圖,為本發明所提供的一種馬達控制與煞車回充系統操作在馬達驅動模式時之一實施例之方塊圖。如第二圖所示,當馬達控制與煞車回充系統20操作在馬達驅動模式下時,由霍爾感測單元201偵測馬達10之轉子(圖未示)的相位,並產生霍爾訊號Ha 、Hb 、Hc ,控制模組203根據霍爾訊號Ha 、Hb 、Hc 產生一第一控制訊號及一第二控制訊號,其中第一控制訊號為一降壓命令訊號,使雙向轉換電路207操作在降壓模式,在一實施例中,微控制電路2031藉由偵測轉速命令及轉速回授大小來調整該脈寬調變訊號的工作週期(Duty)大小,達到定轉速控制,驅動電路2033根據該脈寬調變訊號產生該降壓命令訊號;在一實施例中,第二控制訊號為六步方波訊號UH 、UL 、VH 、VL 、WH 、WL ,其驅動驅動功率模組209時馬達10的漣波轉矩與電流漣波較小,因此以下將以六步方波訊號UH 、UL 、VH 、VL 、WH 、WL 說明第二控制訊號的作用。雙向轉換電路207根據降壓命令訊號操作在降壓模式,將儲能單元205所儲存的電能降壓後產生一操作電壓;驅動功率模組209接收操作電壓並根據六步方波訊號UH 、UL 、VH 、VL 、WH 、WL 輸出馬達控制訊號U、V、W來控制馬達10的轉子轉速。Please refer to the second figure, which is a block diagram of an embodiment of a motor control and brake recharging system operating in a motor drive mode according to the present invention. As shown in the second figure, when the motor control and brake recharging system 20 is operated in the motor driving mode, the Hall sensing unit 201 detects the phase of the rotor (not shown) of the motor 10 and generates a Hall signal. H a , H b , H c , the control module 203 generates a first control signal and a second control signal according to the Hall signals H a , H b , H c , wherein the first control signal is a buck command signal, The bidirectional conversion circuit 207 is operated in the buck mode. In an embodiment, the micro control circuit 2031 adjusts the duty cycle (Duty) of the pulse width modulation signal by detecting the rotation speed command and the rotation speed feedback size. The speed control, the driving circuit 2033 generates the step-down command signal according to the pulse width modulation signal; in an embodiment, the second control signal is a six-step square wave signal U H , U L , V H , V L , W H W L , when the drive power module 209 drives the power module 209, the chopper torque and current ripple of the motor 10 are small, so the following six-step square wave signals U H , U L , V H , V L , W H , W L illustrates the role of the second control signal. The bidirectional conversion circuit 207 operates in the buck mode according to the buck command signal, and decompresses the energy stored in the energy storage unit 205 to generate an operating voltage; the driving power module 209 receives the operating voltage and according to the six-step square wave signal U H , U L , V H , V L , W H , W L output motor control signals U, V, W to control the rotor speed of the motor 10.

請參考第三圖,為本發明所提供的一種馬達控制與煞車回充系統操作在再生煞車模式時之一實施例之方塊圖。如第三圖所示,當馬達控制與煞車回充系統20操作在再生煞車模式下時,由霍爾感測單元201偵測馬達10之轉子(圖未示)的相位,並產生霍爾訊號Ha 、Hb 、Hc ,控制模組203根據霍爾訊號Ha 、Hb 、Hc 產生一第一控制訊號,在此模式下第一控制訊號為一昇壓命令訊號,雙向轉換電路207根據昇壓命令訊號操作在昇壓模式,在一實施例中,微控制電路2031藉由轉子的相位來調整該脈寬調變訊號的工作週期(Duty)大小,達到定電流控制,驅動電路2033根據該脈寬調變訊號產生該昇壓命令訊號;整流電路211將馬達10操作在再生煞車模式下時的反電動勢VU 、VV 、VW 進行整流後輸出一直流電壓,雙向轉換電路207將直流電壓進行昇壓後對儲能單元205進行充電。Please refer to the third figure, which is a block diagram of an embodiment of a motor control and brake recharging system operating in a regenerative braking mode. As shown in the third figure, when the motor control and the brake recharging system 20 are operated in the regenerative braking mode, the Hall sensing unit 201 detects the phase of the rotor (not shown) of the motor 10 and generates a Hall signal. H a , H b , H c , the control module 203 generates a first control signal according to the Hall signals H a , H b , H c , in this mode the first control signal is a boost command signal, the bidirectional conversion circuit The 207 operates in the boost mode according to the boost command signal. In an embodiment, the micro control circuit 2031 adjusts the duty cycle (Duty) of the pulse width modulated signal by the phase of the rotor to achieve constant current control and the driving circuit. 2033 generates the boost command signal according to the pulse width modulation signal; the rectifier circuit 211 rectifies the counter electromotive forces V U , V V , V W when the motor 10 is operated in the regenerative braking mode, and outputs a DC voltage, and the bidirectional conversion circuit 207 boosts the DC voltage and then charges the energy storage unit 205.

請參考第四A圖至第四C圖,為本發明所提供的一種雙向轉換電路之一實施例之電路圖。如第四A圖所示,馬達控制與煞車回充系統20所使用的雙向轉換電路207包括一第一電容C1、一第二電容C2、一第一開關電晶體S1、一第二開關電晶體S2及一電感L,雙向轉換電路207具有一第一端a-b及一第二端c-d,第一電容C1及第二電容C2分別跨接於第一端a-b及第二端c-d,第一開關電晶體S1分別與第一電容C1及電感L耦接,第二開關電晶體S2耦接於第一開關電晶體S1與電感L之間,電感L耦接於第一開關電晶體S1與第二電容C2之間,其中第一開關電晶體S1具有一第一本體二極體D1,第二開關電晶體S2具有一第二本體二極體D2。Please refer to FIGS. 4A to 4C, which are circuit diagrams of an embodiment of a bidirectional conversion circuit provided by the present invention. As shown in FIG. 4A, the bidirectional conversion circuit 207 used in the motor control and brake recharging system 20 includes a first capacitor C1, a second capacitor C2, a first switching transistor S1, and a second switching transistor. S2 and an inductor L, the bidirectional conversion circuit 207 has a first end ab and a second end cd, and the first capacitor C1 and the second capacitor C2 are respectively connected to the first end ab and the second end cd, and the first switch is electrically connected. The crystal S1 is coupled to the first capacitor C1 and the inductor L, and the second switch transistor S2 is coupled between the first switch transistor S1 and the inductor L. The inductor L is coupled to the first switch transistor S1 and the second capacitor. Between C2, the first switching transistor S1 has a first body diode D1, and the second switching transistor S2 has a second body diode D2.

當雙向轉換電路207接收的第一控制訊號為降壓命令訊號,則雙向轉換電路207操作在降壓模式,如第四B圖所示,雙向轉換電路207以第一開關電晶體S1為主動開關,而第二開關電晶體S2等效於第二本體二極體D2,則輸入電壓VIN 從第一端a-b輸入,而輸出電流IO 的方向由第一端a-b指向第二端c-d,輸出電壓VO 從第二端c-d輸出,且輸入電壓與輸出電壓的關係為,其中D為第一開關電晶體S1的工作週期比,也就是在一週期中導通的時間比。When the first control signal received by the bidirectional conversion circuit 207 is a buck command signal, the bidirectional conversion circuit 207 operates in a buck mode. As shown in FIG. 4B, the bidirectional conversion circuit 207 uses the first switching transistor S1 as an active switch. And the second switching transistor S2 is equivalent to the second body diode D2, the input voltage V IN is input from the first end ab, and the direction of the output current I O is directed from the first end ab to the second end cd, and the output The voltage V O is output from the second terminal cd, and the relationship between the input voltage and the output voltage is Where D is the duty cycle ratio of the first switching transistor S1, that is, the time ratio of conduction in one cycle.

當雙向轉換電路207接收的第一控制訊號為昇壓命令訊號,則雙向轉換電路207操作在昇壓模式,如第四C圖所示,雙向轉換電路207以第二開關電晶體S2為主動開關,而第一開關電晶體S1等效於第一本體二極體D1,則輸入電壓VIN 從第二端c-d輸入,而輸出電流IR 的方向由第二端c-d指向第一端a-b,輸出電壓VO 從第一端a-b輸出,輸入電壓與輸出電壓的關係為,其中D'為第二開關電晶體S2的工作週期比,也就是在一週期中導通的時間比。When the first control signal received by the bidirectional conversion circuit 207 is a boost command signal, the bidirectional conversion circuit 207 operates in a boost mode. As shown in FIG. 4C, the bidirectional conversion circuit 207 uses the second switching transistor S2 as an active switch. The first switching transistor S1 is equivalent to the first body diode D1, and the input voltage V IN is input from the second terminal cd, and the direction of the output current I R is directed from the second terminal cd to the first terminal ab, and the output The voltage V O is output from the first terminal ab, and the relationship between the input voltage and the output voltage is Where D' is the duty cycle ratio of the second switching transistor S2, that is, the time ratio of conduction in one cycle.

請參考第五A圖,為本發明之所提供的一種控制模組之一實施例之方塊圖,並配合第四B至四C圖。如第五A圖所示,控制模組203包括一微控制電路2031、一驅動電路2033及一準位提昇電路2035,準位提昇電路2035耦接於微控制電路2031及驅動電路2033之間,而驅動電路2033具有一輸入端e、一第一輸出端f及一第二輸出端g,在一實施例中,微控制電路2031為低電壓運作和低雜訊的微控制器,例如Renesas微控制器或是其他針對小功率應用的微控制器,驅動電路2033為半橋驅動電路或全橋驅動電路,例如半橋驅動IC IR2111,其中第一輸出端f與第一開關電晶體S1耦接,而第二輸出端g與第二開關電晶體S2耦接,藉此驅動電路2033分別驅動第一開關電晶體S1及第二開關電晶體S2,在一實施例中,第一輸出端f與第二輸出端g的輸出訊號具有一特定的休止時間,例如約650ns,即第一開關電晶體S1與第二開關電晶體S2輪流導通,且第一輸出端f的輸出訊號與輸入端e的輸入訊號具有相同相位的波形,且第二輸出端g的輸出訊號與輸入端e的輸入訊號具有相反相位的波形,或是第一輸出端f的輸出訊號與輸入端e的輸入訊號具有相反相位的波形,且第二輸出端g的輸出訊號與輸入端e的輸入訊號具有相同相位的波形。Please refer to FIG. 5A, which is a block diagram of an embodiment of a control module according to the present invention, and cooperates with the fourth B to C C diagrams. As shown in FIG. 5A, the control module 203 includes a micro control circuit 2031, a driving circuit 2033, and a level rising circuit 2035. The level lifting circuit 2035 is coupled between the micro control circuit 2031 and the driving circuit 2033. The driving circuit 2033 has an input terminal e, a first output terminal f and a second output terminal g. In an embodiment, the micro control circuit 2031 is a low voltage operation and a low noise microcontroller, such as Renesas Micro. Controller or other microcontroller for low power applications, the drive circuit 2033 is a half bridge drive circuit or a full bridge drive circuit, such as a half bridge drive IC IR2111, wherein the first output terminal f is coupled to the first switch transistor S1 The second output terminal g is coupled to the second switching transistor S2, whereby the driving circuit 2033 drives the first switching transistor S1 and the second switching transistor S2, respectively. In an embodiment, the first output terminal f is The output signal of the second output terminal g has a specific rest time, for example, about 650 ns, that is, the first switching transistor S1 and the second switching transistor S2 are turned on in turn, and the output signal of the first output terminal f and the input terminal e Input signal has the same phase Waveform, and the output signal of the second output terminal g and the input signal of the input terminal e have opposite phase waveforms, or the output signal of the first output terminal f and the input signal of the input terminal e have opposite phase waveforms, and The output signal of the two output terminals g has the same phase waveform as the input signal of the input terminal e.

準位提昇電路2035的其中一實施例如第五B圖所示,準位提昇電路2035包括三個雙極接面電晶體Q1、Q2、Q3,在一實施例中,雙極接面電晶體Q3與微控制電路2031耦接,雙極接面電晶體Q1、Q2皆與雙極接面電晶體Q3耦接,而驅動電路2033耦接於雙極接面電晶體Q1、Q2之間。微控制電路2031輸出脈寬調變訊號為TTL邏輯閘準位,以脈寬調變訊號的正負決定第一開關電晶體S1及第二開關電晶體S2的其中一個導通,並以準位提昇電路2035將脈寬調變訊號提昇至可驅動第一開關電晶體S1或第二開關電晶體S2,在固定的週期下調整第一開關電晶體S1或第二開關電晶體S2的導通時間,以調整雙向轉換電路207所輸出的操作電壓的大小,亦即調整輸入馬達10的電壓,以穩定馬達10的轉速。One of the implementations of the level boosting circuit 2035 is shown in FIG. 5B. The level boosting circuit 2035 includes three bipolar junction transistors Q1, Q2, Q3. In one embodiment, the bipolar junction transistor Q3 The two-pole junction transistors Q1 and Q2 are coupled to the bipolar junction transistor Q3, and the driving circuit 2033 is coupled between the bipolar junction transistors Q1 and Q2. The micro-control circuit 2031 outputs a pulse width modulation signal as a TTL logic gate level, and determines one of the first switching transistor S1 and the second switching transistor S2 to be turned on by the positive and negative of the pulse width modulation signal, and is driven by the level lifting circuit. The 2035 boosts the pulse width modulation signal to drive the first switching transistor S1 or the second switching transistor S2, and adjusts the on-time of the first switching transistor S1 or the second switching transistor S2 to adjust the period in a fixed period. The magnitude of the operating voltage output by the bidirectional conversion circuit 207, that is, the voltage of the input motor 10, is stabilized to stabilize the rotational speed of the motor 10.

請參考第六圖,為本發明之所提供的一種驅動功率模組之一實施例之電路圖。如第六圖所示,本發明之驅動功率模組209包含六個電晶體B1、B2、B3、B4、B5、B6,在一實施例中,電晶體(IGBT)B1、B2、B3、B4、B5、B6為絕緣閘極雙極性電晶體 (IGBT),分別接收來自第二控制訊號UH 、UL 、VH 、VL 、WH 、WL 的控制,藉由第二控制訊號UH 、UL 、VH 、VL 、WH 、WL 將驅動功率模組209操作在六個模式,上述模式分別為電晶體B3、B6導通且其他截止,電晶體B2、B3導通而其他截止,電晶體B2、B5導通而其他截止,電晶體B4、B5導通而其他截止,電晶體B1、B4導通而其他截止,電晶體B1、B6導通而其他截止,藉此輸出馬達控制訊號U、V、W以驅動馬達10轉子在六個不同的相位。Please refer to the sixth figure, which is a circuit diagram of an embodiment of a driving power module according to the present invention. As shown in the sixth figure, the driving power module 209 of the present invention comprises six transistors B1, B2, B3, B4, B5, B6. In one embodiment, the transistors (IGBT) B1, B2, B3, B4 , B5, B6 are insulated gate bipolar transistors (IGBT), respectively receiving control from the second control signals U H , U L , V H , V L , W H , W L , by the second control signal U H , U L , V H , V L , W H , W L operate the driving power module 209 in six modes, wherein the transistors B3 and B6 are turned on and the other are turned off, and the transistors B2 and B3 are turned on. When the transistors B2 and B5 are turned off, the transistors B4 and B5 are turned on and the others are turned off. The transistors B4 and B5 are turned on and the others are turned off. The transistors B1 and B4 are turned on and the others are turned off. The transistors B1 and B6 are turned on and the others are turned off, thereby outputting the motor control signal U, V, W drive the motor 10 rotor in six different phases.

請參考第七圖,為本發明之所提供的一種整流電路之一實施例之方塊圖。如第七圖所示,本發明之整流電路211包含六個二極體D3、D4、D5、D6、D7、D8,當馬達10操作在再生剎車模式時,整流電路211將馬達10的三相反電動勢VU 、VV 、VW 轉換為直流電壓,再經由操作在昇壓模式的雙向轉換電路207將直流電壓昇壓後對儲能單元205充電。Please refer to the seventh figure, which is a block diagram of an embodiment of a rectifier circuit provided by the present invention. As shown in the seventh figure, the rectifier circuit 211 of the present invention includes six diodes D3, D4, D5, D6, D7, D8. When the motor 10 is operated in the regenerative braking mode, the rectifier circuit 211 reverses the three of the motor 10. The electromotive forces V U , V V , and V W are converted into a DC voltage, and the DC voltage is boosted via the bidirectional conversion circuit 207 operating in the boost mode, and the energy storage unit 205 is charged.

綜合上述所列舉實施方式之作法,可知本發明係利用雙向轉換電路與驅動功率模組整合,達到驅動馬達及回收煞車能量的目的,且在馬達操作在煞車模式時,將馬達的能量作昇壓後儲存,如此,本發明之馬達控制與煞車回充系統可以解決傳統電子煞車充電效率不佳的問題。According to the above-mentioned embodiments, it can be seen that the present invention integrates with a driving power module by using a bidirectional conversion circuit to achieve the purpose of driving the motor and recovering the braking energy, and boosting the energy of the motor when the motor is operating in the braking mode. After storage, the motor control and brake recharging system of the present invention can solve the problem of poor charging efficiency of the conventional electronic brake.

惟上述所揭露之圖式及說明,僅為本發明之實施例而已,然其並非用以限定本發明,任何熟習此技藝者,當可依據上述之說明做各種之更動與潤飾,如有其他符合本發明之精神與未實質改變本發明之技術手段者,皆屬本發明所涵蓋保護之範圍。The drawings and the descriptions of the present invention are only examples of the present invention, and are not intended to limit the present invention. Anyone skilled in the art can make various changes and refinements according to the above description, if any other. The spirit of the present invention and the technical means for not substantially changing the present invention are within the scope of protection covered by the present invention.

10‧‧‧馬達10‧‧‧ motor

20‧‧‧馬達控制與煞車回充系統20‧‧‧Motor control and brake recharging system

201‧‧‧霍爾感測單元201‧‧‧ Hall sensing unit

203‧‧‧控制模組203‧‧‧Control Module

2031‧‧‧微控制電路2031‧‧‧Micro Control Circuit

2033‧‧‧驅動電路2033‧‧‧Drive circuit

2035‧‧‧準位提昇電路2035‧‧‧Level boost circuit

Q1、Q2、Q3‧‧‧雙極接面電晶體Q1, Q2, Q3‧‧‧ bipolar junction transistor

205‧‧‧儲能單元205‧‧‧ Energy storage unit

2051‧‧‧輔助電源2051‧‧‧Auxiliary power supply

207‧‧‧雙向轉換電路207‧‧‧Bidirectional conversion circuit

S1‧‧‧第一開關電晶體S1‧‧‧first switching transistor

D1‧‧‧第一本體二極體D1‧‧‧ first body diode

S2‧‧‧第二開關電晶體S2‧‧‧Second switch transistor

D2‧‧‧第二本體二極體D2‧‧‧Second body diode

C1‧‧‧第一電容C1‧‧‧first capacitor

C2‧‧‧第二電容C2‧‧‧second capacitor

L‧‧‧電感L‧‧‧Inductance

IR 、IO ‧‧‧輸出電流I R , I O ‧‧‧ output current

VIN ‧‧‧輸入電壓V IN ‧‧‧ input voltage

VO ‧‧‧輸出電壓V O ‧‧‧Output voltage

209‧‧‧驅動功率模組209‧‧‧Drive power module

B1、B2、B3、B4、B5、B6‧‧‧電晶體B1, B2, B3, B4, B5, B6‧‧‧ transistors

211‧‧‧整流電路211‧‧‧Rectifier circuit

D3、D4、D5、D6、D7、D8‧‧‧二極體D3, D4, D5, D6, D7, D8‧‧‧ diodes

圖式說明:Schematic description:

第一圖為本發明之馬達控制與煞車回充系統之一實施例之方塊圖;第二圖為本發明之馬達控制與煞車回充系統操作在馬達驅動模式時之一實施例之方塊圖;第三圖為本發明之馬達控制與煞車回充系統操作在再生煞車模式時之一實施例之方塊圖;第四A圖為本發明之雙向轉換電路之一實施例之電路圖;第四B圖為本發明之雙向轉換電路操作在降壓模式時之一實施例之電路圖;第四C圖為本發明之雙向轉換電路操作在昇壓模式時之一實施例之電路圖;第五A圖為本發明之控制模組之一實施例之示意圖;第五B圖為本發明之準位提昇電路之一實施例之電路圖;第六圖為本發明之驅動功率模組之一實施例之電路圖;及第七圖為本發明之整流電路之一實施例之電路圖。1 is a block diagram of an embodiment of a motor control and brake recharging system of the present invention; and FIG. 2 is a block diagram of an embodiment of the motor control and brake recharging system of the present invention operating in a motor drive mode; 3 is a block diagram of an embodiment of a motor control and brake recharging system of the present invention operating in a regenerative braking mode; FIG. 4A is a circuit diagram of an embodiment of a bidirectional conversion circuit of the present invention; The circuit diagram of one embodiment of the bidirectional conversion circuit of the present invention operating in the buck mode; the fourth C is a circuit diagram of an embodiment of the bidirectional conversion circuit of the present invention operating in the boost mode; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5B is a circuit diagram of an embodiment of a leveling circuit of the present invention; and FIG. 6 is a circuit diagram of an embodiment of a driving power module of the present invention; Figure 7 is a circuit diagram of an embodiment of a rectifier circuit of the present invention.

10...馬達10. . . motor

20...馬達控制與煞車回充系統20. . . Motor control and brake recharging system

201...霍爾感測單元201. . . Hall sensing unit

203...控制模組203. . . Control module

2031...微控制電路2031. . . Micro control circuit

2033...驅動電路2033. . . Drive circuit

205...儲能單元205. . . Energy storage unit

2051...輔助電源2051. . . Auxiliary power

207...雙向轉換電路207. . . Bidirectional conversion circuit

209...驅動功率模組209. . . Drive power module

211...整流電路211. . . Rectifier circuit

Claims (16)

一種馬達控制與煞車回充系統,包括:一霍爾感測單元,根據一馬達之運轉產生一霍爾訊號;一控制模組,與該霍爾感測單元耦接,根據該霍爾訊號輸出一第一控制訊號及一第二控制訊號;一雙向轉換電路,與該控制模組耦接,根據該第一控制訊號輸出一操作電壓;一驅動功率模組,分別與該控制模組及該雙向轉換電路耦接,根據該操作電壓及該第二控制訊號來控制該馬達的轉速;及一整流電路,分別與該馬達及該雙向轉換電路耦接,將該馬達的一反電動勢轉換為一直流電壓,該雙向轉換電路將該直流電壓進行昇壓後輸出至一儲能單元,藉此,該雙向轉換電路根據該馬達的狀態操作在昇壓或降壓模式,以提高充電效率;其中,該控制模組包括一微控制電路、一驅動電路及一準位提昇電路,該準位提昇電路分別與該微控制電路及該驅動電路耦接,將一第一脈寬調變訊號及一第二脈寬調變訊號提昇使該驅動電路可驅動該雙向轉換電路。 A motor control and brake recharging system, comprising: a Hall sensing unit, generating a Hall signal according to operation of a motor; a control module coupled to the Hall sensing unit, and outputting according to the Hall signal a first control signal and a second control signal; a bidirectional conversion circuit coupled to the control module, outputting an operating voltage according to the first control signal; a driving power module, and the control module and the The bidirectional conversion circuit is coupled to control the rotation speed of the motor according to the operating voltage and the second control signal; and a rectifier circuit coupled to the motor and the bidirectional conversion circuit to convert a back electromotive force of the motor into a a DC voltage, the bidirectional conversion circuit boosts the DC voltage and outputs the same to an energy storage unit, whereby the bidirectional conversion circuit operates in a step-up or step-down mode according to a state of the motor to improve charging efficiency; The control module includes a micro control circuit, a driving circuit and a level lifting circuit, and the level lifting circuit is coupled to the micro control circuit and the driving circuit respectively, and The first PWM signal and a second PWM signal so that the lifting drive circuit may drive the bidirectional converter circuit. 如申請專利範圍第1項所述之馬達控制與煞車回充系統,其中該微控制電路分別與該霍爾感測單元及該驅動電路耦接,該驅動電路與該雙向轉換電路耦接。 The motor control and brake recharging system of claim 1, wherein the micro control circuit is coupled to the Hall sensing unit and the driving circuit, and the driving circuit is coupled to the bidirectional conversion circuit. 如申請專利範圍第2項所述之馬達控制與煞車回充系統,其中該霍爾訊號可為一轉速回授。 The motor control and brake recharging system of claim 2, wherein the Hall signal can be a speed feedback. 如申請專利範圍第3項所述之馬達控制與煞車回充系統,其中當該馬達控制與煞車回充系統操作在馬達驅動模式時,該微控制電路根據一轉速命令及該轉速回授大小來輸出該第一脈寬調變訊號。 The motor control and brake recharging system according to claim 3, wherein when the motor control and the brake recharging system are operated in a motor driving mode, the micro control circuit returns a size according to a rotational speed command and the rotational speed. The first pulse width modulation signal is output. 如申請專利範圍第4項所述之馬達控制與煞車回充系統,其中該驅動電路根據該第一脈寬調變訊號輸出該第一控制訊號,且該第一控制訊號為降壓命令訊號,以控制該雙向轉換電路操作在降壓模式且輸出該操作電壓。 The motor control and brake recharging system of claim 4, wherein the driving circuit outputs the first control signal according to the first pulse width modulation signal, and the first control signal is a buck command signal, To control the bidirectional conversion circuit to operate in a buck mode and output the operating voltage. 如申請專利範圍第3項所述之馬達控制與煞車回充系統,其中當該馬達控制與煞車回充系統操作在再生煞車模式時,該微控制電路根據馬達之轉子的相位來輸出該第二脈寬調變訊號。 The motor control and brake recharging system of claim 3, wherein the micro control circuit outputs the second according to a phase of a rotor of the motor when the motor control and the brake recharging system operate in a regenerative braking mode Pulse width modulation signal. 如申請專利範圍第6項所述之馬達控制與煞車回充系統,其中該驅動電路根據該第二脈寬調變訊號輸出該第一控制訊號,且該第一控制訊號為昇壓命令訊號,以控制該雙向轉換電路操作在昇壓模式且對該儲能單元充電。 The motor control and brake recharging system of claim 6, wherein the driving circuit outputs the first control signal according to the second pulse width modulation signal, and the first control signal is a boost command signal. The bidirectional conversion circuit is controlled to operate in a boost mode and to charge the energy storage unit. 如申請專利範圍第2項所述之馬達控制與煞車回充系統,其中該驅動電路為半橋驅動電路。 The motor control and brake recharging system according to claim 2, wherein the driving circuit is a half bridge driving circuit. 如申請專利範圍第1項所述之馬達控制與煞車回充系統,其中該雙向轉換電路耦接於該整流電路、該儲能單元與該控制模組與該驅動功率模組之間,而該雙向轉換電路包括一第一電容、 一第二電容、一第一開關電晶體、一第二開關電晶體及一電感,該第一開關電晶體耦接該第一電容及該電感,該第二開關電晶體耦接於該第一開關電晶體與該電感之間,該電感耦接於該第一開關電晶體與該第二電容之間。 The motor control and brake recharging system of claim 1, wherein the bidirectional conversion circuit is coupled between the rectifier circuit, the energy storage unit, and the control module and the driving power module, and the The bidirectional conversion circuit includes a first capacitor, a second capacitor, a first switching transistor, a second switching transistor, and an inductor, the first switching transistor is coupled to the first capacitor and the inductor, and the second switching transistor is coupled to the first Between the switching transistor and the inductor, the inductor is coupled between the first switching transistor and the second capacitor. 如申請專利範圍第1項所述之馬達控制與煞車回充系統,其中該儲能單元與該雙向轉換電路耦接,該儲能單元儲存一電能。 The motor control and brake recharging system of claim 1, wherein the energy storage unit is coupled to the bidirectional conversion circuit, and the energy storage unit stores an electrical energy. 如申請專利範圍第10項所述之馬達控制與煞車回充系統,其中該儲能單元包括一電池與一電容。 The motor control and brake recharging system of claim 10, wherein the energy storage unit comprises a battery and a capacitor. 如申請專利範圍第11項所述之馬達控制與煞車回充系統,其中該電池與該電容並聯。 The motor control and brake recharging system of claim 11, wherein the battery is connected in parallel with the capacitor. 如申請專利範圍第1項所述之馬達控制與煞車回充系統,其中該驅動功率模組包括一絕緣閘極雙極性電晶體。 The motor control and brake recharging system of claim 1, wherein the driving power module comprises an insulated gate bipolar transistor. 如申請專利範圍第1項所述之馬達控制與煞車回充系統,其中該馬達為直流無刷馬達。 The motor control and brake recharging system of claim 1, wherein the motor is a DC brushless motor. 如申請專利範圍第1項所述之馬達控制與煞車回充系統,其中該驅動電路為半橋驅動電路。 The motor control and brake recharging system of claim 1, wherein the driving circuit is a half bridge driving circuit. 如申請專利範圍第1項所述之馬達控制與煞車回充系統,其中該第二控制訊號為六步方波訊號。The motor control and brake recharging system of claim 1, wherein the second control signal is a six-step square wave signal.
TW098134781A 2009-10-14 2009-10-14 Motor control and regenerative braking system TWI436578B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098134781A TWI436578B (en) 2009-10-14 2009-10-14 Motor control and regenerative braking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098134781A TWI436578B (en) 2009-10-14 2009-10-14 Motor control and regenerative braking system

Publications (2)

Publication Number Publication Date
TW201114163A TW201114163A (en) 2011-04-16
TWI436578B true TWI436578B (en) 2014-05-01

Family

ID=44909936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098134781A TWI436578B (en) 2009-10-14 2009-10-14 Motor control and regenerative braking system

Country Status (1)

Country Link
TW (1) TWI436578B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254722B (en) * 2023-11-16 2024-02-23 深圳市国方科技有限公司 Variable frequency switch control protection circuit

Also Published As

Publication number Publication date
TW201114163A (en) 2011-04-16

Similar Documents

Publication Publication Date Title
US9054567B2 (en) High power density SRMs
US8884564B2 (en) Voltage converter and voltage converter system including voltage converter
US8164282B2 (en) Motive power output apparatus and vehicle with the same
US7332882B2 (en) Motor drive device that combined charge controller
US8975886B2 (en) Charging and distribution control
JP5858309B2 (en) Power conversion system and control method thereof
CN1537355A (en) Motor driver control apparatus
WO2004055963A1 (en) Power unit for automobile
JP2010045961A (en) Power control apparatus
JP2014524731A (en) Method and apparatus for charging battery of electric drive device using components of electric drive device
EP1891726A2 (en) Voltage conversion device
JP5029914B2 (en) Rotating electrical machine control system and vehicle drive system
JP2007312593A (en) Electronic breaker for dc brushless motor, and energy recovering system
Deepa et al. A novel switching scheme for regenerative braking and battery charging for BLDC motor drive used in electric vehicle
JP5293373B2 (en) Power control device and vehicle drive system
TWI439008B (en) Bidrecrional power inverter circuit and electrical vehicle driving system using the same
US10173534B2 (en) Variable voltage converter control in vehicles
CN103066906A (en) Power generating control system and control method of permanent magnet brushless direct current starting motor/ generator
JP2010035279A (en) Power supply system and electric vehicle
TWI436578B (en) Motor control and regenerative braking system
KR102008750B1 (en) Vehicle power control device
JP2012044765A (en) Battery controller and vehicle
Huang et al. Efficient energy management for electrical scooters
TW201519569A (en) Synchronization of pressure reducing and pressure stabilizing device
RU2348541C2 (en) Braking energy recuperator