TWI436406B - Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation - Google Patents

Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation Download PDF

Info

Publication number
TWI436406B
TWI436406B TW97130889A TW97130889A TWI436406B TW I436406 B TWI436406 B TW I436406B TW 97130889 A TW97130889 A TW 97130889A TW 97130889 A TW97130889 A TW 97130889A TW I436406 B TWI436406 B TW I436406B
Authority
TW
Taiwan
Prior art keywords
arc
reactor
comparator
program
controller
Prior art date
Application number
TW97130889A
Other languages
Chinese (zh)
Other versions
TW200917339A (en
Inventor
John Pipitone
Ryan Nunn-Gage
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/893,390 external-priority patent/US7750645B2/en
Priority claimed from US11/893,355 external-priority patent/US7768269B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200917339A publication Critical patent/TW200917339A/en
Application granted granted Critical
Publication of TWI436406B publication Critical patent/TWI436406B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge

Description

進行晶圓層瞬時感測、檻值比較及電弧旗標產生/撤銷之方法Method for instantaneous sensing of wafer layer, comparison of enthalpy value and generation/cancellation of arc flag

本發明係關於用於處理半導體工件之電漿反應器,及關於此一反應器中之電弧偵測。This invention relates to plasma reactors for processing semiconductor workpieces, and to arc detection in such a reactor.

在半導體工件或晶圓處理期間,產生於電漿反應器中之電弧可對工件造成損害或使其無法正常作用,亦或者對反應器腔室造成不良影響。因此,偵測電弧以防止電漿反應器處理其它晶圓係必要的,以避免對一連串晶圓造成傷害。在物理氣相沈積(physical vapor depositon,PVD)電漿反應器中,電弧偵測係針對在偵測反應器頂之濺鍍靶材處之電弧。此種電弧偵測係藉由監視耦接至反應器頂濺鍍靶材之高壓D.C.電源供應器其輸出端來實現。瞬時電壓或電流可反應電弧現象。此種偵測方法提供一種可靠方式,可明確指示反應器頂之濺鍍靶材處或其附近之電弧現象,然而此種偵測方式無法可靠偵測在晶圓處之電弧現象(晶圓級電弧)。偵測晶圓級電弧可為特別困難,這是因為由於提供給晶圓支撐基座之RF功率在晶圓周圍所造成的RF雜訊的關係,而在某些反應器中,RF雜訊亦可能同時由提供給腔室側壁上導電線圈之RF功率所造成。另一挑戰為瞬時電壓電流或雜訊係大範圍動態變化,這種現象是例如由一程序方案所需使用到的RF產生器轉換所造成。這種由於轉換所引起的瞬變現必需與晶圓級電弧所造成的瞬變現作 一區別。During semiconductor workpiece or wafer processing, the arc generated in the plasma reactor can cause damage to the workpiece or render it unusable or adversely affect the reactor chamber. Therefore, arc detection is detected to prevent the plasma reactor from processing other wafer systems necessary to avoid damage to a series of wafers. In a physical vapor deposition (PVD) plasma reactor, the arc detection is directed to detecting an arc at the sputtering target at the top of the reactor. Such arc detection is accomplished by monitoring the output of a high voltage D.C. power supply coupled to the top of the reactor to sputter the target. Instantaneous voltage or current can react to arcing. This method of detection provides a reliable means of clearly indicating the arcing at or near the sputter target at the top of the reactor. However, this type of detection does not reliably detect arcing at the wafer (wafer level). Arc). Detecting wafer-level arcing can be particularly difficult because of the RF noise caused by the RF power supplied to the wafer support pedestal around the wafer, and in some reactors, RF noise is also present. It may be caused by the RF power supplied to the conductive coils on the side walls of the chamber. Another challenge is the wide range of dynamic changes in the instantaneous voltage or current or noise system, which is caused, for example, by the RF generator conversions required for a program solution. This transient due to switching is now necessary for transients caused by wafer level arcing. A difference.

一般在電漿反應器之反應器腔室內之組件會因接觸到電漿而造成損壞或功能降級。在一PVD反應器中,該些會因此損壞之耗材可包括反應器頂之濺鍍靶材、內部側壁線圈及圍繞晶圓支撐基座之程序環形套件,該套件包含靜電式吸座(electrostatic chuck,ESC)。當此類耗材功能降級或物理上有所改變時,這些耗材變得更易受到電弧之影響。因此,如何判定何時該替換耗材,以在電弧現象發生前即完成替換,為一待解決之問題。Typically, components in the reactor chamber of a plasma reactor can be damaged or degraded by contact with the plasma. In a PVD reactor, the consumables that may be damaged may include a sputter target at the top of the reactor, an internal sidewall coil, and a program ring kit surrounding the wafer support pedestal, the kit including an electrostatic chuck (electrostatic chuck) , ESC). These consumables become more susceptible to arcing when such consumables are degraded or physically altered. Therefore, how to determine when to replace the consumables to complete the replacement before the arc phenomenon occurs is a problem to be solved.

本發明提供一種用於處理一類型之電漿反應器中半導體晶圓之方法,該類型之電漿反應器包括有一RF或電力功率產生器及一具有至少一吸座電極之靜電吸座。該方法包括:感測一耦接至晶圓之導體上瞬時電壓或電流,及提供一第一比較器用以將所感測到的瞬時電壓或電流與儲存於該比較器內一檻值位準進行比較。該方法更包括:每當所感測到的瞬時電壓或電流超過該檻值位準時,傳送該比較器所輸出之一電弧旗標訊號,並回應該電弧旗標訊號而關閉功率產生器。The present invention provides a method for processing a semiconductor wafer in a type of plasma reactor comprising an RF or electrical power generator and an electrostatic chuck having at least one sink electrode. The method includes: sensing an instantaneous voltage or current on a conductor coupled to the wafer, and providing a first comparator for performing the sensed instantaneous voltage or current with a threshold value stored in the comparator Comparison. The method further includes: transmitting an arc flag signal output by the comparator whenever the sensed instantaneous voltage or current exceeds the threshold value, and returning the arc flag signal to turn off the power generator.

第1A圖例示說明一PVD反應器,其具有一系統用於有效感測晶圓級電弧。該反應器包括一腔室100,其係由 一圓柱形側壁102界定,一反應器頂部104及一底部106。在腔室100內部提供有一靶材110,其置於頂部104處;一RF線圈112,其置於側壁102處;及一晶圓支撐基座114,其由底部106向上延伸。一真空排氣泵116,其透過底部106處一排氣泵埠118將腔室100排空。一程序氣體供應器119,其提供程序氣體並將氣體引進腔室100。Figure 1A illustrates a PVD reactor having a system for effectively sensing wafer level arcing. The reactor includes a chamber 100 that is A cylindrical sidewall 102 defines a reactor top 104 and a bottom 106. A target 110 is provided inside the chamber 100 at the top 104; an RF coil 112 is placed at the sidewall 102; and a wafer support pedestal 114 extends upwardly from the bottom 106. A vacuum exhaust pump 116 evacuates the chamber 100 through an exhaust pump 埠 118 at the bottom 106. A program gas supply 119 that supplies a process gas and introduces the gas into the chamber 100.

在一實施例中,晶圓支撐基座114可包括一靜電式吸座(ESC)122,用以於基座114之上表面支承半導體晶圓或工件120。ESC122可包括一絕緣層124,其位於一導電座126上。在第1A圖所示之實施例中,ESC122為一雙極式吸座,其具有二電極128、130於絕緣層124中,及一導電中央銷132,其接觸晶圓120之背面。一吸座電壓供應器134提供反相但大小相同之D.C.電壓於中央銷132與電極128、130之間。第1B圖例示一具體實施例,其為第1A圖之實施例之變化,其中ESC122為一單極式吸座,其具有單一電極128,該電極128之直徑一般係相當於工件或晶圓120之直徑。在第1B圖之具體實施例中,中央銷132可能不存在。除了這些差異外,第1A及1B圖之實施例包含相同的結構特徵,以下參照第1A圖針對這些相同特徵所作之說明同樣可用來說明第1B圖之實施例,因此為了簡潔目的將不再重覆說明。In one embodiment, the wafer support pedestal 114 can include an electrostatic chuck (ESC) 122 for supporting the semiconductor wafer or workpiece 120 on the upper surface of the pedestal 114. The ESC 122 can include an insulating layer 124 on a conductive mount 126. In the embodiment shown in FIG. 1A, the ESC 122 is a bipolar holder having two electrodes 128, 130 in the insulating layer 124 and a conductive center pin 132 that contacts the back side of the wafer 120. A sink voltage supply 134 provides a D.C. voltage that is inverted but of the same size between the center pin 132 and the electrodes 128, 130. FIG. 1B illustrates a specific embodiment, which is a variation of the embodiment of FIG. 1A, wherein the ESC 122 is a monopolar chuck having a single electrode 128, the diameter of which is generally equivalent to a workpiece or wafer 120. The diameter. In the particular embodiment of Figure 1B, the center pin 132 may not be present. In addition to these differences, the embodiments of Figures 1A and 1B contain the same structural features, and the description of these same features with reference to Figure 1A below can also be used to illustrate the embodiment of Figure 1B, and therefore will not be heavy for the sake of brevity. Overwrite instructions.

再次參照第1A圖,D.C.功率係由一高壓D.C.功率產生器136提供至濺鍍靶材110。低頻RF功率係由一RF功率產生器140透過一RF匹配阻抗138提供給線圈112。RF 功率產生器140係連接至匹配阻抗138之一RF輸入端。在一具體實施例中,RF匹配阻抗138除了具有該RF輸入端之外,亦可具有一低功率D.C.輸入端(未示出)。在第1A圖之具體實施例中,具有一適當頻率(如低頻及/或高頻)之RF偏壓功率係透過一偏壓匹配阻抗142及阻隔電容144、146由一RF功率產生器提供至ESC電極128、130。一RF阻隔濾波器150係連接於ESC電極、中央銷128、130、132與D.C.吸座電壓供應器134之間,其阻隔吸座電壓供應器134與RF功率。在第1B圖之具體實施例中,具有一適當頻率(例如低頻及/或高頻)之RF偏壓功率,其係由RF偏壓功率產生器148透過偏壓匹配阻抗142及阻隔電容144提供至單一ESC電極128。Referring again to FIG. 1A, the D.C. power system is supplied to the sputter target 110 by a high voltage D.C. power generator 136. The low frequency RF power is provided by an RF power generator 140 to the coil 112 via an RF matching impedance 138. RF Power generator 140 is coupled to one of the RF inputs of matched impedance 138. In one embodiment, the RF matching impedance 138 may have a low power D.C. input (not shown) in addition to the RF input. In the embodiment of FIG. 1A, RF bias power having a suitable frequency (eg, low frequency and/or high frequency) is provided by an RF power generator through a bias matching impedance 142 and blocking capacitors 144, 146. ESC electrodes 128, 130. An RF blocking filter 150 is coupled between the ESC electrode, the center pins 128, 130, 132 and the D.C. sink voltage supply 134, which blocks the sink voltage supply 134 from the RF power. In the specific embodiment of FIG. 1B, RF bias power having a suitable frequency (eg, low frequency and/or high frequency) is provided by RF bias power generator 148 through bias matching impedance 142 and blocking capacitor 144. To a single ESC electrode 128.

再次參照第1A圖,一反應器控制器152用以控制反應器中所有主動元件之操作。具體而言,第1A圖表示ON/OFF命令係由控制器152傳送至每一功率產生器136、140及148,傳送至氣體供應器119,傳送至真空排氣泵116,以及傳送至ESC吸座電壓供應器134。雖然第1A圖中圖示未顯示出,然而反應器中其它主動元件同樣地係由控制器152控制,其它主動元件例如包括冷卻劑泵、連鎖蓋(lid interlock)、上舉銷致動器、基座上升致動器、氣閉閥開口、晶圓處理機械手臂等。Referring again to Figure 1A, a reactor controller 152 is used to control the operation of all of the active components in the reactor. Specifically, FIG. 1A shows that the ON/OFF command is transmitted from the controller 152 to each of the power generators 136, 140, and 148, to the gas supplier 119, to the vacuum exhaust pump 116, and to the ESC suction. Seat voltage supply 134. Although not shown in the diagram of FIG. 1A, other active components in the reactor are likewise controlled by controller 152, which includes, for example, a coolant pump, a lid interlock, a lift pin actuator, A pedestal lift actuator, a gas valve opening, a wafer processing robot, and the like.

晶圓級電弧偵測:Wafer level arc detection:

偵測晶圓處之電漿電弧係困難的,這是因為存在RF 雜訊及諧波,及由於非電弧現象(功率產生器轉換)及電弧現象所引起的瞬時電壓或電流大範圍變動。此種問題可藉由檢測ESC122之RF偏壓功率輸入端之電流或電壓變化得到解決。一RF感測器154係配置於(或連接至)一RF導體155上(例如,一50歐姆同軸電纜之內部導體),RF感測器154係在RF偏壓產生器148及RF偏壓匹配阻抗142間運作。在一具體實施例中,RF感測器154係包含在匹配阻抗142內,且係配置在一連接同軸電纜155的內部同軸輸出連接器處(未示出)。RF感測器154能夠偵測RF電流或RF電壓並據以產生一電壓訊號,該訊號與所偵測到的電流(或所偵測到的電壓)成比例。電壓訊號係由一訊號調節器156進行處理,以產生一輸出訊號,此輸出訊號係經過濾波處理及峰值檢測並且經由比例調整以符合一預定範圍。一電弧偵測比較器158將輸出訊號之大小與一預定檻值進行比較。若輸出訊號大小超過檻值,則電弧偵測比較器將輸出一電弧旗標給反應器控制器152。反應器控制器152回應此電弧旗標而關閉反應器中主動組件,諸如功率產生器136、140及148。It is difficult to detect the plasma arc at the wafer because of the presence of RF. Noise and harmonics, as well as large variations in instantaneous voltage or current due to non-arc phenomena (power generator switching) and arcing. This problem can be solved by detecting a change in current or voltage at the RF bias power input of the ESC 122. An RF sensor 154 is disposed (or connected) to an RF conductor 155 (eg, an inner conductor of a 50 ohm coaxial cable), and the RF sensor 154 is coupled to the RF bias generator 148 and RF bias. The impedance 142 operates. In one embodiment, RF sensor 154 is included within matching impedance 142 and is disposed at an internal coaxial output connector (not shown) that connects coaxial cable 155. The RF sensor 154 is capable of detecting an RF current or an RF voltage and generating a voltage signal that is proportional to the detected current (or the detected voltage). The voltage signal is processed by a signal conditioner 156 to generate an output signal that is filtered and peak detected and scaled to fit a predetermined range. An arc detection comparator 158 compares the magnitude of the output signal to a predetermined threshold. If the output signal size exceeds the threshold value, the arc detection comparator will output an arc flag to the reactor controller 152. Reactor controller 152 turns off active components in the reactor, such as power generators 136, 140, and 148, in response to this arc flag.

現參照第2圖,感測器154可為一RF電流感測器。在此具體實施例中,感測器154包括一亞鐵鹽環160,其環繞RF導體155;及一導電(例如,銅)線圈162,其圍繞該亞鐵鹽環160之一部分。線圈162之一端162a可容許電性浮動,而另一端162b為感測器154之輸出終端。亞鐵鹽環160及線圈162結構之一優點為,通過線圈162之電流 係弱耦接至通過RF功率型導體155之RF電流。因此,線圈162所產生的感應電壓會被減弱,而通過導體155之電流之瞬時變化或峰值將被限制於一小的動態範圈內。具有一相關特性,即弱耦接會限制感測器154從導體155之RF功率處所能夠汲取到的功率量或電流量。因此,感測器154對導體155之RF電流所造成的負載效應係微不足道的。Referring now to Figure 2, the sensor 154 can be an RF current sensor. In this particular embodiment, sensor 154 includes a ferrous salt ring 160 that surrounds RF conductor 155; and a conductive (eg, copper) coil 162 that surrounds a portion of the ferrous salt ring 160. One end 162a of coil 162 can be electrically floating while the other end 162b is the output terminal of sensor 154. One of the advantages of the ferrous salt ring 160 and the coil 162 structure is that the current through the coil 162 It is weakly coupled to the RF current through the RF power type conductor 155. Therefore, the induced voltage generated by the coil 162 is attenuated, and the instantaneous change or peak value of the current through the conductor 155 is limited to a small dynamic range. There is a related characteristic that the weak coupling limits the amount of power or current that the sensor 154 can draw from the RF power of the conductor 155. Therefore, the loading effect of the sensor 154 on the RF current of the conductor 155 is negligible.

第3圖例示說明訊號調節器156之不同運作方式。訊號調節器156包括一峰值檢測器164;一RF濾波器166,用以移除雜訊並提供乾淨訊號;一大小調整電路168,用以提供一預定範圍;及一高阻抗轉換器170,用以控制訊號大小範圍,同時在訊號調節器156之輸出端及感測器154之間提供一高阻抗隔離。訊號調節器156之一具體實施例顯示於第2圖中。在第2圖之具體實施例中,峰值檢測器164於圖示中包括一二極體整流器164a及一電容164b。在另一具體實施例中,峰值檢測器可包括其它電路元件,以提供一指示真峰值之輸出位準。RF濾波器166於圖示中係一π-網路,其包括一對並聯電容166a、166b及一串聯電感166c。大小調整電路168於第2圖中顯示為一分壓器,其包括一對電阻168a、168b,其輸出端電壓係依電阻168a之電阻值與電阻168a及168b二者電阻值總和之比例來調整縮小。轉換器170於第2圖中表示成包括一運算放大器171,其提供一某一範圍內之輸出訊號,其範圍係由放大器增益所決定(例如,0-10V)。該增益可由一連接於放大器輸入端及輸出端之變數迴授電阻172所決定。放大器171提 供一高輸入阻抗,其可將訊號調節器156與該訊號調節器輸出端之負載隔離。Figure 3 illustrates the different modes of operation of the signal conditioner 156. The signal conditioner 156 includes a peak detector 164; an RF filter 166 for removing noise and providing a clean signal; a size adjustment circuit 168 for providing a predetermined range; and a high impedance converter 170 for To control the signal size range, a high impedance isolation is provided between the output of the signal conditioner 156 and the sensor 154. A specific embodiment of the signal conditioner 156 is shown in FIG. In the specific embodiment of FIG. 2, peak detector 164 includes a diode rectifier 164a and a capacitor 164b in the drawing. In another embodiment, the peak detector can include other circuit components to provide an output level indicative of a true peak. The RF filter 166 is shown in the drawing as a π-network comprising a pair of shunt capacitors 166a, 166b and a series inductor 166c. The size adjustment circuit 168 is shown in FIG. 2 as a voltage divider comprising a pair of resistors 168a, 168b whose output voltage is adjusted by the ratio of the resistance of the resistor 168a to the sum of the resistance values of the resistors 168a and 168b. Zoom out. Converter 170 is shown in FIG. 2 to include an operational amplifier 171 that provides an output signal within a range that is determined by the gain of the amplifier (e.g., 0-10V). The gain can be determined by a variable feedback resistor 172 coupled to the input and output of the amplifier. Amplifier 171 For a high input impedance, it isolates the signal conditioner 156 from the load at the output of the signal conditioner.

第4圖例示說明感測器154之一具體實施例,用以檢測RF導體155上之RF電壓。感測器154包括一電阻分離電路154a、154b,其係直接連接於導體155及接地電位之間,電阻分離電路154a、154b之串聯電阻相當高(百萬歐姆等級)。如此可避免大功率轉換至接地。電阻154a係比電阻154b小10-100倍,如此使得峰值檢測器164所偵測到之電壓相對於RF導體155上之電壓係非常小。其提供感測器154一高輸入阻抗,藉此避免自RF導體155處汲取大電流。上述參照第2圖及第3圖所說明之訊號調節器156,其亦可用於調節第4圖之RF電壓感測器154之輸出訊號。FIG. 4 illustrates an embodiment of the sensor 154 for detecting the RF voltage on the RF conductor 155. The sensor 154 includes a resistor separation circuit 154a, 154b that is directly connected between the conductor 155 and the ground potential. The series resistance of the resistor separation circuits 154a, 154b is relatively high (million ohms). This avoids high power conversion to ground. Resistor 154a is 10-100 times smaller than resistor 154b such that the voltage detected by peak detector 164 is very small relative to the voltage across RF conductor 155. It provides a high input impedance to the sensor 154, thereby avoiding drawing a large current from the RF conductor 155. The signal conditioner 156 described above with reference to FIGS. 2 and 3 can also be used to adjust the output signal of the RF voltage sensor 154 of FIG.

第5A圖例示說明第1A圖具體實施例之變型,其中電弧偵測係執行於ESC電極128、130。第1A圖之RF偏壓功率產生器148及RF偏壓匹配阻抗142並未顯示於第5A圖之圖例中,然而當提供RF偏壓功率給ESC電極128、130時,需具備RF偏壓功率產生器148及RF偏壓匹配阻抗142。或者,不提供RF偏壓功率給ESC電極128、130。第1A圖之感測器154在第5A圖中係由一電壓感測器174取代。電壓感測器174係連接橫跨ESC中央銷132(其連接半導體工件或晶圓120)及一參考點。參考點可為接地點或ESC電極128或130中之一電極。電壓感測器174為一差動放大器,其兩輸入端分別連接至中央銷132及該參考點 (例如,接地點)。晶圓120上之瞬時電壓似乎在差動放大器174之兩輸入端間形成大差動訊號。放大器之輸出訊號係與此差動訊號成比例,且提供此輸出訊號給訊號調節器156。訊號調節器156之輸出訊號係藉由電弧偵測比較器158將該輸出訊號與一預定檻值進行比較測試,如同第1A圖之具體實施例。FIG. 5A illustrates a variation of the embodiment of FIG. 1A in which arc detection is performed on ESC electrodes 128, 130. The RF bias power generator 148 and the RF bias matching impedance 142 of FIG. 1A are not shown in the legend of FIG. 5A. However, when RF bias power is supplied to the ESC electrodes 128, 130, RF bias power is required. Generator 148 and RF bias match impedance 142. Alternatively, RF bias power is not provided to the ESC electrodes 128, 130. The sensor 154 of Figure 1A is replaced by a voltage sensor 174 in Figure 5A. Voltage sensor 174 is connected across ESC center pin 132 (which connects the semiconductor workpiece or wafer 120) and a reference point. The reference point can be a ground point or one of the ESC electrodes 128 or 130. The voltage sensor 174 is a differential amplifier, and the two input ends thereof are respectively connected to the center pin 132 and the reference point. (for example, grounding point). The instantaneous voltage on the wafer 120 appears to form a large differential signal between the two inputs of the differential amplifier 174. The output signal of the amplifier is proportional to the differential signal and the output signal is provided to the signal conditioner 156. The output signal of the signal conditioner 156 is tested by the arc detection comparator 158 to compare the output signal with a predetermined threshold value, as in the specific embodiment of FIG. 1A.

第5B圖例示說明一針對第1B圖之類似變型,其中第1B圖之感測器154於第5圖中係由差動放大器174所取代。在第5B圖之具體實施例中,差動放大器174之兩輸入端係連接至單一ESC電極128及一適當參考電壓(如接地點)。第1B圖之RF偏壓功率產生器148及RF偏壓匹配阻抗142未顯示於第5B圖之圖例中,然而當RF偏壓功率係提供給ESC電極128時,需具備RF偏壓功率產生器148及RF偏壓匹配阻抗142。或者,不提供RF偏壓功率給ESC電極128。電壓晶圓120上之瞬時電壓似乎在差動放大器174之兩輸入端間形成大差動訊號。放大器之輸出訊號係與此差動訊號成比例,且提供此輸出訊號給訊號調節器156。訊號調節器156之輸出訊號係藉由電弧偵測比較器158將該輸出訊號與一預定檻值進行比較測試,如同第1A圖之具體實施例。Figure 5B illustrates a similar variant for Figure 1B, in which sensor 154 of Figure 1B is replaced by differential amplifier 174 in Figure 5. In the embodiment of Figure 5B, the two input terminals of the differential amplifier 174 are coupled to a single ESC electrode 128 and an appropriate reference voltage (e.g., a ground point). The RF bias power generator 148 and the RF bias matching impedance 142 of FIG. 1B are not shown in the legend of FIG. 5B, but when the RF bias power is supplied to the ESC electrode 128, an RF bias power generator is required. 148 and RF bias match impedance 142. Alternatively, no RF bias power is provided to the ESC electrode 128. The instantaneous voltage on the voltage wafer 120 appears to form a large differential signal between the two inputs of the differential amplifier 174. The output signal of the amplifier is proportional to the differential signal and the output signal is provided to the signal conditioner 156. The output signal of the signal conditioner 156 is tested by the arc detection comparator 158 to compare the output signal with a predetermined threshold value, as in the specific embodiment of FIG. 1A.

第6A圖例示說明對第5A圖具體實施例之一變型,其中電流感測器176取代電壓感測器174。電流感測器176包括一亞鐵鹽環178環繞中央導體132及一導電線圈180環繞該環178。線圈180之一端180a為電流感測器176之 輸出端,且其係連接至訊號調節器156之輸入端。第6B圖例示說明針對第5B圖之具體實施例之一變型,其中電流感測器176' 取代電壓感測器174。電流感測器176' 包括一亞鐵鹽環178' ,其環繞連接至單一ESC電極128之導體;及一導電線圈180' ,其圍繞該環178' 。線圈180' 之一端180a' 為電流感測器176' 之輸出端,且其係連接至訊號調節器156之輸出端。FIG. 6A illustrates a variation of the embodiment of FIG. 5A in which current sensor 176 replaces voltage sensor 174. Current sensor 176 includes a ferrous salt ring 178 surrounding central conductor 132 and a conductive coil 180 surrounding the ring 178. One end 180a of coil 180 is the output of current sensor 176 and is coupled to the input of signal conditioner 156. FIG. 6B illustrates a variation of a particular embodiment for FIG. 5B in which current sensor 176 ' replaces voltage sensor 174. Current sensor 176 ' includes a ferrous salt ring 178 ' that surrounds a conductor connected to a single ESC electrode 128; and a conductive coil 180 ' that surrounds the ring 178 ' . One end 180a ' of coil 180 ' is the output of current sensor 176 ' and is coupled to the output of signal conditioner 156.

再次參照第1A圖,一第二RF感測器184係耦接至一RF功率型導體185,該導體185係連接於RF產生器140及RF匹配阻抗138之間,以用於側壁線圈112。第二RF感測器184可為一RF電流感測器(如同第2圖)或一RF電壓感測器(如同第4圖)。第二RF感測器184之輸出係提供給一第二訊號調節器186,此調節器186與第2圖及第3圖之訊號調節器156可屬於相同類型之電路。一第二電弧偵測比較器188,其將訊號調節器之輸出訊號與一特定檻值進行比較,以判定是否有電弧產生。若有電弧產生,則比較器188將產生一電弧旗標傳送至控制器152。一第三感測器190係耦接至D.C.功率產生器136之輸出端。第三感測器190之輸出可提供給一第三訊號調節器192。第三電弧偵測比較器194將訊號調節器192之輸出訊號與一特定檻值進行比較,以判定是否有電弧產生。其輸出一電弧旗標傳送至程序控制器152。Referring again to FIG. 1A, a second RF sensor 184 is coupled to an RF power type conductor 185 that is coupled between the RF generator 140 and the RF matching impedance 138 for the sidewall coil 112. The second RF sensor 184 can be an RF current sensor (as in Figure 2) or an RF voltage sensor (as in Figure 4). The output of the second RF sensor 184 is provided to a second signal conditioner 186, which may be of the same type of circuit as the signal conditioner 156 of Figures 2 and 3. A second arc detection comparator 188 compares the output signal of the signal conditioner with a particular threshold to determine if an arc is generated. If an arc is generated, comparator 188 will generate an arc flag to controller 152. A third sensor 190 is coupled to the output of the D.C. power generator 136. The output of the third sensor 190 can be provided to a third signal conditioner 192. The third arc detection comparator 194 compares the output signal of the signal conditioner 192 with a particular threshold to determine if an arc is generated. Its output an arc flag is transmitted to the program controller 152.

控制器152可包括一記憶體152a用以儲存一序列指令,及一微處理器152b用以執行這些指令。此等指令代表 一程式可經下載存入控制器記憶體152a內,用以操作反應器。依據其中一特性,回應自電弧偵測比較器158、188或194中任一比較器處接收到電弧旗標,而程式將指示控制器152關閉功率產生器136、140及148。此程式將於本說明書稍後部分中作進一步說明。Controller 152 can include a memory 152a for storing a sequence of instructions and a microprocessor 152b for executing the instructions. These instructions represent A program can be downloaded to the controller memory 152a for operation of the reactor. In response to one of the characteristics, an arc flag is received in response to any of the arc detection comparators 158, 188 or 194, and the program will instruct the controller 152 to turn off the power generators 136, 140 and 148. This program will be further explained later in this manual.

程序控制器之操作Program controller operation

第1A圖之程序控制器152之操作流程說明係顯示於第7A及7B圖之流程圖,程序方案可經下載存入控制器記憶體152a中(第7A及7B圖之方塊300)。反應器組件歷史(例如,反應器中每一耗材之已使用時數記錄)亦可經下載存入控制器記憶體152a(方塊302)。然後,控制器啟動反應器中程序(方塊304)。在現行程序步驟中,控制器152執行該程序方案所要求的RF功率設定(即,提供RF功率給ESC122及提供RF功率給線圈112)。依據這些功率設定,控制器152預測每一感測器154、184及190將遭遇到的RF雜訊等級。對每一感測器而言,控制器152根據雜訊等級來決定指派一適當的電弧偵測比較檻值給每一比較器158、188及194(第7A及7B圖之方塊306)。對於一特定感測器,若一偵測到的電壓(或電流)位準超過所指派的檻值,則視為發生電弧現象。或者,控制器152亦可定義一警告位準檻值,其值低於該電弧偵測檻值。The operational flow description of the program controller 152 of FIG. 1A is shown in the flowcharts of FIGS. 7A and 7B, and the program scheme can be downloaded and stored in the controller memory 152a (blocks 300 of FIGS. 7A and 7B). The reactor assembly history (e.g., the number of used hours for each consumable in the reactor) can also be downloaded to controller memory 152a (block 302). The controller then initiates the in-reactor process (block 304). In the current procedural step, controller 152 performs the RF power settings required by the program (i.e., provides RF power to ESC 122 and RF power to coil 112). Based on these power settings, the controller 152 predicts the level of RF noise that each of the sensors 154, 184, and 190 will encounter. For each sensor, controller 152 determines to assign an appropriate arc detection comparison threshold to each of comparators 158, 188, and 194 based on the level of noise (block 306 of Figures 7A and 7B). For a particular sensor, an arc is considered to occur if a detected voltage (or current) level exceeds the assigned threshold. Alternatively, the controller 152 may define a warning level threshold that is lower than the arc detection threshold.

在每一感測器154、184及190之比較檻值皆已設定完成後,每一檻值依據反應器之耗材組件之相關已使用時數 進行修正(方塊308)。可依據代表反應器中每一耗材組件之一般使用壽命之歷史資料來實現修正。例如,感測器154偵測最靠近晶圓120處之電弧現象,此時最靠近晶圓之耗材組件之狀態將影響最大,例如一環繞ESC之程序環形套件(第1A圖未示出)。因此,感測器154之電弧偵測比較檻值係依據該程序環形套件之已使用時數來進行修正。同樣的,感測器184偵測側壁線圈112處之電弧現象。因此,指派給感測器184之檻值將依據例如線圈112之已使用時數來進行修正。一般而言,會隨著耗材已使用時數來上修檻值,因為當耗材在暴露於電漿期間造成磨損且其表面變成較粗糙時,很容易遭受或引起更多RF雜訊及諧波。依據耗材之已使用時數進行修正電弧偵測檻值,可依據一代表大量耗材組件樣本歷史之經驗數據來實現。After the comparison thresholds of each of the sensors 154, 184, and 190 have been set, each threshold value depends on the relevant used hours of the consumable component of the reactor. A correction is made (block 308). The correction can be achieved based on historical data representing the general useful life of each consumable component in the reactor. For example, sensor 154 detects the arc phenomenon closest to wafer 120, at which point the state of the consumable component closest to the wafer will have the greatest impact, such as a program loop kit surrounding the ESC (not shown in FIG. 1A). Therefore, the arc detection comparison threshold of the sensor 154 is corrected according to the used hours of the program ring kit. Similarly, the sensor 184 detects an arc phenomenon at the sidewall coil 112. Therefore, the value assigned to the sensor 184 will be corrected based on, for example, the number of hours the coil 112 has been used. In general, it will be repaired as the consumables have been used, because when the consumables are worn during exposure to the plasma and the surface becomes rough, it is easy to suffer or cause more RF noise and harmonics. . Correcting the arc detection threshold based on the number of hours of use of the consumable can be achieved based on empirical data representing the history of a large number of consumable component samples.

在一具體實施例中,下一步驟將判定上修之檻值是否位在或太靠近一真實電弧現象之預期電壓或電流位準(方塊310)。若確是如此(方塊310之「是」分支),則輸出一旗標(方塊311)傳送至使用者及/或發送至程序控制器152。在一具體實施例中,此旗標可使程序控制器152關閉反應器。如此,可識別其檻值已因此超過之相應感測器之位置,且可識別最靠近該反應器之反應器耗材,進而通知使用者這些耗材已達替換期限需進行更換。In one embodiment, the next step will determine if the value of the upset is at or too close to the expected voltage or current level of a true arcing phenomenon (block 310). If so ("Yes" branch of block 310), a flag is output (block 311) to the user and/or to program controller 152. In a specific embodiment, this flag allows program controller 152 to shut down the reactor. In this way, it is possible to identify the position of the corresponding sensor whose 槛 value has exceeded, and to identify the reactor consumable closest to the reactor, thereby notifying the user that the consumables have been replaced for a replacement period.

若經修正檻值不會過高(方塊310之「否」分支),則將這些經修正檻值傳送至電弧偵測比較器158、188及194,以用於現行程序步驟中(方塊312)。依據程序方案, 控制器152可識別一特定時刻發生之程序控制之瞬時電流(方塊314),例如啟動或停止RF功率產生器時。在執行現行程序步驟期間,控制器152監視每一電弧偵測比較器158、188及194是否發送電弧旗標(方塊316)。在現行步驟下,每一比較器158、188及194分別持續將訊號調節器156、186及192之輸出訊號與接收自控制器152之檻值進行比較。每當訊號調節器之輸出訊號值超過所採用之檻值時,比較器將傳送一電弧旗標至控制器152。例如,控制器152可以30MHZ之速率對比較器輸出訊號進行取樣。針對每一比較器158、188及194之取樣,對是否已發出一電弧旗標作出判定(方塊318)。若未偵測到任何旗標(方塊318之「否」分支),則控制器152判定現行程序步驟是否已完成(方塊320)。若判定為未完成(方塊320之「否」分支),則控制器152回到方塊316之監視步驟。否則,(方塊320之「是」分支)控制器152轉移至程序方案之下一程序步驟(方塊322)而回到方塊306之步驟。If the modified threshold is not too high ("NO" branch of block 310), then the corrected thresholds are passed to arc detection comparators 158, 188 and 194 for use in the current program step (block 312). . According to the program plan, Controller 152 can identify the instantaneous current controlled by the program at a particular time (block 314), such as when starting or stopping the RF power generator. During the execution of the current program step, controller 152 monitors whether each arc detection comparator 158, 188, and 194 transmits an arc flag (block 316). In the current step, each of the comparators 158, 188, and 194 continuously compares the output signals of the signal conditioners 156, 186, and 192 with the thresholds received from the controller 152, respectively. The comparator will transmit an arc flag to controller 152 whenever the output signal value of the signal conditioner exceeds the threshold used. For example, controller 152 can sample the comparator output signal at a rate of 30 MHz. A determination is made as to whether an arc flag has been issued for each sample of comparators 158, 188, and 194 (block 318). If no flag is detected ("NO" branch of block 318), then controller 152 determines if the current program step has been completed (block 320). If the determination is not complete ("NO" branch of block 320), then controller 152 returns to the monitoring step of block 316. Otherwise, ("YES" branch of block 320) controller 152 branches to a program step (block 322) below the program protocol and returns to block 306.

若偵測到一電弧旗標(方塊318之「是」分支),則判定所偵測到之瞬時電壓或電流係僅超過警告位準檻值或者已超過電弧檻值位準(方塊324)。此判定係依據由特定比較器所發出之旗標其內容來進行。若僅超出警告位準(方塊324之「是」分支),則控制器152記錄此現象並將此現象與現行晶圓建立聯結關係(方塊326)。控制器152接著判定現行晶圓之警告數目是否過高(方塊328)。若該晶圓之警告數目超過一預定數目(方塊328之「是」分支),則發 送一旗標(方塊330),且控制器152可關閉反應器。否則(方塊328之「否」分支),控制器回到方塊316之步驟。If an arc flag is detected ("YES" branch of block 318), it is determined that the detected instantaneous voltage or current has only exceeded the warning level threshold or has exceeded the arc threshold level (block 324). This determination is made based on the content of the flag issued by a particular comparator. If only the warning level is exceeded ("YES" branch of block 324), controller 152 records this phenomenon and establishes a connection relationship with the current wafer (block 326). Controller 152 then determines if the number of warnings for the current wafer is too high (block 328). If the number of warnings for the wafer exceeds a predetermined number ("Yes" branch of block 328), then A flag is sent (block 330) and the controller 152 can shut down the reactor. Otherwise ("No" branch of block 328), the controller returns to the step of block 316.

若電弧旗標係指示一全電弧現象,即已超過電弧檻值(方塊324之「否」分支),則判定其是否與方塊314之步驟中所識別之功率轉換時間相一致。若一致(方塊332之「是」分支),則將該旗標視為一錯誤指示而忽略它(方塊334),同時控制器回到方塊316之監視步驟。否則(方塊332之「否」分支),將電弧旗標視為一正確訊息。控制器152使用電弧旗標之內容來識別偵測到電弧現象之感測器其位置,並將其記錄於記體體中(方塊338)。控制器發送「OFF」命令給每一功率產生器136、140及148(方塊340)。電弧旗標可包括數位資訊,以識別有發送出電弧旗標之特定比較器。此資訊係藉由控制器152輸出至使用者介面,此介面可建立感測器位置與耗材組件之聯結關係(方塊342)。此特性可允許使用者能夠更好地識別反應器腔室中需要替換的耗材組件。例如,若控制器152判定電弧旗標係由比較器188發出,則其識別最靠近該比較器所監視之RF功率之耗材組件,即側壁線圈112。對於一由比較器158所發送之電弧旗標而言,最靠近的耗材組件係圍繞晶圓的那些組件,特別是程序環形套件,而控制器152會例如將此一電弧旗標與此程序環形套件之間建立聯結關係。對於一由比較器194所發送之電弧旗標而言,相關組件為頂部靶材,而控制器會將此一電弧旗標與此頂部靶材之間建立聯結關係。因此,在一具體實施例中,控制器152可針對 不同的電弧旗標提供使用者不同的可能候選替換耗材之清單。If the arc flag indicates a full arc phenomenon, i.e., the arc threshold has been exceeded ("NO" branch of block 324), it is determined whether it coincides with the power conversion time identified in the step of block 314. If consistent ("YES" branch of block 332), the flag is treated as an error indication and ignored (block 334), and the controller returns to the monitoring step of block 316. Otherwise ("No" branch of block 332), the arc flag is treated as a correct message. Controller 152 uses the contents of the arc flag to identify the location of the sensor that detected the arcing phenomenon and record it in the body (block 338). The controller sends an "OFF" command to each of the power generators 136, 140, and 148 (block 340). The arc flag can include digital information to identify a particular comparator that has an arc flag sent. This information is output to the user interface by controller 152, which establishes a connection relationship between the sensor location and the consumable component (block 342). This feature allows the user to better identify the consumable components that need to be replaced in the reactor chamber. For example, if controller 152 determines that the arc flag is issued by comparator 188, it identifies the consumable component closest to the RF power monitored by the comparator, i.e., sidewall coil 112. For an arc flag transmitted by comparator 158, the closest consumable component is around those components of the wafer, particularly the program ring kit, and controller 152 will, for example, associate this arc flag with this program ring. A connection relationship is established between the suites. For an arc flag sent by comparator 194, the associated component is the top target and the controller establishes a coupling relationship between the arc flag and the top target. Thus, in a particular embodiment, the controller 152 can target Different arc flags provide a list of different possible candidate replacement consumables for the user.

第7A及7B圖所示之一具體實施例之程序,包括於每一電漿程序步驟中動態調整電弧偵測比較檻值。檻值係進一步依據耗材組件之已使用時數來進行調整。控制器152視需要可經常更新每一比較器158、188及194之檻值。藉由這樣的動態調整比較檻值,可尋找用於一特定晶圓程序步驟之最小檻值,進而最佳化每一比較器158、188及194之敏感度。每當雜訊狀況(例如)有所改善時,可下修檻值,而當例如RF功率位準上升而使雜訊程度隨之提升時,可上修檻值。升高檻值可避免當雜訊位準接近電弧偵測檻值位準時所產生的錯誤電弧指示。在一具體實施例中,第7A及7B圖之程序進一步包括執行識別電弧位置之步驟以及識別相關電弧現象中相應可能的耗材組件之步驟。控制器152將此類資訊傳達給使用者,以促進有效管理耗材並更正確地選擇需替換之耗材。The procedure of one of the embodiments illustrated in Figures 7A and 7B includes dynamically adjusting the arc detection comparison threshold in each of the plasma program steps. Depreciation is further adjusted based on the number of hours the consumable component has been used. Controller 152 can frequently update the thresholds of each of comparators 158, 188, and 194 as needed. By comparing the thresholds with such dynamic adjustments, the minimum threshold for a particular wafer program step can be sought to optimize the sensitivity of each of the comparators 158, 188, and 194. Whenever the noise condition (for example) is improved, the value can be repaired, and when, for example, the RF power level rises and the degree of noise increases, the value can be repaired. Increasing the threshold can avoid false arc indications that occur when the noise level approaches the arc detection threshold. In a specific embodiment, the procedures of Figures 7A and 7B further include the steps of performing the steps of identifying the arc position and identifying corresponding possible consumable components in the associated arcing phenomenon. Controller 152 communicates such information to the user to facilitate efficient management of consumables and more accurate selection of consumables to be replaced.

在一具體實施例中,第7A及7B圖之程序係以軟體指令實現,而軟體指令可經下載存入控制器記憶體152a中。因此在此具體實施例中,所有智能動作皆係由控制器152所執行,而電弧偵測比較器僅執行比較功能。然而,在另一具體實施例中,電弧偵測比較器158、188及194可包括其本身之內部處理器及記憶體,以允許他們能夠執行第7A及7B圖之程序中某些功能。In one embodiment, the programs of Figures 7A and 7B are implemented as software instructions, and the software instructions can be downloaded to the controller memory 152a. Thus, in this particular embodiment, all smart actions are performed by controller 152, while the arc detect comparator only performs the compare function. However, in another embodiment, arc detection comparators 158, 188, and 194 can include their own internal processors and memory to allow them to perform certain functions in the procedures of Figures 7A and 7B.

翻新改進控制及通訊:Refurbishment to improve control and communication:

第7A及7B圖之程序汲及到控制器152與每一電弧偵測比較器158、188及194之間頻繁的雙向通訊。控制器152定期傳送經更新的比較檻值至比較器158、188及194中特定數個比較器,不同的值係經下載送給不同的比較器。每當偵測到電弧時,比較器158、188及194即傳送電弧旗標。電弧旗標包括發送該電弧旗標之個別比較器之識別符。控制器回應由電弧偵測比較器158、188及194中任一比較器所傳送之一正確電弧旗標,而進一步傳送關閉(ON/OFF)命令至功率產生器136、140及148。有意將第1A圖之電弧偵測特性(如實現於第7A及7B圖所示程序)加入至已運作於一區域中之電漿反應器上。對於已設置於該區域中之反應器,於每一反應器上安裝一客製化通訊網路以符合前述每一通訊需求,如此將會使成本過高。為了降低成本,將利用反應器上已存在之通訊系統進行通訊。在某些實施例中,已存在之通訊系統能夠符合並促進第1及7圖之電弧偵測特性之所有通訊需求。The procedures of Figures 7A and 7B are followed by frequent two-way communication between the controller 152 and each of the arc detection comparators 158, 188 and 194. Controller 152 periodically transmits the updated comparison threshold to a particular number of comparators 158, 188, and 194, with different values being downloaded to different comparators. Comparators 158, 188, and 194 transmit an arc flag whenever an arc is detected. The arc flag includes an identifier of an individual comparator that transmits the arc flag. The controller responds to one of the correct arc flags transmitted by any of the arc detection comparators 158, 188, and 194, and further transmits an ON/OFF command to the power generators 136, 140, and 148. The arc detection characteristics of Figure 1A (as implemented in Figures 7A and 7B) are intentionally added to the plasma reactor that has been operated in a zone. For reactors already installed in this zone, a custom communication network is installed on each reactor to meet each of the aforementioned communication requirements, which would be cost prohibitive. In order to reduce costs, communication will be carried out using the communication system already existing on the reactor. In some embodiments, an existing communication system is capable of complying with and promoting all of the communication requirements of the arc detection features of Figures 1 and 7.

在某些反應器中,提供一區域網路(LAN),而控制器透過此區域網路與反應器上每一主動裝置及感測器進行通訊。第8圖例示說明第1A圖所示之反應器類型之區域網路結構。一介面裝置係耦接至由控制器152所控制之每一主動裝置。該介面裝置將所接收到的數位命令轉換成動作來關閉主動裝置。例如,在第8圖中,介面裝置355、357及359係分別連接至功率產生器136、140及148。這些介 面裝置回應所接收到的數位命令,而能夠關閉該些產生器。提供一區域網路(LAN)360。此區域網路為一多導體傳輸通道或電纜,其具有多數I/O埠361、362、363、364、365、366及367,且其可實現為多導體連結器。於區域網路360上進行通訊之每一裝置皆具有一記憶體及有限的處理能力,以允許其於區域網路360上儲存並發送一獨特位址。因此,每一控制介面355、357、359及每一比較器158、188、194皆具有習知處理電路,以回應區域網路協定並儲存其本身之裝置位址。區域網路上每一裝置158、188、194、355、357及359僅回應指定送達至其裝置位址之所收訊息。此外,每一裝置於區域網路上將其本身之裝置位址附於其傳輸資料。每一裝置158、188、194、355、357及359分別透過其本身之多導體電纜371、372、373、374、375、376及377,於埠361、362、363、364、365、366及367處耦接至區域網路360。在經設置於具有此一區域網路之區域中之反應器上,可不具備比較器158、188及194。因此,第1A圖之電弧偵測系統通訊特性可藉由以下動作來實現於此一反應器中:識別現有區域網路360上之剩餘(未經使用)埠(例如,埠363、365及366),並將比較器158、188及194以第8圖所示方式與上述埠連接。In some reactors, a local area network (LAN) is provided through which the controller communicates with each of the active devices and sensors on the reactor. Fig. 8 illustrates a regional network structure of the reactor type shown in Fig. 1A. An interface device is coupled to each of the active devices controlled by controller 152. The interface device converts the received digital command into an action to turn off the active device. For example, in Figure 8, interface devices 355, 357, and 359 are coupled to power generators 136, 140, and 148, respectively. These media The face device can turn off the generators in response to the received digital commands. A local area network (LAN) 360 is provided. This area network is a multi-conductor transmission channel or cable having a plurality of I/O ports 361, 362, 363, 364, 365, 366 and 367, and which can be implemented as a multi-conductor connector. Each device communicating over regional network 360 has a memory and limited processing capabilities to allow it to store and transmit a unique address on regional network 360. Thus, each of the control interfaces 355, 357, 359 and each of the comparators 158, 188, 194 has conventional processing circuitry in response to the regional network protocol and stores its own device address. Each device 158, 188, 194, 355, 357, and 359 on the local area network only responds to the received message destined for its device address. In addition, each device attaches its own device address to its transmission data on the local area network. Each device 158, 188, 194, 355, 357 and 359 passes through its own multi-conductor cable 371, 372, 373, 374, 375, 376 and 377, respectively, at 埠361, 362, 363, 364, 365, 366 and 367 is coupled to the area network 360. Comparators 158, 188, and 194 may not be provided on the reactor disposed in the region having such a regional network. Thus, the arc detection system communication characteristics of FIG. 1A can be implemented in the reactor by identifying the remaining (unused) ports on the existing area network 360 (eg, 埠363, 365, and 366). ), and the comparators 158, 188, and 194 are connected to the above-described ports in the manner shown in FIG.

當啟動區域網路360時,區域網路360上所有裝置之裝置位址(即,比較器158、188、194及控制介面355、357、359)可使用習知技術由控制器152進行智能指派。在第8圖之系統中,控制器152例如藉由傳送一個別訊息給一個 別比較器,該訊息具有指令其要求下載一特定檻值,來實現第7A及7B圖之程序。每一比較器回應一電弧現象,而傳送一包含比較器裝置位址之訊息給控制器152,及一傳送一訊息用以指示發生電弧現象。控制器152可回應一正確電弧現象,而傳送一訊息給每一功率產生器控制介面355、357、359,該訊息包含一命令用以要求關閉相應產生器。發送出旗標之感測器之位置,其係由控制器152依據相應電弧偵測比較器之裝置位址來推測得。控制器152可於控制器152之使用者介面153處提供此資訊給使用者。When the local area network 360 is activated, the device addresses of all devices on the local area network 360 (i.e., the comparators 158, 188, 194 and control interfaces 355, 357, 359) can be intelligently assigned by the controller 152 using conventional techniques. . In the system of Figure 8, the controller 152 transmits a message to the user, for example. In contrast to the comparator, the message has instructions to request that a particular threshold be downloaded to implement the procedures of Figures 7A and 7B. Each comparator responds to an arcing phenomenon by transmitting a message containing the address of the comparator device to controller 152 and transmitting a message indicating the occurrence of an arcing phenomenon. Controller 152 can respond to a correct arcing phenomenon by transmitting a message to each power generator control interface 355, 357, 359 that includes a command to request that the respective generator be turned off. The location of the sensor that sent the flag is estimated by the controller 152 based on the device address of the corresponding arc detection comparator. Controller 152 can provide this information to the user at user interface 153 of controller 152.

在其它反應器中,不提供或無法使用區域網路,而提供一客製化通訊數位輸入/輸出(DI/O)網路,如第9圖所示。在第9圖之DI/O網路中,每一裝置透過該裝置專屬傳輸通道與控制器152進行通訊(反之亦然)。業已存在之反應器上之DI/O網路分別利用DI/O繼電器401、402、404、406與控制器152進行個別通訊,並監視個別安全點。具體而言,例如,DI/O繼電器401每當腔室100之蓋101係開啟時即發送訊號,DI/O繼電器402每當RF功率電纜斷接側壁線圈時即發送訊號,DI/O繼電器404每當RF偏壓功率電纜斷接時即發送訊號,而DI/O繼電器406每當D.C.功率電纜斷接頂部靶材時即發送訊號。控制器152之輸入端A、B、D及F接收這些繼電器所發送之訊號,如第9圖之圖例所示。控制器152經由專屬傳輸通道J、K及L傳輸關閉(ON/OFF)命令給每一功率產生器136、148及140,如第9圖所示。In other reactors, a local area network is not provided or available, and a custom digital input/output (DI/O) network is provided, as shown in Figure 9. In the DI/O network of Figure 9, each device communicates with the controller 152 via the device-specific transmission channel (and vice versa). The DI/O network on the existing reactors is individually communicated with the controller 152 using DI/O relays 401, 402, 404, 406, respectively, and individual security points are monitored. Specifically, for example, the DI/O relay 401 transmits a signal every time the cover 101 of the chamber 100 is turned on, and the DI/O relay 402 transmits a signal whenever the RF power cable is disconnected from the side wall coil, and the DI/O relay 404 The signal is sent whenever the RF bias power cable is disconnected, and the DI/O relay 406 sends a signal whenever the DC power cable is disconnected from the top target. The inputs A, B, D and F of the controller 152 receive the signals transmitted by these relays, as shown in the legend of Figure 9. Controller 152 transmits an ON/OFF command to each of power generators 136, 148, and 140 via dedicated transmission channels J, K, and L, as shown in FIG.

第1A圖之通訊特性可實現於第9圖之DI/O網路中,其中具有三個額外DI/O繼電器可與電弧偵測比較器158、188及194配合作用。在第9圖所示之例子中,業已存在之DI/O繼電器403、405及407係挪用於分別連接至電弧偵測比較器188、158及194之輸出端。每次電弧偵測比較器158、188或194中之一者發送一電弧旗標時,與該比較器連接之DI/O繼電器將發送信號以通知控制器152。控制器152依據承載該信號之電纜或通道之位置,進而推算出發送出電弧旗標之電弧偵測比較器之識別符。此資訊可被傳送給控制器使用者介面153,用以管理耗材之替換。The communication characteristics of Figure 1A can be implemented in the DI/O network of Figure 9, with three additional DI/O relays that can cooperate with the arc detection comparators 158, 188 and 194. In the example shown in Figure 9, the existing DI/O relays 403, 405, and 407 are coupled to the outputs of the arc detection comparators 188, 158, and 194, respectively. Each time one of the arc detection comparators 158, 188 or 194 sends an arc flag, the DI/O relay connected to the comparator will send a signal to inform the controller 152. The controller 152 derives the identifier of the arc detection comparator that sends the arc flag based on the position of the cable or channel carrying the signal. This information can be communicated to the controller user interface 153 to manage the replacement of consumables.

現行設置於一區域中之早型反應器可能不具備一區域網路亦不具備一DI/O網路。在此類反應器中,第1A圖之電弧偵測系統可實現為一基礎形式,其係利用提供於此類反應器中之24伏特安全中斷電路來實現偵測系統。每當腔室蓋係開啟或每當連接於腔室之功率電纜中斷時,此電路可確保立即關閉功率產生器。參照第10圖,功率產生器136具有一連鎖裝置501,功率產生器148具有一連鎖裝置502及功率產生器140具有一連鎖裝置503。每一功率產生器136、148及140僅可在其連鎖裝置於一電路式導體504上不斷偵測到一24伏特DC電位時才運作。電路式導體504將所有連鎖裝置501、502、503串聯接至一24伏特DC供應器506。串聯電路式導體504係由數個簡單切換繼電器510、512、514、516、518、520及522切斷其連結。因此,每一繼電器本身可中斷產生器連鎖裝置501、502、 503與24伏特供應器506間之串聯連結,藉以關閉反應器。繼電器510每當腔室蓋101係開啟時即開啟其連結。繼電器512每當RF功率電纜與側壁線圈112間之連結中斷時即開啟其連結。繼電器516每當RF功率電纜與ESC122間之連結中斷時即開啟其連結。繼電器522每當RF功率電纜與頂部靶材間之連結中斷時即開啟其連結。腔室100可自動關閉,以回應三個電弧偵測比較器158、188及194中任一比較器之電弧偵測,其中三個額外繼電器係沿著電路式導體504相互串聯,且可用於分別接收比較器158、188及194之輸出訊號。第10圖顯示此三個繼電器(即繼電器514、518及520)可分別連接至比較器188、158及194之輸出端。每當比較器188、158、194中任一者偵測到一超過其預定檻值之電壓(或電流)時,其將發送一電壓形式之電弧旗標,用以分別使相應繼電器514、518或520開啟其連結。如此將打斷導體504之24伏特路,而導致每一連鎖裝置501、502、503分別關閉相關功率產生器136、148及140。Early reactors currently installed in a zone may not have a regional network or a DI/O network. In such a reactor, the arc detection system of Figure 1A can be implemented in a basic form that utilizes a 24 volt safety interrupt circuit provided in such a reactor to implement the detection system. This circuit ensures that the power generator is turned off immediately whenever the chamber cover is open or whenever the power cable connected to the chamber is interrupted. Referring to Fig. 10, power generator 136 has an interlocking device 501 having a interlocking device 502 and power generator 140 having a chaining device 503. Each power generator 136, 148, and 140 can only operate when its interlocking device continuously detects a 24 volt DC potential on a circuit conductor 504. Circuit conductor 504 connects all interlocks 501, 502, 503 in series to a 24 volt DC supply 506. The series circuit conductor 504 is disconnected by a number of simple switching relays 510, 512, 514, 516, 518, 520 and 522. Therefore, each relay itself can interrupt the generator interlocks 501, 502, A series connection between 503 and 24 volt supply 506 is used to shut down the reactor. The relay 510 opens its connection each time the chamber cover 101 is opened. The relay 512 opens its connection whenever the connection between the RF power cable and the side wall coil 112 is interrupted. Relay 516 opens its connection whenever the connection between the RF power cable and ESC 122 is interrupted. Relay 522 opens its connection whenever the connection between the RF power cable and the top target is interrupted. The chamber 100 can be automatically turned off in response to arc detection of any of the three arc detection comparators 158, 188, and 194, wherein three additional relays are connected in series along the circuit conductor 504 and can be used to separate The output signals of the comparators 158, 188 and 194 are received. Figure 10 shows that the three relays (i.e., relays 514, 518, and 520) can be coupled to the outputs of comparators 188, 158, and 194, respectively. Whenever any of the comparators 188, 158, 194 detects a voltage (or current) that exceeds its predetermined threshold, it will send an arc flag in the form of a voltage to cause the respective relays 514, 518, respectively. Or 520 opens its link. This will interrupt the 24 volt path of conductor 504, causing each interlocking device 501, 502, 503 to turn off associated power generators 136, 148, and 140, respectively.

第1A圖所示之RF匹配阻抗138之具體實施例具有單一RF輸入端及單一RF輸出端,然而在另一具體實施例中,RF匹配阻抗138可另外具有一低功率D.C.輸入端(未示於圖中)。在此一實施例中,前述類型之一額外電弧感測器及檻值比較器,其可耦接至未示出的RF匹配阻抗138之低功率D.C.輸入端。The specific embodiment of the RF matching impedance 138 shown in FIG. 1A has a single RF input and a single RF output. However, in another embodiment, the RF matching impedance 138 may additionally have a low power DC input (not shown). In the picture). In this embodiment, one of the foregoing types of additional arc sensors and threshold comparators can be coupled to a low power D.C. input of an RF matching impedance 138, not shown.

前文已說明第1A或1B圖之反應器係依據各種感測器 154、184、190等中之單一感測器來進行電弧偵測,然而電弧偵測之判定亦可依據該些感測器中數個(或可能全部)感測器。例如,已說明第1、8或9圖中具體實施例之控制器152係分別透過比較器158、186或194,進而依據感測器154、184或190中任一者之輸出訊號來回應電弧現象。然而,在一具體實施例中,第1、8或9圖之控制器152經程式設計可結合至少二個(或更多)檻值比較器158、186,並依據所結合之訊號來進行判定。輸出訊號可由處理器152依據線性、多項式或更複雜之數學函式進行結合。在此實施例中,控制器152係經程式設計來回應經結合之訊號,以判定是否偵測到電弧或決定是否關閉反應器。在又另一具體實施例中,感測器154、184、190之個別輸出訊號可先進行結合,然後再由一檻值比較器處理。感測器154、184、190中至少二者之個別輸出訊號可依據線性、多項式或更複雜之數學函式進行結合。所得到之經結合訊號於是提供給單一比較器(例如比較器186),且該單一比較器之輸出訊號係提供給控制器152。The reactor of Figure 1A or 1B has been described above in terms of various sensors A single sensor in 154, 184, 190, etc. performs arc detection, however the determination of arc detection may also be based on several (or possibly all) of the sensors. For example, it has been explained that the controller 152 of the specific embodiment of the first, eighth or ninth embodiment transmits the response to the arc according to the output signal of any of the sensors 154, 184 or 190 through the comparators 158, 186 or 194, respectively. phenomenon. However, in one embodiment, the controller 152 of the first, eighth or ninth embodiment is programmed to combine at least two (or more) threshold comparators 158, 186 and to determine based on the combined signals. . The output signals can be combined by the processor 152 in accordance with linear, polynomial or more complex mathematical functions. In this embodiment, controller 152 is programmed to respond to the combined signals to determine if an arc is detected or to decide whether to shut down the reactor. In yet another embodiment, the individual output signals of the sensors 154, 184, 190 can be combined first and then processed by a threshold comparator. The individual output signals of at least two of the sensors 154, 184, 190 can be combined according to linear, polynomial or more complex mathematical functions. The resulting combined signal is then provided to a single comparator (e.g., comparator 186) and the output signal of the single comparator is provided to controller 152.

前文所述係針對本發明之具體實施例,然而其他與本發明相關或進一步的具體實施例亦可在不悖離本發明基本範疇下設計獲得。本發明之範疇係由以下之申請專利範圍所界定。The foregoing description is directed to specific embodiments of the invention, and other specific embodiments of the invention may be made without departing from the basic scope of the invention. The scope of the invention is defined by the scope of the following claims.

100‧‧‧腔室100‧‧‧ chamber

101‧‧‧腔室蓋101‧‧‧ chamber cover

102‧‧‧側壁102‧‧‧ side wall

104‧‧‧頂部104‧‧‧ top

106‧‧‧底部106‧‧‧ bottom

110‧‧‧靶材110‧‧‧ Target

112‧‧‧RF線圈112‧‧‧RF coil

114‧‧‧基座114‧‧‧Base

116‧‧‧真空排氣泵116‧‧‧Vacuum exhaust pump

118‧‧‧排氣泵埠118‧‧‧Exhaust pump埠

119‧‧‧氣體供應器119‧‧‧ gas supply

120‧‧‧工件120‧‧‧Workpiece

122‧‧‧靜電式吸座122‧‧‧Electrostatic suction seat

124‧‧‧絕緣層124‧‧‧Insulation

126‧‧‧導電座126‧‧‧Electrical seat

128、130‧‧‧電極128, 130‧‧‧ electrodes

132‧‧‧導電中央銷132‧‧‧conductive central pin

134‧‧‧電壓供應器134‧‧‧Voltage supply

136‧‧‧D.C.功率產生器136‧‧‧D.C. Power Generator

138、142‧‧‧匹配阻抗138, 142‧‧‧ Matched impedance

140、148‧‧‧RF功率產生器140, 148‧‧‧RF power generator

144‧‧‧電容144‧‧‧ Capacitance

146‧‧‧電容146‧‧‧ Capacitance

150‧‧‧RF阻隔濾波器150‧‧‧RF blocking filter

152‧‧‧控制器152‧‧‧ Controller

152a‧‧‧記憶體152a‧‧‧ memory

152b‧‧‧微處理器152b‧‧‧Microprocessor

153‧‧‧使用者介面153‧‧‧User interface

154‧‧‧RF感測器154‧‧‧RF sensor

154a、154b‧‧‧電阻154a, 154b‧‧‧resistance

155‧‧‧RF導體155‧‧‧RF conductor

156‧‧‧訊號調節器156‧‧‧Signal regulator

158‧‧‧電弧比較器158‧‧‧Arc Comparator

160‧‧‧亞鐵鹽環160‧‧‧ ferrous salt ring

160a、160b‧‧‧線圈端160a, 160b‧‧‧ coil end

162‧‧‧線圈162‧‧‧ coil

164‧‧‧峰值檢測器164‧‧‧peak detector

164a‧‧‧二極體整流器164a‧‧ Diode Rectifier

164b‧‧‧電容164b‧‧‧ capacitor

166‧‧‧RF濾波器166‧‧‧RF filter

166a、166b‧‧‧電容166a, 166b‧‧‧ capacitor

166c‧‧‧電感166c‧‧‧Inductance

168‧‧‧大小調整電路168‧‧‧Size adjustment circuit

168a、168b‧‧‧電阻168a, 168b‧‧‧resistance

170‧‧‧轉換器170‧‧‧ converter

171‧‧‧放大器171‧‧Amplifier

172‧‧‧回授電阻172‧‧‧Responsive resistance

174‧‧‧電壓感測器174‧‧‧ voltage sensor

176、176' ‧‧‧電流感測器176, 176 ' ‧ ‧ current sensor

178、178' ‧‧‧亞鐵鹽環178, 178 ' ‧ ‧ ferrous salt ring

180、180' ‧‧‧導電線圈180,180 ' ‧‧‧ Conductive coil

180a、180a' ‧‧‧線圈端180a, 180a ' ‧‧‧ coil end

184‧‧‧RF感測器184‧‧‧RF sensor

185‧‧‧RF功率型導體185‧‧‧RF power conductor

186‧‧‧訊號調節器186‧‧‧Signal regulator

188、194‧‧‧電弧比較器188, 194‧‧‧ arc comparator

190‧‧‧感測器190‧‧‧ sensor

192‧‧‧訊號調節器192‧‧‧Signal regulator

355、357、359‧‧‧控制介面355, 357, 359‧‧‧ control interface

360‧‧‧網路360‧‧‧Network

361~367‧‧‧I/O埠361~367‧‧‧I/O埠

371~377‧‧‧多導體電纜371~377‧‧‧Multi-conductor cable

401、402‧‧‧DI/O繼電器401, 402‧‧‧DI/O relay

404、406‧‧‧DI/O繼電器404, 406‧‧‧DI/O relay

501、502、503‧‧‧連鎖裝置501, 502, 503‧‧ ‧ interlocking devices

504‧‧‧電路式導體504‧‧‧Circuit conductor

506‧‧‧24伏特DC供應器506‧‧24 volt DC supply

510、512、514‧‧‧切換繼電器510, 512, 514‧‧‧Switch relay

516、518‧‧‧切換繼電器516, 518‧‧‧Switch relay

520、522‧‧‧切換繼電器520, 522‧‧‧Switch relay

本發明所提供之方法中,方法實施例可由「發明內容」 段落之說明獲得並瞭解其細節,而簡略總結於「發明內容」之本發明之特定說明係參照所附圖示進行說明。然而需注意到,所附圖示僅例示說明本發明之一般性實施例,且因此不應視為本發明之範圍限制,而其它等效實施例亦包括在本發明範疇中。In the method provided by the present invention, the method embodiment can be "invention content" The description of the paragraphs is obtained and understood, and the specific description of the invention, which is summarized in the "Summary of the Invention", is described with reference to the accompanying drawings. It is to be noted, however, that the appended claims are intended to illustrate

第1A及1B圖例示說明一電漿反應器,其分別具有雙極及單極靜電吸座,此反應器具有特定晶圓級電弧偵測及自動關閉特性。1A and 1B illustrate a plasma reactor having bipolar and monopolar electrostatic chucks, respectively, which have specific wafer level arc detection and auto-shutdown characteristics.

第2圖為一概略圖,其例示說明第1A圖中反應器之RF電流感測器電路。Fig. 2 is a schematic view showing an RF current sensor circuit of the reactor in Fig. 1A.

第3圖為一方塊圖,其例示說明第1A圖中反應器之訊號調節器。Figure 3 is a block diagram illustrating the signal conditioner of the reactor of Figure 1A.

第4圖為一概略圖,其例示說明第1A圖中反應器之RF電壓感測器電路。Fig. 4 is a schematic view showing an RF voltage sensor circuit of the reactor in Fig. 1A.

第5A及5B圖分別例示說明第1A及1B圖之具體實施例之變型概略圖,其中在靜電吸座上具有一晶圓級電弧偵測電路,且使用一電壓感測器。5A and 5B respectively illustrate a modified schematic view of a specific embodiment of FIGS. 1A and 1B, in which a wafer level arc detecting circuit is provided on the electrostatic chuck, and a voltage sensor is used.

第6A及6B圖分別例示說明第1A及1B圖之具體實施例之變型概略圖,其中在靜電吸座上具有一晶圓級電弧偵測電路,且使用一電流感測器。6A and 6B respectively illustrate a modified schematic view of a specific embodiment of FIGS. 1A and 1B, in which a wafer level arc detecting circuit is provided on an electrostatic chuck, and a current sensor is used.

第7A及7B圖共同建立一完整流程圖,其例示說明前述具體實施例中任一者之反應器控制器之操作流程。Figures 7A and 7B collectively establish a complete flow diagram illustrating the operational flow of the reactor controller of any of the foregoing specific embodiments.

第8圖例示說明將第1A圖之電弧感測及通訊特性翻新應用於一具有區域網路之反應器。Figure 8 illustrates the application of the arc sensing and communication characteristics refurbishment of Figure 1A to a reactor having a regional network.

第9圖例示說明將第1A圖之電弧感測及通訊特性翻新應用於一具有數位輸入/輸出網路之反應器。Figure 9 illustrates the application of the arc sensing and communication characteristics refurbishment of Figure 1A to a reactor having a digital input/output network.

第10圖例示說明將第1A圖之電弧感測及通訊特性翻新應用於一具有D.C.安全連鎖迴圈之反應器。Figure 10 illustrates the application of the arc sensing and communication characteristics refurbishment of Figure 1A to a reactor having a D.C. safety interlocking loop.

為了促進對本發明之瞭解,使用了元件符號來進行說明,相同的元件符號在所有圖示中係指代相同的元件。所附圖示之圖例皆為概略圖,而並未按比例表現。In order to facilitate the understanding of the present invention, the same reference numerals are used to refer to the same elements. The drawings in the attached drawings are schematic and are not to scale.

Claims (14)

一種偵測一電漿反應器中電弧之方法,該電漿反應器包括一RF或電力功率產生器,用以處理一工件支撐基座上所承載的一半導體工件或晶圓,該基座具有至少一電極,該方法包含以下步驟:感測一耦接至該晶圓之半導體上第一瞬時電壓或電流;提供一第一比較器,用以將該些瞬時電壓或電流與儲存於該比較器內一檻值位準進行比較;每當所感測到之一瞬時電壓或電流超過該檻值位準時,傳送該比較器所發送之一電弧旗標訊號;及回應該電弧旗標訊號,而關閉該功率產生器;下載一程序方案,其由該反應器執行;在該程序方案之每一程序步驟中,依據每一步驟所指定之RF功率位準,決定該比較器之一檻值位準,該檻值位準超過該程序步驟之一預期雜訊位準;在每一程序步驟之一開始,以針對每一現行程序步驟所決定之一檻值位準來取代該比較器之原有檻值位準。 A method of detecting an arc in a plasma reactor, the plasma reactor comprising an RF or electric power generator for processing a semiconductor workpiece or wafer carried on a workpiece support base, the base having At least one electrode, the method comprising the steps of: sensing a first instantaneous voltage or current coupled to the semiconductor of the wafer; providing a first comparator for storing the instantaneous voltage or current Comparing a threshold value in the comparator; each time an instantaneous voltage or current is sensed to exceed the threshold value, transmitting an arc flag signal sent by the comparator; and echoing the arc flag signal, And turning off the power generator; downloading a program scheme, which is executed by the reactor; in each program step of the program scheme, determining a threshold value of the comparator according to the RF power level specified in each step Level, the threshold value exceeds one of the expected noise levels of the program step; at one of each program step, the comparator is replaced with one of the threshold levels determined for each current program step original Depreciation level. 如申請專利範圍第1項所述之方法,更包含以下步驟:針對每一程序步驟,依據該反應器中與該晶圓級電弧相關之耗材使用歷史,調整該程序步驟中已決定的該檻值位準。 The method of claim 1, further comprising the step of: adjusting, according to the use history of the consumables associated with the wafer level arc in the reactor for each procedural step, adjusting the enthalpy determined in the procedural step Value level. 如申請專利範圍第2項所述之方法,更包含以下步驟:在調整該檻值位準後,判定是否產生一檻值位準其等於或超過一電弧現象之預期瞬時電壓或電流位準,並傳送此資訊至一使用者介面。 The method of claim 2, further comprising the step of: determining whether a threshold value is equal to or exceeding an expected instantaneous voltage or current level of an arc phenomenon after adjusting the threshold value, And send this information to a user interface. 如申請專利範圍第1項所述之方法,更包含以下步驟:感測該反應器中一經選定位置上與一RF源功率產生器相關之第二瞬時電壓或電流;提供一第二比較器,用以將該第二瞬時電壓或電流與儲存於該第二比較器內一檻值位準進行比較;每當所感測到之一第二瞬時電壓或電流超過該檻值位準時,傳送該第二比較器所發送之一電弧旗標訊號;回應該第二比較器所發送之該電弧旗標訊號,而關閉該源功率產生器;及通知一使用者介面發送該電弧旗標之該比較器之識別符,或與發送該電弧旗標之該比較器相關之反應器耗材組件之識別符。 The method of claim 1, further comprising the steps of: sensing a second instantaneous voltage or current associated with an RF source power generator at a selected location in the reactor; providing a second comparator, And comparing the second instantaneous voltage or current with a threshold value stored in the second comparator; transmitting the first time when one of the second instantaneous voltages or currents sensed exceeds the threshold value The second comparator sends an arc flag signal; the arc flag signal sent by the second comparator is returned, and the source power generator is turned off; and the comparator is notified to send the arc flag to the user interface. An identifier, or an identifier of a reactor consumable component associated with the comparator that sends the arc flag. 如申請專利範圍第4項所述之方法,更包含以下步驟:下載一程序方案,其由該反應器執行;在該程序方案之每一程序步驟中針對該些比較器中每一比較器,依據每一步驟所指定之RF功率位準,決定每 一比較器之一檻值位準,該檻值位準超過該程序步驟之一預期雜訊位準;在每一程序步驟之一開始,以針對每一現行程序步驟所決定之一檻值位準來取代該比較器之原有檻值位準。 The method of claim 4, further comprising the steps of: downloading a program scheme, which is executed by the reactor; and in each program step of the program scheme, for each of the comparators, According to the RF power level specified in each step, decide each One of the comparators has a threshold value that exceeds one of the expected noise levels of the program step; at one of each program step, one of the threshold values determined for each current program step The original threshold value of the comparator is replaced. 如申請專利範圍第5項所述之方法,更包含以下步驟:針對每一程序步驟及每一比較器,依據該反應器中與該比較器相關之耗材使用歷史,調整該程序步驟中已決定的該檻值位準。 The method of claim 5, further comprising the steps of: adjusting, in each of the program steps and each of the comparators, the history of the consumables associated with the comparator in the reactor, the step of adjusting the procedure is determined The threshold value. 如申請專利範圍第6項所述之方法,更包含以下步驟:在調整該檻值位準後,判定是否產生一檻值位準其等於或超過一電弧現象之預期瞬時電壓或電流位準,及一相應比較器或耗材之識別符之使用者介面。 The method of claim 6, further comprising the step of: determining whether a threshold value is equal to or exceeding an expected instantaneous voltage or current level of an arc phenomenon after adjusting the threshold value, And a user interface of the identifier of the corresponding comparator or consumable. 一種監視一電漿反應器之一腔室中電弧之方法,該反應器包含該腔室,該腔室具有複數電漿功率應用器及與該些功率應用器耦接之複數功率產生器,且包括一工件支撐基座,其具有一工件支撐面,該方法包含以下步驟:依據一程序方案實現一電漿程序,該程序方案包括一連串由一程序控制器所控制的程序步驟;藉由耦接至該些功率應用器及耦接至該些工件支撐基座之個別感測器,監視電壓或電流; 在每一程序步驟中針對該些感測器中每一者,決定一電弧偵測檻值,其值高於一雜訊位準;藉由個別電弧偵測比較器,將該個別感測器之輸出訊號與針對該個別感測器所決定之該檻值進行比較,及若該輸出訊號超過該檻值,則發送一電弧偵測旗標;判定引起一電弧偵測旗標之相應感測器之位置,並顯示該位置於一使用者介面上;及回應該電弧旗標,而關閉該功率產生器。 A method of monitoring an arc in a chamber of a plasma reactor, the reactor including the chamber having a plurality of plasma power applications and a plurality of power generators coupled to the power applications, and Included as a workpiece support base having a workpiece support surface, the method comprising the steps of: implementing a plasma program according to a program scheme, the program scheme comprising a series of program steps controlled by a program controller; Monitoring voltage or current to the power applications and individual sensors coupled to the workpiece support pedestals; Determining an arc detection threshold for each of the sensors in each of the procedural steps, the value of which is higher than a noise level; the individual sensor is detected by an individual arc detection comparator The output signal is compared with the threshold determined by the individual sensor, and if the output signal exceeds the threshold, an arc detection flag is sent; determining a corresponding sensing that causes an arc detection flag Position of the device and display the location on a user interface; and return the arc flag to turn off the power generator. 如申請專利範圍第8項所述之方法,其中該反應器更包含一具有複數埠之區域網路,該控制器鏈結至該些埠中之一者,該些產生器包含複數介面,其鏈結至該些埠中個別複數埠並由個別裝置位址加以識別,該方法更包含以下步驟:鏈結每一該些比較器至該些埠中其它個別複數埠,並指派一個別獨特裝置位址給每一該比較器。 The method of claim 8, wherein the reactor further comprises a regional network having a plurality of turns, the controller being linked to one of the plurality of devices, the generators comprising a plurality of interfaces, Linking to individual 埠 in the 埠 and identifying by individual device addresses, the method further includes the steps of: linking each of the comparators to other individual 埠 in the 埠 and assigning a unique device The address is given to each of the comparators. 如申請專利範圍第9項所述之方法,更包含以下步驟:程式設計該控制器,使其透過該區域網路下載一連串程序步驟所用之該些檻值給該些比較器之個別複數比較器。 The method of claim 9, further comprising the step of: programming the controller to download the thresholds used in the series of program steps to the individual complex comparators of the comparators through the area network . 如申請專利範圍第10項所述之方法,更包含以下步驟: 程式設計該控制器,使其接收由該些比較器所發送之電弧旗標,並透過該區域網路執行關閉該些產生器。 For example, the method described in claim 10 includes the following steps: The controller is programmed to receive the arc flag sent by the comparators and to shut down the generators through the local area network. 如申請專利範圍第11項所述之方法,更包含以下步驟:程式設計該控制器,使其依據透過該區域網路所接收到的一電弧旗標中包含的一裝置位址,來識別電弧旗標位置。 The method of claim 11, further comprising the step of: programming the controller to identify an arc based on a device address included in an arc flag received through the area network; Flag location. 如申請專利範圍第8項所述之方法,其中該反應器更包含一數位輸入/輸出(DIO)網路,該網路具有專用以自個別DIO感測器繼電器至該控制器之間進行傳輸之個別複數通道,及專用以自該控制器至該反應器之個別功率產生器之間進行傳輸之個別複數通道,該方法更包含以下步驟:將該些比較器中個別複數比較器之輸出端耦接至該些感測器繼電器中個別複數繼電器。 The method of claim 8, wherein the reactor further comprises a digital input/output (DIO) network, the network having a dedicated transmission from an individual DIO sensor relay to the controller Individual complex channels, and individual complex channels dedicated to transmission between the controller and the individual power generators of the reactor, the method further comprising the steps of: outputting the individual complex comparators of the comparators The plurality of relays are coupled to the plurality of sensor relays. 如申請專利範圍第12項所述之方法,更包含以下步驟:將該些電弧旗標位置與該反應器之相應耗材組件建立聯結關係,及識別相應每一電弧旗標之該些耗材組件並提供給一使用者介面。 The method of claim 12, further comprising the steps of: establishing a relationship between the arc flag positions and corresponding consumable components of the reactor, and identifying the consumable components of each arc flag and Provide a user interface.
TW97130889A 2007-08-15 2008-08-13 Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation TWI436406B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/893,390 US7750645B2 (en) 2007-08-15 2007-08-15 Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation
US11/893,355 US7768269B2 (en) 2007-08-15 2007-08-15 Method of multi-location ARC sensing with adaptive threshold comparison

Publications (2)

Publication Number Publication Date
TW200917339A TW200917339A (en) 2009-04-16
TWI436406B true TWI436406B (en) 2014-05-01

Family

ID=40350974

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97130889A TWI436406B (en) 2007-08-15 2008-08-13 Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation

Country Status (2)

Country Link
TW (1) TWI436406B (en)
WO (1) WO2009023133A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110209995A1 (en) * 2010-03-01 2011-09-01 Applied Materials, Inc. Physical Vapor Deposition With A Variable Capacitive Tuner and Feedback Circuit
US9107284B2 (en) * 2013-03-13 2015-08-11 Lam Research Corporation Chamber matching using voltage control mode
CN107293465B (en) * 2016-03-31 2019-02-26 中微半导体设备(上海)有限公司 A kind of plasma arc monitoring method and device
US11456203B2 (en) * 2018-07-13 2022-09-27 Taiwan Semiconductor Manufacturing Co., Ltd Wafer release mechanism

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736944B2 (en) * 2002-04-12 2004-05-18 Schneider Automation Inc. Apparatus and method for arc detection
US7262606B2 (en) * 2005-03-26 2007-08-28 Huettinger Elektronik Gmbh + Co. Kg Method of arc detection

Also Published As

Publication number Publication date
WO2009023133A1 (en) 2009-02-19
TW200917339A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
TWI433198B (en) Plasma reactor for wafer level arc detection at an rf bias impedance match to the pedestal electrode
US7768269B2 (en) Method of multi-location ARC sensing with adaptive threshold comparison
US7737702B2 (en) Apparatus for wafer level arc detection at an electrostatic chuck electrode
US7733095B2 (en) Apparatus for wafer level arc detection at an RF bias impedance match to the pedestal electrode
TWI430319B (en) Plasma reactor system with multi-location arc threshold comparators and communication channels for carrying arc detection flags and threshold updating
US7750645B2 (en) Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation
TWI436406B (en) Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation
US6967305B2 (en) Control of plasma transitions in sputter processing systems
CN103098195B (en) For utilizing the polar region of lifter pin electrostatic de-chucking
TWI646867B (en) Device and method for monitoring a discharge in a plasma process
US8044595B2 (en) Operating a plasma process
KR20140104380A (en) Plasma processing apparatus and plasma processing method
JP2012129222A (en) Plasma processing apparatus
JP2009543298A (en) Method and apparatus for detecting unconstrained state of plasma processing chamber
EP2944004A1 (en) Fault-likely detector
JP2023533499A (en) Systems and methods for extracting process control information from a radio frequency delivery system of a plasma processing system
KR100476460B1 (en) Plasma prcess chamber monitoring method and system used therefor
EP2944005A1 (en) Power spike mitigation
US11908665B2 (en) Plasma processing apparatus and measurement method
KR101302158B1 (en) Plasma processing apparatus
JP2010238705A (en) Plasma processing apparatus
JP2004079929A (en) Plasma leak monitoring method, and method and device for plasma treatment
JP2019041029A (en) Vacuum device and attraction power source
US8980071B2 (en) Apparatus and method for detecting a state of a deposition apparatus
CN101677056A (en) Carrying device and method for monitoring deposition machine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees