TW200917339A - Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation - Google Patents

Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation Download PDF

Info

Publication number
TW200917339A
TW200917339A TW97130889A TW97130889A TW200917339A TW 200917339 A TW200917339 A TW 200917339A TW 97130889 A TW97130889 A TW 97130889A TW 97130889 A TW97130889 A TW 97130889A TW 200917339 A TW200917339 A TW 200917339A
Authority
TW
Taiwan
Prior art keywords
arc
comparator
program
value
reactor
Prior art date
Application number
TW97130889A
Other languages
Chinese (zh)
Other versions
TWI436406B (en
Inventor
John Pipitone
Ryan Nunn-Gage
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/893,355 external-priority patent/US7768269B2/en
Priority claimed from US11/893,390 external-priority patent/US7750645B2/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200917339A publication Critical patent/TW200917339A/en
Application granted granted Critical
Publication of TWI436406B publication Critical patent/TWI436406B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A method for processing a semiconductor wafer in a plasma reactor comprises sensing transient voltages or currents on a conductor coupled to the wafer and providing a first comparator for comparing the transient voltages or currents with a threshold level stored in the comparator. The method further includes transmitting from the comparator an arc flag signal whenever a transient voltage or current is sensed that exceeds the threshold level, and deactivating the power generator in response to the arc flag signal.

Description

200917339 九、發明說明: 【發明所屬之技術頜域】 本發明係關於用於處理半導體工件之電漿反應器,及 關於此一反應器中之電狐^貞測。 【先前技術】 在半導體工件或晶圓處理期間,產生於電漿反應器中 之電弧可對工件造成損害或使其無法正常作用,亦或者對 f^ 反應器腔室造成不良影響。因此,偵測電弧以防止電槳反 應器處理其它晶圓係必要的’以避免對一連串晶圓造成傷 害。在物理氣相沈積(physical vapor deposit on, PVD)電漿 反應器中,電弧偵測係針對在偵測反應器頂之濺鍍靶材處 之電弧。此種電弧偵測係藉由監視耦接至反應器頂濺鍍靶 材之高壓D.C.電源供應器其輸出端來實現。瞬時電壓或電 流可反應電弧現象。此種偵測方法提供一種可靠方式,可 明確指不反應器頂之濺鍍靶材處或其附近之電弧現象,然 (, 而此種偵測方式無法可靠偵測在晶圓處之電弧現象(晶圓 級電弧)。偵測晶圓級電弧可為特別困難,這是因為由於提 供給Ba圓支撐基座之RF功率在晶圓周圍所造成的rf雜訊 #關係而在某些反應器中,RF雜訊亦可能同時由提供給 Μ至側壁上導電線圈t RF 1力率所造成。另’挑戰為瞬時 電壓電流或雜訊係大範圍動態變化,這種現象是例如由一 程序方案所需使用到的RF產生器轉換所造成。這種由於 轉換所引起的瞬變現必需與晶圓級電弧所造成的瞬變現作 200917339 一區別。 一般在電漿反應器之反應器腔室内之組件會因接觸 電漿而造成損壞或功能降級。在一 PVD反應器中,該& 因此損壞之耗材可包括反應器頂之藏鐘把材、内部側壁 圈及圍繞晶圓支撐基座之程序環形套件,該套件包含靜 式吸座(electrostatic chuck,ESC)。當此類耗材功能降級 物理上有所改變時’這些耗材變得更易受到電弧之影響 因此,如何判定何時該替換耗材,以在電弧現象發生前 完成替換,為一待解決之問題。 【發明内容】 本發明提供一種用於處理一類型之電漿反應器中半 體晶圓之方法,該類型之電漿反應器包括有一 RF或電 功率產生器及一具有至少—吸座電極之靜電吸座。該方 包 ^ ,感測一耦接至晶圓之導體上瞬時電壓或電流,及 供一後 $ —比較器用以將所感測到的瞬時電壓或電流與儲 Μ π較器内一檻值位準進行比較。該方法更包括:每當 則到的瞬時電壓或電流超過該檻值位準時,傳送該比較 所輪出 ^一電弧旗標訊號,並回應該電弧旗標訊號而關閉 率產生器。 【實施方式】200917339 IX. INSTRUCTIONS: [Technical jaw region to which the invention pertains] The present invention relates to a plasma reactor for processing semiconductor workpieces, and to an electric fox in the reactor. [Prior Art] During semiconductor workpiece or wafer processing, the arc generated in the plasma reactor can cause damage to the workpiece or prevent it from functioning properly, or adversely affect the reactor chamber. Therefore, the arc is detected to prevent the paddle reactor from processing the other wafers necessary to avoid damage to a series of wafers. In a physical vapor deposit on (PVD) plasma reactor, the arc detection is directed to detecting an arc at the sputter target at the top of the reactor. Such arc detection is accomplished by monitoring the output of a high voltage D.C. power supply coupled to the top of the reactor sputtering target. Instantaneous voltage or current can react to arcing. This detection method provides a reliable way to clearly indicate the arc phenomenon at or near the sputter target at the top of the reactor, and this detection method cannot reliably detect the arc phenomenon at the wafer. (Wafer-level arcing.) Detecting wafer-level arcing can be particularly difficult because of the rf-noise # relationship caused by the RF power supplied to the Ba-round supporting pedestal around the wafer. In the middle, the RF noise may also be caused by the RF 1 rate of the conductive coil t to the sidewall. The other 'challenge is the instantaneous voltage and current or the large dynamic range of the noise system. This phenomenon is, for example, a program scheme. This is caused by the RF generator conversion required. This transient due to the conversion must now differ from the transient caused by wafer-level arcing. 200917339. Components generally in the reactor chamber of the plasma reactor Damage or functional degradation due to contact with the plasma. In a PVD reactor, the "damaged consumables may include the bell wall of the reactor top, the inner sidewall ring, and the program ring around the wafer support pedestal Kit, which contains an electrostatic chuck (ESC). When such a consumable function degrades physically, 'these consumables become more susceptible to arcing. So how to determine when to replace consumables in the arc The completion of the replacement before the phenomenon occurs is a problem to be solved. SUMMARY OF THE INVENTION The present invention provides a method for processing a half-body wafer in a plasma reactor, the type of plasma reactor including an RF or An electric power generator and an electrostatic chuck having at least a suction cup electrode. The package senses an instantaneous voltage or current coupled to a conductor of the wafer, and is supplied by a comparator for sensing The instantaneous voltage or current is compared with a stored value of π in the device. The method further includes: transmitting the comparison when the instantaneous voltage or current exceeds the threshold value. The flag signal, and the arc flag signal is echoed and the rate generator is turned off.

第1Α圖例示說明一 PVD反應器,其具有一系統用 有致咸 Ή1 S 4剛曰曰圓級電弧。該反應器包括一腔室1 0 0,其係 到 會 線 電 或 〇 即 導 力 法 提 存 所 器 功 於 由The first diagram illustrates a PVD reactor having a system with a salty Ή 1 S 4 rigid round arc. The reactor includes a chamber 100, which is connected to a line of electricity or 〇, that is, a force-guide method for storing the device.

200917339 一圓柱形侧壁1 0 2界定’ 一反應器頂部1 〇 4及 在腔室100内部提供有一乾材11〇,其置於頂 一 RF線圈112,其置於側壁1 〇2處;及一晶 114’其由底部106向上延伸。一真空排氣泵 底部106處一排氣泵埠118將腔室1〇〇排空。 供應器119,其提供程序氣體並將氣體引進腔 在一實施例中,晶圓支撐基座丨丨4可包括 座(ESC)122,用以於基座114之上表面支承半 工件120°ESC122可包括一絕緣層124,其位 126上。在第1A圖所示之實施例中,ESC122 吸座,其具有二電極i 2 8、1 3 〇於絕緣層1 2 4 4 中央銷132’其接觸晶圓120之背面。一吸座 134提供反相但大小相同之DC電壓於中央銷 1 2 8、1 3 0之間。第1 B圖例示一具體實施例 圖之實施例之變化,其中ESC122為一單極式 有單一電極128,該電極128之直徑一般係相 晶圓1 20之直徑。在第1 b圖之具體實施例中 可能不存在。除了這些差異外,第1A及1B圖 含相同的結構特徵’以下參照第1A圖針對這 所作之說明同樣可用來說明第1 B圖之實施例 簡潔目的將不再重覆說明。 再次參照第1 A圖,D. c.功率係由一高壓 生器136提供至濺鍍靶材u〇。低頻rf功率{ 率產生器140透過一尺卩匹配阻抗138提供給200917339 A cylindrical side wall 110 defines a reactor top 1 〇 4 and provides a dry material 11 内部 inside the chamber 100, which is placed on the top RF coil 112, which is placed at the side wall 1 〇 2; A crystal 114' extends upward from the bottom 106. A vacuum exhaust pump An exhaust pump 埠 118 at the bottom 106 evacuates the chamber 1〇〇. The supplier 119, which supplies the program gas and introduces the gas into the cavity. In an embodiment, the wafer support base 4 can include a seat (ESC) 122 for supporting the half workpiece 120 ° ESC 122 on the upper surface of the base 114 An insulating layer 124 can be included on the location 126. In the embodiment illustrated in Figure 1A, the ESC 122 is shown with a second electrode i 2 8 , 13 in the insulating layer 1 24 4 the center pin 132' which contacts the back side of the wafer 120. A housing 134 provides a reversed but identically sized DC voltage between the center pins 1 28 and 1 30. Figure 1B illustrates a variation of the embodiment of the embodiment wherein the ESC 122 is a single pole having a single electrode 128 having a diameter that is generally the diameter of the wafer 128. It may not be present in the specific embodiment of Figure 1 b. In addition to these differences, Figures 1A and 1B contain the same structural features. The following description of Figure 1A is also used to illustrate the embodiment of Figure 1B. The brevity will not be repeated. Referring again to Figure 1A, D. c. power is supplied from a high voltage 136 to the sputtering target u. The low frequency rf power {rate generator 140 is provided to the one-shot 卩 matching impedance 138

一底部1 0 6。 部104處; ,圓支撐基座 116,其透過 一程序氣體 室 100 ° _ 一靜電式吸 •導體晶圓或 .於一導電座 為一雙極式 1,及一導電 .電壓供應器 1 3 2與電極 ,其為第1A ,吸座,其具 當於工件或 ,中央銷1 3 2 之實施例包 .些相同特徵 ,因此為了 D.C.功率產 系由一 RF功 線圈112。RF 200917339 功率產生器140係連接至匹配阻抗138之一 RF輸入端。 在一具體實施例中’ RF匹配阻抗1 3 8除了具有該RF輸入 端之外,亦可具有一低功率D.C.輸入端(未示出)。在第1A 圖之具體實施例中,具有一適當頻率(如低頻及/或高頻)之 RF偏壓功率係透過一偏壓匹配阻抗1 42及阻隔電容1 44、 146由一 RF功率產生器提供至ESC電極128、130» — RF 阻隔濾波器150係連接於ESC電極、中央銷128、130、132 與D.C.吸座電壓供應器134之間,其阻隔吸座電壓供應器 134與RF功率。在第1B圖之具體實施例中,具有一適當 頻率(例如低頻及/或高頻)之RF偏壓功率,其係由rf偏壓 功率產生器148透過偏壓匹配阻抗142及阻隔電容144提 供至單一 ESC電極128。 再次參照第1A圖,一反應器控制器丨5 2用以控制反 應器中所有主動元件之操作。具體而言,第1A圖表示 ΟΝ/OFF命令係由控制器152傳送至每一功率產生器136、 140及148,傳送至氣體供應器119,傳送至真空排氣果 116,以及傳送至ESC吸座電壓供應器134。雖然第1A圖 中圖示未顯示出’然而反應器中其它主動元件同樣地係由 控制器1 5 2控制’其它主動元件例如包括冷卻劑泵、連鎖 蓋(lid interlock)、上舉銷致動器、基座上升致動器、氣閉 閥開口 、晶圓處理機械手臂等。 晶圓級雷弧偵測: 4貞測BB圓處之電聚電弧係困難的,這是因為存在rf 200917339 雜訊及諧波,及由於非電弧現象(功率產生器轉換)及電弧 現象所引起的瞬時電壓或電流大範圍變動。此種問題可藉 由檢測ESC 1 22之RF偏壓功率輸入端之電流或電壓變化得 到解決。一 RF感測器1 5 4係配置於(或連接至)一 RF導體 1 5 5上(例如,一 5 0歐姆同軸電纔之内部導體)’ R F感測器 1 54係在RF偏壓產生器148及RF偏壓匹配阻抗142間運 作。在一具體實施例中,RF感測器1 54係包含在匹配阻抗 142内,且係配置在一連接同軸電纜155的内部同軸輸出 連接器處(未示出)。R F感測器1 5 4能夠债測R F電流或R F 電壓並據以產生一電壓訊號,該訊號與所偵測到的電流(或 所偵測到的電壓)成比例。電壓訊號係由一訊號調節器1 5 6 進行處理,以產生一輸出訊號,此輸出訊號係經過濾波處 理及峰值檢測並且經由比例調整以符合一預定範圍。一電 弧偵測比較器1 5 8將輸出訊號之大小與一預定檻值進行比 較。若輸出訊號大小超過檻值,則電弧偵測比較器將輸出 一電弧旗標給反應器控制器1 52。反應器控制器1 52回應 此電弧旗標而關閉反應器中主動組件,諸如功率產生器 136 、 140 及 148 。 現參照第2圖,感測器丨54可為一 rf電流感測器。 在此具體實施例中’感測器丨5 4包括一亞鐵鹽環1 6 0,其 環繞RF導體155 ;及一導電(例如,銅)線圈162 ,其圍繞 該亞鐵鹽環160之一部分。線圈M2之一端162a可容許電 性浮動’而另一端162b為感測器154之輸出終端。亞鐵鹽 環1 60及線圈1 62結構之一優點為,通過線圈丨62之電流 200917339 係弱耦接至通過RF功率型導體155之RF電流。 圈162所產生的感應電壓會被減弱,而通過導體 流之瞬時變化或峰值將被限制於一小的動態範圈 一相關特性,即弱耦接會限制感測器丨5 4從導體 功率處所能夠汲取到的功率量或電流量。因此,感 對導體155之RF電流所造成的負載效應係微不j 第3圖例示說明訊號調節器156之不同運作 號調節器156包括一峰值檢測器i64 ; 一 rf渡立 用以移除雜訊並提供乾淨訊號;一大小調整電路 以提供一預定範圍;及一高阻抗轉換器170,用 號‘大小蘇圍,同時在訊號調節器1 5 6之輸出端及感 之間提供一高阻抗隔離。訊號調節器156之一具 顯示於第2圖中。在第2圖之具體實施例中,峰 164於圖示中包括一二極體整流器ah及一電容 另一具體實施例中,峰值檢測器可包括其它電路 &供—指示真峰值之輸出位準。RF濾波器166於 一7Γ '網路’其包括一對並聯.電容166a、166b及 感166c。大小調整電路168於第2圖中顯示為一 其包括—對電阻168a、168b,其輸出端電壓係依 之電阻值與電阻168a及168b二者電阻值總和之 整縮小。轉換器170於第2圖中表示成包括一運 171’其提供一某一範圍内之輸出訊號’其範圍係 增益所決定(例如,0-10V)。該增益可由一連接於 入為及輸出端之變數迴授電且172所決定。放大 因此,線 1 55之電 内。具有 U5 之 RF *測器1 5 4 L道的。 方式。訊 t 器 1 6 6, 168 > 用 以控制訊 L測器154 體實施例 值檢測器 .164b° 在 元件,以 圖示中係 一串聯電 分壓器, 電阻168a 比例來調 算放大器 由放大器 放大器輸 器171提 10 200917339 供一高輸入阻抗,其可將訊號調節器156與該訊號調節器 輸出端之負載隔離。 第4圖例示說明感測器154之一具體實施例,用以檢 測RF導體155上之RF電壓。感測器154包括一電阻分離 電路154a、154b’其係直接連接於導體155及接地電位之 間,電阻分離電路154a、154b之串聯電阻相當高(百萬歐 姆等級)。如此可避免大功率轉換至接地。電阻1 5 4 a係比 電阻1 5 4 b小1 0 -1 0 0倍’如此使得峰值檢測器1 6 4所偵测 到之電壓相對於RF導體1 5 5上之電壓係非常小。其提供 感測器154 —高輸入阻抗’藉此避免自rf導體155處没 取大電流。上述參照第2圖及第3圖所說明之訊號調節器 156,其亦可用於調節第4圖之RF電壓感測器154之輸出 訊號。 第5 A圖例示說明第1 A圖具體實施例之變型,其中電 弧偵測係執行於ESC電極128、130。第1A圖之RF偏塵 功率產生器148及RF偏壓匹配阻抗142並未顯示於第5A 圖之圖例中,然而當提供RF偏壓功率給ESC電極128、 130時,需具備rf偏壓功率產生器148及RF偏壓匹配阻 抗142。或者,不提供RF偏壓功率給ESC電極128、130。 第1A圖之感測器154在第5A圖中係由一電壓感測器174 取代。電壓感測器174係連接橫跨ESC中央銷132(其連接 半導體工件或晶圓120)及一參考點。參考點可為接地點或 ESC電極128或130中之一電極。電壓感測器174為一差 動放大器,其兩輸入端分別連接至中央鎖132及該參考點 200917339 (例如,接地點)。晶圓1 2 0上之瞬時電壓似乎在差動放大 器1 74之兩輸入端間形成大差動訊號。放大器之輸出訊號 係與此差動訊號成比例,且提供此輸出訊號給訊號調節器 1 5 6。訊號調節器1 5 6之輸出訊號係藉由電弧偵測比較器 1 5 8將該輸出訊號與一預定檻值進行比較測試,如同第1 A 圖之具體實施例。 第5 B圖例示說明一針對第1 B圖之類似變型,其中第 1 B圖之感測器1 54於第5圖中係由差動放大器1 74所取 代。在第5B圖之具體實施例中,差動放大器174之兩輸 入端係連接至單一 ESC電極128及一適當參考電壓(如接 地點)。第1B圖之RF偏壓功率產生器148及RF偏壓匹配 阻抗142未顯示於第5B圖之圖例中,然而當RF偏壓功率 係提供給ESC電極128時,需具備RF偏壓功率產生器148 及RF偏壓匹配阻抗142。或者,不提供RF偏壓功率給ESC 電極128。電壓晶圓120上之瞬時電壓似乎在差動放大器 174之兩輸入端間形成大差動訊號。放大器之輸出訊號係 與此差動訊號成比例,且提供此輸出訊號給訊號調節器 1 5 6。訊號調節器1 5 6之輸出訊號係藉由電弧偵測比較器 1 5 8將該輸出訊號與一預定檻值進行比較測試,如同第1 A 圖之具體實施例。 第6 A圖例示說明對第5 A圖具體實施例之一變型,其 中電流感測器1 76取代電壓感測器1 74。電流感測器1 76 包括一亞鐵鹽環178環繞中央導體132及一導電線圈180 環繞該環1 7 8。線圈1 8 0之一端1 8 0 a為電流感測器1 7 6之 12 200917339 輸出端,且其係連接至訊號調節器156之輸入端。第6B 圖例示說明針對第 5 B圖之具體實施例之一變型,其中電 流感測器1 7 6 '取代電壓感測器1 7 4。電流感測器1 7 6,包括 一亞鐵鹽環178,,其環繞連接至單一 ESC電極128之導 體;及一導電線圈180,,其圍繞該環178,。線圈180'之 一端180a'為電流感測器176'之輸出端,且其係連接至訊 號調節器156之輸出端。A bottom 1 0 6 . a portion 104; a circular support base 116, which passes through a program gas chamber 100 ° _ an electrostatic suction conductor wafer or a conductive seat is a bipolar type 1, and a conductive. voltage supply 13 2 and the electrode, which is the 1A, the suction seat, which has the same features as the embodiment of the workpiece or the central pin 133, so that the DC power coil is used for the DC power system 112. The RF 200917339 power generator 140 is coupled to one of the RF inputs of the matched impedance 138. In an embodiment, the RF matching impedance 1 3 8 may have a low power D.C. input (not shown) in addition to the RF input. In a specific embodiment of FIG. 1A, RF bias power having a suitable frequency (eg, low frequency and/or high frequency) is transmitted through a bias matching impedance 1 42 and a blocking capacitor 1 44, 146 by an RF power generator. Provided to the ESC electrodes 128, 130» - the RF blocking filter 150 is coupled between the ESC electrodes, the center pins 128, 130, 132 and the DC sink voltage supply 134, which blocks the sink voltage supply 134 from the RF power. In the specific embodiment of FIG. 1B, RF bias power having a suitable frequency (eg, low frequency and/or high frequency) is provided by rf bias power generator 148 through bias matching impedance 142 and blocking capacitor 144. To a single ESC electrode 128. Referring again to Figure 1A, a reactor controller 丨52 is used to control the operation of all active components in the reactor. Specifically, FIG. 1A shows that the ΟΝ/OFF command is transmitted from the controller 152 to each of the power generators 136, 140, and 148, to the gas supplier 119, to the vacuum exhaust fruit 116, and to the ESC suction. Seat voltage supply 134. Although the illustration in Figure 1A does not show 'although other active elements in the reactor are likewise controlled by controller 152', other active components include, for example, coolant pumps, lid interlocks, lift pin actuation , pedestal ascending actuator, gas valve opening, wafer handling robot, etc. Wafer-level lightning detection: 4 It is difficult to measure the electric arc at the BB circle because of rf 200917339 noise and harmonics, and due to non-arc phenomenon (power generator conversion) and arc phenomenon The instantaneous voltage or current varies widely. This problem can be solved by detecting a change in current or voltage at the RF bias power input of the ESC 1 22. An RF sensor 1 5 4 is disposed (or connected) to an RF conductor 155 (eg, a 50 ohm coaxial internal conductor) RF sensor 1 54 is generated in RF bias 148 and RF bias match impedance 142 operate. In one embodiment, RF sensor 154 is included within matching impedance 142 and is disposed at an internal coaxial output connector (not shown) that connects coaxial cable 155. The R F sensor 1 5 4 can measure the R F current or the R F voltage and generate a voltage signal that is proportional to the detected current (or the detected voltage). The voltage signal is processed by a signal conditioner 1 5 6 to generate an output signal which is subjected to filtering processing and peak detection and is scaled to conform to a predetermined range. An arc detection comparator 1 5 8 compares the magnitude of the output signal with a predetermined threshold. If the output signal size exceeds the threshold value, the arc detection comparator will output an arc flag to the reactor controller 1 52. Reactor controller 1 52 responds to this arc flag to turn off active components in the reactor, such as power generators 136, 140, and 148. Referring now to Figure 2, the sensor 丨 54 can be an rf current sensor. In this embodiment, the 'sensor 丨5 4 includes a ferrous salt ring 160 that surrounds the RF conductor 155; and a conductive (eg, copper) coil 162 that surrounds a portion of the ferrous salt ring 160. . One end 162a of coil M2 can tolerate electrical floating' while the other end 162b is the output terminal of sensor 154. One of the advantages of the ferrous salt ring 1 60 and the coil 1 62 structure is that the current through the coil 2009 62 is weakly coupled to the RF current through the RF power type conductor 155. The induced voltage generated by the loop 162 is attenuated, and the instantaneous change or peak value through the conductor flow will be limited to a small dynamic range-related characteristic, ie weak coupling will limit the sensor 丨5 4 from the conductor power location The amount of power or current that can be drawn. Therefore, the load effect caused by the RF current of the conductor 155 is not shown in the third diagram. The different operation number adjuster 156 of the signal conditioner 156 includes a peak detector i64; an rf is used to remove the miscellaneous And providing a clean signal; a size adjustment circuit to provide a predetermined range; and a high-impedance converter 170, using the number 'small size, while providing a high impedance between the output of the signal conditioner 156 and the sense isolation. One of the signal conditioners 156 is shown in Fig. 2. In the specific embodiment of FIG. 2, the peak 164 includes a diode rectifier ah and a capacitor in the illustrated embodiment. In another embodiment, the peak detector may include other circuits & indicating the output of the true peak. quasi. The RF filter 166 is comprised of a pair of parallel capacitors 166a, 166b and sense 166c. The size adjustment circuit 168 is shown in Fig. 2 as a pair of resistors 168a, 168b whose output voltage is reduced by the sum of the resistance values of the resistors 168a and 168b. Converter 170 is shown in Fig. 2 to include a 171' which provides an output signal within a range whose range gain is determined (e.g., 0-10V). The gain can be determined by a return-to-power grant coupled to the input and output terminals and 172. Zoom in, therefore, within line 1 55. The RF* detector with U5 is 1 5 4 L. the way. The signal is 1 6 6, 168 > used to control the signal detector 154 body embodiment value detector. 164b ° in the component, shown in the figure is a series of voltage divider, resistor 168a ratio to adjust the amplifier by Amplifier Amplifier Transmitter 171 provides a high input impedance that isolates the signal conditioner 156 from the load at the output of the signal conditioner. Figure 4 illustrates an embodiment of sensor 154 for detecting the RF voltage on RF conductor 155. The sensor 154 includes a resistor separation circuit 154a, 154b' which is directly connected between the conductor 155 and the ground potential. The series resistance of the resistor separation circuits 154a, 154b is relatively high (million ohms level). This avoids high power conversion to ground. The resistance 1 5 4 a is less than the resistance 1 5 4 b by 10 - 1 0 0 ' so that the voltage detected by the peak detector 164 is very small relative to the voltage on the RF conductor 155. It provides a sensor 154 - high input impedance ' thereby avoiding large currents from the rf conductor 155. The signal conditioner 156 described above with reference to Figs. 2 and 3 can also be used to adjust the output signal of the RF voltage sensor 154 of Fig. 4. Figure 5A illustrates a variation of the embodiment of Figure 1A in which the arc detection is performed on the ESC electrodes 128,130. The RF dust power generator 148 and the RF bias matching impedance 142 of FIG. 1A are not shown in the legend of FIG. 5A, however, when RF bias power is supplied to the ESC electrodes 128, 130, rf bias power is required. Generator 148 and RF bias match impedance 142. Alternatively, RF bias power is not provided to the ESC electrodes 128, 130. The sensor 154 of Figure 1A is replaced by a voltage sensor 174 in Figure 5A. Voltage sensor 174 is connected across ESC center pin 132 (which connects the semiconductor workpiece or wafer 120) and a reference point. The reference point can be a ground point or one of the ESC electrodes 128 or 130. Voltage sensor 174 is a differential amplifier having two inputs coupled to central lock 132 and reference point 200917339 (e.g., ground point). The instantaneous voltage on the wafer 120 appears to form a large differential signal between the two inputs of the differential amplifier 1 74. The output signal of the amplifier is proportional to the differential signal, and the output signal is provided to the signal conditioner 1 5 6 . The output signal of the signal conditioner 156 is compared with a predetermined threshold by the arc detection comparator 158, as in the specific embodiment of FIG. Figure 5B illustrates a similar variant for Figure 1B, in which sensor 1 54 of Figure 1B is replaced by differential amplifier 1 74 in Figure 5. In the embodiment of Figure 5B, the two input terminals of the differential amplifier 174 are coupled to a single ESC electrode 128 and an appropriate reference voltage (e.g., a pick-up location). The RF bias power generator 148 and the RF bias matching impedance 142 of FIG. 1B are not shown in the legend of FIG. 5B, but when the RF bias power is supplied to the ESC electrode 128, an RF bias power generator is required. 148 and RF bias match impedance 142. Alternatively, no RF bias power is provided to the ESC electrode 128. The instantaneous voltage on the voltage wafer 120 appears to form a large differential signal between the two inputs of the differential amplifier 174. The output signal of the amplifier is proportional to the differential signal and the output signal is supplied to the signal conditioner 1 5 6 . The output signal of the signal conditioner 156 is compared with a predetermined threshold by the arc detection comparator 158, as in the specific embodiment of FIG. Figure 6A illustrates a variation of the embodiment of Figure 5A in which current sensor 1 76 replaces voltage sensor 1 74. The current sensor 1 76 includes a ferrous salt ring 178 surrounding the central conductor 132 and a conductive coil 180 surrounding the ring 178. One end of the coil 180 is 1 8 0 a is the output of the current sensor 1 7 6 200917339 and is connected to the input of the signal conditioner 156. Figure 6B illustrates a variant of the embodiment of Figure 5B in which the electrical influenza detector 1 7 6' replaces the voltage sensor 1 7 4 . The current sensor 176 includes a ferrous salt ring 178 that surrounds the conductor connected to the single ESC electrode 128 and a conductive coil 180 that surrounds the ring 178. One end 180a' of coil 180' is the output of current sensor 176' and is coupled to the output of signal conditioner 156.

再次參照第1 A圖,一第二RF感測器1 84係耦接至一 RF功率型導體185,該導體185係連接於RF產生器140 及RF匹配阻抗13 8之間,以用於側壁線圈1 12。第二RF 感測器1 84可為一 RF電流感測器(如同第2圖)或一 RF電 壓感測器(如同第4圖)。第二RF感測器1 8 4之輸出係提供 給一第二訊號調節器186,此調節器186與第2圖及第3 圖之訊號調節器156可屬於相同類型之電路。一第二電弧 偵測比較器1 8 8,其將訊號調節器之輸出訊號與一特定檻 值進行比較,以判定是否有電弧產生。若有電弧產生,則 比較器1 8 8將產生一電弧旗標傳送至控制器1 5 2。一第三 感測器1 9 0係耦接至D. C.功率產生器1 3 6之輸出端。第三 感測器190之輸出可提供給一第三訊號調節器192。第三 電弧偵測比較器1 94將訊號調節器1 92之輸出訊號與一特 定檻值進行比較,以判定是否有電弧產生。其輸出一電弧 旗標傳送至程序控制器1 5 2。 控制器1 5 2可包括一記憶體1 52a用以儲存一序列指 令,及一微處理器152b用以執行這些指令。此等指令代表 13 200917339 一程式可經下載存入控制器記憶體丨52a内,用以操作反應 态。依據其中一特性’回應自電弧偵測比較器丨5 8、1 8 8 或1 94中任一比較器處接收到電弧旗標,而程式將指示控 制器152關閉功率產生器136、14〇及M8。此程式將於本 說明書猶後部分中作進一步說明。 氨序控制器之操作 第1 A圖之程序控制器1 5 2之操作流程說明係顯示於 第7A及7B圖之流程圖,程序方案可經下載存入控制器記 憶體152a中(第7A及78圖之方塊300)β反應器組件歷史 、例如’反應器中每—耗材之已使用時數記錄)亦可經下載 存入控制器記憶體l52a(方塊3〇2)。然後,控制器啟動反 應器中程序(方塊3 04)。在現行程序步驟中’控制器ι52 執行該程序方案所要求的RF功率設定(即,提供RF功率 给ESC122及提供rF功率給線圈112)。依據這些功率設 定,控制器1 5 2預測每一感測器丨5 4、丨8 4及丨9 〇將遭遇到 的RF雜訊等級。對每一感測器而言,控制器152根據雜 訊等級來決定指派一適當的電弧偵測比較檻值給每一比較 器158、188及194(第7八及78圖之方塊3〇6)。對於一特 定感測器,若一偵測到的電壓(或電流)位準超過所指派的 檻值,則視為發生電弧現象,,控制器152亦可定義 〜警告位準檀值’其值低於該電弧偵測檻值。 在每一感測器154、184及19〇之比較檀值皆已設定完 成後,每一檻值依據反應器之耗材組件之相關已使用時數 14 200917339 進行修正(方塊308)。可依據代表反應器中每一耗材組件 之一般使用壽命之歷史資料來實現修正。例如,感測器1 5 4 偵測最靠近晶圓120處之電弧現象,此時最靠近晶圓之耗 材組件之狀態將影響最大’例如一環繞E S C之程序環形套 件(第1 A圖未示出)。因此’感測器1 5 4之電弧偵測比較植 值係依據該程序環形套件之已使用時數來進行修正。同樣 的’感測器1 84偵測側壁線圈丨〗2處之電弧現象。因此, 指派給感測器1 8 4之檻值將依據例如線圈丨丨2之已使用時 數來進行修正。一般而言,會隨著耗材已使用時數來上修 榧值’因為當耗材在暴露於電漿期間造成磨損且其表面變 成转叙#時,很容易遭受或引起更多RF雜訊及諧浊。依 據耗材之已使用時數進行修正電弧偵測檻值,可依據一代 表大量耗材組件樣本歷史之經驗數據來實現。 在一具體實施例中’下一步驟將判定上修之檻值是否 位在或太靠近一真實電弧現象之預期電壓或電流位準(方 塊31〇)。若確是如此(方塊3丨〇之「是」分支),則輸出一 旗標(方塊311)傳送至使用者及/或發送至程序控制器 1 5 2在一具體實施例中’此旗標可使程序控制器1 $ 2關閉 反應器。如此’可識別其檻值已因此超過之相應感測器之 j立 置 罝’且可識別最靠近該反應器之反應器耗材,進而通知 使用者這些耗材已達替換期限需進行更換。 若經修正檀值不會過高(方塊3 1 0之「否」分支),則 將些·經修正檻值傳送至電弧偵測比較器1 5 8 ' 1 8 8及 194 ’以用於現行程序步驟中(方塊312)。依據程序方案, 15 200917339 控制器1 5 2可識別一特定時刻發生之程序控制之瞬時電漭 (方塊3 1 4)’例如啟動或停止rf功率產生器時。在執行現 行程序步驟期間’控制器152監視每一電弧偵測比較器 158、188及194是否發送電弧旗標(方塊3 16)。在現行步 驟下’每一比較器158、188及194分別持續將訊號調節哭 156、186及192之輸出訊號與接收自控制器152之檻值= 行比較。每當訊號調節器之輸出訊號值超過所採用之楹值 時,比較器將傳送一電弧旗標至控制器1 5 2。例如,控制 器1 52可以30MHZ之速率對比較器輸出訊號進行取樣。 針對每一比較器158、188及194之取樣,對是否已發出一 雷孤旗標作出判定(方塊3〗8)。若未偵測到任何旗標(方塊 3 1 8之「否」分支),則控制器丨52判定現行程序步驟是否 已完成(方塊320)9若判定為未完成(方塊32〇之「否」分 支),則控制器1 5 2回到方塊3丨6之監視步驟。否則,(方 塊320之「是」分支)控制器152轉移至程序方案之下一程 序步驟(方塊322)而回到方塊306之步驟。 若偵測到一電弧旗標(方塊3 1 8之「是」分支),則判 定所偵測到之瞬時電壓或電流係僅超過警告位準檻值或者 已超過電弧檻值位準(方塊324)。此判定係依據由特定比 較器所發出之旗標其内容來進行。若僅超出警告位準(方塊 324之「是」分支),則控制器152記錄此現象並將此現象 與現行晶圓建立聯結關係(方塊3 2 6)。控制器1 5 2接著判 定現行晶圓之警告數目是否過高(方塊328)。若該晶圓之 警告數目超過一預定數目(方塊328之「是」分支),則發 16 200917339 送一旗標(方塊3 3 0),且控制器丨5 2可關閉反應器。否則(方 塊328之「否」分支),控制器回到方塊316之步驟。 右電弧旗標係指示—全電弧現象,即已超過電弧植值 (方塊3 2 4之「否」分支),則判定其是否與方塊3丨4之步 驟中所識別之功率轉換時間相一致。若一致(方塊3 3 2之 「是」分支)’則將該旗標視為一錯誤指示而忽略它(方塊 3 3 4) ’同時控制器回到方塊3丨6之監視步驟。否則(方塊 3 3 2之「否」分支),將電弧旗標視為一正確訊息。控制器 1 5 2使用電弧旗標之内容來識別偵測到電弧現象之感測器 其位置’並將其記錄於記體體中(方塊3 3 8)。控制器發送 「OFF ,命令給每一功率產生器136、14〇及148(方塊34〇)。Referring again to FIG. 1A, a second RF sensor 184 is coupled to an RF power type conductor 185 that is coupled between the RF generator 140 and the RF matching impedance 13 8 for sidewalls. Coil 1 12. The second RF sensor 1 84 can be an RF current sensor (as in Figure 2) or an RF voltage sensor (as in Figure 4). The output of the second RF sensor 128 is provided to a second signal conditioner 186, which may be of the same type as the signal conditioner 156 of Figures 2 and 3. A second arc detection comparator 18 8 compares the output signal of the signal conditioner with a particular threshold to determine if an arc is generated. If an arc is generated, comparator 18 8 will generate an arc flag to controller 1 52. A third sensor 190 is coupled to the output of the D. C. power generator 136. The output of the third sensor 190 can be provided to a third signal conditioner 192. The third arc detection comparator 1 94 compares the output signal of the signal conditioner 192 with a specific threshold to determine if an arc is generated. Its output an arc flag is sent to the program controller 1 52. The controller 1 52 may include a memory 1 52a for storing a sequence of instructions and a microprocessor 152b for executing the instructions. These instructions represent 13 200917339. A program can be downloaded to the controller memory port 52a for operation. The arc flag is received at any of the comparators in response to one of the characteristics of the arc detection comparator 丨5 8 , 1 8 8 or 1 94, and the program will instruct the controller 152 to turn off the power generators 136, 14 and M8. This program will be further explained in the back part of this manual. Operation of the ammonia sequence controller The program flow of the program controller 1 of FIG. 1 is shown in the flowcharts of FIGS. 7A and 7B, and the program scheme can be downloaded and stored in the controller memory 152a (section 7A and Block 300 of the Figure 300) The history of the beta reactor assembly, e.g., the number of used hours per consumable in the reactor, can also be downloaded to the controller memory l52a (block 3〇2). The controller then starts the program in the reactor (block 3 04). In the current procedure step, controller ι 52 performs the RF power settings required by the program scheme (i.e., provides RF power to ESC 122 and rF power to coil 112). Based on these power settings, the controller 1 52 predicts the level of RF noise that each of the sensors 丨5 4, 丨8 4, and 丨9 〇 will encounter. For each sensor, controller 152 determines to assign an appropriate arc detection comparison threshold to each of comparators 158, 188, and 194 based on the level of noise (blocks 7 and 6 of Figures 7 and 78). ). For a particular sensor, if a detected voltage (or current) level exceeds the assigned threshold, then an arcing phenomenon is considered, and the controller 152 may also define a warning level value. Below the arc detection threshold. After each of the sensors 154, 184, and 19 has been set, the value of each value is corrected based on the associated used time of the consumable component of the reactor 14 200917339 (block 308). The correction can be made based on historical data representing the general useful life of each consumable component in the reactor. For example, the sensor 154 detects the arc phenomenon closest to the wafer 120, at which point the state of the consumable component closest to the wafer will have the greatest impact 'eg, a program loop kit surrounding the ESC (not shown in Figure 1A) Out). Therefore, the arc detection comparison physiology of the sensor 154 is corrected according to the number of used hours of the program ring kit. The same 'sensor 1 84 detects the arcing phenomenon at the side wall coil 丨 2 . Therefore, the value assigned to the sensor 1 8 4 will be corrected based on, for example, the number of used turns of the coil 丨丨2. In general, it will be repaired as the consumables have been used. 'Because when the consumables wear out during exposure to the plasma and the surface becomes a reversal #, it is easy to suffer or cause more RF noise and harmonics. turbidity. Correcting the arc detection threshold based on the number of hours the consumables have been used can be achieved based on empirical data from a history of a large number of consumable component samples. In a specific embodiment, the next step will determine if the value of the up-trim is at or too close to the expected voltage or current level of a true arc phenomenon (block 31〇). If this is the case ("Yes" branch of block 3), a flag is output (block 311) to the user and/or to the program controller 1 5 2 in a particular embodiment 'this flag Program controller 1 $2 can be turned off the reactor. Thus, it can be identified that the threshold value has exceeded the corresponding sensor's position and the reactor consumables closest to the reactor can be identified, thereby informing the user that the consumables have been replaced for replacement. If the modified value is not too high ("No" branch of block 3 1 0), then the modified 槛 value is transmitted to the arc detection comparator 1 5 8 '1 8 8 and 194 ' for the current In the program step (block 312). According to the program scheme, 15 200917339 controller 1 5 2 can recognize the instantaneous power of program control (block 3 14) occurring at a specific moment, for example, when starting or stopping the rf power generator. During execution of the ongoing program step, controller 152 monitors whether each arc detection comparator 158, 188, and 194 transmits an arc flag (block 3 16). In the current step, each of the comparators 158, 188, and 194 continuously compares the output signals of the signal conditioning 156, 186, and 192 with the 槛 value = line received from the controller 152. Whenever the output signal value of the signal conditioner exceeds the threshold used, the comparator will transmit an arc flag to the controller 1 52. For example, controller 1 52 can sample the comparator output signal at a rate of 30 MHz. For each sample of comparators 158, 188, and 194, a determination is made as to whether a singular flag has been issued (block 3, 8). If no flag is detected ("No" branch of block 3 1 8), then controller 52 determines if the current program step has been completed (block 320) 9 if the determination is incomplete ("No" in block 32 Branch), then controller 1 52 returns to the monitoring step of block 3丨6. Otherwise, ("YES" branch of block 320) controller 152 branches to a program step below block (block 322) and returns to block 306. If an arc flag is detected ("Yes" branch of block 318), it is determined that the detected instantaneous voltage or current system only exceeds the warning level threshold or has exceeded the arc threshold level (block 324). ). This determination is made based on the content of the flag issued by the particular comparator. If only the warning level is exceeded ("YES" branch of block 324), controller 152 records this phenomenon and establishes a connection relationship with the current wafer (block 3 26). Controller 1 52 then determines if the number of warnings for the current wafer is too high (block 328). If the number of warnings for the wafer exceeds a predetermined number ("YES" branch of block 328), then a flag is sent 16 200917339 (block 3 3 0) and the controller 丨 52 can shut down the reactor. Otherwise ("no" branch of block 328), the controller returns to step 316. The right arc flag indicates that the full arc phenomenon, i.e., the arc implant value has been exceeded ("no" branch of block 3 24 4), determines if it coincides with the power conversion time identified in the step of block 3丨4. If it is consistent ("Yes" branch of block 3 3 2) then the flag is treated as an error indication and ignored (block 3 3 4)' while the controller returns to the monitoring step of block 3丨6. Otherwise ("No" branch of Box 3 3 2), the arc flag is treated as a correct message. The controller 1 5 2 uses the contents of the arc flag to identify the position of the sensor that detected the arc phenomenon and record it in the body (block 3 3 8). The controller sends "OFF" to each of the power generators 136, 14 and 148 (block 34).

器1 5 2判定電弧旗標 以識別有發送出電弧旗標之特 器°此資訊係藉由控制器1 52輸出至使用者介面, 可建立感測器位置與耗材組件之聯結關係(方塊 此特性可允許使用者能夠更好地識別反應器腔室中 &的耗*材、组件。例如,若控制器1 5 ?划宁雷孤馗摁 則其識別最靠近該比較器所監視之 側壁線圈11 2。對於一由比較器1 5 8 ’最靠近的耗材組件係圍繞晶圓的 環形套件,而控制器1 5 2會例如將 環形套件之間建立聯結關係。對於 之電弧旗標而言,相關組件為頂部 一電弧旗標與此頂部靶材之間建立 具體實施例中,控制器1 5 2可針對 17 200917339 不同的電弧旗標提供使用者不同的可能候選替換耗材 單。 第7A及7B圖所示之一具體實施例之程序,包括 一電漿程序步驟中動態調整電弧偵測比較檻值。檻值 一步依據耗材組件之已使用時數來進行調整。控制器 視需要可經常更新每一比較器158、188及194之檻值 由這樣的動態調整比較檻值,可尋找用於一特定晶圓 步驟之最小檻值,進而最佳化每一比較器158、188及 之敏感度。每當雜訊狀況(例如)有所改善時,可下修檻 而當例如RF功率位準上升而使雜訊程度隨之提升時 上修檻值。升高檻值可避免當雜訊位準接近電弧偵測 位準時所產生的錯誤電弧指示。在一具體實施例中,ί 及7Β圖之程序進一步包括執行識別電弧位置之步驟 識別相關電弧現象中相應可能的耗材組件之步驟。控 1 5 2將此類資訊傳達給使用者,以促進有效管理耗材 正確地選擇需替換之耗材。 在一具體實施例中,第7Α及7Β圖之程序係以軟 令實現,而軟體指令可經下載存入控制器記憶體1 52a 因此在此具體實施例中,所有智能動作皆係由控制器 所執行,而電孤偵測比較器僅執行比_較功能。然而, 一具體實施例中,電弧偵測比較器1 5 8、1 8 8及1 94可 其本身之内部處理器及記憶體,以允許他們能夠執行I 及7B圖之程序中某些功能。The device 1 52 determines the arc flag to identify the device that sends the arc flag. The information is output to the user interface by the controller 1 52, and the connection relationship between the sensor position and the consumable component can be established (block The feature allows the user to better identify the materials and components in the reactor chamber. For example, if the controller is singularly singular, it identifies the side wall that is closest to the monitor. Coil 11 2. For a consumable assembly that is closest to the comparator 1 58 ', surrounds the ring set of wafers, and controller 15 2 will, for example, establish a coupling relationship between the ring sets. For the arc flag In the specific embodiment where the relevant component is between the top arc flag and the top target, the controller 1 52 can provide different possible candidate replacement consumables for the different arc flag of 17 200917339. The program of one embodiment shown in FIG. 7B includes a dynamic adjustment arc detection comparison threshold in a plasma program step. The threshold value is adjusted according to the used time of the consumable component. Frequently updating the values of each of the comparators 158, 188, and 194 by such dynamic adjustments, the threshold value can be found to find the minimum threshold for a particular wafer step, thereby optimizing each of the comparators 158, 188 and Sensitivity. When the noise condition (for example) is improved, it can be repaired and repaired when the level of noise increases, for example, when the level of noise increases. The increase in threshold can avoid miscellaneous The illuminator is in close proximity to the erroneous arc indication produced by the arc detection level. In one embodiment, the ί and Β diagram procedures further include the step of performing a step of identifying the arc position to identify a corresponding consumable component of the associated arc phenomenon. Control 1 5 2 communicates such information to the user to facilitate efficient management of the consumables to properly select the consumables to be replaced. In one embodiment, the programs of Figures 7 and 7 are implemented in a soft order, and the software instructions are After being downloaded into the controller memory 1 52a, in this embodiment, all intelligent actions are performed by the controller, and the electric orphan detection comparator performs only the comparison function. However, In the embodiment, the arc detection comparators 158, 188, and 194 can have their own internal processors and memory to allow them to perform certain functions in the I and 7B diagrams.

之清 於每 係進 152 。藉 程序 194 值, ,可 檻值 % 7A 以及 制器 並更 體指 中 〇 152 在另 包括 I 7A 18 200917339 翻新改進控制及;: 第7 A及7B圖夕·赵皮 岡之程序汲及到控制器丨5 2與每一電弧偵 測比較€3 158、188 & 194之間頻繁的雙向通訊。控制器 152定期傳达經更新的比較檻值至比較器”8、⑻及194 中特定數個比較器’不同的值係經下載送給不同的比較 器每田偵測到電弧時,比較器丨5 8、i 8 8及! 94即傳送電 5瓜旗標t纟旗襟包括|送該電孤旗標之個%比較器之識 Γ 別符控制器回應由電狐偵測比較器1 5 8、丨8 8及1 9 4中任 比車乂器所傳送之一正確電弧旗標,而進一步傳送關閉 (ΟΝ/OFF)命令至功率產生器136、14〇及148。有意將第 1 A圖之電弧偵測特性(如實現於第7A及7B圖所示程序) 加入至已運作於~卩砧a i & &域中之電漿反應器上。對於已設置於It is clear that each line is 152. By means of the program 194 value, the depreciation of the value of 7A and the controller and more refers to the middle of the 152 in addition to I 7A 18 200917339 renovation improvement control and;: 7A and 7B Tu Xi · Zhao Peigan procedures and The controller 丨5 2 compares frequent bidirectional communication between €3 158, 188 & 194 with each arc detection. The controller 152 periodically communicates the updated comparison threshold to a particular number of comparators in the comparators "8, (8), and 194". The different values are downloaded to different comparators. Each time an arc is detected, the comparator丨5 8, i 8 8 and ! 94 is the transmission of 5 melon flag t 纟 flag 襟 including | send the electric solitary flag of the % comparator Γ 别 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器5 8. 丨8 8 and 149 are the correct arc flag transmitted by the brake device, and further transmit the close (ΟΝ/OFF) command to the power generators 136, 14〇 and 148. The arc detection characteristics of Figure A (as implemented in Figures 7A and 7B) are added to the plasma reactor that has been operated in the ~an anvil &&

該區域中之反應器,热I 於母—反應器上安裝一客製化通訊網 路以符合前述每—通邙堂忐 通訊需求’如此將會使成本過高。為了In the reactor in this zone, heat I installs a customized communication network on the mother-reactor to meet the aforementioned communication requirements of each of the offices. This would make the cost too high. in order to

降低成本’將利用及廄吳L 汉應15上已存在之通訊系統進行通訊。 在某些實施例中,已在六^ 2 〇存在之通訊系統能夠符合並促進第1 及7圖之電弧偵測牿 将性之所有通訊需求。 在某些反應考中 ^ ^ ° 长供一區域網路(LAN),而控制器 透過此區域網路與反 、久應器上母一主動裝置及感測器進行通 訊。第8圖例示說明, λ 弟' 1Α圖所示之反應器類型之區域網 路結構。一介面裝署& 罝你揭接至由控制器1 5 2所控制之每一 主動裝置。該介面裝 衣置將所接收到的數位命令轉換成動作 來關閉主動裝置。你丨 ]如’在第8圖中,介面裝置355、357 及3 5 9係分別連拯 楼至功率產生器136、140及148。這肽介 19 200917339 面裝置回應所接收到的數位命令,而能夠關閉該些產生 器。提供一區域網路(LAN) 360。此區域網路為一多導體傳 輸通道或電纜’其具有多數I/O埠361、362、363、364、 3 65、3 66及3 67 ’且其可實現為多導體連結器。於區域網 路360上進行通訊之每一裝置皆具有一記憶體及有限的處 理能力,以允許其於區域網路360上儲存並發送一獨特位 址。因此’每一控制介面355、357、359及每一比較器158、 188、194皆具有習知處理電路’以回應區域網路協定並儲 存其本身之裝置位址。區域網路上每一裝置158、188、 194、3 55、3 57及3 59僅回應指定送達至其裝置位址之所 收訊息。此外’每一裝置於區域網路上將其本身之裳置位 址附於其傳輸資料。每一裝置158、188、194、355、357 及359分別透過其本身之多導體電纜371、3 72、373、3 74、 375、 376 及 377,於埠 361、 362、 363、 364、 365、 366 及367處耦接至區域網路360。在經設置於具有此一區域 網路之區域中之反應器上,可不具備比較器158、188及 1 94。因此,第1 A圖之電弧偵測系統通訊特性可藉由以下 動作來實現於此一反應器中:識別現有區域網路360上之 剩餘(未經使用)埠(例如,埠363、365及366),並將比較 器158、188及194以第8圖所示方式與上述埠連接》 當啟動區域網路360時,區域網路360上所有裝置之 裝置位址(即,比較器158、188、194及控制介面355、357、 359)可使用習知技術由控制器1 52進行智能指派。在第8 圖之系統中,控制器1 5 2例如藉由傳送一個別訊息給一個 20 200917339 別比較器,該訊息具有指令其要求下載一特定檻值,來實 現第7A及7B圖之程序。每一比較器回應一電弧現象,而 傳送一包含比較器裝置位址之訊息給控制器 1 5 2,及一傳 送一訊息用以指示發生電弧現象。控制器1 5 2可回應一正 確電弧現象,而傳送一訊息給每一功率產生器控制介面 3 5 5、3 5 7、3 5 9,該訊息包含一命令用以要求關閉相應產生 器。發送出旗標之感測器之位置,其係由控制器1 5 2依據 相應電弧偵測比較器之裝置位址來推測得。控制器1 5 2可 於控制器1 5 2之使用者介面1 5 3處提供此資訊給使用者。 在其它反應器中,不提供或無法使用區域網路,而提 供一客製化通訊數位輸入/輸出(DI/0)網路,如第 9圖所 示。在第9圖之DI/0網路中,每一裝置透過該裝置專屬 傳輸通道與控制器152進行通訊(反之亦然)。業已存在之 反應器上之DI/0網路分別利用DI/0繼電器401、402、 404、406與控制器1 52進行個別通訊,並監視個別安全點。 具體而言,例如,DI/0繼電器401每當腔室100之蓋101 係開啟時即發送訊號,DI/0繼電器402每當RF功率電纜 斷接側壁線圈時即發送訊號,DI/0繼電器404每當RF偏 壓功率電纜斷接時即發送訊號,而DI/0繼電器406每當 D. C.功率電纜斷接頂部靶材時即發送訊號。控制器1 5 2之 輸入端A、B、D及F接收這些繼電器所發送之訊號,如第 9圖之圖例所示。控制器1 5 2經由專屬傳輸通道J、K及L 傳輸關閉(ΟΝ/OFF)命令給每一功率產生器 136、148及 140,如第9圖所示。 21 200917339 第1 A圖之通訊特性可實現於第9圖之DI/O網路中, 其中具有三個額外DI/0繼電器可與電弧偵測比較器1 5 8、 188及194配合作用。在第9圖所示之例子中,業已存在 之DI/0繼電器403、405及407係挪用於分別連接至電弧 偵測比較器1 8 8、1 5 8及1 9 4之輸出端。每次電弧偵測比較 器158、188或194中之一者發送一電弧旗標時,與該比較 器連接之DI/0繼電器將發送信號以通知控制器1 5 2。控制 器152依據承載該信號之電纜或通道之位置,進而推算出 發送出電弧旗標之電弧偵測比較器之識別符。此資訊可被 傳送給控制器使用者介面1 5 3,用以管理耗材之替換。 現行設置於一區域中之早窀反應器可能不具備一區域 網路亦不具備一 DI/0網路。在此類反應器中,第1A圖之 電弧偵測系統可實現為一基礎形式,其係利用提供於此類 反應器中之24伏特安全中斷電路來實現偵測系統。每當腔 室蓋係開啟或每當連接於腔室之功率電纜中斷時,此電路 可確保立即關閉功率產生器。參照第10圖,功率產生器 136具有一連鎖裝置501,功率產生器148具有一連鎖裝置 502及功率產生器140具有一連鎖裝置503。每一功率產生 器136、148及140僅可在其連鎖裝置於一電路式導體504 上不斷偵測到一 24伏特DC電位時才運作。電路式導體 5 04將所有連鎖裝置501、502、503串聯接至一 24伏特 DC供應器506。串聯電路式導體504係由數個簡單切換繼 電器 510、512、514、516、518、520 及 522 切斷其連結。 因此,每一繼電器本身可中斷產生器連鎖裝置501、502、 22Reduce costs' will be communicated using the communication system already existing on Wu L Han Ying 15. In some embodiments, communication systems that are already in place can meet and promote all of the communication requirements of the arc detection capabilities of Figures 1 and 7. In some reaction tests, ^ ^ ° is used for a local area network (LAN), and the controller communicates with the active and active devices on the anti- and long-term devices through the regional network. Figure 8 illustrates the regional network structure of the reactor type shown in Figure λ. An interface installation & 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭 揭The interface unit converts the received digital command into an action to turn off the active device. You 丨] As in Figure 8, interface devices 355, 357, and 359 are connected to power generators 136, 140, and 148, respectively. The device responds to the received digital commands and can turn off the generators. Provide a regional network (LAN) 360. This area network is a multi-conductor transmission channel or cable' which has a plurality of I/O ports 361, 362, 363, 364, 3 65, 3 66 and 3 67 ' and which can be implemented as a multi-conductor connector. Each device communicating over regional network 360 has a memory and limited processing capabilities to allow it to store and transmit a unique address on regional network 360. Thus, each of the control interfaces 355, 357, 359 and each of the comparators 158, 188, 194 has a conventional processing circuit ' in response to the regional network protocol and stores its own device address. Each device 158, 188, 194, 3 55, 3 57 and 3 59 on the local area network only responds to the received message destined for its device address. In addition, each device attaches its own address to its transmission data on the local area network. Each device 158, 188, 194, 355, 357, and 359 passes through its own multi-conductor cable 371, 3 72, 373, 3 74, 375, 376, and 377, respectively, 埠 361, 362, 363, 364, 365, 366 and 367 are coupled to the area network 360. Comparators 158, 188, and 1 94 may not be provided on the reactor disposed in the region having such a regional network. Therefore, the communication characteristics of the arc detection system of FIG. 1A can be implemented in the reactor by recognizing the remaining (unused) 现有 on the existing area network 360 (for example, 埠363, 365 and 366), and the comparators 158, 188, and 194 are connected to the above-described ports in the manner shown in FIG. 8. When the area network 360 is activated, the device addresses of all devices on the area network 360 (ie, the comparator 158, 188, 194 and control interfaces 355, 357, 359) can be intelligently assigned by controller 1 52 using conventional techniques. In the system of Fig. 8, the controller 1 52 sends a message to a 20 200917339 comparator, for example, which instructs it to download a particular threshold to implement the procedures of Figures 7A and 7B. Each comparator responds to an arc phenomenon by transmitting a message containing the address of the comparator device to the controller 1 5 2 and transmitting a message indicating the occurrence of an arc. The controller 1 52 can respond to a correct arcing phenomenon and transmit a message to each power generator control interface 3 5 5, 3 5 7 , 3 5 9, which contains a command to request that the corresponding generator be turned off. The position of the sensor that sent the flag is estimated by the controller 1 5 2 based on the device address of the corresponding arc detection comparator. The controller 1 52 can provide this information to the user at the user interface 153 of the controller 152. In other reactors, a local area network is not provided or available, and a custom communication digital input/output (DI/0) network is provided, as shown in Figure 9. In the DI/0 network of Figure 9, each device communicates with the controller 152 via the device-specific transmission channel (and vice versa). The DI/0 network on the existing reactor is individually communicated with the controller 1 52 using DI/0 relays 401, 402, 404, 406, respectively, and individual security points are monitored. Specifically, for example, the DI/0 relay 401 transmits a signal every time the cover 101 of the chamber 100 is turned on, and the DI/0 relay 402 sends a signal whenever the RF power cable is disconnected from the side wall coil, and the DI/0 relay 404 The signal is sent whenever the RF bias power cable is disconnected, and the DI/0 relay 406 sends a signal whenever the DC power cable is disconnected from the top target. The inputs A, B, D and F of the controller 1 5 2 receive the signals transmitted by these relays, as shown in the legend of Figure 9. The controller 1 5 2 transmits a close (ΟΝ/OFF) command to each of the power generators 136, 148, and 140 via the dedicated transmission channels J, K, and L, as shown in FIG. 21 200917339 The communication characteristics of Figure 1A can be implemented in the DI/O network of Figure 9, with three additional DI/0 relays that can interact with the arc detection comparators 158, 188 and 194. In the example shown in Figure 9, the existing DI/0 relays 403, 405, and 407 are coupled to the outputs of the arc detection comparators 18, 158, and 194, respectively. Each time one of the arc detection comparators 158, 188 or 194 sends an arc flag, the DI/0 relay connected to the comparator will send a signal to inform the controller 1 52. The controller 152 derives the identifier of the arc detection comparator that sent the arc flag based on the position of the cable or channel carrying the signal. This information can be communicated to the controller user interface 1 5 3 to manage the replacement of consumables. Early reactors currently installed in an area may not have a regional network or a DI/0 network. In such a reactor, the arc detection system of Figure 1A can be implemented in a basic form that utilizes a 24 volt safety interrupt circuit provided in such a reactor to implement the detection system. This circuit ensures that the power generator is turned off immediately whenever the chamber cover is open or whenever the power cable connected to the chamber is interrupted. Referring to Fig. 10, power generator 136 has an interlocking device 501, power generator 148 has a interlocking device 502, and power generator 140 has a chaining device 503. Each power generator 136, 148, and 140 can only operate when its interlocking device continuously detects a 24 volt DC potential on a circuit conductor 504. The circuit conductor 504 connects all interlocks 501, 502, 503 in series to a 24 volt DC supply 506. The series circuit conductor 504 is disconnected by a number of simple switching relays 510, 512, 514, 516, 518, 520 and 522. Therefore, each relay itself can interrupt the generator interlocks 501, 502, 22

200917339 503與24伏特供應器506間之串聯連 器。繼電器5 10每當腔室蓋1 〇 1係開啟 繼電器5 1 2每當RF功率電纜與側壁線 斷時即開啟其連結。繼電器516每I ESC 122間之連結中斷時即開啟其連結 RF功率電纜與頂部靶材間之連結中斷㈣ 室1 〇 〇可自動關閉,以回應三個電弧偵 及1 9 4中任一比較器之電弧偵測,其中 沿著電路式導體504相互串聯,且可用 158、188及194之輸出訊號。第10圖顯ί 繼電器514、518及520)可分別連接至!; 194之輸出端。每當比較器188、158、 到一超過其預定檻值之電壓(或電流)時 形式之電弧旗標,用以分別使相應繼電 開啟其連結。如此將打斷導體5 04之24 一連鎖裝置501、502、503分別關閉相 148 及 140 。 第1A圖所示之RF匹配阻抗138之 一 RF輸入端及單一 RF輸出端,然而 中,RF匹配阻抗1 3 8可另外具有一低:^ 示於圖中)。在此一實施例中,前述類型 器及檻值比較器,其可耦接至未示出的 之低功率D.C.輸入端。 前文已說明第1A或1B圖之反應器 結,藉以關閉反應 時即開啟其連結。 圈1 1 2間之連結中 卜RF功’率電纜與 。繼電器522每當 F即開啟其連結。腔 測比較器1 5 8、1 8 8 三個額外繼電器係 於分別接收比較器 斤此三個繼電器(即 h較器1 8 8、1 5 8及 1 94中任一者偵測 ,其將發送一電壓 器 514、518 或 520 伏特路,而導致每 哥功率產生器136、 具體實施例具有單 在另一具體實施例 >率D.C.輸入端(未 之一額外電弧感測 RF匹配阻抗138 係依據各種感測器 23 200917339 1 5 4、1 8 4、1 9 0等中之單一感測器來進行電弧偵測 電弧偵測之判定亦可依據該些感測器中數個(或可I 感測器。例如,已說明第1、8或9圖中具體實施例 器1 5 2係分別透過比較器1 5 8、1 8 6或1 9 4,進而依 器154、184或190中任一者之輸出訊號來回應電弥 然而,在一具體實施例中,第1、8或9圖之控制 經程式設計可結合至少二個(或更多)檻值比較器 1 8 6,並依據所結合之訊號來進行判定。輸出訊號可 器1 52依據線性、多項式或更複雜之數學函式進行 在此實施例中,控制器1 5 2係經程式設計來回應經 訊號,以剌定是否偵測到電弧或決定是否關閉反應 又另一具體實施例中,感測器1 54、1 84、1 90之個 訊號可先進行結合,然後再由一檻值比較器處理。 1 54、1 84、1 90中至少二者之個別輸出訊號可依據 多項式或更複雜之數學函式進行結合。所得到之經 號於是提供給單一比較器(例如比較器186),且該 較器之輸出訊號係提供給控制器1 5 2。 前文所述係針對本發明之具體實施例,然而其 發明相關或進一步的具體實施例亦可在不悖離本發 範疇下設計獲得。本發明之範疇係由以下之申請專 所界定。 【圖式簡單說明】 本發明所提供之方法中,方法實施例可由「發曰> ,然而 &全部) 之控制 據感測 現象。 器 152 158 ' 由處理 結合。 結合之 器。在 別輸出 感測器 線性、 結合訊 單一比 他與本 明基本 利範圍 内容j 24 200917339 段落之說明獲得並瞭解其細節,而簡略總結於「發明内容」 之本發明之特定說明係參照所附圖示進行說明。然而需注 意到,所附圖示僅例示說明本發明之一般性實施例,且因 此不應視為本發明之範圍限制,而其它等效實施例亦包括 在本發明範疇中。 第1 A及1 B圖例示說明一電漿反應器,其分別具有雙 極及單極靜電吸座,此反應器具有特定晶圓級電弧偵測及 自動關閉特性。 第2圖為一概略圖,其例示說明第1A圖中反應器之 RF電流感測器電路。 第3圖為一方塊圖,其例示說明第1 A圖中反應器之 訊號調節器。 第4圖為一概略圖,其例示說明第1A圖中反應器之 RF電壓感測器電路。 第5 A及5 B圖分別例示說明第1A及1 B圖之具體實 施例之變型概略圖,其中在靜電吸座上具有一晶圓級電弧 偵測電路,且使用一電壓感測器。200917339 503 is connected in series with the 24 volt supply 506. The relay 5 10 opens whenever the chamber cover 1 〇 1 is turned on. The relay 5 1 2 opens its connection whenever the RF power cable is disconnected from the side wall. When the connection between the relays 516 and the I ESC 122 is interrupted, the connection between the connected RF power cable and the top target is interrupted. (4) The chamber 1 is automatically turned off in response to the three arc detections and any of the comparators of the 1 94. The arc detection is in series with each other along the circuit conductors 504, and the output signals of 158, 188 and 194 can be used. Figure 10 shows that relays 514, 518, and 520) can be connected separately! ; 194 output. Each time the comparators 188, 158 go to a voltage (or current) that exceeds their predetermined threshold value, the arc flag is used to cause the respective relay to turn on its connection, respectively. Thus, the interlocking conductors 504, 502, 503 of the conductors 504, 503, 503 and 503 are turned off, respectively. The RF matching impedance 138 shown in Figure 1A is an RF input and a single RF output. However, the RF matching impedance 1 3 8 may additionally have a low: ^ is shown in the figure). In this embodiment, the aforementioned type and threshold comparator can be coupled to a low power D.C. input, not shown. The reactor junction of Figure 1A or 1B has been described above to open the connection when the reaction is turned off. Circle 1 1 2 in the connection between the RF power rate cable and . Relay 522 opens its connection whenever F is reached. The cavity measurement comparator 1 5 8 , 1 8 8 three additional relays are respectively received by the comparators, the three relays (ie, the h comparators 1 8 8 , 1 5 8 and 1 94 detect, which will A voltage 514, 518 or 520 volt path is transmitted, resulting in a power output 136 for the div., the specific embodiment having a single DC input at another embodiment (not one of the additional arc sensing RF matching impedances 138) The determination of arc detection arc detection according to a single sensor of various sensors 23 200917339 1 5 4, 1 8 4, 1 90, etc. may also be based on several of the sensors (or may I. For example, it has been explained that the specific embodiment of the first, eighth or ninth embodiment is passed through the comparators 1 5 8 , 1 8 6 or 1 9 4 , respectively, and in the 154, 184 or 190 The output signal of either one is in response to the electrical signal. In one embodiment, the control of the first, eighth or ninth embodiment is programmed to combine at least two (or more) threshold comparators 18. The determination is based on the combined signal. The output signal 1 52 is based on a linear, polynomial or more complex mathematical function. In this embodiment, the controller 125 is programmed to respond to the signal to determine if an arc is detected or whether to turn off the reaction. In another embodiment, the sensor 1 54 , 1 84 , 1 The signals of 90 can be combined first and then processed by a threshold comparator. The individual output signals of at least two of 1 54, 1 84, and 1 90 can be combined according to polynomial or more complex mathematical functions. The sign is then provided to a single comparator (e.g., comparator 186), and the output signal of the comparator is provided to controller 15.2. The foregoing is directed to a particular embodiment of the invention, however, the invention relates or further The specific embodiments can also be obtained without departing from the scope of the present invention. The scope of the present invention is defined by the following application. [Simplified description of the drawings] In the method provided by the present invention, the method embodiment can be曰>, however, & all) control according to the sensing phenomenon. 152 158 ' Combined by processing. Combine the device. In the output of the sensor linear, combined with the single unit than he and Ben Ming basic range The description of the paragraphs is obtained and understood, and the specific description of the present invention, which is briefly summarized in the "Summary of the Invention", is described with reference to the accompanying drawings. However, it is noted that the accompanying drawings are merely illustrative of the invention. The general embodiments, and therefore should not be taken as limiting the scope of the invention, and other equivalent embodiments are also included in the scope of the invention. Figures 1A and 1 B illustrate a plasma reactor having Bipolar and monopolar electrostatic chucks with specific wafer level arc detection and auto-shutdown features. Fig. 2 is a schematic view showing an RF current sensor circuit of the reactor in Fig. 1A. Figure 3 is a block diagram illustrating the signal conditioner of the reactor of Figure 1A. Fig. 4 is a schematic view showing an RF voltage sensor circuit of the reactor in Fig. 1A. 5A and 5B respectively illustrate a modified schematic view of a specific embodiment of Figs. 1A and 1B, in which a wafer level arc detecting circuit is provided on the electrostatic chuck, and a voltage sensor is used.

第6 A及6 B圖分別例示說明第1A及1 B圖之具體實 施例之變型概略圖,其中在靜電吸座上具有一晶圓級電弧 偵測電路,且使用一電流感測器。 第7A及7B圖共同建立一完整流程圖,其例示說明前 述具體實施例t任一者之反應器控制器之操作流程。 第8圖例示說明將第1 A圖之電弧感測及通訊特性翻 新應用於一具有區域網路之反應器。 25 200917339 第9圖例示說明將第1A圖之電弧感測及通訊特 新應用於一具有數位輸入/輸出網路之反應器。 第1 0圖例示說明將第1A圖之電弧感測及通訊特 新應用於一具有D.C.安全連鎖迴圈之反應器。 為了促進對本發明之瞭解,使用了元件符號來進 明,相同的元件符號在所有圖示中係指代相同的元件 附圖示之圖例皆為概略圖,而並未按比例表現。 【主要元件符號說明】Figs. 6A and 6B respectively illustrate a modified schematic view of a specific embodiment of Figs. 1A and 1B, in which a wafer level arc detecting circuit is provided on the electrostatic chuck, and a current sensor is used. Figures 7A and 7B collectively establish a complete flow chart illustrating the operational flow of the reactor controller of any of the foregoing specific embodiments. Figure 8 illustrates the application of the arc sensing and communication characteristics of Figure 1A to a reactor having a regional network. 25 200917339 Figure 9 illustrates the application of the arc sensing and communication features of Figure 1A to a reactor with a digital input/output network. Figure 10 illustrates the application of the arc sensing and communication features of Figure 1A to a reactor having a D.C. safety interlocking loop. In order to facilitate the understanding of the present invention, the same reference numerals are used to refer to the same elements in the drawings, and the drawings are not to scale. [Main component symbol description]

性翻 性翻 行說 〇所 100 腔室 101 腔室蓋 102 側壁 104 頂部 106 底部 110 靶材 112 RF線圈 114 基座 116 真空排氣泵 118 排氣泵埠 119 氣體供應器 120 工件 122 靜電式吸座 124 絕緣層 126 導電座 128、 130 電極 132 導電中央銷 134 電壓供應器 136 D.C.功率產 生 器 138 ' 142 匹配阻抗 140 ' 148 RF 功 率 產生器 144 電容 146 電容 150 RF阻隔濃波器 152 控制器 152a 記憶體 152b 微處理器 153 使用者介面 154 RF感測器 154a 、1 5 4 b電阻 26 200917339 Γ c 155 RF導體 156 訊號調節器_ 158 電弧比較器 160 亞鐵鹽環 160a ' 160b 線圈端 1 62 線圈 164 峰值檢測器 164a 二極體整流器 164b 電容 166 RF濾、波器 166a 、166b 電容 166c 電感 168 大小調整電路 168a 、1 6 8 b電阻 170 轉換器 171 放大器 172 回授電阻 174 電壓感測器 176、 176, 電流感測器 178、 17 8' 亞鐵鹽環 180、 180^ 導電線圈 180a > 180a1, 線圈端 184 RF感測器 185 RF功率型導體 186 訊號調節器 188 ' 194 電弧比較器 190 感測器 192 訊號調節器 3 5 5 > 3 57 ' 3 59 控制介面 360 網路 36 1 -367 I/O 埠 371〜 377 多導體電纜 401、 402 DI/0繼電器 404 > 406 DI/0繼電器 501、 502、503 連鎖裝置 504 電路式導體 506 24伏特DC供應器 510、 5 12' 514 切換繼 516、 518 切換繼電器 520、 522 切換繼電器 27翻翻翻翻〇100 chamber 101 chamber cover 102 side wall 104 top 106 bottom 110 target 112 RF coil 114 pedestal 116 vacuum exhaust pump 118 exhaust pump 埠 119 gas supply 120 workpiece 122 electrostatic suction Block 124 Insulation 126 Conductor 128, 130 Electrode 132 Conductive Center Pin 134 Voltage Supply 136 DC Power Generator 138 ' 142 Matched Impedance 140 ' 148 RF Power Generator 144 Capacitor 146 Capacitor 150 RF Blocking Concentrator 152 Controller 152a Memory 152b Microprocessor 153 User Interface 154 RF Sensor 154a, 1 5 4 b Resistor 26 200917339 Γ c 155 RF Conductor 156 Signal Conditioner _ 158 Arc Comparator 160 Ferrous Salt Ring 160a '160b Coil End 1 62 Coil 164 Peak Detector 164a Diode Rectifier 164b Capacitor 166 RF Filter, Wave 166a, 166b Capacitor 166c Inductor 168 Size Adjustment Circuit 168a, 1 6 8 b Resistor 170 Converter 171 Amplifier 172 Feedback Resistor 174 Voltage Sense 176 , 176, current sensor 178, 17 8' ferrous salt ring 180, 180 ^ conductive coil 180a > 180a1, coil end 184 RF sensor 185 RF power type conductor 186 signal conditioner 188 '194 arc comparator 190 sensor 192 signal conditioner 3 5 5 > 3 57 ' 3 59 control interface 360 network 36 1 -367 I/O 埠 371~ 377 Multiconductor cable 401, 402 DI/0 relay 404 > 406 DI/0 relay 501, 502, 503 interlock 504 circuit conductor 506 24 volt DC supply 510, 5 12' 514 switching relay 516, 518 switching relay 520, 522 switching relay 27

Claims (1)

200917339 十、申請專利範圍: 1. 一種偵測一電漿反應器中電弧之方法,該電漿反應 括一 RF或電力功率產生器,用以處理一工件支撐基 所承載的一半導體工件或晶圓,該基座具有至少一電 該方法包含以下步驟: 感測一耦接至該晶圓之半導體上第一瞬時電壓 流; 提供一第一比較器,用以將該些瞬時電壓或電流 存於該比較器内一檻值位準進行比較; 每當所感測到之一瞬時電壓或電流超過該檀值 時,傳送該比較器所發送之一電弧旗標訊號;及 回應該電弧旗標訊號,而關閉該功率產生器。 2. 如申請專利範圍第!項所述之方法,更包含以下多 下載一程序方案,其由該反應器執行; 在該程序方案之每一程序步驟中,依據每一步驟 定之RF功率位準,決定該比較器之—檻值位準,該 位準超過該程序步驟之一預期雜訊位準; 在每一程序步驟之一開始,以針對每一現行程序 所決定之一檻值位準來取代該比較器之原有植值位準 3‘如申請專利範圍第2項所述之方法,更包含以下涉 針對每一程序步驟’依據該反應器中與該晶圓級 器包 座上 極, 或電 與儲 位準 驟: 所指 檻值 步驟 〇 驟: 電弧 28 200917339 相關之耗材使用歷史,調整該程序步驟中已決定的該檻值 位準。 4. 如申請專利範圍第3項所述之方法,更包含以下步驟: 在調整該檻值位準後,判定是否產生一檻值位準其等 於或超過一電弧現象之預期瞬時電壓或電流位準,並傳送 此資訊至一使用者介面。 5. 如申請專利範圍第1項所述之方法,更包含以下步驟: 感測該反應器中一經選定位置上與一 RF源功率產生 器相關之第二瞬時電壓或電流; 提供一第二比較器,用以將該第二瞬時電壓或電流與 儲存於該第二比較器内一檻值位準進行比較; 每當所感測到之一第二瞬時電壓或電流超過該檻值位 準時,傳送該第二比較器所發送之一電弧旗標訊號;200917339 X. Patent Application Range: 1. A method for detecting an arc in a plasma reactor, the plasma reaction comprising an RF or electric power generator for processing a semiconductor workpiece or crystal carried by a workpiece support base Round, the susceptor having at least one electrical method includes the steps of: sensing a first instantaneous voltage current on a semiconductor coupled to the wafer; providing a first comparator for the instantaneous voltage or current Comparing a threshold value in the comparator for comparison; transmitting an arc flag signal sent by the comparator when one of the sensed instantaneous voltages or currents exceeds the value; and echoing the arc flag Signal, and turn off the power generator. 2. If you apply for a patent scope! The method described in the above, further comprising: downloading a program scheme, which is executed by the reactor; in each program step of the program scheme, determining the comparator according to the RF power level of each step The value level, which exceeds the expected noise level of one of the program steps; at the beginning of each of the program steps, the original value of the comparator is replaced by one of the threshold values determined for each current program. The planting level 3' is as described in claim 2 of the patent application, and further includes the following steps for each process step 'according to the upper pole of the reactor and the wafer level, or the electrical and storage level Step: Refer to the threshold value step: Arc 28 200917339 Related consumables usage history, adjust the threshold value determined in the procedure step. 4. The method of claim 3, further comprising the steps of: after adjusting the threshold value, determining whether a threshold value is generated which is equal to or exceeds an expected instantaneous voltage or current level of an arc phenomenon Standard and send this information to a user interface. 5. The method of claim 1, further comprising the steps of: sensing a second instantaneous voltage or current associated with an RF source power generator at a selected location in the reactor; providing a second comparison Comparing the second instantaneous voltage or current with a threshold value stored in the second comparator; transmitting whenever a second instantaneous voltage or current sensed exceeds the threshold value An arc flag signal sent by the second comparator; 回應該第二比較器所發送之該電弧旗標訊號,而關閉 該源功率產生器;及 通知一使用者介面發送該電弧旗標之該比較器之識別 符,或與發送該電弧旗標之該比較器相關之反應器耗材組 件之識別符。 6 ·如申請專利範圍第5項所述之方法,更包含以下步驟: 下載一程序方案,其由該反應器執行; 29 200917339 對該些比較器中每 功率位準,決定每 過該程序步驟之一 在該程序方案之每一程序步驟令針 一比較器,依據每—步驟所指定之Rf 比較器之一檻值位準,該檻值位準超 預期雜訊位準; 以針對每一現行程序步驟 較器之原有檻值位準。 在每一程序步驟之—開始, 所決定之一檻值位準來取代該比 一…利範圍第6項所述之方法,更包含以 . 針對每一程序步驟及每-比較器,㈣ 該比較器相關之耗材使用歷史 ·^ 、 的該楹值位準。 〜序步驟中已決定 8·如中請專利範圍第7項所述之方法,更包含以下 在調整該檀值位準後’判定是否產生一檀等 於或超過一電故規务一, 再等 現象之預期瞬時電壓或電流位準,为— 應比較器或耗材之識別符之使用者介面。 相 9. -種監視-電裂反應器之一腔室中電弧之方法, 器包含該腔室,該腔室具有複數, 诂I廄宙装知从 午應用盗及與該歧 功率應用盗耦接之複數功率產生器, 一 座,其具有一工件支衩面 工件支撐基 件支拉面,該方法包含以下步驟. 依據—程序方案實現一電漿程戽斗 m装“ 序’该程序方案包括- 連串由程序控制器所控制的程 30 200917339 藉由耦接至該些功率應用器及耦接至該些工件支撐基 座之個別感測器,監視電壓或電流; 在每一程序步驟中針對該些感測器中每一者,決定一 電弧偵測檻值,其值高於一雜訊位準; 藉由個別電弧偵測比較器,將該個別感測器之輸出訊 號與針對該個別感測器所決定之該檻值進行比較,及若該 輸出訊號超過該檻值,則發送一電弧偵測旗標; 广 判定引起一電弧偵測旗標之相應感測器之位置,並顯 示該位置於一使用者介面上;及 回應該電弧旗標,而關閉該功率產生器。 10.如申請專利範圍第9項所述之方法,其中該反應器更包 含一具有複數璋之區域網路,該控制器鏈結至該些埠中之 一者,該些產生器包含複數介面,其鏈結至該些埠中個別 複數埠並由個別裝置位址加以識別,該方法更包含以下步 驟: C…: ' 鏈結每一該些比較器至該些埠中其它個別複數埠,並 指派一個別獨特裝置位址給每一該比較器。 1 1 ·如申請專利範圍第1 0項所述之方法,更包含以下步驟: 程式設計該控制器,使其透過該區域網路下載一連串 程序步驟所用之該些檻值給該些比較器之個別複數比較 器。 31 200917339 1 2.如申請專利範圍第1 1項所述之方法,更包含以下步驟: 程式設計該控制器,使其接收由該些比較器所發送之 電弧旗標,並透過該區域網路執行關閉該些產生器。 1 3 .如申請專利範圍第1 2項所述之方法,更包含以下步驟: 程式設計該控制器,使其依據透過該區域網路所接收 到的一電弧旗標中包含的一裝置位址,來識別電弧旗標位 置。 14.如申請專利範圍第9項所述之方法,其中該反應器更包 含一數位輸入/輸出(DIΟ)網路,該網路具有專用以自個別 DIO感測器繼電器至該控制器之間進行傳輸之個別複數通 道,及專用以自該控制器至該反應器之個別功率產生器之 間進行傳輸之個別複數通道,該方法更包含以下步驟:Retrieving the arc flag signal sent by the second comparator, and turning off the source power generator; and notifying a user interface to send the identifier of the comparator of the arc flag, or sending the arc flag The identifier of the reactor consumable component associated with the comparator. 6) The method of claim 5, further comprising the steps of: downloading a program scheme, which is executed by the reactor; 29 200917339 determining, for each power level in the comparators, each step of the program One of the program steps in the program protocol is a comparator, according to one of the Rf comparators specified in each step, the threshold value exceeds the expected noise level; The current procedure steps are compared to the original threshold value of the device. At the beginning of each program step, one of the determined threshold levels is substituted for the method described in item 6 of the range of ..., for each program step and per-comparator, (4) The value of the threshold value of the comparator-related consumables usage history·^. The method described in item 7 of the patent application has been determined. The method includes the following: after adjusting the level of the value of the value of the value of the value of the value of the value of the value of the value of the value of the value of The expected instantaneous voltage or current level of the phenomenon is the user interface of the identifier of the comparator or consumable. Phase 9. - A method of monitoring the arc in one of the chambers of the electrolysis reactor, the chamber comprising the chamber, the chamber having a plurality of , 廄 从 从 应用 应用 应用 应用 应用 应用 应用 应用 应用 应用a plurality of power generators, one having a workpiece supporting surface workpiece supporting base supporting surface, the method comprising the following steps. According to the program program, a plasma processing bucket is installed, and the program program includes - The string is controlled by the program controller 30 200917339 to monitor the voltage or current by being coupled to the power applications and the individual sensors coupled to the workpiece support pedestals; Each of the sensors determines an arc detection threshold whose value is higher than a noise level; and the individual sensor detects the output signal of the individual sensor by the individual arc detection comparator Comparing the threshold determined by the detector, and if the output signal exceeds the threshold, transmitting an arc detection flag; widely determining the position of the corresponding sensor that causes an arc detection flag, and displaying the Position in one The method of claim 9, wherein the reactor further comprises a regional network having a plurality of turns, the control The processor is linked to one of the plurality of devices, the generators comprising a plurality of interfaces that are linked to the individual complexes of the plurality of frames and identified by individual device addresses, the method further comprising the steps of: C...: 'Link each of the comparators to other individual complexes in the array and assign a unique device address to each of the comparators. 1 1 · As described in claim 10, The method further includes the following steps: programming the controller to download the thresholds used in the series of program steps to the individual complex comparators of the comparators through the local area network. 31 200917339 1 2. If the patent application scope is 1 The method of claim 1, further comprising the steps of: programming the controller to receive the arc flag sent by the comparators, and performing the shutdown of the generators through the regional network. The method of claim 12, further comprising the steps of: programming the controller to be based on a device address included in an arc flag received through the area network; 14. The method of claim 9, wherein the reactor further comprises a digital input/output (DIΟ) network having dedicated to individual DIO sensor relays The individual complex channels for transmission between the controllers, and the individual complex channels dedicated for transmission between the controllers and the individual power generators of the reactor, the method further comprising the steps of: 將該些比較器中個別複數比較器之輸出端耦接至該些 感測器繼電器中個別複數繼電器。 15.如申請專利範圍第13項所述之方法,更包含以下步驟: 將該些電弧旗標位置與該反應器之相應耗材組件建立 聯結關係,及識別相應每一電弧旗標之該些耗材組件並提 供給一使用者介面。 32The outputs of the individual complex comparators of the comparators are coupled to individual complex relays of the plurality of sensor relays. 15. The method of claim 13, further comprising the steps of: establishing a relationship between the arc flag positions and corresponding consumable components of the reactor, and identifying the consumables corresponding to each arc flag The components are provided to a user interface. 32
TW97130889A 2007-08-15 2008-08-13 Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation TWI436406B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/893,355 US7768269B2 (en) 2007-08-15 2007-08-15 Method of multi-location ARC sensing with adaptive threshold comparison
US11/893,390 US7750645B2 (en) 2007-08-15 2007-08-15 Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation

Publications (2)

Publication Number Publication Date
TW200917339A true TW200917339A (en) 2009-04-16
TWI436406B TWI436406B (en) 2014-05-01

Family

ID=40350974

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97130889A TWI436406B (en) 2007-08-15 2008-08-13 Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation

Country Status (2)

Country Link
TW (1) TWI436406B (en)
WO (1) WO2009023133A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616959A (en) * 2010-03-01 2015-05-13 应用材料公司 Physical Vapor Deposition With A Variable Capacitive Tuner and Feedback Circuit
TWI603651B (en) * 2013-03-13 2017-10-21 蘭姆研究公司 Chamber matching using voltage control mode
CN107293465A (en) * 2016-03-31 2017-10-24 中微半导体设备(上海)有限公司 A kind of plasma arc monitoring method and device
TWI720536B (en) * 2018-07-13 2021-03-01 台灣積體電路製造股份有限公司 Wafer processing method and wafer processing module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736944B2 (en) * 2002-04-12 2004-05-18 Schneider Automation Inc. Apparatus and method for arc detection
US7262606B2 (en) * 2005-03-26 2007-08-28 Huettinger Elektronik Gmbh + Co. Kg Method of arc detection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616959A (en) * 2010-03-01 2015-05-13 应用材料公司 Physical Vapor Deposition With A Variable Capacitive Tuner and Feedback Circuit
CN104616959B (en) * 2010-03-01 2017-06-09 应用材料公司 The physical vapour deposition (PVD) of tool variable capacitance tuner and feedback circuit
TWI603651B (en) * 2013-03-13 2017-10-21 蘭姆研究公司 Chamber matching using voltage control mode
CN107293465A (en) * 2016-03-31 2017-10-24 中微半导体设备(上海)有限公司 A kind of plasma arc monitoring method and device
TWI610332B (en) * 2016-03-31 2018-01-01 中微半導體設備(上海)有限公司 Plasma arc monitoring method and device
TWI720536B (en) * 2018-07-13 2021-03-01 台灣積體電路製造股份有限公司 Wafer processing method and wafer processing module

Also Published As

Publication number Publication date
WO2009023133A1 (en) 2009-02-19
TWI436406B (en) 2014-05-01

Similar Documents

Publication Publication Date Title
TWI433198B (en) Plasma reactor for wafer level arc detection at an rf bias impedance match to the pedestal electrode
US7768269B2 (en) Method of multi-location ARC sensing with adaptive threshold comparison
US7737702B2 (en) Apparatus for wafer level arc detection at an electrostatic chuck electrode
US7733095B2 (en) Apparatus for wafer level arc detection at an RF bias impedance match to the pedestal electrode
TWI430319B (en) Plasma reactor system with multi-location arc threshold comparators and communication channels for carrying arc detection flags and threshold updating
US7750645B2 (en) Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation
CN103098195B (en) For utilizing the polar region of lifter pin electrostatic de-chucking
US8377255B2 (en) Plasma processing apparatus and method of controlling distribution of a plasma therein
KR101644257B1 (en) Substrate processing system, management device, and display method
TW200403786A (en) Method for performing real time arcing detection
KR101171399B1 (en) Control system for a sputtering system
TW200917339A (en) Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation
US20100271744A1 (en) System and method of sensing and removing residual charge from a processed wafer
KR20140104380A (en) Plasma processing apparatus and plasma processing method
US11387135B2 (en) Conductive wafer lift pin o-ring gripper with resistor
JP2021132190A (en) Substrate processing apparatus and mounting table
US11908665B2 (en) Plasma processing apparatus and measurement method
KR101302158B1 (en) Plasma processing apparatus
TW202314777A (en) Hardware switch on main feed line in a radio frequency plasma processing chamber
KR20140137965A (en) Inductively coupled plasma processing apparatus and control method thereof
JP2023550342A (en) Plasma uniformity control using static magnetic fields
TW202410270A (en) Multi-modal electrostatic chucking
JP2023514548A (en) RF signal filter configuration for plasma processing system
JP2020106497A (en) Resistance measurement jig and switching method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees