TWI431906B - Dc/dc converter, controller and control method thereof - Google Patents

Dc/dc converter, controller and control method thereof Download PDF

Info

Publication number
TWI431906B
TWI431906B TW100131405A TW100131405A TWI431906B TW I431906 B TWI431906 B TW I431906B TW 100131405 A TW100131405 A TW 100131405A TW 100131405 A TW100131405 A TW 100131405A TW I431906 B TWI431906 B TW I431906B
Authority
TW
Taiwan
Prior art keywords
voltage
signal
energy storage
storage element
ramp
Prior art date
Application number
TW100131405A
Other languages
Chinese (zh)
Other versions
TW201223088A (en
Inventor
Gang Li
Fengjiang Zhang
Laszlo Lipcsei
Original Assignee
O2Micro Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/874,438 external-priority patent/US9059632B2/en
Application filed by O2Micro Int Ltd filed Critical O2Micro Int Ltd
Publication of TW201223088A publication Critical patent/TW201223088A/en
Application granted granted Critical
Publication of TWI431906B publication Critical patent/TWI431906B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

直流/直流轉換器及其控制器及電流控制方法DC/DC converter and its controller and current control method

本發明係有關一種控制電路,特別是一種具有恒定漣波幅度之控制電路。The present invention relates to a control circuit, and more particularly to a control circuit having a constant chopping amplitude.

直流/直流(DC/DC)轉換器可包括一控制器,以用於產生一脈波寬度調變(PWM)信號驅動一開關電路,進而控制直流/直流轉換器的輸出電壓。例如,控制器透過增加PWM信號的責任週期以增加輸出電壓,或者透過降低PWM信號的責任週期以減小輸出電壓。The DC/DC converter can include a controller for generating a pulse width modulation (PWM) signal to drive a switching circuit to control the output voltage of the DC/DC converter. For example, the controller increases the output voltage by increasing the duty cycle of the PWM signal, or reduces the output voltage by reducing the duty cycle of the PWM signal.

圖1A所示為傳統直流/直流轉換器中的控制器150。控制器150包括振盪器152、比較器154、運算轉導放大器156、以及電容158。振盪器152提供一振盪電壓160給比較器154的非反相輸入端。電容158上的參考電壓162被提供給比較器154的反相輸入端。比較器154比較振盪電壓160和參考電壓162,並且根據比較結果輸出一PWM信號168。參考電壓162係介於振盪電壓160的最大值和最小值之間的範圍內。如果參考電壓162增加,PWM信號168的責任週期則降低,那麼直流/直流轉換器的輸出電壓也將減小。如果參考電壓162減小,PWM信號168的責任週期將增加,那麼直流/直流轉換器的輸出電壓也將增加。Figure 1A shows the controller 150 in a conventional DC/DC converter. Controller 150 includes an oscillator 152, a comparator 154, an operational transconductance amplifier 156, and a capacitor 158. Oscillator 152 provides an oscillating voltage 160 to the non-inverting input of comparator 154. A reference voltage 162 on capacitor 158 is provided to the inverting input of comparator 154. The comparator 154 compares the oscillating voltage 160 with the reference voltage 162 and outputs a PWM signal 168 based on the comparison result. The reference voltage 162 is within a range between the maximum and minimum values of the oscillating voltage 160. If the reference voltage 162 increases and the duty cycle of the PWM signal 168 decreases, then the output voltage of the DC/DC converter will also decrease. If the reference voltage 162 decreases and the duty cycle of the PWM signal 168 will increase, then the output voltage of the DC/DC converter will also increase.

運算轉導放大器156接收一預設電壓166和指示直流/直流轉換器之輸出電壓的回授電壓164,並且提供一正比於預設電壓166和回授電壓164之間之差值的控制電流ICOMP 。運算轉導放大器156的輸出端耦接至電容158,使得控制電流ICOMP 可控制電容158上的參考電壓162。例如,如果回授電壓164大於預設電壓166,運算轉導放大器156則輸出控制電流ICOMP 以對電容158充電,進而增加參考電壓162。而輸出電壓則因此減小。如果回授電壓164小於預設電壓166,運算轉導放大器156則從電容158中吸收控制電流ICOMP ,進而減小參考電壓162。輸出電壓則因而增加。結果,直流/直流轉換器的輸出電壓可被調整至預設電壓166。The operational transconductance amplifier 156 receives a predetermined voltage 166 and a feedback voltage 164 indicative of the output voltage of the DC/DC converter, and provides a control current I that is proportional to the difference between the preset voltage 166 and the feedback voltage 164. COMP . The output of operational transduction amplifier 156 is coupled to capacitor 158 such that control current I COMP can control reference voltage 162 on capacitor 158. For example, if the feedback voltage 164 is greater than the predetermined voltage 166, the operational transconductance amplifier 156 outputs a control current I COMP to charge the capacitor 158, thereby increasing the reference voltage 162. The output voltage is therefore reduced. If the feedback voltage 164 is less than the predetermined voltage 166, the operational transconductance amplifier 156 sinks the control current I COMP from the capacitor 158, thereby reducing the reference voltage 162. The output voltage is thus increased. As a result, the output voltage of the DC/DC converter can be adjusted to the preset voltage 166.

然而,在這種傳統的控制器150中,振盪器152的功耗相對較高。此外,由於電容158的體積大,無法與比較器154和運算轉導放大器156一起整合至單一晶片中。再者,運算轉導放大器156的頻寬過窄使得運算轉導放大器156的回應延時。因此,控制器150無法準確地控制輸出電壓。However, in such a conventional controller 150, the power consumption of the oscillator 152 is relatively high. Moreover, since capacitor 158 is bulky, it cannot be integrated into a single wafer with comparator 154 and operational transconductance amplifier 156. Moreover, the bandwidth of the operational transconductance amplifier 156 is too narrow to allow the operational transduction amplifier 156 to respond to delays. Therefore, the controller 150 cannot accurately control the output voltage.

本發明的目的為提供一種控制器,包括:一斜坡信號產生器,提供流經一阻性元件的一控制電流,以控制儲存在一第一能量儲存元件的能量,並且基於儲存在該第一能量儲存元件中的能量產生一斜坡信號;以及一控制電路,連接至該斜坡信號產生器,調節該阻性元件一端之一電壓,進而控制該控制電流指示橫跨一第二能量儲存元件上的一電壓,並且基於該斜坡信號控制流經該第二能量儲存元件的一電流在一預設範圍內。It is an object of the present invention to provide a controller comprising: a ramp signal generator providing a control current flowing through a resistive element to control energy stored in a first energy storage element and based on being stored in the first The energy in the energy storage element generates a ramp signal; and a control circuit coupled to the ramp signal generator to adjust a voltage at one end of the resistive element to control the control current indicative across a second energy storage element a voltage, and controlling a current flowing through the second energy storage element to be within a predetermined range based on the ramp signal.

本發明還提供一種控制流經能量儲存元件之電流的方法,包括:提供流經一阻性元件的一控制電流,以控制儲存在一第二能量儲存元件的能量;調節該阻性元件一端之一電壓;基於該阻性元件一端之該電壓控制該控制電流指示橫跨一第一能量儲存元件上的一電壓;基於該儲存在該第二能量儲存元件的能量產生一斜坡信號;以及基於該斜坡信號控制該流經該第一能量儲存元件的一電流在一預設範圍內。The present invention also provides a method of controlling current flow through an energy storage element, comprising: providing a control current flowing through a resistive element to control energy stored in a second energy storage element; adjusting one end of the resistive element a voltage; controlling the control current based on the voltage at one end of the resistive element to indicate a voltage across a first energy storage element; generating a ramp signal based on the energy stored in the second energy storage element; The ramp signal controls a current flowing through the first energy storage element within a predetermined range.

本發明還提供一種直流/直流轉換器,包括:一第一能量儲存元件,提供該直流/直流轉換器輸出一輸出電壓;一對開關,連接至該第一能量儲存元件;以及一控制器,連接至該第一能量儲存元件和該對開關,提供流經一阻性元件的一控制電流,以控制儲存在一第二能量儲存元件的一能量,基於儲存在該第二能量儲存元件中的該能量產生一斜坡信號,透過調節該阻性元件一端之一電壓控制該控制電流指示橫跨該第一能量儲存元件上的一電壓,並且基於該斜坡信號控制該對開關進而控制該輸出電壓和流經該第一能量儲存元件的一電流。The present invention also provides a DC/DC converter comprising: a first energy storage component providing the DC/DC converter output an output voltage; a pair of switches coupled to the first energy storage component; and a controller Connecting to the first energy storage element and the pair of switches, providing a control current flowing through a resistive element to control an energy stored in a second energy storage element based on being stored in the second energy storage element The energy generates a ramp signal, and the voltage of one end of the resistive element is controlled to control the control current to indicate a voltage across the first energy storage element, and the pair of switches are controlled based on the ramp signal to control the output voltage and A current flowing through the first energy storage element.

以下將對本發明的實施例給出詳細的說明。雖然本發明將結合實施例進行闡述,但應理解這並非意指將本發明限定於這些實施例。相反地,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種變化、修改和均等物。A detailed description of the embodiments of the present invention will be given below. While the invention will be described in conjunction with the embodiments, it is understood that the invention is not limited to the embodiments. Rather, the invention is to cover various modifications, equivalents, and equivalents of the invention as defined by the scope of the appended claims.

此外,在以下對本發明的詳細描述中,為了提供針對本發明的完全的理解,提供了大量的具體細節。然而,於本技術領域中具有通常知識者將理解,沒有這些具體細節,本發明同樣可以實施。在另外的一些實例中,對於大家熟知的方法、程序、元件和電路未作詳細描述,以便於凸顯本發明之主旨。In addition, in the following detailed description of the embodiments of the invention However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail in order to facilitate the invention.

本發明提供了一種直流/直流轉換器(例如,降壓轉換器、升壓轉換器等等),以及控制直流/直流轉換器的控制器。有利之處在於,直流/直流轉換器的輸出電流具有恆定之漣波振幅,使得直流/直流轉換器的輸出電流和輸出電壓相對較穩定。控制器更準確地控制直流/直流轉換器的輸出電壓。此外,本發明省略了較高功耗的振盪器、較大體積的電容,以及頻寬較窄的運算轉導放大器。The present invention provides a DC/DC converter (e.g., a buck converter, a boost converter, etc.), and a controller that controls the DC/DC converter. Advantageously, the output current of the DC/DC converter has a constant chopping amplitude such that the output current and output voltage of the DC/DC converter are relatively stable. The controller more accurately controls the output voltage of the DC/DC converter. In addition, the present invention omits higher power consumption oscillators, larger volume capacitors, and narrower operational transconductance amplifiers.

圖1所示為根據本發明一實施例直流/直流轉換器100示意圖。直流/直流轉換器100包括控制電路102、驅動電路104、開關電路106,以及輸出電路108(或稱為能量儲存電路、濾波電路)。控制電路102產生一或多個控制信號給驅動電路104。例如,控制電路102產生PWM信號,以控制開關電路106。開關電路106包括一對開關。具體而言,高側開關110和低側開關112分別接收來自驅動電路104的控制信號,並且提供信號給輸出電路108以產生輸出電壓VOUT 。驅動電路104控制高側開關110和低側開關112,使得高側開關110和低側開關112各自處於導通或截止狀態。更具體而言,控制電路102提供一或多個PWM信號,透過改變PWM信號之責任週期進而控制高側開關110和低側開關112的導通狀態。1 is a schematic diagram of a DC/DC converter 100 in accordance with an embodiment of the present invention. The DC/DC converter 100 includes a control circuit 102, a drive circuit 104, a switch circuit 106, and an output circuit 108 (also referred to as an energy storage circuit, a filter circuit). Control circuit 102 generates one or more control signals to drive circuit 104. For example, control circuit 102 generates a PWM signal to control switching circuit 106. Switching circuit 106 includes a pair of switches. In particular, high side switch 110 and low side switch 112 receive control signals from drive circuit 104, respectively, and provide signals to output circuit 108 to produce output voltage VOUT . The drive circuit 104 controls the high side switch 110 and the low side switch 112 such that the high side switch 110 and the low side switch 112 are each in an on or off state. More specifically, the control circuit 102 provides one or more PWM signals to control the conduction states of the high side switch 110 and the low side switch 112 by changing the duty cycle of the PWM signal.

在一本實施例中,如果PWM信號為高電位,那麼高側開關110導通,而低側開關112截止。此狀態稱為“switch ON”狀態或者“TON_BUCK”狀態。在此狀態下,輸出電路108中的電感114透過高側開關110與標識為VIN 的輸入電壓連接。流經電感114的電流因而增加,並且將電荷儲存到輸出電路108中的電容116上。在圖1的實施例中,直流/直流轉換器100是一種降壓轉換器。因此,輸入電壓VIN 大於輸出電壓VOUT ,而橫跨電感114的電壓為正。流經電感114的電感電流IL1 增加,並且將磁場能儲存到電感114中。如果PWM信號為低電位,那麼高側開關110截止,而低側開關112導通。此狀態稱為“switch OFF”狀態或者“TOFF_BUCK”狀態。在此狀態下,橫跨電感114兩端的電壓為負。因此,電感114釋放儲存在其中的磁場能,並且提供輸出電壓VOUT 給電容116。所以,控制電路102基於其提供的PWM信號之責任週期來提供輸出電壓VOUT 。控制電路102還提供一致能信號(例如:低側開關致能信號,或LDR_EN信號)給驅動電路104。在本實施例中,LDR_EN信號由標識為“EN”的埠提供,並且控制高側開關110和低側開關112的狀態。In one embodiment, if the PWM signal is high, the high side switch 110 is turned "on" and the low side switch 112 is turned "off". This state is called the "switch ON" state or the "TON_BUCK" state. In this state, the inductor 114 in the output circuit 108 is coupled through the high side switch 110 to the input voltage identified as V IN . The current flowing through the inductor 114 thus increases and stores the charge onto the capacitor 116 in the output circuit 108. In the embodiment of Figure 1, the DC/DC converter 100 is a buck converter. Therefore, the input voltage V IN is greater than the output voltage V OUT and the voltage across the inductor 114 is positive. The inductor current I L1 flowing through the inductor 114 is increased and the magnetic field energy is stored into the inductor 114. If the PWM signal is low, the high side switch 110 is off and the low side switch 112 is on. This state is called the "switch OFF" state or the "TOFF_BUCK" state. In this state, the voltage across the inductor 114 is negative. Thus, the inductor 114 releases the magnetic field energy stored therein and provides an output voltage VOUT to the capacitor 116. Therefore, control circuit 102 provides an output voltage V OUT based on the duty cycle of the PWM signal it provides. Control circuit 102 also provides a consistent energy signal (eg, a low side switch enable signal, or an LDR_EN signal) to drive circuit 104. In the present embodiment, the LDR_EN signal is provided by 埠 identified as "EN" and controls the state of the high side switch 110 and the low side switch 112.

在本實施例中,控制電路102接收兩個電壓回授信號以產生PWM信號和LDR_EN信號。具體而言,標識為“VFB”的埠透過路徑120接收輸出電壓VOUT 。此外,控制電路102上標識為“LX”的埠透過另一路徑118接收電感114一端電壓。路徑118所提供的回授電壓以用於確定高側開關110和低側開關112的狀態。控制電路102包括一些用於設置與其相關參數之元件。舉例說明,電阻128、電阻124以及電容126與控制電路102連接,以用於設置參考電壓、參考電流、參考電壓擺動率等參數。In the present embodiment, control circuit 102 receives two voltage feedback signals to generate a PWM signal and an LDR_EN signal. Specifically, the 埠 transmission path 120 identified as "VFB" receives the output voltage V OUT . In addition, the NMOS identified as "LX" on control circuit 102 receives the voltage at one end of inductor 114 through another path 118. The feedback voltage provided by path 118 is used to determine the state of high side switch 110 and low side switch 112. Control circuit 102 includes some components for setting parameters associated therewith. For example, the resistor 128, the resistor 124, and the capacitor 126 are connected to the control circuit 102 for setting parameters such as a reference voltage, a reference current, a reference voltage swing rate, and the like.

圖2所示為根據本發明一實施例的開關狀態的示例性表格200。表格200描述了對應於LDR_EN信號和PWM信號電位值的高側開關110和低側開關112的狀態。此外,高側開關110和低側開關112的導通情況確定一種狀態。舉例說明,如果高側開關110導通並且低側開關112截止(例如,LDR_EN=1且PWM=1),此狀態確定為“TON_BUCK”狀態或者“switch ON”狀態。在TON_BUCK狀態下,電感114與輸入電壓VIN 連接。如果高側開關110截止並且低側開關112導通(例如,LDR_EN=1且PWM=0),此狀態確定為“TOFF_BUCK”狀態或者“switch OFF”狀態。在TOFF_BUCK狀態下,電感114與地電位連接。如果高側開關110和低側開關112均截止(例如,LDR_EN=0且PWM=0),此狀態確定為“SKIP”狀態。在SKIP狀態下,由於高側開關110和低側開關112均截止,電感114處於懸空狀態(例如,既沒有連接電壓源亦沒有接地)。因此,電感114在TON_BUCK狀態下與輸入電壓VIN 連接,在TOFF_BUCK狀態下與地電位連接,在SKIP狀態下懸空。2 shows an exemplary table 200 of switch states in accordance with an embodiment of the present invention. Table 200 describes the states of high side switch 110 and low side switch 112 corresponding to the LDR_EN signal and the PWM signal potential value. Further, the conduction of the high side switch 110 and the low side switch 112 determines a state. For example, if the high side switch 110 is on and the low side switch 112 is off (eg, LDR_EN = 1 and PWM = 1), this state is determined to be a "TON_BUCK" state or a "switch ON" state. In the TON_BUCK state, the inductor 114 is coupled to the input voltage V IN . If the high side switch 110 is off and the low side switch 112 is on (eg, LDR_EN = 1 and PWM = 0), this state is determined to be a "TOFF_BUCK" state or a "switch OFF" state. In the TOFF_BUCK state, the inductor 114 is connected to ground potential. If both the high side switch 110 and the low side switch 112 are off (eg, LDR_EN = 0 and PWM = 0), this state is determined to be the "SKIP" state. In the SKIP state, since both the high side switch 110 and the low side switch 112 are off, the inductor 114 is in a floating state (eg, neither a voltage source nor a ground is connected). Therefore, the inductor 114 is connected to the input voltage V IN in the TON_BUCK state, connected to the ground potential in the TOFF_BUCK state, and suspended in the SKIP state.

在TON_BUCK狀態下,橫跨電感114兩端的電壓約等於VIN -VOUT 。對於降壓轉換器來說,輸入電壓VIN 大於 輸出電壓VOUT ,橫跨電感114兩端的淨電壓為正。因此,流經電感114的電感電流IL1 依據以下方程式增加:dIL1 /dt=(VIN -VOUT )=△IL1 /TON (1)In the TON_BUCK state, the voltage across the inductor 114 is approximately equal to V IN -V OUT . For a buck converter, the input voltage V IN is greater than the output voltage V OUT and the net voltage across the inductor 114 is positive. Therefore, the inductor current I L1 flowing through the inductor 114 is increased according to the following equation: dI L1 /dt=(V IN -V OUT )=ΔI L1 /T ON (1)

方程式(1)中的VIN 表示直流/直流轉換器100的輸入電壓,VOUT 表示直流/直流轉換器100的輸出電壓,TON 表示高側開關110和低側開關112處於TON_BUCK狀態的時間,L表示電感114的電感值,△IL1 表示電感電流IL1 在TON_BUCK狀態期間的變化量。V IN in equation (1) represents the input voltage of the DC/DC converter 100, V OUT represents the output voltage of the DC/DC converter 100, and T ON represents the time when the high side switch 110 and the low side switch 112 are in the TON_BUCK state, L represents the inductance value of the inductor 114, and ΔI L1 represents the amount of change of the inductor current I L1 during the TON_BUCK state.

在TOFF_BUCK狀態下,橫跨電感114兩端的電壓等於輸出電壓VOUT 。然而,橫跨電感114兩端的電壓為反相極性,電感電流IL1 依據以下方程式減小:dIL1 /dt=-(VOUT )/L=△IL1 /TOFF (2)In the TOFF_BUCK state, the voltage across the inductor 114 is equal to the output voltage V OUT . However, the voltage across the inductor 114 is in opposite polarity, and the inductor current I L1 is reduced according to the following equation: dI L1 /dt=-(V OUT )/L=ΔI L1 /T OFF (2)

方程式(2)中的TOFF 表示高側開關110和低側開關112處於TOFF_BUCK狀態的時間,△IL1 表示電感電流IL1 在TOFF_BUCK狀態期間的變化量。T OFF in the equation (2) indicates the time when the high-side switch 110 and the low-side switch 112 are in the TOFF_BUCK state, and ΔI L1 represents the amount of change in the inductor current I L1 during the TOFF_BUCK state.

圖3所示為根據本發明一實施例直流/直流轉換器100A的示意圖。直流/直流轉換器100A是圖1中直流/直流轉換器100的一種舉例說明。在圖1和圖3中標識相同的元件具有相似的功能。直流/直流轉換器100A包括控制電路102A。控制電路102A可用於各種各樣的直流/直流轉換器100A中。舉例說明,直流/直流轉換器100A是一種包括控制電路102A、驅動電路104、包含高側開關110和低側開關112的開關電路106、以及輸出電路108的同步降壓轉換器。輸出電路108包括電感114和電容116。高側開關110連接在輸入電壓VIN 和切換節點122之間。低側開關112連接在切換節點122和地之間。切換節點122還與輸出電路108連接。3 is a schematic diagram of a DC/DC converter 100A in accordance with an embodiment of the present invention. The DC/DC converter 100A is an illustration of the DC/DC converter 100 of FIG. The same elements are identified in Figures 1 and 3 to have similar functions. The DC/DC converter 100A includes a control circuit 102A. Control circuit 102A can be used in a wide variety of DC/DC converters 100A. By way of example, DC/DC converter 100A is a synchronous buck converter that includes control circuit 102A, drive circuit 104, switch circuit 106 including high side switch 110 and low side switch 112, and output circuit 108. Output circuit 108 includes an inductor 114 and a capacitor 116. The high side switch 110 is connected between the input voltage V IN and the switching node 122. The low side switch 112 is connected between the switching node 122 and ground. Switching node 122 is also coupled to output circuit 108.

控制電路102A包括產生PWM信號和LDR_EN信號的脈波寬度調變電路352。回應於PWM信號和LDR_EN信號,驅動電路104控制高側開關110和低側開關112的狀態。Control circuit 102A includes a pulse width modulation circuit 352 that generates a PWM signal and an LDR_EN signal. In response to the PWM signal and the LDR_EN signal, the drive circuit 104 controls the states of the high side switch 110 and the low side switch 112.

控制電路102A接收指示切換節點122之電壓的輸入信號。控制電路102A還包括目標輸入埠SLEW以用於設置預期輸出電壓VSET 。舉例說明,在圖1的實施例中,對電容126的充電是基於電阻分壓器中的電阻124和電阻128的阻值以及參考電壓REF的值來實現。本領域技術人員熟知各種各樣的方法對電容126充電以產生目標電壓信號。此外,控制電路102A的VFB埠接收指示直流/直流轉換器100A輸出電壓VOUT 的回授信號。Control circuit 102A receives an input signal indicative of the voltage at switching node 122. Control circuit 102A also includes a target input 埠SLEW for setting the expected output voltage V SET . By way of example, in the embodiment of FIG. 1, charging of capacitor 126 is accomplished based on the resistance of resistor 124 and resistor 128 in the resistor divider and the value of reference voltage REF. A variety of methods are known to those skilled in the art to charge capacitor 126 to produce a target voltage signal. Further, the VFB of the control circuit 102A receives a feedback signal indicating the output voltage V OUT of the DC/DC converter 100A.

圖3中所示之控制電路102A包括連接至直流/直流轉換器100A之切換節點122的電阻320。流經電阻320的電流回應高側開關110和低側開關112的狀態(例如,TON_BUCK狀態、TOFF_BUCK狀態、或SKIP狀態)。控制電路102A還包括斜坡產生電路350,其產生斜坡信號312以回應流經電阻320的電流。脈波寬度調變電路352至少響應於斜坡信號312產生PWM信號。The control circuit 102A shown in FIG. 3 includes a resistor 320 coupled to the switching node 122 of the DC/DC converter 100A. The current flowing through resistor 320 is responsive to the state of high side switch 110 and low side switch 112 (eg, TON_BUCK state, TOFF_BUCK state, or SKIP state). Control circuit 102A also includes a ramp generation circuit 350 that generates ramp signal 312 in response to current flowing through resistor 320. Pulse width modulation circuit 352 generates a PWM signal in response to at least ramp signal 312.

在TON_BUCK狀態下,例如,當高側開關110導通並且低側開關112截止時,由於高側開關110導通,切換節點122與輸入電壓VIN 連接,所以切換節點122上之電壓等於輸入電壓VIN 。於是,流經電阻320的電流等於直流/直流轉換器100A的輸入電壓VIN 減去直流/直流轉換器100A的輸出電壓VOUT ,再除以電阻320的阻值。響應於流經電阻320的電流,斜坡產生電路350產生斜坡信號312的一部分(例如,上升部分),此將在圖4中詳細描述。In the TON_BUCK state, for example, when the high-side switch 110 is turned on and the low-side switch 112 is turned off, since the high-side switch 110 is turned on, the switching node 122 is connected to the input voltage V IN , so the voltage on the switching node 122 is equal to the input voltage V IN . Thus, the current flowing through the resistor 320 is equal to the input voltage V IN of the DC/DC converter 100A minus the output voltage V OUT of the DC/DC converter 100A, divided by the resistance of the resistor 320. In response to the current flowing through resistor 320, ramp generation circuit 350 generates a portion (eg, a rising portion) of ramp signal 312, which will be described in detail in FIG.

在TOFF_BUCK狀態下,例如,當高側開關110截止並且低側開關112導通時,由於切換節點122經由低側開關112接地,因此,切換節點122上之電壓等於零。於是,流經電阻320的電流等於零減去直流/直流轉換器100A的輸出電壓VOUT ,再除以電阻320的阻值。響應於流經電阻320的電流,斜坡產生電路350產生斜坡信號312的另一部分(例如,下降部分),此將在圖4中詳細描述。In the TOFF_BUCK state, for example, when the high side switch 110 is off and the low side switch 112 is on, since the switching node 122 is grounded via the low side switch 112, the voltage on the switching node 122 is equal to zero. Thus, the current flowing through resistor 320 is equal to zero minus the output voltage V OUT of DC/DC converter 100A divided by the resistance of resistor 320. In response to the current flowing through resistor 320, ramp generation circuit 350 produces another portion (e.g., a falling portion) of ramp signal 312, which will be described in detail in FIG.

在SKIP狀態下,當高側開關110和低側開關112均截止時,切換節點122上之電壓等於直流/直流轉換器100A的輸出電壓VOUT 。由於切換節點122上之電壓減去輸出電壓VOUT 再除以電阻320的阻值等於零,因此,流經電阻320的電流在SKIP狀態下等於零。響應於這個流經電阻320的電流,斜坡產生電路350產生斜坡信號312的另一部分(例如,趨於恒定部分),此將在圖4中詳細描述。In the SKIP state, when both the high side switch 110 and the low side switch 112 are off, the voltage on the switching node 122 is equal to the output voltage V OUT of the DC/DC converter 100A. Since the voltage on the switching node 122 minus the output voltage VOUT divided by the resistance of the resistor 320 is equal to zero, the current flowing through the resistor 320 is equal to zero in the SKIP state. In response to this current flowing through resistor 320, ramp generation circuit 350 produces another portion of ramp signal 312 (e.g., tends to a constant portion), which will be described in detail in FIG.

斜坡產生電路350包括緩衝器351和電流控制電流源324。緩衝器351的反向輸入與緩衝器351的輸出連接以提供負回授。緩衝器351的非反相輸入端接收指示直流/直流轉換器100A的輸出電壓(例如,預期輸出電壓VSET 或輸出電壓VOUT )。緩衝器351的輸出電壓因而緊緊地跟隨預期輸出電壓VSET 或輸出電壓VOUT 而變化。電流控制電流源324回應於流經電阻320的電流I_in,電流I_in則依賴高側開關110和低側開關112的狀態而變化。電流控制電流源324提供與電流I_in鏡像的電流I_out。在一實施例中,電流控制電流源324包括電流鏡,但並不以此為限。電流I_out對斜坡電容308充放電,以提供斜坡信號312給脈波寬度調變電路352中的第一比較器301和第二比較器302。The ramp generation circuit 350 includes a buffer 351 and a current control current source 324. The reverse input of buffer 351 is coupled to the output of buffer 351 to provide negative feedback. The non-inverting input of the buffer 351 receives an output voltage indicative of the DC/DC converter 100A (eg, an expected output voltage V SET or an output voltage V OUT ). The output voltage of the buffer 351 thus varies closely following the expected output voltage V SET or the output voltage V OUT . The current controlled current source 324 is responsive to the current I_in flowing through the resistor 320, which varies depending on the state of the high side switch 110 and the low side switch 112. Current controlled current source 324 provides current I_out that is mirrored by current I_in. In an embodiment, the current control current source 324 includes a current mirror, but is not limited thereto. Current I_out charges and discharges ramp capacitor 308 to provide ramp signal 312 to first comparator 301 and second comparator 302 in pulse width modulation circuit 352.

第一比較器301比較斜坡信號312和標稱電壓V2。在一實施例中,標稱電壓V2值為20毫伏。第一比較器301提供信號RAW_LDR_EN給反及閘311,反及閘311也接收SKIP信號並且提供LDR_EN信號給驅動電路104。第二比較器302比較斜坡信號312和參考電壓REF,並且提供輸出信號給正反器342的重設端“R”。正反器342的同相輸出端“Q”提供PWM信號給驅動電路104。The first comparator 301 compares the ramp signal 312 with the nominal voltage V2. In one embodiment, the nominal voltage V2 is 20 millivolts. The first comparator 301 provides a signal RAW_LDR_EN to the inverse gate 311, which also receives the SKIP signal and provides an LDR_EN signal to the driver circuit 104. The second comparator 302 compares the ramp signal 312 with the reference voltage REF and provides an output signal to the reset terminal "R" of the flip flop 342. The non-inverting output "Q" of the flip-flop 342 provides a PWM signal to the driver circuit 104.

PWM信號的責任週期與輸入電壓VIN 和輸出電壓VOUT (或預期輸出電壓VSET )之間之差值成反比。換言之,隨著該差值增加,PWM信號的責任週期減小進而縮短高側開關110和低側開關112的TON_BUCK時間。相反,隨著該差值減小,PWM信號的責任週期增加進而縮短高側開關110和低側開關112的TOFF_BUCK時間。在一實施例中,高側開關110和低側開關112的TON_BUCK時間(例如,時間TON )與輸入電壓VIN 和輸出電壓VOUT 之間之差值(例如,VIN -VOUT )或者與輸入電壓VIN 和預期輸出電壓VSET 之間之差值(例如,VIN -VSET )成反比。因此,每個TON_BUCK狀態週期中的電流變化量ΔIL1 恒定不變。此外,高側開關110和低側開關112的TOFF_BUCK時間(例如,時間TOFF )與輸出電壓VOUT 或預期輸出電壓VSET 成反比。因此,每個TOFF_BUCK狀態週期中的電流變化量ΔIL1 恒定不變。在一實施例中,每個TON_BUCK狀態週期中的電流變化量ΔIL1 和每個TOFF_BUCK狀態週期中的電流變化量ΔIL1 相等。換言之,控制電路102A是一種恒定漣波電流(COndtant-ripple-current,CRC)控制器,使控制電感電流IL1 具有恒定漣波。The duty cycle of the PWM signal is inversely proportional to the difference between the input voltage V IN and the output voltage V OUT (or the expected output voltage V SET ). In other words, as the difference increases, the duty cycle of the PWM signal decreases to shorten the TON_BUCK time of the high side switch 110 and the low side switch 112. Conversely, as the difference decreases, the duty cycle of the PWM signal increases to further shorten the TOFF_BUCK time of the high side switch 110 and the low side switch 112. In one embodiment, the difference between the TON_BUCK time (eg, time T ON ) of the high side switch 110 and the low side switch 112 and the input voltage V IN and the output voltage V OUT (eg, V IN -V OUT ) or It is inversely proportional to the difference between the input voltage V IN and the expected output voltage V SET (eg, V IN -V SET ). Therefore, the amount of current change ΔI L1 in each TON_BUCK state period is constant. Further, the high-side switch and the low side switch 110 TOFF_BUCK time (e.g., time T OFF) 112 and the output voltage V OUT or inversely proportional to the expected output voltage V SET. Therefore, the amount of current change ΔI L1 in each TOFF_BUCK state period is constant. In one embodiment, the current change amount per cycle [Delta] TON_BUCK state equal to L1 and the current change amount per cycle state TOFF_BUCK ΔI L1. In other words, the control circuit 102A is a constant chopping-current (CRC) controller that causes the control inductor current I L1 to have a constant chopping.

圖4所示為根據本發明一實施例的示例性時序圖400。以下將結合圖1、圖3和圖4闡述圖3中的控制電路102A的一些操作,包括斜坡信號312的產生過程。當控制電路102A啟動時,在圖1和圖3中所示的目標輸入埠SLEW上的SLEW電壓開始增加。此刻,指示輸出電壓VOUT 的回授電壓VFB為零。圖3中的第二比較器302感應到SLEW電壓大於回授電壓VFB,並且提供高電位給及閘322。此刻,第一比較器301的輸出(例如,信號RAW_LDR_EN)也為高電位。那麼,及閘322的輸入均為高電位,於是,及閘322輸出一高電位將正反器342置位。此刻,PWM信號為高電位。高側開關110導通,於是輸出電壓VOUT 和回授電壓VFB開始增加。在本實施例中,當SLEW電壓增加至一預設值(例如,預期輸出電壓VSET )時,SLEW電壓保持不變。FIG. 4 shows an exemplary timing diagram 400 in accordance with an embodiment of the present invention. Some of the operations of control circuit 102A of FIG. 3, including the generation of ramp signal 312, will be described below in conjunction with FIGS. 1, 3, and 4. When the control circuit 102A is activated, the SLEW voltage on the target input 埠SLEW shown in FIGS. 1 and 3 starts to increase. At this point, the feedback voltage VFB indicating the output voltage V OUT is zero. The second comparator 302 of FIG. 3 senses that the SLEW voltage is greater than the feedback voltage VFB and provides a high potential to the gate 322. At this point, the output of the first comparator 301 (eg, signal RAW_LDR_EN) is also high. Then, the input of the AND gate 322 is high, and the gate 322 outputs a high potential to set the flip-flop 342. At this moment, the PWM signal is high. The high side switch 110 is turned on, and then the output voltage V OUT and the feedback voltage VFB start to increase. In the present embodiment, when the SLEW voltage is increased to a predetermined value (for example, the expected output voltage V SET ), the SLEW voltage remains unchanged.

在t1到t2時刻期間,圖403中的PWM信號為高電位,波形404中的LDR_EN信號為高電位。於是高側開關110和低側開關112處於TON_BUCK狀態,即高側開關110導通,低側開關112截止。由於切換節點122與直流/直流轉換器100A的輸入電壓VIN 連接,所以在波形405中所示的t1到t2時刻期間,切換節點122電壓LX等於輸入電壓VINDuring the time t1 to t2, the PWM signal in FIG. 403 is at a high potential, and the LDR_EN signal in the waveform 404 is at a high potential. The high side switch 110 and the low side switch 112 are then in the TON_BUCK state, ie the high side switch 110 is turned on and the low side switch 112 is turned off. Since the switching node 122 is connected to the input voltage V IN of the DC/DC converter 100A, the switching node 122 voltage LX is equal to the input voltage V IN during the time t1 to t2 shown in the waveform 405.

在t1到t2時刻期間,流經電阻320的電流I_in由下列方程式給出:During the time t1 to t2, the current I_in flowing through the resistor 320 is given by the following equation:

I_in=(VIN -VOUT )/R1 (3)I_in=(V IN -V OUT )/R 1 (3)

其中,VIN 表示直流/直流轉換器100A的輸入電壓,VOUT 表示直流/直流轉換器100A的輸出電壓,R1表示電阻320的阻值。如果K=1/R1,那麼方程式(3)重寫後可為:Here, V IN represents the input voltage of the DC/DC converter 100A, V OUT represents the output voltage of the DC/DC converter 100A, and R1 represents the resistance of the resistor 320. If K=1/R1, then equation (3) can be rewritten as:

I_in=K*(VIN -VOUT ) (4)I_in=K*(V IN -V OUT ) (4)

由於電流I_out鏡像電流I_in,所以電流I_out等於電流I_in,並且可由方程式(3)和方程式(4)給出。在t1到t2時刻期間,波形407中的斜坡信號312以正比於電流I_out的速度增加。斜坡信號312增加直至等於輸入到第二比較器302反相輸入端的參考電壓REF。當斜坡信號312在t2時刻增加至參考電壓REF時,第二比較器302的輸出將正反器342復位。Since the current I_out mirrors the current I_in, the current I_out is equal to the current I_in and can be given by equation (3) and equation (4). During the time t1 to t2, the ramp signal 312 in waveform 407 increases at a rate proportional to the current I_out. The ramp signal 312 is incremented until equal to the reference voltage REF input to the inverting input of the second comparator 302. When the ramp signal 312 is incremented to the reference voltage REF at time t2, the output of the second comparator 302 resets the flip flop 342.

當正反器342在t2時刻復位時,正反器342的Q(同相輸出端)為低電位,於是波形403中的PWM信號為低電位。來自第一比較器301的信號RAW_LDR_EN(例如,波形402)為低電位,使得反及閘311的輸出(例如:波形404的LDR_EN信號)為高電位。因此,高側開關110和低側開關112在t2到t3時刻期間處於TOFF_BUCK狀態,即高側開關110截止,低側開關112導通。當高側開關110和低側開關112在TOFF_BUCK狀態下,由於切換節點122經由低側開關112接地,波形405所示的切換節點122電壓LX等於零。When the flip-flop 342 is reset at time t2, the Q (non-inverting output) of the flip-flop 342 is at a low potential, and thus the PWM signal in the waveform 403 is at a low potential. The signal RAW_LDR_EN (e.g., waveform 402) from the first comparator 301 is low, such that the output of the inverse gate 311 (e.g., the LDR_EN signal of waveform 404) is high. Therefore, the high side switch 110 and the low side switch 112 are in the TOFF_BUCK state during the time t2 to t3, that is, the high side switch 110 is turned off, and the low side switch 112 is turned on. When the high side switch 110 and the low side switch 112 are in the TOFF_BUCK state, since the switching node 122 is grounded via the low side switch 112, the switching node 122 voltage LX shown by the waveform 405 is equal to zero.

在t2到t3時刻期間,波形406中的電流I_in由下列方程式給出:During the time t2 to t3, the current I_in in the waveform 406 is given by the following equation:

I_in=(0-VOUT )/R1  (5)I_in=(0-V OUT )/R 1 (5)

若常數K為1/R1 ,則方程式(5)可改寫為:If the constant K is 1/R 1 , then equation (5) can be rewritten as:

I_in=-K*VOUT  (6)I_in=-K*V OUT (6)

由於電流I_out鏡像電流I_in,所以電流I_out等於電流I_in並且可由方程式(5)和方程式(6)給出。在t2到t3時刻期間,波形407中的斜坡信號312以正比於電流I_out的速度減小。斜坡信號312減小直至等於輸入到第一比較器301非反相輸入端的標稱電壓V2。當斜坡信號312在t3時刻減小至標稱電壓V2時,第一比較器301的輸出(例如,信號RAW_LDR_EN)變為高電位。當斜坡信號312在t3時刻減小至標稱電壓V2時,波形408所示的電感電流IL1 處於零交叉狀態。因此,控制電路102A不直接測量電感電流IL1 ,而是提供零交叉估算器估算電感電流IL1Since the current I_out mirrors the current I_in, the current I_out is equal to the current I_in and can be given by equations (5) and (6). During the time t2 to t3, the ramp signal 312 in waveform 407 decreases at a speed proportional to the current I_out. The ramp signal 312 is reduced until it is equal to the nominal voltage V2 input to the non-inverting input of the first comparator 301. When ramp signal 312 decreases to nominal voltage V2 at time t3, the output of first comparator 301 (eg, signal RAW_LDR_EN) goes high. When ramp signal 312 decreases to nominal voltage V2 at time t3, inductor current I L1 shown by waveform 408 is in a zero crossing state. Therefore, the control circuit 102A does not directly measure the inductor current I L1 , but provides a zero-cross estimator to estimate the inductor current I L1 .

如果SKIP信號在t3時刻也為高電位(例如,進而啟動SKIP狀態),那麼反及閘311的輸出(例如,波形404中的LDR_EN信號)為低電位。因此,在t3到t4時刻期間,控制電路102A處於SKIP狀態。回應於波形403所示的低電位PWM信號以及波形404所示的低電位LDR_EN信號,高側開關110和低側開關112均截止且處於SKIP狀態。在一實施例中,SKIP狀態在以下情況發生:當斜坡信號312減小至標稱電壓V2時,回授電壓VFB大於SLEW電壓。然而,如果當斜坡信號312減小至標稱電壓V2時,回授電壓VFB小於或等於SLEW電壓,及閘322將正反器342置位以輸出高電位PWM信號。換言之,如果當斜坡信號312減小至標稱電壓V2時回授電壓VFB小於或等於SLEW電壓,SKIP狀態將不會出現。If the SKIP signal is also high at time t3 (eg, to initiate the SKIP state), then the output of the inverse gate 311 (eg, the LDR_EN signal in waveform 404) is low. Therefore, during the time t3 to t4, the control circuit 102A is in the SKIP state. In response to the low potential PWM signal shown by waveform 403 and the low potential LDR_EN signal shown by waveform 404, both high side switch 110 and low side switch 112 are off and in the SKIP state. In one embodiment, the SKIP state occurs when the feedback signal VFB is greater than the SLEW voltage when the ramp signal 312 is reduced to the nominal voltage V2. However, if the feedback voltage VFB is less than or equal to the SLEW voltage when the ramp signal 312 is reduced to the nominal voltage V2, the gate 322 sets the flip-flop 342 to output a high-potential PWM signal. In other words, if the feedback voltage VFB is less than or equal to the SLEW voltage when the ramp signal 312 is reduced to the nominal voltage V2, the SKIP state will not occur.

因此,在SKIP狀態下(當高側開關110和低側開關112均截止時),波形405所示的切換節點122電壓LX等於直流/直流轉換器100A的輸出電壓VOUT 。此外,如波形406所示,在SKIP狀態下,由於切換節點122電壓減去輸出電壓VOUT 再除以電阻320的阻值等於零,流經電阻320的電流I_in以及電流I_out等於零。Therefore, in the SKIP state (when both the high side switch 110 and the low side switch 112 are off), the switching node 122 voltage LX shown by the waveform 405 is equal to the output voltage V OUT of the DC/DC converter 100A. Furthermore, as shown by waveform 406, in the SKIP state, current I_in flowing through resistor 320 and current I_out are equal to zero due to the voltage of switching node 122 minus the output voltage VOUT divided by the resistance of resistor 320 equal to zero.

在SKIP狀態開始後,控制電路102A保持高側開關110和低側開關112處於SKIP狀態直到回授電壓VFB指示的直流/直流轉換器100A的輸出電壓VOUT 下降至預設電壓值(例如,SLEW電壓)。After the start of the SKIP state, the control circuit 102A keeps the high side switch 110 and the low side switch 112 in the SKIP state until the output voltage V OUT of the DC/DC converter 100A indicated by the feedback voltage VFB drops to a preset voltage value (eg, SLEW) Voltage).

在t1到t2時刻期間,高側開關110導通,低側開關112截止,回授電壓VFB增加,斜率為正值。在t2到t3時刻期間,高側開關110截止,低側開關112導通,回授電壓VFB減小,直至在t4時刻等於SLEW電壓。在t3到t4時刻之間,高側開關110和低側開關112均截止。回授電壓VFB此時減小的速度比在t2到t3時刻期間減小的速度快。在t4時刻,第三比較器303的輸出為高電位。來自第三比較器303和第一比較器301的高電位使及閘322輸出高電位,進而將正反器342置位,於是波形403中的PWM信號轉為高電位。在t4到t6時刻期間,將重複上述過程。波形401中的回授電壓VFB在t3到t4時刻期間減小率取決於負載電流。例如,回授電壓VFB在小負載電流情況下的減小率低於在較大負載電流情況下的減小率。因此,與較大負載電流情況下相比,在小負載電流情況下的控制電路102A保持SKIP狀態的時間更長。During the period from t1 to t2, the high side switch 110 is turned on, the low side switch 112 is turned off, the feedback voltage VFB is increased, and the slope is positive. During the time t2 to t3, the high side switch 110 is turned off, the low side switch 112 is turned on, and the feedback voltage VFB is decreased until it is equal to the SLEW voltage at time t4. The high side switch 110 and the low side switch 112 are both turned off between time t3 and time t4. The feedback voltage VFB is reduced at this time faster than the speed reduced during the time t2 to t3. At time t4, the output of the third comparator 303 is at a high potential. The high potential from the third comparator 303 and the first comparator 301 causes the AND gate 322 to output a high potential, thereby setting the flip-flop 342, and the PWM signal in the waveform 403 is turned to a high potential. The above process will be repeated during the time t4 to t6. The rate of decrease of the feedback voltage VFB in the waveform 401 during the time t3 to t4 depends on the load current. For example, the rate of decrease of the feedback voltage VFB at the case of a small load current is lower than that at the case of a large load current. Therefore, the control circuit 102A in the case of a small load current maintains the SKIP state for a longer period of time than in the case of a larger load current.

返回圖3中,在t2到t3時刻期間或t5到t6時刻期間,可導通開關372以影響斜坡信號312的斜率,進而縮短TOFF_BUCK時間。及閘323的輸出控制開關372,並且當及閘323的輸入均為高電位時導通開關372。此情況在回授電壓VFB小於SLEW電壓使得第三比較器303的輸出為高電位,並且正反器342的QB(反相輸出端)為高電位時發生。換言之,如果在斜坡信號312減小至標稱電壓V2之前,回授電壓VFB減小至SLEW電壓,開關372被導通。與開關372截止的情況下相比,開關372導通情況下的TOFF_BUCK狀態時間縮短了。這是因為與開關372截止的情況下相比,在開關372導通的情況下斜坡信號312在TOFF_BUCK狀態下(例如,t2到t3時刻期間)的負值斜率會進一步地減小。更具體而言,在TOFF_BUCK狀態期間,如果開關372導通,將有額外電流經過電阻373流到地,那麼從緩衝器351輸出端流出的電流I_in增加。因此,放電電流I_out增加,並且斜坡信號312從參考電壓REF減小至標稱電壓V2所花的時間縮短。換句話說,TOFF_BUCK狀態的時間縮短了。可透過選擇電阻373確定TOFF_BUCK狀態被加速的比例。如果這種被加速的TOFF_BUCK狀態不符合要求,控制電路102A可以不包括開關372、電阻373,和及閘323。Returning to FIG. 3, during the time t2 to t3 or during the time t5 to t6, the switch 372 can be turned on to affect the slope of the ramp signal 312, thereby shortening the TOFF_BUCK time. The output of the AND gate 323 controls the switch 372, and turns on the switch 372 when the input of the AND gate 323 is high. This occurs when the feedback voltage VFB is less than the SLEW voltage such that the output of the third comparator 303 is high and the QB (inverting output) of the flip-flop 342 is high. In other words, if the feedback voltage VFB is reduced to the SLEW voltage before the ramp signal 312 is reduced to the nominal voltage V2, the switch 372 is turned "on". Compared with the case where the switch 372 is turned off, the TOFF_BUCK state time when the switch 372 is turned on is shortened. This is because the slope of the negative value of the ramp signal 312 in the TOFF_BUCK state (eg, during the time t2 to t3) is further reduced when the switch 372 is turned on, as compared with the case where the switch 372 is turned off. More specifically, during the TOFF_BUCK state, if the switch 372 is turned on, an additional current will flow through the resistor 373 to ground, and the current I_in flowing from the output of the buffer 351 is increased. Therefore, the discharge current I_out increases, and the time taken for the ramp signal 312 to decrease from the reference voltage REF to the nominal voltage V2 is shortened. In other words, the time of the TOFF_BUCK state is shortened. The ratio at which the TOFF_BUCK state is accelerated can be determined by selecting the resistor 373. If such an accelerated TOFF_BUCK state does not meet the requirements, control circuit 102A may not include switch 372, resistor 373, and AND gate 323.

根據圖3的實施例,在TON_BUCK狀態期間,得到如下方程式:According to the embodiment of Figure 3, during the TON_BUCK state, the following equation is obtained:

dV312 /dt=I_out/C1=ΔV312 /TON  (7a)dV 312 /dt=I_out/C1=ΔV 312 /T ON (7a)

其中,V312 表示斜坡信號312的電壓電位,C1表示斜坡電容308的電容值,ΔV312 表示電壓V312 在TON_BUCK狀態期間的變化量。由於電流I_in等於電流I_out,重寫方程式(7a)得:Wherein, V 312 represents the voltage potential of the ramp signal 312, C1 represents the capacitance value of the ramp capacitor 308, and ΔV 312 represents the amount of change of the voltage V 312 during the TON_BUCK state. Since the current I_in is equal to the current I_out, rewriting equation (7a) yields:

I_in/C1=ΔV312 /TON  (7b)I_in/C1=ΔV 312 /T ON (7b)

根據方程式(1)、(4)以及(7b),可得以下方程式:According to equations (1), (4), and (7b), the following program can be obtained:

ΔIL1 =(ΔV312 *C1)/(K*L) (8)ΔI L1 =(ΔV 312 *C1)/(K*L) (8)

在每個TON_BUCK狀態期間,方程式(8)中的電壓變化量ΔV312 可以為恒定值(例如,等於參考電壓REF減去標稱電壓V2)。因此,ΔIL1 也可以為恒定值。During each TON_BUCK state, the amount of voltage change ΔV 312 in equation (8) may be a constant value (eg, equal to the reference voltage REF minus the nominal voltage V2). Therefore, ΔI L1 can also be a constant value.

同理,在TOFF_BUCK狀態期間,得到如下方程式:Similarly, during the TOFF_BUCK state, the following equation is obtained:

dV312 /dt=I_out/C1=ΔV312 /TOFF  (9a)dV 312 /dt=I_out/C1=ΔV 312 /T OFF (9a)

方程式(9a)中的ΔV312 表示電壓V312 在TOFF_BUCK狀態期間的變化量。重寫方程式(9a)可得:ΔV 312 in equation (9a) represents the amount of change in voltage V 312 during the TOFF_BUCK state. Rewriting equation (9a) yields:

I_in/C1=ΔV312 /TOFF (9b)I_in/C1=ΔV 312 /T OFF (9b)

根據方程式(2)、(6)以及(9b),可得以下方程式:According to equations (2), (6), and (9b), the following program can be obtained:

ΔIL1 =(ΔV312 *C1)/(K*L) (10)ΔI L1 = (ΔV 312 *C1) / (K*L) (10)

在每個TOFF_BUCK狀態期間,方程式(10)中的電壓變化量ΔV312 可以為恒定值(例如,等於標稱電壓V2減去參考電壓REF)。因此,電流變化量ΔIL1 也可以為恒定值。由於每個TON_BUCK狀態期間的電壓變化量ΔV312 和每個TOFF_BUCK狀態期間的電壓變化量ΔV312 其量值相等,所以每個TON_BUCK狀態期間的電流變化量ΔIL1 和每個TOFF_BUCK狀態期間的電流變化量ΔIL1 其量值相等。換言之,控制電路102A是控制電感電流IL1 具有恒定漣波幅度的一種CRC控制器。During each TOFF_BUCK state, the amount of voltage change ΔV 312 in equation (10) may be a constant value (eg, equal to the nominal voltage V2 minus the reference voltage REF). Therefore, the current change amount ΔI L1 can also be a constant value. Since the voltage change amount ΔV 312 during each TON_BUCK state and the voltage change amount ΔV 312 during each TOFF_BUCK state are equal in magnitude, the current change amount ΔI L1 during each TON_BUCK state and the current change during each TOFF_BUCK state The quantity ΔI L1 is equal in magnitude. In other words, control circuit 102A is a CRC controller that controls inductor current I L1 to have a constant chopping amplitude.

在本實施例中,透過利用第三比較器303、及閘322、及閘323、正反器342、開關372,以及電阻373,控制電路102A調節輸出電壓VOUT 的平均電壓VAVE 至目標輸入埠SLEW上的預期輸出電壓VSET 。具體而言,在TOFF_BUCK狀態期間,當斜坡信號312減小至標稱電壓V2時,如果回授電壓VFB大於SLEW電壓,那麼平均電壓VAVE 大於預期輸出電壓VSET 。在此情況下,第三比較器303輸出低電位,經過及閘322和正反器342保持PWM信號為低電位,直到回授電壓VFB減小至SLEW電壓為止。因此,TOFF_BUCK狀態的時間增長,進而減小PWM信號的責任週期。平均電壓VAVE 因而減小。如果在斜坡信號312減小至標稱電壓V2之前,回授電壓VFB減小至SLEW電壓,那麼平均電壓VAVE 小於預期輸出電壓VSET 。在此情況下,第三比較器303輸出高電位給及閘323以導通開關372。TOFF_BUCK狀態的時間縮短,進而增加PWM信號的責任週期。平均電壓VAVE 因而增加。結果,平均電壓VAVE 被調節至預期輸出電壓VSETIn the present embodiment, by using the third comparator 303, the gate 322, the gate 323, the flip-flop 342, the switch 372, and the resistor 373, the control circuit 102A adjusts the average voltage V AVE of the output voltage V OUT to the target input.预期 The expected output voltage V SET on SLEW. Specifically, during the TOFF_BUCK state, when the ramp signal 312 is reduced to the nominal voltage V2, if the feedback voltage VFB is greater than the SLEW voltage, then the average voltage V AVE is greater than the expected output voltage V SET . In this case, the third comparator 303 outputs a low potential, and the AND gate 322 and the flip-flop 342 keep the PWM signal low until the feedback voltage VFB decreases to the SLEW voltage. Therefore, the time of the TOFF_BUCK state is increased, thereby reducing the duty cycle of the PWM signal. The average voltage V AVE is thus reduced. If the feedback voltage VFB is reduced to the SLEW voltage before the ramp signal 312 is reduced to the nominal voltage V2, then the average voltage V AVE is less than the expected output voltage V SET . In this case, the third comparator 303 outputs a high potential to the gate 323 to turn on the switch 372. The time in the TOFF_BUCK state is shortened, which in turn increases the duty cycle of the PWM signal. The average voltage V AVE is thus increased. As a result, the average voltage V AVE is adjusted to the expected output voltage V SET .

圖5所示為根據本發明一實施例的直流/直流轉換器100B的示意圖。直流/直流轉換器100B是圖1中直流/直流轉換器100的一種舉例說明。在圖1、圖3和圖5中標識相同的元件具有相似的功能。直流/直流轉換器100B包括控制電路102B。控制電路102B包括連接至直流/直流轉換器100B切換節點122的電阻520。控制電路102B包括斜坡產生電路550,提供斜坡信號512以回應流過電阻520的電流。控制電路102B還包括脈波寬度調變電路552,產生PWM信號以至少響應斜坡信號512。FIG. 5 is a schematic diagram of a DC/DC converter 100B in accordance with an embodiment of the present invention. The DC/DC converter 100B is an illustration of the DC/DC converter 100 of FIG. The same elements are identified in Figures 1, 3 and 5 to have similar functions. The DC/DC converter 100B includes a control circuit 102B. Control circuit 102B includes a resistor 520 that is coupled to DC/DC converter 100B switching node 122. Control circuit 102B includes ramp generation circuit 550 that provides ramp signal 512 in response to current flowing through resistor 520. Control circuit 102B also includes pulse width modulation circuit 552 that generates a PWM signal to respond at least to ramp signal 512.

斜坡產生電路550包括透過路徑509與電阻520串聯的斜坡電容508。運算放大器551有一個連接至節點506的反相輸入端,以及用於接收指示直流/直流轉換器100B輸出電壓(例如:預期輸出電壓VSET 或輸出電壓VOUT )的回授電壓的非反相輸入端。運算放大器551用作積分器。如果非反相輸入端接收輸出電壓VOUT ,電阻520一端(節點506)之電壓等於輸出電壓VOUT 。流過電阻520的電流也流過斜坡電容508,對斜坡電容508充電或放電,進而控制斜坡信號512。The ramp generation circuit 550 includes a ramp capacitor 508 that is coupled in series with the resistor 520 via a path 509. Operational amplifier 551 has an inverting input coupled to node 506 and a non-inverting phase for receiving a feedback voltage indicative of a DC/DC converter 100B output voltage (eg, expected output voltage V SET or output voltage V OUT ) Input. The operational amplifier 551 is used as an integrator. If the non-inverting input receives the output voltage V OUT , the voltage at one end of resistor 520 (node 506) is equal to the output voltage V OUT . Current flowing through resistor 520 also flows through ramp capacitor 508, charging or discharging ramp capacitor 508, thereby controlling ramp signal 512.

斜坡信號512被提供給第一比較器501的非反相輸入端和第二比較器502的反相輸入端。標稱電壓V2被提供給第一比較器501的反相輸入端。參考電壓REF被提供給第二比較器502的非反相輸入端。在一實施例中,參考電壓REF等於0.01伏特,標稱電壓V2等於2.5伏特。The ramp signal 512 is provided to the non-inverting input of the first comparator 501 and the inverting input of the second comparator 502. The nominal voltage V2 is provided to the inverting input of the first comparator 501. The reference voltage REF is provided to the non-inverting input of the second comparator 502. In one embodiment, the reference voltage REF is equal to 0.01 volts and the nominal voltage V2 is equal to 2.5 volts.

圖6所示為根據本發明一實施例的示例性時序波形600。以下將結合圖5闡述圖6中的控制電路102B的一些操作,包括斜坡信號512的產生過程。在t1到t2時刻期間,波形601中的PWM信號為高電位,波形602中的LDR_EN信號也為高電位。因此,高側開關110導通,低側開關112截止。在t1到t2時刻期間,由於切換節點122與的直流/直流轉換器100B的輸入電壓VIN 連接,波形603所示的切換節點122電壓LX等於輸入電壓VIN 。在t1到t2時刻期間,波形604中流過電阻520並且流過斜坡電容508的電流I_in(或I(C1))由方程式(3)和(4)給出。回應於流過斜坡電容508的電流,波形605的斜坡信號512在t1到t2時刻期間減小。在t1到t2時刻期間,由於波形604中的電流I_in經由運算放大器551流過斜坡電容508,斜坡信號512的斜率為負值。斜坡信號512因而與圖4中的斜坡信號312反相。此外,提供斜坡信號512的斜坡電容508的極性佈置與提供圖4所示的斜坡信號312的斜坡電容308的極性佈置相反。FIG. 6 shows an exemplary timing waveform 600 in accordance with an embodiment of the present invention. Some of the operations of control circuit 102B of FIG. 6 including the generation of ramp signal 512 will be described below in conjunction with FIG. During the time t1 to t2, the PWM signal in waveform 601 is at a high potential, and the LDR_EN signal in waveform 602 is also at a high potential. Therefore, the high side switch 110 is turned on and the low side switch 112 is turned off. During the time t1 to t2, since the switching node 122 is connected to the input voltage V IN of the DC/DC converter 100B, the switching node 122 voltage LX shown by the waveform 603 is equal to the input voltage V IN . During the time t1 to t2, the current I_in (or I(C1)) flowing through the resistor 520 in the waveform 604 and flowing through the ramp capacitor 508 is given by equations (3) and (4). In response to the current flowing through the ramp capacitor 508, the ramp signal 512 of the waveform 605 decreases during the time t1 to t2. During the time t1 to t2, since the current I_in in the waveform 604 flows through the ramp capacitor 508 via the operational amplifier 551, the slope of the ramp signal 512 is a negative value. The ramp signal 512 is thus inverted from the ramp signal 312 in FIG. Moreover, the polarity arrangement of the ramp capacitance 508 providing the ramp signal 512 is opposite to the polarity arrangement of the ramp capacitance 308 providing the ramp signal 312 shown in FIG.

斜坡信號512減小直至等於輸入到第二比較器502的非反相輸入端的參考電壓REF。當斜坡信號512在t2時刻減小至參考電壓REF時,第二比較器502的輸出將正反器542復位。當正反器542在t2時刻位時,正反器542的Q(同相輸出端)為低電位,波形601中的PWM信號因而為低電位。如波形606所示,第一比較器501輸出的信號RAW_LDR_EN在t2到t3時刻期間為低電位,所以反及閘511的輸出(例如:波形602中的LDR_EN信號)為高電位。因此,高側開關110和低側開關112在t2到t3時刻期間處於TOFF_BUCK狀態(高側開關110截止,低側開關112導通)。當高側開關110和低側開關112在TOFF_BUCK狀態時,由於切換節點122經過低側開關112接地,波形603所示的切換節點122電壓LX等於零。The ramp signal 512 is reduced until equal to the reference voltage REF input to the non-inverting input of the second comparator 502. When the ramp signal 512 is reduced to the reference voltage REF at time t2, the output of the second comparator 502 resets the flip flop 542. When the flip-flop 542 is at the time t2, the Q (non-inverting output) of the flip-flop 542 is at a low potential, and the PWM signal in the waveform 601 is thus at a low potential. As shown by the waveform 606, the signal RAW_LDR_EN outputted by the first comparator 501 is low during the time t2 to t3, so the output of the opposite gate 511 (for example, the LDR_EN signal in the waveform 602) is high. Therefore, the high side switch 110 and the low side switch 112 are in the TOFF_BUCK state during the time t2 to t3 (the high side switch 110 is turned off, and the low side switch 112 is turned on). When the high side switch 110 and the low side switch 112 are in the TOFF_BUCK state, since the switching node 122 is grounded via the low side switch 112, the switching node 122 voltage LX shown by the waveform 603 is equal to zero.

在t2到t3時刻期間,波形604中流過電阻520並且流過斜坡電容508的電流I_in(或I(C1))由方程式(5)和(6)給出。那麼,斜坡信號512以正比於電流I_in和I(C1)的速度增加,直到在t3時刻等於標稱電壓V2。在t3時刻,第一比較器501的輸出(例如:波形606的信號RAW_LDR_EN)轉為高電位。如果SKIP信號在t3時刻也為高電位(例如:SKIP狀態被啟動),反及閘511的輸出(例如:波形602中的LDR_EN信號)為低電位。在t3時刻,如果回授電壓VFB大於SLEW,及閘522接收來自第三比較器503的低電位並且輸出低電位給正反器542,以保持PWM信號為低電位。因此,在t3到t4時刻期間,控制電路102B處於SKIP狀態。回應於波形601中低電位PWM信號和波形602中低電位LDR_EN信號,高側開關110和低側開關112均截止。然而,如果當斜坡信號512增加至標稱電壓V2時回授電壓VFB小於或等於SLEW電壓,SKIP狀態不發生而是直接進入TON_BUCK狀態。During the time t2 to t3, the current I_in (or I(C1)) flowing through the resistor 520 in the waveform 604 and flowing through the ramp capacitor 508 is given by equations (5) and (6). Then, the ramp signal 512 is increased at a rate proportional to the currents I_in and I(C1) until it is equal to the nominal voltage V2 at time t3. At time t3, the output of the first comparator 501 (eg, the signal RAW_LDR_EN of the waveform 606) is turned to a high potential. If the SKIP signal is also high at time t3 (eg, the SKIP state is enabled), the output of the inverse gate 511 (eg, the LDR_EN signal in waveform 602) is low. At time t3, if the feedback voltage VFB is greater than SLEW, the AND gate 522 receives the low potential from the third comparator 503 and outputs a low potential to the flip-flop 542 to keep the PWM signal low. Therefore, during the time t3 to t4, the control circuit 102B is in the SKIP state. In response to the low potential PWM signal in waveform 601 and the low potential LDR_EN signal in waveform 602, both high side switch 110 and low side switch 112 are off. However, if the feedback voltage VFB is less than or equal to the SLEW voltage when the ramp signal 512 is increased to the nominal voltage V2, the SKIP state does not occur but directly enters the TON_BUCK state.

因此,在SKIP狀態下(當高側開關110和低側開關112均截止時),波形603所示的切換節點122電壓LX等於直流/直流轉換器100B的輸出電壓VOUT 。此外,流過電阻520和斜坡電容508的電流在SKIP狀態下為零。控制電路102B保持高側開關110和低側開關112處於SKIP狀態直到波形607中的回授電壓VFB所指示的直流/直流轉換器100B的輸出電壓VOUT 下降至預設電壓值(例如:SLEW電壓)。當這種情況在t4時刻發生時,圖5的第三比較器503的輸出轉為高電位。來自第三比較器503和第一比較器501的高電位使圖5中的及閘522輸出高電位,將正反器542置位,進而使得波形601中的PWM信號轉為高電位。在t4到t6時刻期間,將重複上述過程。Therefore, in the SKIP state (when both the high side switch 110 and the low side switch 112 are off), the switching node 122 voltage LX shown by the waveform 603 is equal to the output voltage V OUT of the DC/DC converter 100B. In addition, the current flowing through resistor 520 and ramp capacitor 508 is zero in the SKIP state. The control circuit 102B keeps the high side switch 110 and the low side switch 112 in the SKIP state until the output voltage V OUT of the DC/DC converter 100B indicated by the feedback voltage VFB in the waveform 607 drops to a preset voltage value (eg, SLEW voltage) ). When this happens at time t4, the output of the third comparator 503 of Fig. 5 turns to a high potential. The high potential from the third comparator 503 and the first comparator 501 causes the AND gate 522 of FIG. 5 to output a high potential, and the flip-flop 542 is set, thereby causing the PWM signal in the waveform 601 to go high. The above process will be repeated during the time t4 to t6.

控制電路102B是控制電感電流IL1 具有恒定漣波幅度的一種CRC控制器。具體而言,在TON_BUCK狀態下,得到下列如下方程式:Control circuit 102B is a CRC controller that controls inductor current I L1 to have a constant chopping amplitude. Specifically, in the TON_BUCK state, the following equation is obtained:

I_in=C1*(dV508 /dt)=C1*(-dV512 /dt)=C1/(-ΔV512 /TON ) (11)I_in=C1*(dV 508 /dt)=C1*(-dV 512 /dt)=C1/(−ΔV 512 /T ON ) (11)

方程式(11)中的V508 表示橫跨斜坡電容508的電壓,V512 表示斜坡信號512的電壓電位,C1表示斜坡電容508的電容值,ΔV512 表示電壓電位V512 在TON_BUCK狀態期間的變化量。基於方程式(1)、(4)和(11),得到如下方程式:V 508 in equation (11) represents the voltage across the ramp capacitor 508, V 512 represents the voltage potential of the ramp signal 512, C1 represents the capacitance value of the ramp capacitor 508, and ΔV 512 represents the amount of change of the voltage potential V 512 during the TON_BUCK state. . Based on equations (1), (4), and (11), the following equation is obtained:

ΔIL1 =-(ΔV512 *C1)/(K*L) (12)ΔI L1 =-(ΔV 512 *C1)/(K*L) (12)

方程式(12)中的ΔIL1 表示電感電流IL1 在TON_BUCK狀態期間的變化量。同理,在TOFF_BUCK狀態下,得到如下方程式:ΔI L1 in equation (12) represents the amount of change in inductor current I L1 during the TON_BUCK state. Similarly, in the TOFF_BUCK state, the following equation is obtained:

I_in=C1*(dV508 /dt)=C1*(-dV512 /dt)=C1/(-ΔV512 /TOFF ) (13)I_in=C1*(dV 508 /dt)=C1*(-dV 512 /dt)=C1/(−ΔV 512 /T OFF ) (13)

方程式(13)中的ΔV512 表示電壓電位V512 在TOFF_BUCK狀態期間的變化量。基於方程式(2)、(6)和(13),得到如下方程式:ΔV 512 in equation (13) represents the amount of change in voltage potential V 512 during the TOFF_BUCK state. Based on equations (2), (6), and (13), the following equation is obtained:

ΔIL1 =-(ΔV512 *C1)/(K*L) (14)ΔI L1 =-(ΔV 512 *C1)/(K*L) (14)

方程式(14)中的ΔIL1 表示電感電流IL1 在TOFF_BUCK狀態期間的變化量。由於每個TON_BUCK狀態期間的電壓變化量ΔV512 和每個TOFF_BUCK狀態期間的電壓變化量ΔV512 其量值相等,所以每個TON_BUCK狀態期間的電流變化量ΔIL1 和每個TOFF_BUCK狀態期間的電流變化量ΔIL1 其量值相等。ΔI L1 in the equation (14) represents the amount of change of the inductor current I L1 during the TOFF_BUCK state. Since the amount of change ΔV 512 during each TON_BUCK state and the amount of change ΔV 512 during each TOFF_BUCK state are equal, the amount of current change ΔI L1 during each TON_BUCK state and the current during each TOFF_BUCK state The quantity ΔI L1 is equal in magnitude.

此外,類似於圖3中的控制電路102A,在圖5中,當輸出電壓VOUT 的平均電壓VAVE 小於SLEW端上的預期輸出電壓VSET 時,控制電路102B增加PWM信號的責任週期。當平均電壓VAVE 大於SLEW端上的預期輸出電壓VSET 時,控制電路102B減小PWM信號的責任週期。結果,控制電路102B調節輸出電壓VOUT 的平均電壓VAVE 至預期輸出電壓VSETFurther, similar to the control circuit 102A in FIG. 3, in FIG. 5, when the average voltage V AVE of the output voltage V OUT is smaller than the expected output voltage V SET at the SLEW terminal, the control circuit 102B increases the duty cycle of the PWM signal. When the average voltage V AVE is greater than the expected output voltage V SET at the SLEW terminal, the control circuit 102B reduces the duty cycle of the PWM signal. As a result, the control circuit 102B adjusts the average voltage V AVE of the output voltage V OUT to the expected output voltage V SET .

圖7所示為根據本發明一實施例的直流/直流轉換器100C的示意圖。圖7實施例中的直流/直流轉換器100C是一種升壓轉換器。直流/直流轉換器100C包括控制電路102C、驅動電路704、以及連接至電感714的高側開關110和低側開關112。控制電路102C用於產生控制信號給驅動電路704,以驅動高側開關110和低側開關112。控制電路102C調節直流/直流轉換器100C的責任週期以控制高側開關110和低側開關112,進而控制流過電感714的電感電流IL7 以及直流/直流轉換器100C的輸出電壓VOUT 。控制電路102C透過改變PWM信號責任週期的方式,利用PWM信號控制高側開關110和低側開關112的狀態。FIG. 7 is a schematic diagram of a DC/DC converter 100C in accordance with an embodiment of the present invention. The DC/DC converter 100C in the embodiment of Fig. 7 is a boost converter. The DC/DC converter 100C includes a control circuit 102C, a drive circuit 704, and a high side switch 110 and a low side switch 112 connected to the inductor 714. Control circuit 102C is operative to generate a control signal to drive circuit 704 to drive high side switch 110 and low side switch 112. The control circuit 102C regulates the duty cycle of the DC/DC converter 100C to control the high side switch 110 and the low side switch 112, thereby controlling the inductor current I L7 flowing through the inductor 714 and the output voltage V OUT of the DC/DC converter 100C. The control circuit 102C controls the states of the high side switch 110 and the low side switch 112 by means of the PWM signal by changing the duty cycle of the PWM signal.

在一個實施例中,如果PWM信號為高電位,那麼低側開關112導通,高側開關110截止。高側開關110和低側開關112的這種狀態被稱為“switch ON”狀態或者“TON_BOOST”狀態。此狀態下的電感714透過切換節點122接地。因此,電感電流IL7 從輸入端(如圖7中輸入電壓VIN )流過電感714流向地,並且增加。如果PWM信號為低電位並且HDR_EN信號為高電位,那麼低側開關112截止,高側開關110導通。高側開關110和低側開關112的這種狀態被稱為“switch OFF”狀態或者“TOFF_BOOST”狀態。在直流/直流轉換器100C(升壓轉換器)中,此狀態下的橫跨電感714兩端的淨電壓為負。那麼,電感電流IL7 在TOFF_BOOST狀態下減小。因此,PWM信號的責任週期確定TON_BOOST狀態的時間TON 以及TOFF_BOOST狀態的時間TOFF 。類似於降壓轉換器,控制電路102C利用斜坡信號712輔助產生PWM信號。In one embodiment, if the PWM signal is high, the low side switch 112 is turned on and the high side switch 110 is turned off. This state of the high side switch 110 and the low side switch 112 is referred to as a "switch ON" state or a "TON_BOOST" state. The inductor 714 in this state is grounded through the switching node 122. Therefore, the inductor current I L7 flows from the input terminal (such as the input voltage V IN in FIG. 7) through the inductor 714 to the ground and increases. If the PWM signal is low and the HDR_EN signal is high, the low side switch 112 is turned off and the high side switch 110 is turned on. This state of the high side switch 110 and the low side switch 112 is referred to as a "switch OFF" state or a "TOFF_BOOST" state. In the DC/DC converter 100C (boost converter), the net voltage across the inductor 714 in this state is negative. Then, the inductor current I L7 is reduced in the TOFF_BOOST state. Therefore, the duty cycle of the PWM signal determines the time T ON of the TON_BOOST state and the time T OFF of the TOFF_BOOST state. Similar to the buck converter, control circuit 102C utilizes ramp signal 712 to assist in generating the PWM signal.

控制電路102C包括脈波寬度調變電路752和斜坡產生電路750。脈波寬度調變電路752包括第一比較器701、第二比較器702、第三比較器703、及閘722、反及閘723,以及鎖存器742。第一比較器701提供輸入給及閘722和反及閘723。及閘722接收第三比較器703的輸出,然後產生一個輸入給鎖存器742。鎖存器742提供輸入給在脈波寬度調變電路752週邊的驅動電路704和及閘725。脈波寬度調變電路752接收來自斜坡產生電路750的斜坡信號712,並且響應於斜坡信號712產生一PWM信號。斜坡產生電路750包括運算放大器751和斜坡電容708,並且如下所述地對流過電阻720和電阻771的電流作出回應。Control circuit 102C includes pulse width modulation circuit 752 and ramp generation circuit 750. The pulse width modulation circuit 752 includes a first comparator 701, a second comparator 702, a third comparator 703, and a gate 722, an inverse gate 723, and a latch 742. The first comparator 701 provides an input to the gate 722 and the inverse gate 723. Gate 722 receives the output of third comparator 703 and then produces an input to latch 742. Latch 742 provides input to driver circuit 704 and AND gate 725 at the periphery of pulse width modulation circuit 752. Pulse width modulation circuit 752 receives ramp signal 712 from ramp generation circuit 750 and generates a PWM signal in response to ramp signal 712. The ramp generation circuit 750 includes an operational amplifier 751 and a ramp capacitor 708 and responds to current flowing through the resistor 720 and the resistor 771 as described below.

控制電路102C還包括開關713和及閘725,及閘725的輸入分別與脈波寬度調變電路752中第三比較器703的輸出和鎖存器742的反相輸出端QB連接。控制電路102C還包括與直流/直流轉換器100C的切換節點122串聯的電阻720和電阻771。The control circuit 102C further includes a switch 713 and a AND gate 725, and the inputs of the gate 725 are coupled to the output of the third comparator 703 and the inverted output terminal QB of the latch 742, respectively, in the pulse width modulation circuit 752. Control circuit 102C also includes a resistor 720 and a resistor 771 in series with switching node 122 of DC/DC converter 100C.

電阻720與電阻771串聯可看作一個等效電阻具有等於R1+R2的電阻值R。在一個實施例中,R1可以等於R/6,R2則等於5*R/6。斜坡產生電路750還包括與電阻720和電阻771串聯的斜坡電容708。運算放大器751的反相輸入端連接至與串聯的電阻720和電阻771相關的節點706,運算放大器751的非反相輸入端接收指示直流/直流轉換器100C的輸入電壓VIN 的回授信號。運算放大器751用作積分器。流過電阻720和電阻771的電流也流過斜坡電容708對斜坡電容708充電或者放電,進而控制斜坡信號712。The resistor 720 in series with the resistor 771 can be regarded as an equivalent resistor having a resistance value R equal to R1 + R2. In one embodiment, R1 may be equal to R/6 and R2 is equal to 5*R/6. The ramp generation circuit 750 also includes a ramp capacitor 708 in series with a resistor 720 and a resistor 771. The inverting input of operational amplifier 751 is coupled to node 706 associated with series connected resistor 720 and resistor 771, and the non-inverting input of operational amplifier 751 receives a feedback signal indicative of input voltage V IN of DC/DC converter 100C. The operational amplifier 751 is used as an integrator. Current flowing through resistor 720 and resistor 771 also flows through ramp capacitor 708 to charge or discharge ramp capacitor 708, thereby controlling ramp signal 712.

斜坡信號712被提供給第一比較器701的反相輸入端和第二比較器702的非反相輸入端。標稱電壓V2被提供給第一比較器701非反相輸入端。參考電壓REF被提供給第二比較器702的反相輸入端。在一個實施例中,參考電壓REF等於2.5伏特,標稱電壓V2等於0.01伏特。The ramp signal 712 is provided to the inverting input of the first comparator 701 and the non-inverting input of the second comparator 702. The nominal voltage V2 is provided to the non-inverting input of the first comparator 701. The reference voltage REF is supplied to the inverting input of the second comparator 702. In one embodiment, the reference voltage REF is equal to 2.5 volts and the nominal voltage V2 is equal to 0.01 volts.

在TOFF_BOOST狀態下,PWMB信號為高電位,如果輸出電壓VOUT 小於VSLEW電壓,及閘725輸出高電位。於是,開關713導通,減小電阻值R。斜坡信號712快速地減小至標稱電壓V2,使得第一比較器701的輸出變為高電位,進而將鎖存器742置位。PWMB信號則變為低電位,進而截止開關713。In the TOFF_BOOST state, the PWMB signal is high, if the output voltage V OUT is less than the VSLEW voltage, and the gate 725 outputs a high potential. Thus, the switch 713 is turned on to reduce the resistance value R. The ramp signal 712 is rapidly reduced to the nominal voltage V2 such that the output of the first comparator 701 goes high, which in turn sets the latch 742. The PWMB signal goes low and turns off the switch 713.

圖8所示為根據本發明一實施例描述圖7中的控制電路102C的操作過程的示例性時序波形800。本實施例中,在t1到t2時刻期間,波形801中的PWM信號和波形802中的HDR_EN信號為高電位。因此,低側開關112導通,高側開關110截止。在t1到t2時刻期間,波形803中的切換節點122電壓LX為零。如波形804所示,在t1到t2時刻期間,流過電阻720、電阻771和斜坡電容708的電流I(C)由下列方程式給出:FIG. 8 illustrates an exemplary timing waveform 800 depicting the operation of the control circuit 102C of FIG. 7 in accordance with an embodiment of the present invention. In the present embodiment, during the time t1 to t2, the PWM signal in the waveform 801 and the HDR_EN signal in the waveform 802 are at a high potential. Therefore, the low side switch 112 is turned on and the high side switch 110 is turned off. During the time t1 to t2, the switching node 122 voltage LX in the waveform 803 is zero. As shown by waveform 804, during the time t1 to t2, the current I(C) flowing through resistor 720, resistor 771, and ramp capacitor 708 is given by the following equation:

I(C)=-VIN /R=-VIN *K (15)I(C)=-V IN /R=-V IN *K (15)

回應於流過斜坡電容708的電流I(C),波形805中的斜坡信號712在t1到t2時刻期間增加。在t1到t2時刻期間,由於波形804中的電流I(C)經由運算放大器751流過斜坡電容708,例如:從運算放大器751的輸出端流到斜坡電容708,斜坡信號712的斜率為正。In response to current I(C) flowing through ramp capacitor 708, ramp signal 712 in waveform 805 increases during the time t1 to t2. During the time t1 to t2, since the current I(C) in the waveform 804 flows through the ramp capacitor 708 via the operational amplifier 751, for example, from the output of the operational amplifier 751 to the ramp capacitor 708, the slope of the ramp signal 712 is positive.

一旦在t2時刻將鎖存器742復位,鎖存器742的Q(同相輸出端)變為低電位,因此波形801中的PWM信號為低電位。當高側開關110和低側開關112處於TOFF_BOOST狀態時,波形803中的切換節點122電壓LX等於輸出電壓VOUT 。這是因為切換節點122經由高側開關110與輸出電壓VOUT 連接。Once latch 742 is reset at time t2, the Q (in-phase output) of latch 742 goes low, so the PWM signal in waveform 801 is low. When the high side switch 110 and the low side switch 112 are in the TOFF_BOOST state, the switching node 122 voltage LX in the waveform 803 is equal to the output voltage V OUT . This is because the switching node 122 is connected to the output voltage V OUT via the high side switch 110.

在t2到t3時刻期間,波形804中流過電阻720和電阻771的電流I(C)由下列方程式給出:During the time t2 to t3, the current I(C) flowing through the resistor 720 and the resistor 771 in the waveform 804 is given by the following equation:

I(C)=(VOUT -VIN )/R=(VOUT -VIN )*K (16)I(C)=(V OUT -V IN )/R=(V OUT -V IN )*K (16)

在t2到t3時刻期間,斜坡信號712以正比於電流I(C)的速度減小。斜坡信號712減小直至等於輸入到第一比較器701的非反相輸入端的標稱電壓V2。當斜坡信號712在t3時刻減小至標稱電壓V2時,第一比較器701的輸出為高電位。類似於圖5中的斜坡信號512和電感電流IL1 ,當圖7中的斜坡信號712在t3時刻減小至標稱電壓V2時,電感電流IL7 的處於零交叉(zero-crossing)狀態。因此,控制電路102C不直接測量電感電流IL7 ,而是提供零交叉估算器估算電感電流IL7During the time t2 to t3, the ramp signal 712 decreases at a speed proportional to the current I(C). The ramp signal 712 is reduced until it is equal to the nominal voltage V2 input to the non-inverting input of the first comparator 701. When ramp signal 712 decreases to nominal voltage V2 at time t3, the output of first comparator 701 is high. Similar to the ramp signal 512 and the inductor current I L1 in FIG. 5, when the ramp signal 712 in FIG. 7 is reduced to the nominal voltage V2 at time t3, the inductor current I L7 is in a zero-crossing state. Therefore, the control circuit 102C does not directly measure the inductor current I L7 , but provides a zero-cross estimator to estimate the inductor current I L7 .

控制電路102C是控制電感電流IL7 具有恒定漣波幅度的一種CRC控制器。具體而言,在TON_BOOST狀態下,得到如下方程式:Control circuit 102C is a CRC controller that controls inductor current I L7 to have a constant chopping amplitude. Specifically, in the TON_BOOST state, the following equation is obtained:

dIL7 /dt=VIN /L=ΔIL7 /TON  (17)dI L7 /dt=V IN /L=ΔI L7 /T ON (17)

方程式(17)中的ΔIL7 表示電感電流IL7 在TON_BOOST狀態期間的變化量。此外,還可得到如下方程式:ΔI L7 in equation (17) represents the amount of change in inductor current I L7 during the TON_BOOST state. In addition, the following equation can be obtained:

I(C)=C*(dV708 /dt)=C*(-dV712 /dt)=C*(-ΔV712 /TON )(18)I(C)=C*(dV 708 /dt)=C*(-dV 712 /dt)=C*(-ΔV 712 /T ON )(18)

方程式(18)中的V708 表示橫跨斜坡電容708兩端的電壓,V712 表示斜坡信號712的電壓,C表示斜坡電容708的電容值,ΔV712 表示V712 在TON_BOOST狀態期間的變化量。基於方程式(15)、(17)和(18),得到如下方程式:V 708 in equation (18) represents the voltage across ramp capacitor 708, V 712 represents the voltage of ramp signal 712, C represents the capacitance of ramp capacitor 708, and ΔV 712 represents the amount of change of V 712 during the TON_BOOST state. Based on equations (15), (17), and (18), the following equation is obtained:

ΔIL7 =(ΔV712 *C)/(K*L) (19)ΔI L7 = (ΔV 712 *C) / (K*L) (19)

同理,在TOFF_BOOST狀態下,得到如下方程式:Similarly, in the TOFF_BOOST state, the following equation is obtained:

dIL7 /dt=(VIN -VOUT )/L=ΔIL7 /TOFF  (20)dI L7 /dt=(V IN -V OUT )/L=ΔI L7 /T OFF (20)

方程式(20)中的ΔIL7 表示電感電流IL7 在TOFF_BOOST狀態期間的變化量。此外,還得到如下方程式:ΔI L7 in equation (20) represents the amount of change in inductor current I L7 during the TOFF_BOOST state. In addition, the following equation is obtained:

I(C)=C*(dV708 /dt)=C*(-dV712 /dt)=C*(-ΔV712 /TOFF )(21)I(C)=C*(dV 708 /dt)=C*(-dV 712 /dt)=C*(-ΔV 712 /T OFF )(21)

方程式(21)中的ΔV712 表示V712 在TOFF_BOOST狀態期間的變化量。基於方程式(16)、(20)和(21),得到如下方程式:ΔV 712 in equation (21) represents the amount of change of V 712 during the TOFF_BOOST state. Based on equations (16), (20), and (21), the following equation is obtained:

ΔIL7 =(ΔV712 *C)/(K*L) (22)ΔI L7 = (ΔV 712 *C) / (K*L) (22)

由於每個TON_BOOST狀態期間的ΔV712 和每個TOFF_BOOST狀態期間的ΔV712 其量值相等,所以每個TON_BOOST狀態期間的電流變化量ΔIL7 和每個TOFF_BOOST狀態期間的電流變化量ΔIL7 其量值相等。Since the period is equal to ΔV ΔV during each TON_BOOST state 712 and state 712 of each TOFF_BOOST its magnitude, so that the current amount of change during each TON_BOOST state and the current change amount [Delta] I L7 each TOFF_BOOST state during which the magnitude of [Delta] I L7 equal.

此外,類似於圖3中的控制電路102A和圖5中的控制電路102B,圖7中的控制電路102C在輸出電壓VOUT 的平均電壓VAVE 小於目標輸入端SLEW上的預期輸出電壓VSET 時增加PWM信號的責任週期。控制電路102C在輸出電壓VOUT 的平均電壓VAVE 大於目標輸入端SLEW上的預期輸出電壓VSET 時減小PWM信號的責任週期。結果,控制電路102C將輸出電壓VOUT 的平均電壓VAVE 調節至預期輸出電壓VSETFurther, similar to the control circuit 102A in FIG. 3 and the control circuit 102B in FIG. 5, the control circuit 102C in FIG. 7 when the average voltage V AVE of the output voltage V OUT is smaller than the expected output voltage V SET at the target input terminal SLEW Increase the duty cycle of the PWM signal. The control circuit 102C reduces the duty cycle of the PWM signal when the average voltage V AVE of the output voltage V OUT is greater than the expected output voltage V SET at the target input terminal SLEW. As a result, the control circuit 102C adjusts the average voltage V AVE of the output voltage V OUT to the expected output voltage V SET .

具體而言,在TOFF_BOOST狀態下,如果當斜坡信號712減小至標稱電壓V2時,輸出電壓VOUT 仍然大於VSLEW電壓,第三比較器703輸出低電位,經過及閘722和鎖存器742保持PWM信號為低電位,直至輸出電壓VOUT 減小至VSLEW電壓。於是,TOFF_BOOST狀態的時間增加,進而減小PWM信號的責任週期。如果在斜坡信號712減小至標稱電壓V2之前,輸出電壓VOUT 減小至VSLEW電壓,第三比較器703輸出高電位經由及閘725導通開關713,進而減小節點706和切換節點122之間路徑的電阻值。流過斜坡電容708的電流I(C)增加,進而縮短了TOFF_BOOST狀態的時間。於是PWM信號的責任週期增加。結果,輸出電壓VOUT 的平均電壓VAVE 被調節至VSLEW電壓。Specifically, in the TOFF_BOOST state, if the output voltage V OUT is still greater than the VSLEW voltage when the ramp signal 712 is decreased to the nominal voltage V2, the third comparator 703 outputs a low potential, passing through the AND gate 722 and the latch 742. Keep the PWM signal low until the output voltage V OUT decreases to the VSLEW voltage. Thus, the time of the TOFF_BOOST state is increased, thereby reducing the duty cycle of the PWM signal. If the output voltage V OUT decreases to the VSLEW voltage before the ramp signal 712 decreases to the nominal voltage V2, the third comparator 703 outputs a high potential to turn on the switch 713 via the AND gate 725, thereby reducing the node 706 and the switching node 122. The resistance value of the path. The current I(C) flowing through the ramp capacitor 708 increases, which in turn shortens the TOFF_BOOST state. The duty cycle of the PWM signal is then increased. As a result, the average voltage V AVE of the output voltage V OUT is adjusted to the VSLEW voltage.

圖9所示為根據本發明一實施例電流控制的示例性方法流程圖900。步驟902產生一斜坡信號以回應流經耦接至直流/直流轉換器的切換節點的電阻的電流。切換節點與直流/直流轉換器的高側開關和低側開關連接。步驟904包括產生PWM信號以回應斜坡信號。9 is a flow chart 900 of an exemplary method of current control in accordance with an embodiment of the present invention. Step 902 generates a ramp signal in response to current flowing through the resistance of the switching node coupled to the DC/DC converter. The switching node is connected to the high side switch and the low side switch of the DC/DC converter. Step 904 includes generating a PWM signal in response to the ramp signal.

本發明提供了一種直流/直流轉換器(例如:降壓轉換器、升壓轉換器)用於將輸入電壓VIN 轉換為輸出電壓VOUT 。舉例說明,圖3和圖5提供降壓直流/直流轉換器100A和直流/直流轉換器100B,圖7提供了升壓直流/直流轉換器100C。直流/直流轉換器包括CRC控制器(例如:控制電路102A、控制電路102B,或控制電路102C),用於產生斜坡信號以控制直流/直流轉換器的輸出電流(例如:電感電流IL1 或電感電流IL7 )。可利用控制電流(例如:電流I_out或電流I(C))對斜坡電容(例如:斜坡電容308、斜坡電容508,或斜坡電容708)充電或者放電,以產生斜坡信號,使得斜坡信號以正比於控制電流的速度變化。此外,電感電流(例如:電感電流IL1 或電感電流IL7 )以正比於橫跨電感(例如:電感114或電感714)兩端的電壓的速度變化。由於控制電流正比於橫跨電感兩端的電壓,見方程式(4)、(6)、(15)和(16),所以斜坡信號正比於電感電流。因此,有利的是,可透過控制斜坡信號的漣波恒定控制電感電流的漣波恒定。另外,圖1A中的頻寬較窄的運算轉導放大器156被省去,使得CRC控制器更準確地控制直流/直流轉換器的輸出。其次,具有較高電容值並且較大體積的電容158也被省去了。CRC控制電路102A、控制電路102B,或控制電路102C中的所有元件可以整合至單一晶片中。此外,傳統控制器中的振盪器也被省去了,進而減少功耗。The present invention provides a DC/DC converter (eg, a buck converter, a boost converter) for converting an input voltage V IN to an output voltage V OUT . By way of example, Figures 3 and 5 provide a step-down DC/DC converter 100A and a DC/DC converter 100B, and Figure 7 provides a step-up DC/DC converter 100C. The DC/DC converter includes a CRC controller (eg, control circuit 102A, control circuit 102B, or control circuit 102C) for generating a ramp signal to control the output current of the DC/DC converter (eg, inductor current I L1 or inductor) Current I L7 ). The ramp capacitance (eg, ramp capacitor 308, ramp capacitor 508, or ramp capacitor 708) may be charged or discharged using a control current (eg, current I_out or current I(C)) to generate a ramp signal such that the ramp signal is proportional to Controls the speed of the current. In addition, the inductor current (eg, inductor current I L1 or inductor current I L7 ) varies in proportion to the speed across the voltage across the inductor (eg, inductor 114 or inductor 714). Since the control current is proportional to the voltage across the inductor, see equations (4), (6), (15), and (16), the ramp signal is proportional to the inductor current. Therefore, it is advantageous to constantly control the chopping of the inductor current through the chopping of the control ramp signal. In addition, the narrower operational transconductance amplifier 156 of FIG. 1A is omitted, allowing the CRC controller to more accurately control the output of the DC/DC converter. Secondly, a capacitor 158 having a higher capacitance value and a larger volume is also omitted. All of the elements in CRC control circuit 102A, control circuit 102B, or control circuit 102C can be integrated into a single wafer. In addition, the oscillator in the traditional controller is also eliminated, thereby reducing power consumption.

用於調節控制電流正比於橫跨電感兩端的電壓的方法包括控制橫跨電阻(例如:電阻320、電阻520,或電阻720-771)兩端的電壓等於或正比於橫跨電感兩端的電壓。舉例說明,電阻有第一端和第二端,電感有第一端和第二端。電阻的第一端與電感的第一端連接在同一個節點上(例如:切換節點122)。電阻的第二端電壓被控制至約等於電感的第二端電壓。在圖3、圖5和圖7的實施例中,直流/直流轉換器100A、直流/直流轉換器100B和直流/直流轉換器100C分別包括緩衝器351、運算放大器551,和運算放大器751。運算放大器將電感的第二端電壓轉移到電阻的第二端上。然而,可利用各種方法或手段控制電阻的第二端電壓約等於電感的第二端電壓。A method for adjusting the control current proportional to the voltage across the inductor includes controlling the voltage across the across resistor (eg, resistor 320, resistor 520, or resistor 720-771) to be equal to or proportional to the voltage across the inductor. For example, the resistor has a first end and a second end, and the inductor has a first end and a second end. The first end of the resistor is coupled to the first end of the inductor at the same node (eg, switching node 122). The second terminal voltage of the resistor is controlled to be approximately equal to the second terminal voltage of the inductor. In the embodiments of FIGS. 3, 5, and 7, the DC/DC converter 100A, the DC/DC converter 100B, and the DC/DC converter 100C include a buffer 351, an operational amplifier 551, and an operational amplifier 751, respectively. The operational amplifier transfers the second terminal voltage of the inductor to the second terminal of the resistor. However, various methods or means can be used to control the second terminal voltage of the resistor to be approximately equal to the second terminal voltage of the inductor.

圖10A所示為根據本發明一實施例直流/直流轉換器1000的示意圖。在圖10A的實施例中,直流/直流轉換器1000是一種升壓轉換器,用於將低側端1088上的輸入電壓VIN 轉換成高側端1086上的輸出電壓VOUT 。如圖10A所示,直流/直流轉換器1000包括控制器1002、驅動器1004、包括高側開關1010和低側開關1012的開關電路,以及能量儲存元件(例如:電感1014)。FIG. 10A is a schematic diagram of a DC/DC converter 1000 in accordance with an embodiment of the present invention. In the embodiment of FIG. 10A, DC/DC converter 1000 is a boost converter for converting input voltage V IN on low side terminal 1088 to output voltage V OUT on high side terminal 1086. As shown in FIG. 10A, the DC/DC converter 1000 includes a controller 1002, a driver 1004, a switching circuit including a high side switch 1010 and a low side switch 1012, and an energy storage element (eg, an inductor 1014).

在圖10A的實施例中,電感1014和高側端1086之間的高側路徑包括高側開關1010,而電感1014和地之間的低側路徑包括低側開關1012。然而,在一個可替換的實施例中,高側開關1010由二極體取代。能量儲存元件可以是電感1014,但不以此為限。電感1014包括第一端1013,連接至高側開關1010和低側開關1012之間的切換節點1022,以及第二端1015,連接至低側端1088。電感1014用於提供直流/直流轉換器1000的輸出電壓VOUTIn the embodiment of FIG. 10A, the high side path between inductor 1014 and high side end 1086 includes high side switch 1010, while the low side path between inductor 1014 and ground includes low side switch 1012. However, in an alternate embodiment, the high side switch 1010 is replaced by a diode. The energy storage component can be the inductor 1014, but is not limited thereto. The inductor 1014 includes a first end 1013 coupled to the switching node 1022 between the high side switch 1010 and the low side switch 1012, and a second end 1015 coupled to the low side end 1088. Inductor 1014 is used to provide an output voltage V OUT of DC/DC converter 1000.

控制器1002包括致能輸出端EN用於提供高側開關致能信號(HDR_EN)1082,控制輸出端PWM用於提供PWM信號1084。控制器1002還包括輸入端LX用於接收電感1014的第一端1013上的電壓,輸入端VFB1用於接收電感1014的第二端1015上的回授電壓,以及輸入端VFB2用於接收高側端1086上的輸出電壓VOUT 。控制器1002還包括輸入端SRIP以用於接收控制致能信號1082是否有效的SRIP信號。此外,控制器1002還包括輸出端VREF和輸入端SLEW。在一實施例中,輸入端SLEW設定輸出電壓VOUT 的期待值或目標值。在圖10A的實施例中,連接至輸入端SLEW的電容1026基於電阻分壓器(例如圖所示的電阻1024和電阻1028)的阻值比率以及輸出端VREF的電壓被充電,進而提供預設電壓VPRE 給輸入端SLEW。然而,本發明不局限於此;其他可替換的方法也可用於對電容1026充電,以產生預設電壓VPRE 給輸入端SLEW。The controller 1002 includes an enable output EN for providing a high side switch enable signal (HDR_EN) 1082, and a control output PWM for providing a PWM signal 1084. The controller 1002 further includes an input terminal LX for receiving a voltage on the first terminal 1013 of the inductor 1014, an input terminal VFB1 for receiving the feedback voltage on the second terminal 1015 of the inductor 1014, and an input terminal VFB2 for receiving the high side. The output voltage V OUT on terminal 1086. The controller 1002 also includes an input SRIP for receiving an SRIP signal that controls whether the enable signal 1082 is valid. In addition, the controller 1002 further includes an output terminal VREF and an input terminal SLEW. In an embodiment, the input terminal SLEW sets an expected or target value of the output voltage V OUT . In the embodiment of FIG. 10A, the capacitor 1026 connected to the input terminal SLEW is charged based on the resistance ratio of the resistor divider (such as the resistor 1024 and the resistor 1028 shown in the figure) and the voltage of the output terminal VREF, thereby providing a preset. The voltage V PRE is given to the input SLEW. However, the invention is not limited in this regard; other alternative methods can be used to charge capacitor 1026 to generate a predetermined voltage V PRE to input SLEW.

在一實施例中,當高側開關1010截止而低側開關1012導通時,電感1014的第一端1013經由低側開關1012接地,並且橫跨電感1014兩端的淨電壓為正(例如,等於VIN )。流經電感1014的電感電流IL10 以正比於橫跨電感1014兩端的電壓(例如,等於VIN )的速度增加。得到如下方程式:In one embodiment, when the high side switch 1010 is turned off and the low side switch 1012 is turned on, the first end 1013 of the inductor 1014 is grounded via the low side switch 1012 and the net voltage across the inductor 1014 is positive (eg, equal to V IN ). The inductor current I L10 flowing through the inductor 1014 increases in proportion to the voltage across the voltage across the inductor 1014 (eg, equal to V IN ). Get the following equation:

dIL10 /dt=VI N/L (23)dIL 10 /dt=V I N/L (23)

其中,L表示電感1014的電感值。當高側開關1010導通而低側開關1012截止時,電感1014的第一端1013經由高側開關1010與高側端1086連接,並且橫跨電感1014兩端的淨電壓為負(例如,等於VIN -VOUT )。電感電流IL10 以正比於橫跨電感1014的電壓(例如,等於VIN -VOUT )的速度減小。得到如下方程式:Where L represents the inductance value of the inductor 1014. When the high side switch 1010 is turned on and the low side switch 1012 is turned off, the first end 1013 of the inductor 1014 is coupled to the high side terminal 1086 via the high side switch 1010 and the net voltage across the inductor 1014 is negative (eg, equal to V IN -V OUT ). The inductor current I L10 decreases in proportion to the voltage across the inductor 1014 (eg, equal to V IN -V OUT ). Get the following equation:

dIL10 /dt=(VIN -VOUT )/L (24)dI L10 /dt=(V IN -V OUT )/L (24)

在本實施例中,電感電流IL10 為漣波電流。當高側開關1010導通而低側開關1012截止時,電感電流IL10 流入高側端1086。連接在高側端1086和地之間的能量儲存單元(例如,輸出電容1016)被電感電流IL10 充電,並且提供輸出電壓VOUT 。透過交替地導通和截止高側開關1010和低側開關1012,控制器1002調節輸出電壓VOUT 或者輸出電壓VOUT 的平均電壓VAVE 至目標電壓VTARGET 。此外,控制器1002控制電感電流IL10 具有趨於恒定的漣波幅度。因此,直流/直流轉換器1000的輸出電壓VOUT 更加穩定。In this embodiment, the inductor current I L10 is a chopping current. When the high side switch 1010 is turned on and the low side switch 1012 is turned off, the inductor current I L10 flows into the high side terminal 1086. An energy storage unit (eg, output capacitor 1016) coupled between the high side terminal 1086 and ground is charged by the inductor current I L10 and provides an output voltage V OUT . By alternately turning on and off the high side switch 1010 and the low side switch 1012, the controller 1002 adjusts the output voltage V OUT or the average voltage V AVE of the output voltage V OUT to the target voltage V TARGET . Further, the controller 1002 controls the inductor current I L10 to have a chopping amplitude that tends to be constant. Therefore, the output voltage V OUT of the DC/DC converter 1000 is more stable.

控制器1002產生諸如致能信號(HDR_EN)1082和PWM信號1084的控制信號給驅動器1004,以控制/驅動高側開關1010和低側開關1012。舉例說明,高側開關1010可被高電位信號導通,被低電位信號截止。同理,低側開關1012可被高電位信號導通,被低電位信號截止。透過控制致能信號(HDR_EN)1082和PWM信號1084的邏輯電位,可控制高側開關1010和低側開關1012的狀態。The controller 1002 generates control signals such as an enable signal (HDR_EN) 1082 and a PWM signal 1084 to the driver 1004 to control/drive the high side switch 1010 and the low side switch 1012. For example, the high side switch 1010 can be turned on by a high potential signal and turned off by a low potential signal. Similarly, the low side switch 1012 can be turned on by the high potential signal and turned off by the low potential signal. The state of the high side switch 1010 and the low side switch 1012 can be controlled by the logic potentials of the control enable signal (HDR_EN) 1082 and the PWM signal 1084.

圖11所示為高側開關1010和低側開關1012為回應致能信號(HDR_EN)1082和PWM信號1084的狀態變化表格。以下將結合圖10A對表格1100進行描述。Figure 11 shows a state change table for the high side switch 1010 and the low side switch 1012 in response to the enable signal (HDR_EN) 1082 and the PWM signal 1084. Table 1100 will be described below in conjunction with FIG. 10A.

如表格1100所示,當致能信號(HDR_EN)1082和PWM信號1084為高電位時(即:HDR_EN=1且PWM=1),高側開關1010截止而低側開關1012導通。此狀態稱為TON_BOOST狀態。當致能信號(HDR_EN)1082為低電位而PWM信號1084為高電位時(即:HDR_EN=0且PWM=1),高側開關1010截止而低側開關1012導通。因此,高側開關1010和低側開關1012仍處於TON_BOOST狀態。在TON_BOOST狀態下,電感1014的第一端1013接地,橫跨電感1014兩端的電壓等於VIN ,並且電感電流IL10 增加。當致能信號(HDR_EN)1082為高電位而PWM信號1084為低電位時(即:HDR_EN=1且PWM=0),高側開關1010導通而低側開關1012截止。此狀態稱為TOFF_BOOST狀態。在TOFF_BOOST狀態下,電感1014的第一端1013與高側端1086連接,橫跨電感1014兩端的電壓等於VIN -VoUT ,並且電感電流IL10 減小。當致能信號(HDR_EN)1082和PWM信號1084為低電位時(即:HDR_EN=0且PWM=0),高側開關1010和低側開關1012截止。此狀態稱為SKIP狀態。在SKIP狀態下,電感1014的第一端1013懸空(例如:沒有連接高側端1086也沒有接地),並且橫跨電感1014兩端的電壓為零。電感電流IL10 也為零。As shown in table 1100, when enable signal (HDR_EN) 1082 and PWM signal 1084 are high (ie, HDR_EN = 1 and PWM = 1), high side switch 1010 is off and low side switch 1012 is on. This state is called the TON_BOOST state. When the enable signal (HDR_EN) 1082 is low and the PWM signal 1084 is high (ie, HDR_EN = 0 and PWM = 1), the high side switch 1010 is turned off and the low side switch 1012 is turned on. Therefore, the high side switch 1010 and the low side switch 1012 are still in the TON_BOOST state. In the TON_BOOST state, the first terminal 1013 of the inductor 1014 is grounded, the voltage across the inductor 1014 is equal to V IN , and the inductor current I L10 is increased. When the enable signal (HDR_EN) 1082 is high and the PWM signal 1084 is low (ie, HDR_EN = 1 and PWM = 0), the high side switch 1010 is turned on and the low side switch 1012 is turned off. This state is called the TOFF_BOOST state. In the TOFF_BOOST state, the first terminal 1013 of the inductor 1014 is coupled to the high side terminal 1086, the voltage across the inductor 1014 is equal to V IN -V oUT , and the inductor current I L10 is decreased. When the enable signal (HDR_EN) 1082 and the PWM signal 1084 are low (ie, HDR_EN = 0 and PWM = 0), the high side switch 1010 and the low side switch 1012 are turned off. This state is called the SKIP state. In the SKIP state, the first end 1013 of the inductor 1014 is floating (eg, no high side terminal 1086 is also connected to ground) and the voltage across the inductor 1014 is zero. The inductor current I L10 is also zero.

圖10B所示為根據本發明另一實施例直流/直流轉換器1000’的示意圖。圖10A和10B中標識相同的元件具有相似的功能。如圖10B所述,控制器1002包括斜坡信號產生器1030、PWM信號產生器1040,以及回授電路1070。斜坡信號產生器1030包括能量儲存單元(例如:斜坡電容1008)和阻性元件(例如:電阻1020)。斜坡電容1008連接於地和PWM信號產生器1040之間。電阻1020的第一端1023與電感1014的第一端1013連接,電阻1020的第二端1025經過一電路1018與斜坡電容1008連接。Figure 10B is a schematic diagram of a DC/DC converter 1000' in accordance with another embodiment of the present invention. Elements identified the same in Figures 10A and 10B have similar functions. As illustrated in FIG. 10B, the controller 1002 includes a ramp signal generator 1030, a PWM signal generator 1040, and a feedback circuit 1070. The ramp signal generator 1030 includes an energy storage unit (eg, a ramp capacitor 1008) and a resistive element (eg, resistor 1020). Ramp capacitor 1008 is coupled between ground and PWM signal generator 1040. The first end 1023 of the resistor 1020 is coupled to the first end 1013 of the inductor 1014, and the second end 1025 of the resistor 1020 is coupled to the ramp capacitor 1008 via a circuit 1018.

斜坡信號產生器1030提供流過電阻1020的控制電流IC10 以控制儲存在斜坡電容1008中的電能。斜坡信號產生器1030還基於儲存在斜坡電容1008中的電能產生斜坡信號1032(例如:橫跨斜坡電容1008兩端的電壓)。控制電路包括PWM信號產生器1040和電路1018,透過調節電阻1020一端電壓以控制控制電流IC10 使其指示(例如:線性正比於)橫跨電感1014兩端的電壓。控制電路還基於斜坡信號1032控制流經電感1014的電感電流IL10 ,使其被控制在預設範圍內。Ramp signal generator 1030 provides control current I C10 flowing through resistor 1020 to control the electrical energy stored in ramp capacitor 1008. The ramp signal generator 1030 also generates a ramp signal 1032 (eg, a voltage across the ramp capacitor 1008) based on the electrical energy stored in the ramp capacitor 1008. The control circuit includes a PWM signal generator 1040 and a circuit 1018 that regulates the control current I C10 by adjusting the voltage at one end of the resistor 1020 to indicate (eg, linearly proportional to) the voltage across the inductor 1014. The control circuit also controls the inductor current I L10 flowing through the inductor 1014 based on the ramp signal 1032 to be controlled within a predetermined range.

更具體而言,在本實施例中,電阻1020的第一端1023之電壓V1023 等於電感1014的第一端1013之電壓V1013 。電路1018控制電阻1020的第二端1025之電壓V1025 等於電感1014的第二端1015之電壓V1015 。因此,橫跨電阻1020兩端的電壓約等於橫跨電感1014兩端的電壓。於是,流經電阻1020的控制電流IC10 線性正比於橫跨電感1014兩端的電壓V1013 -V1015 ,並且由下式給出:IC10 =(V1013 -V1015 )/RRP 。RRP 表示電阻1020的阻值。電路1018可配置在PWM信號產生器1040或者斜坡信號產生器1030內部,或者PWM信號產生器1040和斜坡信號產生器1030的整合電路內,又或者配置在PWM信號產生器1040和斜坡信號產生器1030的外部。More specifically, in the present embodiment, the voltage V 1023 of the first terminal 1023 of the resistor 1020 is equal to the voltage V 1013 of the first terminal 1013 of the inductor 1014. The circuit 1018 controls the voltage V 1025 of the second terminal 1025 of the resistor 1020 to be equal to the voltage V 1015 of the second terminal 1015 of the inductor 1014. Thus, the voltage across resistor 1020 is approximately equal to the voltage across across inductor 1014. Thus, the control current I C10 flowing through the resistor 1020 is linearly proportional to the voltage across the inductor 1014, V 1013 - V 1015 , and is given by: I C10 = (V 1013 - V 1015 ) / R RP . R RP represents the resistance of the resistor 1020. The circuit 1018 can be disposed within the PWM signal generator 1040 or the ramp signal generator 1030, or within the integrated circuit of the PWM signal generator 1040 and the ramp signal generator 1030, or in the PWM signal generator 1040 and the ramp signal generator 1030. The outside.

控制電流IC10 控制儲存在斜坡電容1008中的電能以調節斜坡信號1032(例如:橫跨斜坡電容1008兩端的電壓)。舉例說明,在TON_BOOST狀態下,控制電流IC10 由下列方程式給出:Control current I C10 controls the electrical energy stored in ramp capacitor 1008 to adjust ramp signal 1032 (eg, across voltage across ramp capacitor 1008). For example, in the TON_BOOST state, the control current I C10 is given by the following equation:

IC10 =(V1013 -V1015 )/RRP =(0-VIN )/RRP  (25)I C10 =(V 1013 -V 1015 )/R RP =(0-V IN )/R RP (25)

因此,可得下列方程式:Therefore, the following equation can be obtained:

IC10 =CRP *dVRP /dt=-VIN /RRP  (26)I C10 =C RP *dV RP /dt=-V IN /R RP (26)

其中,CRP 表示斜坡電容1008的電容值,VRP 表示斜坡信號1032的電壓。因此,在TON_BOOST狀態下,控制電流IC10 對斜坡電容1008放電以減小斜坡信號1032。同理,在TOFF_BOOST狀態下,控制電流IC10 由下列方程式給出:Where C RP represents the capacitance value of the ramp capacitor 1008 and V RP represents the voltage of the ramp signal 1032. Thus, in the TON_BOOST state, control current I C10 discharges ramp capacitor 1008 to reduce ramp signal 1032. Similarly, in the TOFF_BOOST state, the control current I C10 is given by the following equation:

IC10 =(V1013 -V1015 )/RRP =(VOUT -VIN )/RRP  (27)I C10 = (V 1013 - V 1015 ) / R RP = (V OUT - V IN ) / R RP (27)

因此,可得下列方程式:Therefore, the following equation can be obtained:

IC10 =CRP *dVRP /dt=(VOUT -VIN )/RRP  (28)I C10 =C RP *dV RP /dt=(V OUT -V IN )/R RP (28)

因此,在TOFF_BOOST狀態下,控制電流IC10 對斜坡電容1008充電以增加斜坡信號1032。Thus, in the TOFF_BOOST state, control current I C10 charges ramp capacitor 1008 to increase ramp signal 1032.

基於方程式(23)和(26),得到如下方程式:Based on equations (23) and (26), the following equation is obtained:

ΔIL10 /TON =VIN /L (29a)ΔI L10 /T ON =V IN /L (29a)

CRP *ΔVRP /TON =-VIN /RRP  (29b)C RP *ΔV RP /T ON =-V IN /R RP (29b)

方程式(29a)和(29b)中的ΔIL10 表示電感電流IL10 在TON_BOOST狀態期間的變化量,ΔVRP 表示電壓VRP 在TON_BOOST狀態期間的變化量,TON 表示TON_BOOST狀態的時間。基於方程式(29a)和(29b),得到如下方程式:ΔI L10 in the equations (29a) and (29b) represents the amount of change of the inductor current I L10 during the TON_BOOST state, ΔV RP represents the amount of change of the voltage V RP during the TON_BOOST state, and T ON represents the time of the TON_BOOST state. Based on equations (29a) and (29b), the following equation is obtained:

ΔIL10 =-CRP *ΔVRP *RRP /L (30)ΔI L10 =-C RP *ΔV RP *R RP /L (30)

相同的,基於方程式(24)和(28),可得下列方程式:Similarly, based on equations (24) and (28), the following equation can be obtained:

ΔIL10 /TOFF =(VIN -VOUT )/L (31a)ΔI L10 /T OFF =(V IN -V OUT )/L (31a)

CRP *ΔVRP /TOFF =(VOUT -VIN )/RRP  (31b)C RP *ΔV RP /T OFF =(V OUT -V IN )/R RP (31b)

方程式(31a)和(31b)中的ΔIL10 表示電感電流IL10 在TOFF_BOOST狀態期間的變化量,ΔVRP 表示電壓VRP 在TOFF_BOOST狀態期間的變化量,TOFF 表示TOFF_BOOST狀態的時間。基於方程式(31a)和(31b),得到如下方程式:ΔI L10 in the equations (31a) and (31b) represents the amount of change of the inductor current I L10 during the TOFF_BOOST state, ΔV RP represents the amount of change of the voltage V RP during the TOFF_BOOST state, and T OFF represents the time of the TOFF_BOOST state. Based on equations (31a) and (31b), the following equation is obtained:

ΔIL10 =-CRP *ΔVRP *RRP /L (32)ΔI L10 =-C RP *ΔV RP *R RP /L (32)

PWM信號產生器1040基於斜坡信號1032控制高側開關1010和低側開關1012,進而控制流經電感1014的電感電流IL10 。具體而言,PWM信號產生器1040產生PWM信號1084以控制高側開關1010和低側開關1012。PWM信號產生器1040還控制PWM信號1084的狀態,使得斜坡信號1032具有趨於恒定的漣波幅度。基於方程式(30)和(32),控制器1002透過控制斜坡信號1032的電壓變化量ΔVRP 趨於恒定控制電感電流IL10 的電流變化量ΔIL10 趨於恒定。因此,控制器1002是一種CRC控制器。The PWM signal generator 1040 controls the high side switch 1010 and the low side switch 1012 based on the ramp signal 1032 to control the inductor current I L10 flowing through the inductor 1014. In particular, PWM signal generator 1040 generates PWM signal 1084 to control high side switch 1010 and low side switch 1012. The PWM signal generator 1040 also controls the state of the PWM signal 1084 such that the ramp signal 1032 has a chopping amplitude that tends to be constant. Based on equations (30) and (32), the controller 1002 tends to constant by controlling the amount of change ΔI L10 of the inductor current I L10 by the voltage change amount ΔV RP of the control ramp signal 1032. Therefore, the controller 1002 is a CRC controller.

此外,PWM信號產生器1040基於斜坡信號1032控制高側開關1010和低側開關1012,進而控制直流/直流轉換器1000’的輸出電壓VOUT 。具體而言,回授電路1070經由輸入端VFB2接收輸出電壓VOUT ,並且產生指示輸出電壓VOUT 的回授信號(例如,回授電壓VFB )給PWM信號產生器1040。PWM信號產生器1040還基於回授電壓VFB 控制PWM信號1084的責任週期。舉例說明,PWM信號產生器1040在輸出電壓VOUT 的平均電壓VAVE 小於目標電壓VTARGET 時,增加PWM信號1084的責任週期,在平均電壓VAVE 大於目標電壓VTARGET 時減小PWM信號1084的責任週期。輸出電壓VOUT 的平均電壓VAVE 因而被調節至目標電壓VTARGETFurther, the PWM signal generator 1040 controls the high side switch 1010 and the low side switch 1012 based on the ramp signal 1032 to thereby control the output voltage V OUT of the DC/DC converter 1000'. Specifically, the feedback circuit 1070 receives the output voltage V OUT via the input terminal VFB2 and generates a feedback signal (eg, feedback voltage V FB ) indicative of the output voltage V OUT to the PWM signal generator 1040. The PWM signal generator 1040 also controls the duty cycle of the PWM signal 1084 based on the feedback voltage V FB . Illustration, the PWM signal generator 1040 when the output voltage V OUT of the average voltage V AVE is less than the target voltage V TARGET, increasing the duty cycle of the PWM signal 1084, 1084 of the PWM signal is reduced when the average voltage V AVE is larger than the target voltage V TARGET Cycle of responsibility. The average voltage V AVE of the output voltage V OUT is thus adjusted to the target voltage V TARGET .

圖12所示為根據本發明一實施例直流/直流轉換器1000A示意圖。在圖10A、圖10B和圖12中標識相同的元件具有相似的功能。如圖12所示,控制器1002A包括斜坡信號產生器1030A、PWM信號產生器1040A,以及回授電路1070。Figure 12 is a schematic diagram of a DC/DC converter 1000A in accordance with an embodiment of the present invention. The same elements are identified in Figures 10A, 10B and 12 to have similar functions. As shown in FIG. 12, the controller 1002A includes a ramp signal generator 1030A, a PWM signal generator 1040A, and a feedback circuit 1070.

斜坡信號產生器1030A包括電阻1020、斜坡電容1008、開關1232和開關1234。電阻1020的第一端1023與電感1014的第一端1013連接,電阻1020的第二端1025經由開關1234與斜坡電容1008連接。圖12所示之實施例中的電阻1020包括相互串聯的次電阻1220和次電阻1221。開關1232與次電阻1221的兩端連接。電阻1020的阻值RRP 等於次電阻1220的阻值RRP0 加上次電阻1221的阻值RRP1The ramp signal generator 1030A includes a resistor 1020, a ramp capacitor 1008, a switch 1232, and a switch 1234. The first end 1023 of the resistor 1020 is coupled to the first end 1013 of the inductor 1014, and the second end 1025 of the resistor 1020 is coupled to the ramp capacitor 1008 via the switch 1234. The resistor 1020 in the embodiment shown in FIG. 12 includes a secondary resistor 1220 and a secondary resistor 1221 connected in series with each other. The switch 1232 is connected to both ends of the secondary resistor 1221. The resistance R RP of the resistor 1020 is equal to the resistance R RP0 of the secondary resistor 1220 plus the resistance R RP1 of the secondary resistor 1221.

PWM信號產生器1040A包括比較器1201、比較器1202、偏移電路1242、偏移電路1252、SR正反器1248、SR正反器1258、及閘1262、及閘1264、以及比較器1203。如圖12所示,比較器1201的反相輸入端和比較器1202的非反相輸入端與斜坡電容1008連接,並且經由開關1234與電阻1020的第二端1025連接。比較器1201的非反相輸入端經由偏移電路1242與電感1014的第二端1015連接。比較器1202的反相輸入端經由偏移電路1252與電感1014的第二端1015連接。比較器1203包括一反相輸入端與回授電路1070連接、包括一非反相輸入端與提供預設電壓VPRE 的電壓源(未顯示在圖12中)連接,以及包括一輸出端與及閘1262和及閘1264連接。SR正反器1248的復位端R與比較器1201輸出端連接、置位元端S與及閘1262輸出端連接、同相輸出端Q與控制器1002A控制輸出端PWM連接,反相輸出端QB與及閘1264輸入端連接。SR正反器1258的復位端R與SR正反器1248同相輸出端Q連接、置位端S與比較器1202輸出端連接、同相輸出端Q與及閘1262輸入端連接、反相輸出端QB與控制器1002A的致能輸出端EN連接。及閘1262的輸入端與SR正反器1258的同相輸出端Q和比較器1203的輸出端連接、輸出端與SR正反器1248的置位端S連接。及閘1264的輸入端與SR正反器1248的反相輸出端QB和比較器1203的的輸出端連接、輸出端與開關1232的控制端連接。此外,SR正反器1258的反相輸出端QB與開關1234的控制端連接。The PWM signal generator 1040A includes a comparator 1201, a comparator 1202, an offset circuit 1242, an offset circuit 1252, an SR flip-flop 1248, an SR flip-flop 1258, and a gate 1262, a gate 1264, and a comparator 1203. As shown in FIG. 12, the inverting input of comparator 1201 and the non-inverting input of comparator 1202 are coupled to ramp capacitor 1008 and to second terminal 1025 of resistor 1020 via switch 1234. The non-inverting input of comparator 1201 is coupled to second end 1015 of inductor 1014 via offset circuit 1242. The inverting input of comparator 1202 is coupled to second end 1015 of inductor 1014 via offset circuit 1252. The comparator 1203 includes an inverting input coupled to the feedback circuit 1070, including a non-inverting input coupled to a voltage source (not shown in FIG. 12) for providing a predetermined voltage V PRE , and including an output terminal and Gate 1262 is connected to gate 1264. The reset terminal R of the SR flip-flop 1248 is connected to the output terminal of the comparator 1201, the set terminal S and the output of the gate 1262 are connected, the non-inverting output terminal Q is connected to the control output terminal of the controller 1002A, and the inverting output terminal QB is connected. And the gate 1264 input is connected. The reset terminal R of the SR flip-flop 1258 is connected to the non-inverting output terminal Q of the SR flip-flop 1248, the output terminal S is connected to the output terminal of the comparator 1202, the non-inverting output terminal Q is connected to the input terminal of the gate 1262, and the inverting output terminal QB is connected. Connected to the enable output EN of the controller 1002A. The input terminal of the AND gate 1262 is connected to the non-inverting output terminal Q of the SR flip-flop 1258 and the output terminal of the comparator 1203, and the output terminal is connected to the set terminal S of the SR flip-flop 1248. The input terminal of the gate 1264 is connected to the inverting output terminal QB of the SR flip-flop 1248 and the output terminal of the comparator 1203, and the output terminal is connected to the control terminal of the switch 1232. Further, the inverting output terminal QB of the SR flip-flop 1258 is connected to the control terminal of the switch 1234.

在本實施例中,比較器1201接收來自偏移電路1242的參考電壓VL ,並且透過比較斜坡信號1032和參考電壓VL 輸出一信號給SR正反器1248。比較器1201在斜坡信號1032不大於參考電壓VL 的時候輸出高電位信號,在斜坡信號1032大於參考電壓VL 的時候輸出低電位信號。比較器1202接收來自偏移電路1252參考電壓VH (VH >VL ),並且透過比較斜坡信號1032和參考電壓VH 輸出一信號給SR正反器1258。比較器1202在斜坡信號1032不小於參考電壓VH 的時候輸出高電位信號,在斜坡信號1032小於參考電壓VH 的時候輸出低電位信號。In the present embodiment, the comparator 1201 receives a reference voltage V L from the offset circuit 1242, and outputs a signal to the SR flip-flop 1248 through 1032 compare the ramp signal and the reference voltage V L. When the ramp signal at the comparator 1201 1032 V L is not greater than the reference voltage output high potential signal, the ramp signal 1032 is greater than the reference voltage V L when the low potential signal. The comparator 1202 receives the reference voltage V H (V H > V L ) from the offset circuit 1252 and outputs a signal to the SR flip-flop 1258 through the comparison ramp signal 1032 and the reference voltage V H . Comparator 1202 outputs a high level signal in the ramp signal 1032 is not less than the reference voltage V H when the potential of the low output signal of the ramp signal is less than 1032 when the reference voltage V H.

在本實施例中,SR正反器1248可由輸入信號(例如:置位元信號或者重設信號)的上升沿觸發。舉例說明,如果SR正反器1248的置位端S上出現置位元信號的上升沿,SR正反器1248的同相輸出端Q置為高電位並且反相輸出端QB置為低電位。如果SR正反器1248的復位端R上出現重設信號的上升沿,SR正反器1248的同相輸出端Q置為低電位並且反相輸出端QB置為高電位。如果置位端S和復位端R均為低電位,那麼SR正反器1248的同相輸出端Q和反相輸出端QB的邏輯電位保持不變直到SR正反器1248輸入信號上升沿的出現。In this embodiment, the SR flip-flop 1248 can be triggered by a rising edge of an input signal (eg, a set bit signal or a reset signal). For example, if the rising edge of the set bit signal appears on the set terminal S of the SR flip-flop 1248, the non-inverting output terminal Q of the SR flip-flop 1248 is set to a high potential and the inverted output terminal QB is set to a low potential. If the rising edge of the reset signal occurs on the reset terminal R of the SR flip-flop 1248, the non-inverting output terminal Q of the SR flip-flop 1248 is set to a low potential and the inverted output terminal QB is set to a high potential. If both the set terminal S and the reset terminal R are low, the logic potentials of the non-inverting output terminal Q and the inverting output terminal QB of the SR flip-flop 1248 remain unchanged until the rising edge of the input signal of the SR flip-flop 1248.

控制器1002A透過比較斜坡信號1032和參考電壓VL 以及斜坡信號1032和參考電壓VH 控制斜坡信號1032的漣波幅度以及電感電流IL10 的漣波幅度趨於恒定。更具體而言,PWM信號產生器1040A根據斜坡信號1032和參考電壓VL 以及斜坡信號1032和參考電壓VH 的比較結果控制PWM信號1084責任週期。當斜坡信號1032減小至參考電壓VL 時,比較器1201輸出高電位將SR正反器1248復位,使其輸出低電位PWM信號1084。於是斜坡信號1032增加。當斜坡信號1032增加至時參考電壓VH ,比較器1202輸出高電位信號,經由SR正反器1258、及閘1262和SR正反器1248將PWM信號1084置為高電位。於是斜坡信號1032減小。那麼,斜坡信號1032具有等於參考電壓VH 的最大值和等於參考電壓VL 的最小值。所以電感電流IL10 也有最大值和最小值(例如:電感電流IL10 處在基於斜坡信號1032的預設範圍內)。斜坡信號1032的漣波幅度等於參考電壓VL 和參考電壓VH 之差。差值VH -VL 為恒定,使得斜坡信號1032的漣波幅度恒定。結果電感電流IL10 的漣波幅度也恒定。The controller 1002A controls the chopping amplitude of the ramp signal 1032 and the chopping amplitude of the inductor current I L10 to become constant by comparing the ramp signal 1032 with the reference voltage V L and the ramp signal 1032 and the reference voltage V H . More specifically, the PWM signal generator 1040A controls the PWM signal 1084 duty cycle based on the comparison of the ramp signal 1032 and the reference voltage V L and the ramp signal 1032 and the reference voltage V H . When the ramp signal 1032 is reduced to the reference voltage V L, the comparator 1201 outputs a high voltage to SR flip-flop 1248 is reset, it outputs a low voltage PWM signal 1084. The ramp signal 1032 then increases. When the ramp signal 1032 is incremented to the reference voltage VH , the comparator 1202 outputs a high potential signal, and the PWM signal 1084 is asserted high via the SR flip-flop 1258, the AND gate 1262, and the SR flip-flop 1248. The ramp signal 1032 is then reduced. Then, the ramp signal 1032 has a maximum value equal to the reference voltage V H and a minimum value equal to the reference voltage V L . Therefore, the inductor current I L10 also has a maximum value and a minimum value (for example, the inductor current I L10 is within a preset range based on the ramp signal 1032). The chopping amplitude of the ramp signal 1032 is equal to the difference between the reference voltage V L and the reference voltage V H . The difference V H - V L is constant such that the chopping amplitude of the ramp signal 1032 is constant. As a result, the amplitude of the chopping of the inductor current I L10 is also constant.

在圖12的實施例中,用於控制電阻1020的第二端1025之電壓V1025 趨於電感1014的第二端1015之電壓V1015 的電路包括:比較器1201、比較器1202、偏移電路1242,以及偏移電路1252。具體而言,比較器1201比較電壓V1025 和參考電壓VL ,進而控制電壓V1025 不小於參考電壓VL 。比較器1202比較電壓V1025 和參考電壓VH ,進而控制電壓V1025 不大於參考電壓VH 。橫跨偏移電路1242的預設電壓為VS1 ,橫跨偏移電路1252的預設電壓為VS2 。那麼,提供給比較器1201的參考電壓VL 等於電壓V1015 減去預設電壓VS1 (例如:VL =V1015 -VS1 ),提供給比較器1202的參考電壓VH 等於電壓V1015 加上預設電壓VS2 (例如:VH =V1015 +VS2 )。在一實施例中,橫跨偏移電路1242的預設電壓VS1 和橫跨偏移電路1252的預設電壓VS2 基本恒定。在一實施例中,預設電壓VS1 和預設電壓VS2 可以相等(例如:VS1 =VS2 ),使得電壓V1015 介於參考電壓VL 和參考電壓VH 的中間。此外,相較於電壓V1015 ,預設電壓VS1 和預設電壓VS2 相對較小且可省略不計,使得在參考電壓VL (例如:VL =V1015 -VS1 )到參考電壓VH (例如:VH =V1015 +VS2 )範圍內變化的電壓V1025 被認為約等於電壓V1 01 5。In the embodiment of FIG. 12, the circuit for controlling the voltage V 1025 of the second terminal 1025 of the resistor 1020 to the voltage V 1015 of the second terminal 1015 of the inductor 1014 includes a comparator 1201, a comparator 1202, and an offset circuit. 1242, and an offset circuit 1252. Specifically, the comparator 1201 compares the voltage V 1025 with the reference voltage V L , and thus the control voltage V 1025 is not less than the reference voltage V L . The comparator 1202 compares the voltage V 1025 with the reference voltage V H , and thus the control voltage V 1025 is not greater than the reference voltage V H . The preset voltage across the offset circuit 1242 is V S1 , and the preset voltage across the offset circuit 1252 is V S2 . Then, the reference voltage V L supplied to the comparator 1201 is equal to the voltage V 1015 minus the preset voltage V S1 (eg, V L =V 1015 -V S1 ), and the reference voltage V H supplied to the comparator 1202 is equal to the voltage V 1015 Add the preset voltage V S2 (for example: V H = V 1015 + V S2 ). In one embodiment, the predetermined voltage V S1 across the shift circuits 1242 and 1252 across the offset circuit voltage V S2 of predetermined substantially constant. In an embodiment, the preset voltage V S1 and the preset voltage V S2 may be equal (eg, V S1 =V S2 ) such that the voltage V 1015 is intermediate between the reference voltage V L and the reference voltage V H . In addition, the preset voltage V S1 and the preset voltage V S2 are relatively small and can be omitted compared to the voltage V 1015 such that the reference voltage V L (eg, V L =V 1015 -V S1 ) to the reference voltage V The voltage V 1025 that varies within the range of H (eg, V H = V 1015 + V S2 ) is considered to be approximately equal to the voltage V 1 0 1 5 .

在圖12所示之實施例中,偏移電路1242包括阻值為RS1 的電阻1246。偏移電路1242還包括提供流經電阻1246的預設電流IS1 的電流源1244,使得電阻1246上有預設電壓VS1 (例如:VS1 =IS1 *RS1 )。同理,偏移電路1252包括阻值為RS2 的電阻1256。偏移電路1252還包括提供流經電阻1256的預設電流IS2 的電流源1254,使得電阻1256上有預設電壓VS2 (例如:VS2 =IS2 *RS2 )。然而,本發明不局限於此;其他可替換的方法也可用於產生橫跨偏移電路1242和偏移電路1252的預設電壓。In the embodiment shown in FIG. 12, offset circuit 1242 includes a resistor 1246 having a resistance of R S1 . The offset circuit 1242 also includes a current source 1244 that provides a predetermined current I S1 flowing through the resistor 1246 such that the resistor 1246 has a predetermined voltage V S1 (eg, V S1 =I S1 *R S1 ). Similarly, the offset circuit 1252 includes a resistor 1256 having a resistance value of R S2 . The offset circuit 1252 also includes a current source 1254 that provides a predetermined current I S2 flowing through the resistor 1256 such that the resistor 1256 has a predetermined voltage V S2 (eg, V S2 =I S2 *R S2 ). However, the present invention is not limited thereto; other alternative methods can also be used to generate a preset voltage across the offset circuit 1242 and the offset circuit 1252.

在圖12的實施例中,比較器1201和比較器1202控制斜坡信號1032具有恒定漣波幅度,並且控制電壓V1025 趨於電壓V1015 。然而,在另一實施例中,斜坡信號1032和電壓V1025 由不同的比較器控制。例如,一或多個比較器控制斜坡信號1032具有恒定漣波幅度。其他一或多個比較器控制電壓V1025 趨於電壓V1015 。在這樣的實施中,斜坡信號1032的範圍和電壓V1025 的範圍可相同或者不同。在這樣的實施中,可以利用電流控制電流源(例如:圖3中的電流控制電流源324)產生等於流經電阻1020的電流的控制電流,以控制斜坡電容1008。In the embodiment of FIG. 12, comparator 1201 and comparator 1202 control ramp signal 1032 to have a constant chopping amplitude, and control voltage V1025 tends to voltage V1015 . However, in another embodiment, ramp signal 1032 and voltage V 1025 are controlled by different comparators. For example, one or more comparator control ramp signals 1032 have a constant chopping amplitude. The other one or more comparator control voltages V 1025 tend to voltage V 1015 . In such an implementation, the range of ramp signal 1032 and the range of voltage V 1025 may be the same or different. In such an implementation, a current controlled current source (eg, current controlled current source 324 in FIG. 3) can be utilized to generate a control current equal to the current flowing through resistor 1020 to control ramp capacitance 1008.

回授電路1070包括連接在高側端1086和地之間的電阻分壓器(例如,圖中所示的電阻1272和電阻1274)。輸出電壓VOUT 以及電阻1272和電阻1274的阻值確定回授電壓VFB 。然而,本發明不局限於此;其他可替換的方法也可用於產生指示輸出電壓VOUT 的回授信號。The feedback circuit 1070 includes a resistor divider (eg, resistor 1272 and resistor 1274 shown) coupled between the high side terminal 1086 and ground. The output voltage V OUT and the resistance of the resistor 1272 and the resistor 1274 determine the feedback voltage V FB . However, the invention is not limited thereto; other alternative methods can also be used to generate a feedback signal indicative of the output voltage VOUT .

如圖12所示,比較器1203透過比較回授電壓VFB 和預設電壓VPRE 輸出一信號1260給及閘1262和及閘1264。信號1260稱為“PULSE”信號。及閘1264輸出一信號1236以控制連接至次電阻1221的開關1232。信號1236稱為“加速”信號或者“ACCEL”信號。開關1232又可稱為“加速”開關。此外,連接在電阻1020和斜坡電容1008之間的開關1234又可稱為“延時”開關。透過利用比較器1205、及閘1262、及閘1264、開關1232、開關1234、SR正反器1248、以及SR正反器1258,輸出電壓VOUT 的平均電壓VAVE 被調節至目標電壓VTARGET 。更具體而言,一方面,如果平均電壓VAVE 小於目標電壓VTARGET ,比較器1203輸出高電位之信號1260(PULSE),經由及閘1264將信號1236(ACCEL)置為高電位。因此,開關1232被導通以增加PWM信號1084的責任週期進而增加平均電壓VAVE 。在另一方面,如果平均電壓VAVE 大於目標電壓VTARGET ,比較器1203輸出低電位之信號1260(PULSE)。低電位之信號1260(PULSE)經由及閘1262和SR正反器1248將PWM信號1084保持為低電位,並且保持開關1234截止,使得PWM信號1084的責任週期減小進而減小平均電壓VAVE 。以下將結合圖13描述關於輸出電壓VOUT 的平均電壓VAVE 的調節過程。As shown in FIG. 12, the comparator 1203 outputs a signal 1260 to the gate 1262 and the gate 1264 by comparing the feedback voltage V FB with the preset voltage V PRE . Signal 1260 is referred to as a "PULSE" signal. Gate 1264 outputs a signal 1236 to control switch 1232 coupled to secondary resistor 1221. Signal 1236 is referred to as an "acceleration" signal or an "ACCEL" signal. Switch 1232 may also be referred to as an "acceleration" switch. Additionally, switch 1234 coupled between resistor 1020 and ramp capacitor 1008 may also be referred to as a "delay" switch. By using the comparator 1205, the gate 1262, the gate 1264, the switch 1232, the switch 1234, the SR flip-flop 1248, and the SR flip-flop 1258, the average voltage V AVE of the output voltage V OUT is adjusted to the target voltage V TARGET . More specifically, on the one hand, if the average voltage V AVE is less than the target voltage V TARGET , the comparator 1203 outputs a high potential signal 1260 (PULSE), and the signal 1236 (ACCEL) is set to a high potential via the AND gate 1264. Therefore, the switch 1232 is turned on to increase the duty cycle of the PWM signal 1084 and thereby increase the average voltage V AVE . On the other hand, if the average voltage V AVE is greater than the target voltage V TARGET , the comparator 1203 outputs a low potential signal 1260 (PULSE). The low potential signal 1260 (PULSE) maintains the PWM signal 1084 at a low potential via the AND gate 1262 and the SR flip-flop 1248, and keeps the switch 1234 off, causing the duty cycle of the PWM signal 1084 to decrease and thereby reducing the average voltage V AVE . The adjustment process with respect to the average voltage V AVE of the output voltage V OUT will be described below with reference to FIG.

圖13所示為根據本發明一實施例與圖12的直流/直流轉換器1000A相關的信號(例如:電感電流IL10 、輸出電壓VOUT 、斜坡信號1032、PULSE信號1260、HDR_EN信號1082、ACCEL信號1236,以及PWM信號1084)的示例性時序圖1300。在圖13的實施例中,控制器1002A的操作包括不同模式,例如:責任週期減小模式、責任週期正常模式,以及責任週期增加模式。舉例說明,圖13中的輸出電壓VOUT 以預設電位V’TARGET 為參考電位上下波動。在責任週期正常模式下(例如:tj 到tj+4 時刻期間),當斜坡信號1032增加至參考電壓VH 時(例如:在tj+2 時刻),輸出電壓VOUT 減小至預設電位V’TARGET 。輸出電壓VOUT 的平均電壓VAVE 等於目標電壓VTARGET 。在本實施例中,目標電壓VTARGET 約等於預設電位V’TARGET 。在責任週期減小模式下(例如:ti 到ti+4 時刻期間),當斜坡信號1032增加至參考電壓VH 時(例如:在ti+2 時刻),輸出電壓VOUT 大於預設電位V’TARGET 。平均電壓VAVE 大於目標電壓VTARGET 。那麼,控制器1002A減小PWM信號1084的責任週期以減小平均電壓VAVE 。在責任週期增加模式下(例如:tk 到tk+3 時刻期間),在斜坡信號1032增加至參考電壓VH 之前輸出電壓VOUT 減小至預設電位V’TARGET (例如:在tk+2 時刻)。平均電壓VAVE 小於目標電壓VTARGET 。那麼,控制器1002A增加PWM信號1084的責任週期以增加平均電壓VAVE13 is a diagram showing signals associated with the DC/DC converter 1000A of FIG. 12 (eg, inductor current I L10 , output voltage V OUT , ramp signal 1032, PULSE signal 1260, HDR_EN signal 1082, ACCEL, in accordance with an embodiment of the present invention). An exemplary timing diagram 1300 of signal 1236, and PWM signal 1084). In the embodiment of FIG. 13, the operations of controller 1002A include different modes, such as: duty cycle reduction mode, duty cycle normal mode, and duty cycle increase mode. For example, the output voltage V OUT in FIG. 13 fluctuates up and down with a preset potential V' TARGET as a reference potential. In the duty cycle normal mode (eg, during the time t j to t j+4 ), when the ramp signal 1032 is increased to the reference voltage V H (eg, at time t j+2 ), the output voltage V OUT is reduced to Set the potential V' TARGET . The average voltage V AVE of the output voltage V OUT is equal to the target voltage V TARGET . In this embodiment, the target voltage V TARGET is approximately equal to the preset potential V' TARGET . In the duty cycle reduction mode (eg, during the time t i to t i+4 ), when the ramp signal 1032 is increased to the reference voltage V H (eg, at time t i+2 ), the output voltage V OUT is greater than the preset Potential V' TARGET . The average voltage V AVE is greater than the target voltage V TARGET . Then, the controller 1002A reduces the duty cycle of the PWM signal 1084 to reduce the average voltage V AVE . In the duty cycle increase mode (eg, during the time t k to t k+3 ), the output voltage V OUT is reduced to a preset potential V' TARGET before the ramp signal 1032 is increased to the reference voltage V H (eg, at t k +2 moments). The average voltage V AVE is less than the target voltage V TARGET . Then, the controller 1002A increases the duty cycle of the PWM signal 1084 to increase the average voltage V AVE .

如圖13所示的實施例中,在責任週期正常模式下(例如:tj 到tj+4 時刻期間),ACCEL信號1236為低電位,HDR_EN信號1082為高電位。PULSE信號1260與PWM信號1084同相。例如,PULSE信號1260在PWM信號1084為高電位時為高電位,在PWM信號1084為低電位時為低電位。斜坡信號1032和電感電流IL10 具有鋸齒波形。由於斜坡信號1032的漣波幅度恒定,電感電流IL10 的漣波幅度恒定。輸出電壓VOUT 以預設電位V’TARGET 為參考電位上下波動,但是輸出電壓VOUT 的平均電壓VAVE 等於目標電壓VTARGETIn the embodiment shown in FIG. 13, in the duty cycle normal mode (eg, during the time t j to t j+4 ), the ACCEL signal 1236 is low and the HDR_EN signal 1082 is high. The PULSE signal 1260 is in phase with the PWM signal 1084. For example, PULSE signal 1260 is high when PWM signal 1084 is high and low when PWM signal 1084 is low. The ramp signal 1032 and the inductor current I L10 have a sawtooth waveform. Since the chopping amplitude of the ramp signal 1032 is constant, the chopping amplitude of the inductor current I L10 is constant. The output voltage V OUT fluctuates up and down with a preset potential V' TARGET as a reference potential, but the average voltage V AVE of the output voltage V OUT is equal to the target voltage V TARGET .

更具體而言,在責任週期正常模式的TON_BOOST狀態下(例如:tj 到tj+1 時刻期間),電感電流IL10 依據方程式(23)增加,斜坡信號1032依據方程式(26)減小。此外,輸出電壓VOUT 減小。回應於PWM信號1084的上升沿(例如:在tj 時刻),SR正反器1258將HDR_EN信號1082置為高電位。在TON_BOOST狀態期間,由於斜坡信號1032小於參考電壓VH ,比較器1202輸出低電位信號給SR正反器1258,並且HDR_EN信號1082保持高電位。連接在電阻1020和斜坡電容1008之間的開關1234導通。另外,SR正反器1248的反相輸出端QB為低電位,使得ACCEL信號1236為低電位將加速開關1232截止。當斜坡信號1032減小至參考電壓VL 時(例如:在tj+1 時刻),比較器1201輸出高電位信號將SR正反器1248重設,使其輸出低電位PWM信號1084。在tj+1 時刻,HDR_EN信號1082仍為高電位。因此,直流/直流轉換器1000A進入TOFF_BOOST狀態。More specifically, in the TON_BOOST state of the duty cycle normal mode (eg, during the time t j to t j+1 ), the inductor current I L10 is increased according to equation (23), and the ramp signal 1032 is decreased according to equation (26). In addition, the output voltage V OUT is reduced. In response to the rising edge of PWM signal 1084 (eg, at time t j ), SR flip-flop 1258 asserts HDR_EN signal 1082 to a high potential. During the TON_BOOST state, since the ramp signal 1032 is less than the reference voltage VH , the comparator 1202 outputs a low potential signal to the SR flip-flop 1258, and the HDR_EN signal 1082 remains high. A switch 1234 connected between the resistor 1020 and the ramp capacitor 1008 is turned on. In addition, the inverting output terminal QB of the SR flip-flop 1248 is at a low potential such that the ACCEL signal 1236 is at a low potential to turn off the acceleration switch 1232. When the ramp signal 1032 is reduced to the reference voltage V L (e.g.: t j + 1 at a time), the comparator 1201 outputs a high level signal to reset the SR flip-flop 1248, so that the low potential of the PWM signal 1084. At time t j+1 , the HDR_EN signal 1082 is still high. Therefore, the DC/DC converter 1000A enters the TOFF_BOOST state.

在責任週期正常模式的TOFF_BOOST狀態下(例如:tj+1 到tj+2 時刻期間),電感電流IL10 依據方程式(24)減小,斜坡信號1032依據方程式(28)增加。此外,輸出電壓VOUT 減小。輸出電容1016有一個等效串聯電阻值,因此,當高側開關1010導通而低側開關1012截止時(例如:在tj+1 時刻),輸出電壓VOUT 可以相對快速地增加至一個等於輸入電壓VIN 加上橫跨電感1014兩端的電壓之電位。在tj+1 時刻,輸出電壓VOUT 大於預設電位V’TARGET (例如:回授電壓VFB 大於預設電壓VPRE )。所以,及閘1264接收來自比較器1203的低電位PULSE信號1260,並且輸出低電位ACCEL信號1236以保持開關1232截止。此外,HDR_EN信號1082為高電位並且保持開關1234導通。In the TOFF_BOOST state of the duty cycle normal mode (eg, during the time t j+1 to t j+2 ), the inductor current I L10 decreases according to equation (24), and the ramp signal 1032 increases according to equation (28). In addition, the output voltage V OUT is reduced. The output capacitor 1016 has an equivalent series resistance value, so that when the high side switch 1010 is turned on and the low side switch 1012 is turned off (eg, at time t j+1 ), the output voltage V OUT can be relatively quickly increased to equal one input. The voltage V IN is added to the potential across the voltage across the inductor 1014. At time t j+1 , the output voltage V OUT is greater than the preset potential V' TARGET (eg, the feedback voltage V FB is greater than the preset voltage V PRE ). Therefore, the AND gate 1264 receives the low potential PULSE signal 1260 from the comparator 1203 and outputs a low potential ACCEL signal 1236 to keep the switch 1232 off. Additionally, HDR_EN signal 1082 is high and keep switch 1234 conductive.

在責任週期正常模式下,當斜坡信號1032增加至參考電壓VH 時(例如:在tj+2 時刻),輸出電壓VOUT 減小至預設電位V’TARGET 。比較器1202輸出高電位信號給SR正反器1258,將SR正反器1258的同相輸出端Q置為高電位。其次,比較器1203輸出高電位PULSE信號1260。於是,及閘1262輸出高電位信號給SR正反器1248將PWM信號1084置為高電位。在一個實施例中,當SR正反器1258的置位端S接收到來自比較器1202的高電位信號的時刻與當SR正反器1258的復位端R接收到高電位PWM信號1084的時刻之間存在時間間隔ΔT1 。時間間隔ΔT1 相對比較短。換句話說,HDR_EN信號1082在時間間隔ΔT1 內(例如圖中的tj 、tj+2 、tj+4 時刻所示)處於低電位,而這個狀態的持續時間相對比較短。與時間TON 和時間TOFF 相比,時間間隔ΔT1 可忽略不計。在一個實施例中,及閘1264在時間間隔ΔT2 內接收來自SR正反器1248的反相輸出端QB的高電位信號和來自比較器1203的高電位PULSE信號1260。時間間隔ΔT2 相對比較短。換句話說,ACCEL信號1236在時間間隔ΔT2 內(例如圖中的tj 、tj+2 、tj+4 時刻所示)處於高電位,而這個狀態的持續時間相對比較短。與時間TON 和時間TOFF 相比,時間間隔ΔT2 可忽略不計。In the duty cycle normal mode, when the ramp signal 1032 is increased to the reference voltage V H (eg, at time t j+2 ), the output voltage V OUT is decreased to a preset potential V′ TARGET . The comparator 1202 outputs a high potential signal to the SR flip-flop 1258 to set the non-inverting output terminal Q of the SR flip-flop 1258 to a high potential. Next, comparator 1203 outputs a high potential PULSE signal 1260. Thus, the AND gate 1262 outputs a high potential signal to the SR flip-flop 1248 to set the PWM signal 1084 to a high potential. In one embodiment, when the set terminal S of the SR flip-flop 1258 receives the high potential signal from the comparator 1202 and when the reset terminal R of the SR flip-flop 1258 receives the high potential PWM signal 1084, There is a time interval ΔT 1 between . The time interval ΔT 1 is relatively short. In other words, the HDR_EN signal 1082 is at a low potential within the time interval ΔT 1 (as indicated by t j , t j+2 , t j+4 in the figure), and the duration of this state is relatively short. The time interval ΔT 1 is negligible compared to the time T ON and the time T OFF . In one embodiment, the AND gate 1264 receives the high potential signal from the inverted output QB of the SR flip-flop 1248 and the high potential PULSE signal 1260 from the comparator 1203 during the time interval ΔT 2 . The time interval ΔT 2 is relatively short. In other words, the ACCEL signal 1236 is at a high potential during the time interval ΔT 2 (e.g., at times t j , t j+2 , t j+4 in the figure), and the duration of this state is relatively short. The time interval ΔT 2 is negligible compared to the time T ON and the time T OFF .

在責任週期減小模式下(例如:ti 到ti+4 時刻期間),ACCEL信號1236為低電位,HDR_EN信號1082可為高電位或者低電位。在責任週期減小模式的TON_BOOST狀態下(例如:tj 到tj+1 時刻期間),電感電流IL10 、輸出電壓VOUT 、斜坡信號1032、PULSE信號1260、HDR_EN信號1082、ACCEL信號1236,以及PWM信號1084的狀態與責任週期正常模式的TON_BOOST狀態(例如:ti 到ti+1 時刻期間)下的情況類似。然而,在責任週期減小模式的TOFF_BOOST狀態下(例如:ti+1 到ti+2 時刻期間),當斜坡信號1032增加至參考電壓VH 時(例如:在ti+2 時刻),輸出電壓VOUT 大於預設電位V’TARGET 。因此,例如在ti+2 時刻,PULSE信號1260為低電位,使得及閘1262輸出低電位信號給SR正反器1248,將PWM信號1084保持為低電位。同時,比較器1202輸出高電位信號將SR正反器1258置位,使其輸出低電位HDR_EN信號1082。因此,直流/直流轉換器1000A進入SKIP狀態(例如:在ti+2 到ti+3 時刻期間)。In the duty cycle reduction mode (eg, during the time t i to t i+4 ), the ACCEL signal 1236 is low and the HDR_EN signal 1082 can be high or low. In the TON_BOOST state of the duty cycle reduction mode (eg, during the time t j to t j+1 ), the inductor current I L10 , the output voltage V OUT , the ramp signal 1032, the PULSE signal 1260, the HDR_EN signal 1082, the ACCEL signal 1236, And the state of the PWM signal 1084 is similar to the case of the TON_BOOST state of the duty cycle normal mode (for example, during the period from t i to t i+1 ). However, in the TOFF_BOOST state of the duty cycle reduction mode (eg, during the time t i+1 to t i+2 ), when the ramp signal 1032 is increased to the reference voltage V H (eg, at time t i+2 ), The output voltage V OUT is greater than the preset potential V' TARGET . Thus, for example, at time t i+2 , PULSE signal 1260 is low, such that AND gate 1262 outputs a low potential signal to SR flip-flop 1248, which maintains PWM signal 1084 at a low potential. At the same time, comparator 1202 outputs a high potential signal to assert SR flip-flop 1258, which causes a low potential HDR_EN signal 1082 to be output. Therefore, the DC/DC converter 1000A enters the SKIP state (for example, during the time t i+2 to t i+3 ).

在SKIP狀態下,HDR_EN信號1082將連接在電阻1020和斜坡電容1008之間的延時開關1234截止,使得斜坡信號1032保持不變。此外,由於輸出電容1016放電給負載(未顯示在圖12中),輸出電壓VOUT 繼續減小。當輸出電壓VOUT 減小至預設電位V’TARGET 時(例如:在ti+3 時刻),比較器1203輸出高電位PULSE信號1260給及閘1262。由於SR正反器1258的同相輸出端Q也為高電位,及閘1262輸出高電位信號給SR正反器1248將PWM信號1084置為高電位。回應於這個PWM信號1084,SR正反器1258將HDR_EN信號1082置為高電位,並且導通延時開關1234。換句話說,在ti+3 時刻,直流/直流轉換器1000A進入新的TON_BOOST狀態。結果,在責任週期減小模式下,PWM信號1084的責任週期減小。In the SKIP state, the HDR_EN signal 1082 turns off the delay switch 1234 connected between the resistor 1020 and the ramp capacitor 1008 such that the ramp signal 1032 remains unchanged. In addition, as the output capacitor 1016 discharges to the load (not shown in Figure 12), the output voltage VOUT continues to decrease. When the output voltage V OUT decreases to a preset potential V' TARGET (eg, at time t i+3 ), the comparator 1203 outputs a high potential PULSE signal 1260 to the gate 1262. Since the non-inverting output Q of the SR flip-flop 1258 is also high, the gate 1262 outputs a high potential signal to the SR flip-flop 1248 to set the PWM signal 1084 to a high potential. In response to this PWM signal 1084, the SR flip-flop 1258 asserts the HDR_EN signal 1082 to a high level and turns on the delay switch 1234. In other words, at time t i+3 , the DC/DC converter 1000A enters a new TON_BOOST state. As a result, in the duty cycle reduction mode, the duty cycle of the PWM signal 1084 is reduced.

在責任週期增加模式下(例如:tk 到tk+3 時刻期間),ACCEL信號1236可為高電位或者低電位,HDR_EN信號1082為高電位。在責任週期增加模式的TON_BOOST狀態下(例如:tk 到tk+1 時刻期間),電感電流IL10 、輸出電壓VOUT 、斜坡信號1032、PULSE信號1260、HDR_EN信號1082、ACCEL信號1236,以及PWM信號1084的狀態與責任週期正常模式的TON_BOOST狀態下(例如:ti 到ti+1 時刻期間)的情況類似。然而,在責任週期增加模式的TOFF_BOOST狀態下(例如:tk+1 到tk+2 時刻期間),在斜坡信號1032增加至參考電壓VH 之前,輸出電壓VOUT 減小至預設電位V’TARGET (例如:在tk+2 時刻)。因此,例如在tk+2 時刻,PULSE信號1260為高電位。此外,SR正反器1248的反相輸出端QB為高電位。因此,及閘1264輸出高電位ACCEL信號1236以導通加速開關1232。電阻1020的阻值RRP 減小(例如:從RRP0 +RRP1 減小至RRP0 ),並且控制電流IC10 增加。所以,斜坡信號1032從參考電壓VL 增加至參考電壓VH 所需要的時間縮短。當斜坡信號1032增加至參考電壓VH 時(例如:在tk+3 時刻),比較器1202輸出高電位信號經由SR正反器1258、及閘1262,以及SR正反器1248將PWM信號1084置為高電位。因此,在tk+3 時刻,直流/直流轉換器1000A進入新的TON_BOOST狀態。結果,在責任週期增加模式下,PWM信號1084的責任週期增加。In the duty cycle increase mode (eg, during the time t k to t k+3 ), the ACCEL signal 1236 can be high or low and the HDR_EN signal 1082 is high. In the TON_BOOST state of the duty cycle increase mode (eg, during the time t k to t k+1 ), the inductor current I L10 , the output voltage V OUT , the ramp signal 1032, the PULSE signal 1260, the HDR_EN signal 1082, the ACCEL signal 1236, and The state of the PWM signal 1084 is similar to the case of the TON_BOOST state of the duty cycle normal mode (for example, during the period from t i to t i+1 ). However, in the TOFF_BOOST state of the duty cycle increase mode (eg, during the time t k+1 to t k+2 ), the output voltage V OUT is decreased to the preset potential V before the ramp signal 1032 is increased to the reference voltage V H ' TARGET (for example: at time t k+2 ). Thus, for example, at time t k+2 , PULSE signal 1260 is at a high potential. Further, the inverted output terminal QB of the SR flip-flop 1248 is at a high potential. Therefore, the AND gate 1264 outputs a high potential ACCEL signal 1236 to turn on the acceleration switch 1232. The resistance R RP of the resistor 1020 is decreased (for example, from R RP0 + R RP1 to R RP0 ), and the control current I C10 is increased. Therefore, the time required for the ramp signal 1032 to increase from the reference voltage V L to the reference voltage V H is shortened. When the ramp signal 1032 is increased to the reference voltage V H (eg, at time t k+3 ), the comparator 1202 outputs a high potential signal via the SR flip-flop 1258, the gate 1262, and the SR flip-flop 1248 to the PWM signal 1084. Set to high potential. Therefore, at time t k+3 , the DC/DC converter 1000A enters a new TON_BOOST state. As a result, the duty cycle of the PWM signal 1084 increases during the duty cycle increase mode.

控制器1002A根據輸出電壓VOUT 的狀態自動地選擇工作在責任週期減小模式、責任週期正常模式,或者責任週期增加模式下。結果,輸出電壓VOUT 的平均電壓VAVE 被調節至目標電壓VTARGET 。輸出電壓VOUT 的波動幅度相對比較小,可忽略不計。因此,輸出電壓VOUT 約等於目標電壓VTARGETThe controller 1002A automatically selects to operate in the duty cycle reduction mode, the duty cycle normal mode, or the duty cycle increase mode according to the state of the output voltage V OUT . As a result, the average voltage V AVE of the output voltage V OUT is adjusted to the target voltage V TARGET . The fluctuation amplitude of the output voltage V OUT is relatively small and can be ignored. Therefore, the output voltage V OUT is approximately equal to the target voltage V TARGET .

圖14所示為根據本發明一實施例的直流/直流轉換器1000B的示意圖。在圖10A、圖10B、圖12和圖14中標識相同的元件具有相似的功能。如圖14所示,控制器1002B包括斜坡信號產生器1030B、PWM信號產生器1040B,以及回授電路1070。Figure 14 is a schematic diagram of a DC/DC converter 1000B in accordance with an embodiment of the present invention. The same elements are identified in Figures 10A, 10B, 12 and 14 to have similar functions. As shown in FIG. 14, the controller 1002B includes a ramp signal generator 1030B, a PWM signal generator 1040B, and a feedback circuit 1070.

斜坡信號產生器1030B包括電阻1020、斜坡電容1008,以及開關1436。電阻1020的第一端1023與電感1014的第一端1013連接,並且電阻1020的第二端1025經由開關1436與電感1014的第二端1015連接。斜坡電容1008連接在電阻1020的第二端1025和地之間。The ramp signal generator 1030B includes a resistor 1020, a ramp capacitor 1008, and a switch 1436. The first end 1023 of the resistor 1020 is coupled to the first end 1013 of the inductor 1014, and the second end 1025 of the resistor 1020 is coupled to the second end 1015 of the inductor 1014 via the switch 1436. A ramp capacitor 1008 is coupled between the second end 1025 of the resistor 1020 and ground.

PWM信號產生器1040B包括偏移電路1442、比較器1401、比較器1402、比較器1403、SR正反器1448,以及及閘1462。比較器1401的非反相輸入端經由偏移電路1442與電感1014的第二端1015連接、反相輸入端與電阻1020的第二端1025連接、輸出端與SR正反器1448的復位端R連接。比較器1402的非反相輸入端與高側開關1010的第一端(如圖中所示的切換節點1022)連接、反相輸入端與高側開關1010的第二端(如圖中所示的高側端1086)連接、輸出端與控制器1002B的致能輸出端EN連接。比較器1402的非反相輸入端與提供預設電壓VPRE 的電壓源(圖中未示)連接,反相輸入端與回授電路1070連接,輸出端與及閘1462連接。及閘1462的輸入端與比較器1403和SR正反器1448的反相輸出端QB連接、輸出端與SR正反器1448的置位端S連接。SR正反器1448的反相輸出端QB還與開關1436的控制端連接。此外,SR正反器1448的同相輸出端Q與控制器1002B的控制輸出端PWM連接。The PWM signal generator 1040B includes an offset circuit 1442, a comparator 1401, a comparator 1402, a comparator 1403, an SR flip-flop 1448, and a AND gate 1462. The non-inverting input of the comparator 1401 is coupled to the second terminal 1015 of the inductor 1014 via the offset circuit 1442, the inverting input is coupled to the second terminal 1025 of the resistor 1020, and the output terminal is coupled to the reset terminal R of the SR flip-flop 1448. connection. The non-inverting input of the comparator 1402 is coupled to the first end of the high side switch 1010 (the switching node 1022 as shown), the inverting input and the second end of the high side switch 1010 (as shown in the figure). The high side end 1086) is connected and the output is connected to the enable output EN of the controller 1002B. The non-inverting input of comparator 1402 is coupled to a voltage source (not shown) that provides a predetermined voltage V PRE , the inverting input is coupled to feedback circuit 1070 , and the output is coupled to AND gate 1462 . The input terminal of the AND gate 1462 is connected to the inverting output terminal QB of the comparator 1403 and the SR flip-flop 1448, and the output terminal is connected to the set terminal S of the SR flip-flop 1448. The inverting output QB of the SR flip-flop 1448 is also coupled to the control terminal of the switch 1436. In addition, the non-inverting output Q of the SR flip-flop 1448 is PWM coupled to the control output of the controller 1002B.

在本實施例中,比較器1401接收來自偏移電路1442的參考電壓V L ,且透過將斜坡信號1032和參考電壓V L 比較輸出信號給SR正反器1448。比較器1401在斜坡信號1032不大於參考電壓V L 的時候輸出高電位信號,在斜坡信號1032大於參考電壓V L 的時候輸出低電位信號。比較器1402接收高側開關1010第一端電壓VSWH (例如:VSWH =V1013 )和高側開關1010第二端電壓VSWL (例如:VSWL =VOUT ),並且透過比較第一端電壓VSWH 和第二端電壓VSWL 輸出一信號給控制器1002B的致能輸出端EN。比較器1402在第一端電壓VSWH 大於第二端電壓VSWL 時輸出高電位,在第一端電壓VSWH 不大於第二端電壓VSWL 時輸出低電位。此外,類似於圖12中描述的方式,SR正反器1448由輸入信號的上升沿觸發。In the present embodiment, the comparator 1401 receives a reference voltage V from the shift circuit 1442 'L, and 1032 through the ramp signal and the reference voltage V' L to the comparison output signal SR flip-flop 1448. The ramp signal comparator 1401 in 1032 is not greater than the reference voltage V 'L outputs a high level signal when, in 1032 the ramp signal is greater than the reference voltage V' L when the output signal of a low potential. The comparator 1402 receives the first terminal voltage V SWH (eg, V SWH =V 1013 ) of the high side switch 1010 and the second terminal voltage V SWL of the high side switch 1010 (eg, V SWL =V OUT ), and compares the first end by comparing The voltage V SWH and the second terminal voltage V SWL output a signal to the enable output EN of the controller 1002B. The comparator outputs a high voltage at the first end 1402 is greater than the voltage V SWH second terminal voltages V SWL, low potential at the first end is not greater than a second voltage V SWH voltage V SWL. Moreover, similar to the manner depicted in Figure 12, the SR flip-flop 1448 is triggered by the rising edge of the input signal.

在本實施例中,控制器1002B透過將斜坡信號1032和參考電壓V L 比較,並且比較第一端電壓VSWH 和第二端電壓VSWL ,控制斜坡信號1032的漣波幅度以及電感電流IL10 的漣波幅度恒定。更具體而言,PWM信號產生器1040B跟據斜坡信號1032和參考電壓V L 的比較控制PWM信號1084的狀態,並且控制根據第一端電壓VSWH 和第二端電壓VSWL 的比較控制HDR_EN信號1082的狀態。In this embodiment, the controller 1002B controls the chopping amplitude of the ramp signal 1032 and the inductor current I by comparing the ramp signal 1032 with the reference voltage V ' L and comparing the first terminal voltage V SWH with the second terminal voltage V SWL . The amplitude of the ripple of L10 is constant. More specifically, the PWM signal generator 1040B controls the state of the PWM signal 1084 according to the comparison of the ramp signal 1032 and the reference voltage V ' L , and controls the control HDR_EN according to the comparison of the first terminal voltage V SWH and the second terminal voltage V SWL . The state of signal 1082.

當PWM信號1084為高電位時,電感電流IL10 增加,且斜坡信號1032減小。當電感電流IL10 增加至特定值時(例如:當斜坡信號1032減小至參考電壓V L 時),比較器1401輸出高電位信號將SR正反器1448重設。於是,SR正反器1448將PWM信號1084置為低電位以減小電感電流IL10 。同時,SR正反器1448的反相輸出端QB為高電位,將開關1436導通,使得斜坡信號1032被控制等於電感1014的第二端1015電壓V1015 。本實施例中的高側開關1010具有導通電阻,使得如果電感電流IL10 大於預設值(例如:零安培)第一端電壓VSWH 則大於第二端電壓VSWL 。當電感電流IL10 減小至預設值(例如:零安培)時,第一端電壓VSWH 減小至第二端電壓VSWL ,於是比較器1402將HDR_EN信號1082置為低電位以截止高側開關1010。因此,電感電流IL10 不小於預設值(例如:零安培)。比較器1403根據輸出電壓VOUT 可再次將PWM信號1084置為高電位。結果,斜坡信號1032有一個等於電壓V1015 的最大值和一個等於參考電壓V’L 的最小值。電感電流IL10 也有最大值和最小值(例如:電感電流IL10 處在基於斜坡信號1032的預設範圍內)。斜坡信號1032的漣波幅度等於電壓V1015 和參考電壓V’L 之差。差值V1015 -V’L 恒定,使得斜坡信號1032的漣波幅度恒定。結果電感電流IL10 的漣波幅度恒定。When PWM signal 1084 is high, inductor current I L10 increases and ramp signal 1032 decreases. When the inductor current I L10 increases to a particular value (eg, when the ramp signal 1032 decreases to the reference voltage V ' L ), the comparator 1401 outputs a high potential signal to reset the SR flip-flop 1448. Thus, SR flip-flop 1448 sets PWM signal 1084 to a low potential to reduce inductor current I L10 . At the same time, the inverting output QB of the SR flip-flop 1448 is high, turning the switch 1436 on, such that the ramp signal 1032 is controlled equal to the voltage V 1015 of the second terminal 1015 of the inductor 1014. The high side switch 1010 in this embodiment has an on-resistance such that the first terminal voltage V SWH is greater than the second terminal voltage V SWL if the inductor current I L10 is greater than a preset value (eg, zero amps). When the inductor current I L10 decreases to a preset value (eg, zero amps), the first terminal voltage V SWH decreases to the second terminal voltage V SWL , and the comparator 1402 sets the HDR_EN signal 1082 to a low potential to turn off the high voltage. Side switch 1010. Therefore, the inductor current I L10 is not less than a preset value (for example, zero ampere). The comparator 1403 can again set the PWM signal 1084 to a high level according to the output voltage V OUT . As a result, the ramp signal 1032 has a maximum value equal to the voltage V 1015 and a minimum value equal to the reference voltage V' L . The inductor current I L10 also has a maximum value and a minimum value (eg, the inductor current I L10 is within a preset range based on the ramp signal 1032). The chopping amplitude of the ramp signal 1032 is equal to the difference between the voltage V 1015 and the reference voltage V' L . The difference V 1015 - V' L is constant such that the chopping amplitude of the ramp signal 1032 is constant. As a result, the amplitude of the chopping of the inductor current I L10 is constant.

在圖14的實施例中,開關電路包括高側開關1010和低側開關1012。然而,在一個可替換的實施例中,二極體取代了高側開關1010,並且比較器1402被省去了。具體而言,二極體的陰極與高側端1086連接,陽極與切換節點1022連接。因此,當低側開關1012導通時,二極體被反向偏置。當低側開關1012截止並且電感電流IL10 大於零安培時,二極體被正向偏置。當電感電流IL10 減小至零安培時,二極體截止。In the embodiment of FIG. 14, the switching circuit includes a high side switch 1010 and a low side switch 1012. However, in an alternate embodiment, the diode replaces the high side switch 1010 and the comparator 1402 is omitted. Specifically, the cathode of the diode is connected to the high side end 1086, and the anode is connected to the switching node 1022. Therefore, when the low side switch 1012 is turned on, the diode is reverse biased. When the low side switch 1012 is off and the inductor current I L10 is greater than zero amps, the diode is forward biased. When the inductor current I L10 is reduced to zero amps, the diode is turned off.

在圖14的實施例中,用於控制電阻1020的第二端1025電壓V1025 趨於電感1014的第二端1015電壓V1015 的電路包括:偏移電路1442、比較器1401、SR正反器1448、以及開關1436。具體而言,比較器1401比較電壓V1025 和參考電壓V L 以根據比較結果控制開關1436。當電壓V1025 減小至參考電壓V L 時,開關1436導通使得電壓V1025 被控制等於電壓V1015 。因此,電壓V1025 介於參考電壓V L 至電壓V1015 的範圍內。橫跨偏移電路1442的預設電壓為VS3 ,並且提供給比較器1401的參考電壓V L 等於電壓V1015 減去預設電壓VS3 ,例如:V L =V1015 -VS3 。本實施例中的橫跨偏移電路1442的預設電壓VS3 為恒定值。此外,相較於電壓V1015 ,預設電壓VS3 相對較小,可忽略不計,使得在參考電壓V L 到電壓V1015 範圍內變化的電壓V1025 被認為約等於電壓V1015In the embodiment of FIG. 14, the circuit for controlling the voltage V 1025 of the second terminal 1025 of the resistor 1020 to the voltage V 1015 of the second terminal 1015 of the inductor 1014 includes: an offset circuit 1442, a comparator 1401, and a SR flip-flop 1448, and switch 1436. Specifically, the comparator 1401 compares the voltage V 1025 with the reference voltage V ' L to control the switch 1436 according to the comparison result. When the voltage V 1025 is decreased to the reference voltage V ' L , the switch 1436 is turned on such that the voltage V 1025 is controlled to be equal to the voltage V 1015 . Therefore, the voltage V 1025 is in the range of the reference voltage V ' L to the voltage V 1015 . The preset voltage across the offset circuit 1442 is V S3 , and the reference voltage V ' L supplied to the comparator 1401 is equal to the voltage V 1015 minus the preset voltage V S3 , for example: V ' L = V 1015 - V S3 . The preset voltage V S3 across the offset circuit 1442 in this embodiment is a constant value. Furthermore, the preset voltage V S3 is relatively small compared to the voltage V 1015 , negligible, so that the voltage V 1025 varying in the range of the reference voltage V ' L to the voltage V 1015 is considered to be approximately equal to the voltage V 1015 .

在圖14的實施例中,比較器1401控制斜坡信號1032具有恒定漣波幅度,並且控制電壓V1025 趨於電壓V1015 。然而,在另一實施例中,斜坡信號1032和電壓V1025 由不同的比較器控制。在這樣的實施中,斜坡信號1032的範圍和電壓V1025 的範圍可相同或者不同。在這樣的實施中,可以利用電流控制電流源(如:圖3中的電流控制電流源324)產生等於流經電阻1020的電流的控制電流,以控制斜坡電容1008。In the embodiment of FIG. 14, comparator 1401 controls ramp signal 1032 to have a constant chopping amplitude, and control voltage V1025 tends to voltage V1015 . However, in another embodiment, ramp signal 1032 and voltage V 1025 are controlled by different comparators. In such an implementation, the range of ramp signal 1032 and the range of voltage V 1025 may be the same or different. In such an implementation, a current controlled current source (eg, current controlled current source 324 in FIG. 3) can be utilized to generate a control current equal to the current flowing through resistor 1020 to control ramp capacitance 1008.

在本實施例中,透過利用比較器1403、及閘1462以及SR正反器1448,輸出電壓VOUT 的平均電壓VAVE 被調節至目標電壓VTARGET 。以下將結合圖15描述關於輸出電壓VOUT 的平均電壓VAVE 的調節過程。In the present embodiment, by using the comparator 1403, the gate 1462, and the SR flip-flop 1448, the average voltage V AVE of the output voltage V OUT is adjusted to the target voltage V TARGET . The adjustment process with respect to the average voltage V AVE of the output voltage V OUT will be described below with reference to FIG.

圖15所示為根據本發明的一個實施例的與圖14的直流/直流轉換器1000B相關的信號(例如:電感電流IL10 、輸出電壓VOUT 、斜坡信號1032、PULSE信號1460、HDR_EN信號1082,以及PWM信號1084)的示例性時序圖1500。Figure 15 shows signals associated with the DC/DC converter 1000B of Figure 14 (e.g., inductor current I L10 , output voltage V OUT , ramp signal 1032, PULSE signal 1460, HDR_EN signal 1082, in accordance with an embodiment of the present invention). And an exemplary timing diagram 1500 of the PWM signal 1084).

如圖15所示,控制器1002B的操作包括不同模式,例如:責任週期減小模式、責任週期正常模式,以及責任週期增加模式。在責任週期正常模式下(例如:tn 到tn+4 時刻期間),當電感電流IL10 減小至預設值IPRE 時(例如:在tn+2 時刻),輸出電壓VOUT 減小至預設電位V TARGET 。輸出電壓VOUT 的平均電壓VAVE 等於目標電壓VTARGET 。在本實施例中,預設值IPRE 等於零安培。在責任週期減小模式下(例如:tm 到tm+4 時刻期間),當L10 減小至預設值IPRE 時(例如:在tm+2 時刻),輸出電壓VOUT 大於預設電位V TARGET 。平均電壓VAVE 大於目標電壓VTARGET 。那麼,控制器1002B減小PWM信號1084的責任週期以減小平均電壓VAVE 。在責任週期增加模式下(例如:ts 到ts+3 時刻期間),在電感電流IL10 減小至預設值IPRE 之前輸出電壓VOUT 減小至預設電位V TARGET (例如:在ts+2 時刻)。平均電壓VAVE 小於目標電壓VTARGET 。那麼,控制器1002B增加PWM信號1084的責任週期以增加平均電壓VAVEAs shown in FIG. 15, the operation of the controller 1002B includes different modes such as a duty cycle reduction mode, a duty cycle normal mode, and a duty cycle increase mode. In the duty cycle normal mode (eg, during t n to t n+4 ), when the inductor current I L10 decreases to a preset value I PRE (eg, at time t n+2 ), the output voltage V OUT is reduced. Small to preset potential V ' TARGET . The average voltage V AVE of the output voltage V OUT is equal to the target voltage V TARGET . In this embodiment, the preset value I PRE is equal to zero amperes. In the duty cycle reduction mode (eg, during t m to t m+4 ), when L10 decreases to the preset value I PRE (eg, at time t m+2 ), the output voltage V OUT is greater than the preset Potential V ' TARGET . The average voltage V AVE is greater than the target voltage V TARGET . Then, controller 1002B reduces the duty cycle of PWM signal 1084 to reduce the average voltage V AVE . In the duty cycle increase mode (eg, during time t s to t s+3 ), the output voltage V OUT is reduced to a preset potential V ' TARGET before the inductor current I L10 decreases to a preset value I PRE (eg: At time t s+2 ). The average voltage V AVE is less than the target voltage V TARGET . Then, controller 1002B increases the duty cycle of PWM signal 1084 to increase the average voltage V AVE .

如圖15所示的實施例中,在責任週期正常模式下,HDR_EN信號1082與PWM信號1084反相。例如,HDR_EN信號1082在PWM為高電位時為低電位,在PWM為低電位時為高電位。PULSE信號1460與PWM信號1084同相。例如,PULSE信號1460在PWM信號1084為高電位時為高電位,在PWM信號1084為低電位時為低電位。斜坡信號1032在TON_BOOST狀態時(例如:tn 到tn+1 時刻期間)減小,在TOFF_BOOST狀態時(例如:tn+1 到tn+2 時刻期間)等於電壓V1015 。電感電流IL10 具有鋸齒波形。由於斜坡信號1032的漣波幅度恒定,電感電流IL10 的漣波幅度恒定。輸出電壓VOUT 以預設電位V TARGET 為參考電位上下波動,但是輸出電壓VOUT 的平均電壓VAVE 等於目標電壓VTARGET 。如上所述,預設電位V TARGET 約等於目標電壓VTARGETIn the embodiment shown in FIG. 15, in the duty cycle normal mode, the HDR_EN signal 1082 is inverted from the PWM signal 1084. For example, the HDR_EN signal 1082 is low when PWM is high and high when PWM is low. The PULSE signal 1460 is in phase with the PWM signal 1084. For example, PULSE signal 1460 is high when PWM signal 1084 is high and low when PWM signal 1084 is low. The ramp signal 1032 decreases in the TON_BOOST state (eg, during the time t n to t n+1 ), and is equal to the voltage V 1015 in the TOFF_BOOST state (eg, during the time t n+1 to t n+2 ). The inductor current I L10 has a sawtooth waveform. Since the chopping amplitude of the ramp signal 1032 is constant, the chopping amplitude of the inductor current I L10 is constant. The output voltage V OUT fluctuates up and down with a preset potential V ' TARGET as a reference potential, but the average voltage V AVE of the output voltage V OUT is equal to the target voltage V TARGET . As described above, the preset potential V ' TARGET is approximately equal to the target voltage V TARGET .

更具體而言,在責任週期正常模式的TON_BOOST狀態下(例如:tn 到tn+1 時刻期間),電感電流IL10 依據方程式(23)增加,斜坡信號1032依據方程式(26)減小,並且輸出電壓VOUT 減小。PWM信號1084為高電位。因為高側開關1010截止,低側開關1012導通,所以切換節點1022接地。因此,高側開關1010的第一端電壓VSWH 小於高側開關1010的第二端電壓VSWL ,比較器1402將HDR_EN信號1082置為低電位。此外,輸出電壓VOUT 小於預設電位V TARGET (例如:回授電壓VFB 小於預設電壓VPRE ),於是比較器1403將PULSE信號1460置為高電位。More specifically, in the TON_BOOST state of the duty cycle normal mode (eg, during the time t n to t n+1 ), the inductor current I L10 is increased according to equation (23), and the ramp signal 1032 is decreased according to equation (26). And the output voltage V OUT is reduced. The PWM signal 1084 is high. Because the high side switch 1010 is off and the low side switch 1012 is on, the switching node 1022 is grounded. Therefore, the first terminal voltage V SWH of the high side switch 1010 is less than the second terminal voltage V SWL of the high side switch 1010, and the comparator 1402 sets the HDR_EN signal 1082 to a low potential. Further, the output voltage V OUT is less than the preset potential V ' TARGET (eg, the feedback voltage V FB is less than the preset voltage V PRE ), and the comparator 1403 sets the PULSE signal 1460 to a high potential.

當斜坡信號1032減小至參考電壓V L 時(例如:在tn+1 時刻),比較器1401輸出高電位信號將SR正反器1448重設,使其輸出低電位PWM信號1084。於是低側開關1012截止。其次,SR正反器1448的反相輸出端QB置為高電位以導通開關1436。在tn+1 時刻,電感1014、電阻1020和開關1436形成電流回路。電感1014經由電流回路釋放能量(例如:將磁場能轉換為電能),於是電壓V1013 大於電壓V1015 。在本實施例中的tn+1 時刻,第一端電壓VSWH (例如:VSWH =V1013 )大於第二端電壓VSWL (例如:VSWL =VOUT ),使得比較器1402將HDR_EN信號1082置為高電位以導通高側開關1010。因此,直流/直流轉換器1000B進入TOFF_BOOST狀態。When the ramp signal 1032 is reduced to the reference voltage V ' L (eg, at time t n+1 ), the comparator 1401 outputs a high potential signal to reset the SR flip-flop 1448 to output a low potential PWM signal 1084. The low side switch 1012 is then turned off. Second, the inverting output terminal QB of the SR flip-flop 1448 is asserted high to turn on the switch 1436. At time t n+1 , inductor 1014, resistor 1020, and switch 1436 form a current loop. Inductor 1014 releases energy via a current loop (eg, converts magnetic field energy into electrical energy), such that voltage V 1013 is greater than voltage V 1015 . At time t n+1 in this embodiment, the first terminal voltage V SWH (eg, V SWH =V 1013 ) is greater than the second terminal voltage V SWL (eg, V SWL =V OUT ), such that the comparator 1402 will HDR_EN Signal 1082 is asserted high to turn on high side switch 1010. Therefore, the DC/DC converter 1000B enters the TOFF_BOOST state.

在TOFF_BOOST狀態下(例如:tn+1 到tn+2 時刻期間),高側開關1010導通,輸出電壓VOUT 大於預設電位V’TARGET 。於是,比較器1403輸出低電位PULSE信號1460。電感電流IL10 經由高側開關1010流入高側端1086。隨著電感電流IL10 減小,橫跨高側開關1010的電壓(例如:VSWH -VSWL )減小。當電感電流IL10 減小至零安培時,第一端電壓VSWH 減小至第二端電壓VSWL 。因此,如tn+2 時刻所示,比較器1402將HDR_EN信號1082置為低電位以截止高側開關1010。此外,在責任週期正常模式下,當電感電流IL10 減小至零安培時,輸出電壓VOUT 減小至預設電位V’TARGET 。因此,在tn+2 時刻,比較器1403輸出高電位PULSE信號1460經由及閘1462和SR正反器1448將PWM信號1084置為高電位。直流/直流轉換器1000B在tn+2 時刻進入新的TON_BOOST狀態。In the TOFF_BOOST state (eg, during the time t n+1 to t n+2 ), the high side switch 1010 is turned on, and the output voltage V OUT is greater than the preset potential V' TARGET . Thus, comparator 1403 outputs a low potential PULSE signal 1460. Inductor current I L10 flows into high side end 1086 via high side switch 1010. As the inductor current I L10 decreases, the voltage across the high side switch 1010 (eg, V SWH -V SWL ) decreases. When the inductor current I L10 is reduced to zero amps, the first terminal voltage V SWH is reduced to the second terminal voltage V SWL . Thus, as indicated at time tn +2 , comparator 1402 sets HDR_EN signal 1082 low to turn off high side switch 1010. In addition, in the duty cycle normal mode, when the inductor current I L10 is reduced to zero amps, the output voltage V OUT is reduced to a preset potential V' TARGET . Therefore, at time t n+2 , comparator 1403 outputs high potential PULSE signal 1460 to set PWM signal 1084 to high potential via AND gate 1462 and SR flip-flop 1448. The DC/DC converter 1000B enters a new TON_BOOST state at time t n+2 .

在責任週期減小模式的TON_BOOST狀態下(例如:tm 到tm+1 時刻期間),電感電流IL10 、輸出電壓VOUT 、斜坡信號1032、PULSE信號1460、HDR_EN信號1082,以及PWM信號1084的狀態與責任週期正常模式的TON_BOOST狀態下(例如:tn 到tn+1 時刻期間)的情況類似。然而,在責任週期減小模式的TOFF_BOOST狀態下(例如:tm+1 到tm+2 時刻期間),當電感電流IL10 減小至預設值IPRE (例如:零安培)時,輸出電壓VOUT 大於預設電位V’TARGET 。因此,例如在tm+2 到tm+3 ,時刻期間,比較器1403輸出低電位PULSE信號1460經由及閘1462和SR正反器1448將PWM信號1084保持為低電位。同時,HDR_EN信號1082為低電位。因此,直流/直流轉換器1000B進入SKIP狀態(例如:在tm+2 到tm+3 時刻期間)。In TON_BOOST reduction mode duty cycle state (e.g.: t m to t m + 1 time period), the inductor current I L10, the output voltage V OUT, the ramp signal 1032, PULSE signal 1460, HDR_EN signal 1082, and the PWM signal 1084 The state is similar to the case of the duty cycle normal mode in the TON_BOOST state (for example, during t n to t n+1 time). However, in the TOFF_BOOST state of the duty cycle reduction mode (eg, during the time t m+1 to t m+2 ), when the inductor current I L10 decreases to a preset value I PRE (eg, zero amps), the output The voltage V OUT is greater than the preset potential V' TARGET . Thus, for example, during t m+2 to t m+3 , the comparator 1403 outputs a low potential PULSE signal 1460 to maintain the PWM signal 1084 at a low potential via the AND gate 1462 and the SR flip-flop 1448. At the same time, the HDR_EN signal 1082 is low. Therefore, the DC/DC converter 1000B enters the SKIP state (for example, during the time t m+2 to t m+3 ).

在SKIP狀態下,電感電流IL10 為零安培,斜坡信號1032保持在電壓V1015 ,輸出電壓VOUT 減小。當輸出電壓VOUT 減小至預設電位V TARGET 時(例如:在tm+3 時刻),比較器1403輸出高電位PULSE信號1460經由及閘1462和SR正反器1448將PWM信號1084置為高電位。因此,直流/直流轉換器1000B在tm+3 時刻進入新的TON_BOOST狀態。結果,在責任週期減小模式下,PWM信號1084的責任週期減小。In the SKIP state, the inductor current I L10 is zero amps, the ramp signal 1032 is held at voltage V 1015 , and the output voltage V OUT is reduced. When the output voltage V OUT decreases to the preset potential V ' TARGET (eg, at time t m+3 ), the comparator 1403 outputs a high potential PULSE signal 1460 via the AND gate 1462 and the SR flip-flop 1448 to set the PWM signal 1084. It is high potential. Therefore, the DC/DC converter 1000B enters a new TON_BOOST state at time t m+3 . As a result, in the duty cycle reduction mode, the duty cycle of the PWM signal 1084 is reduced.

在責任週期增加模式的TON_BOOST狀態下(例如:ts 到ts+1 時刻期間),電感電流IL10 、輸出電壓VOUT 、斜坡信號1032、PULSE信號1460、HDR_EN信號1082,以及PWM信號1084的狀態與責任週期正常模式的TON_BOOST狀態下(例如:tn 到tn+1 時刻期間)的情況類似。然而,在責任週期增加模式的TOFF_BOOST狀態下(如:ts+1 到ts+2 時刻期間),在電感電流IL10 減小至預設值IPRE (例如:零安培)之前,輸出電壓VOUT 減小至預設電位V TARGET (例如:在ts+2 時刻)。因此,例如在ts+2 時刻,比較器1403輸出高電位PULSE信號1460將PWM信號1084置為高電位。換句話說,直流/直流轉換器1000B在電感電流IL10 減小至預設值IPRE 之前進入新的TON_BOOST狀態。結果,在責任週期增加模式下,PWM信號1084的責任週期增加。In the TON_BOOST state of the duty cycle increase mode (eg, during the time t s to t s+1 ), the inductor current I L10 , the output voltage V OUT , the ramp signal 1032 , the PULSE signal 1460 , the HDR_EN signal 1082 , and the PWM signal 1084 The state is similar to the case of the duty cycle normal mode in the TON_BOOST state (for example, during t n to t n+1 ). However, in the TOFF_BOOST state of the duty cycle increase mode (eg, during t s+1 to t s+2 ), the output voltage is before the inductor current I L10 decreases to a preset value I PRE (eg, zero amps) V OUT is reduced to a preset potential V ' TARGET (for example, at time t s + 2 ). Thus, for example, at time ts +2 , comparator 1403 outputs a high potential PULSE signal 1460 to set PWM signal 1084 to a high potential. In other words, the DC/DC converter 1000B enters a new TON_BOOST state before the inductor current I L10 decreases to a preset value I PRE . As a result, the duty cycle of the PWM signal 1084 increases during the duty cycle increase mode.

控制器1002B根據輸出電壓VOUT 的狀態自動地選擇工作在責任週期減小模式、責任週期正常模式,或者責任週期增加模式下。結果,輸出電壓VOUT 被調節至目標電壓VTARGETThe controller 1002B automatically selects to operate in the duty cycle reduction mode, the duty cycle normal mode, or the duty cycle increase mode according to the state of the output voltage V OUT . As a result, the output voltage V OUT is adjusted to the target voltage V TARGET .

圖16所示為根據本發明一實施例電流控制方法流程圖1600。以下將結合圖10A、圖10B、圖12,以及圖14對圖16進行描述。16 is a flow chart 1600 of a current control method in accordance with an embodiment of the present invention. FIG. 16 will be described below with reference to FIGS. 10A, 10B, 12, and 14.

在步驟1602中,控制器1002、控制器1002A或控制器1002B提供流經電阻1020的控制電流IC10 以控制儲存在斜坡電容1008中的電能。在步驟1604中,控制器1002、控制器1002A或控制器1002B調節電阻1020的第二端1025之電壓V1025 趨於電感1014的第二端1015之電壓V1015In step 1602, controller 1002, controller 1002A or controller 1002B provides control current I C10 flowing through resistor 1020 to control the electrical energy stored in ramp capacitor 1008. In step 1604, controller 1002, controller 1002A or controller 1002B adjusts voltage V 1025 of second terminal 1025 of resistor 1020 to voltage V 1015 of second terminal 1015 of inductor 1014.

在步驟1606中,控制器1002、控制器1002A或控制器1002B基於電阻1020的第二端1025之電壓V1025 控制控制電流IC10 指示(例如:線性正比於)橫跨電感1014兩端的電壓。在步驟1608中,控制器1002、控制器1002A或控制器1002B基於儲存在斜坡電容1008中的電能產生斜坡信號1032。在步驟1610中,控制器1002、控制器1002A或控制器1002B基於斜坡信號1032控制流經電感1014的電感電流IL10 在預設範圍內。本實施例中,控制器1002、控制器1002A或控制器1002B透過控制斜坡信號1032的漣波幅度恒定控制電感電流IL10 的漣波幅度恒定。In step 1606, controller 1002, controller 1002A, or controller 1002B controls control current I C10 to indicate (eg, linearly proportional to) the voltage across inductor 1014 based on voltage V 1025 of second terminal 1025 of resistor 1020. In step 1608, controller 1002, controller 1002A, or controller 1002B generates ramp signal 1032 based on the electrical energy stored in ramp capacitor 1008. In step 1610, controller 1002, controller 1002A, or controller 1002B controls inductor current I L10 flowing through inductor 1014 to be within a predetermined range based on ramp signal 1032. In the present embodiment, the controller 1002, the controller 1002A or the controller 1002B constantly controls the chopping amplitude of the inductor current I L10 by controlling the chopping amplitude of the ramp signal 1032 to be constant.

因此,本發明提供了帶有CRC控制器的直流/直流轉換器(例如:降壓轉換器、升壓轉換器等等)。CRC控制器調節直流/直流轉換器的輸出電壓至目標電位。此外,CRC控制器利用阻性元件、感性元件、容性元件,以及比較器等等元件或電路控制直流/直流轉換器的輸出電流具有恒定漣波幅度。因此,直流/直流轉換器的輸出電壓和電流更加穩定。這種直流/直流轉換器可廣泛應用於積體電路、二極體,以及顯示系統等等的電源供應系統中。Accordingly, the present invention provides a DC/DC converter with a CRC controller (eg, a buck converter, a boost converter, etc.). The CRC controller adjusts the output voltage of the DC/DC converter to the target potential. In addition, the CRC controller controls the output current of the DC/DC converter with a constant chopping amplitude using a resistive element, an inductive element, a capacitive element, and a comparator or the like. Therefore, the output voltage and current of the DC/DC converter are more stable. Such a DC/DC converter can be widely used in power supply systems of integrated circuits, diodes, and display systems and the like.

上文具體實施方式和附圖僅為本發明之常用實施例。顯然,在不脫離權利要求書所界定的本發明精神和發明範圍的前提下可以有各種增補、修改和替換。本領域技術人員應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、結構、佈局、比例、材料、元素、元件及其它方面有所變化。因此,在此披露之實施例僅用於說明而非限制,本發明之範圍由後附權利要求及其合法等同物界定,而不限於此前之描述。The above detailed description and the accompanying drawings are only typical embodiments of the invention. It is apparent that various additions, modifications and substitutions are possible without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those skilled in the art that the present invention may be changed in form, structure, arrangement, ratio, material, element, element, and other aspects without departing from the scope of the invention. Therefore, the embodiments disclosed herein are intended to be illustrative and not restrictive, and the scope of the invention is defined by the appended claims

100、100A、100B、100C...直流/直流轉換器100, 100A, 100B, 100C. . . DC/DC converter

102、102A、102B、102C...控制電路102, 102A, 102B, 102C. . . Control circuit

104...驅動電路104. . . Drive circuit

106...開關電路106. . . Switch circuit

108...輸出電路108. . . Output circuit

110...高側開關110. . . High side switch

112...低側開關112. . . Low side switch

114...電感114. . . inductance

116...電容116. . . capacitance

118...路徑118. . . path

120...路徑120. . . path

122...切換節點122. . . Switch node

124...電阻124. . . resistance

126...電容126. . . capacitance

128...電阻128. . . resistance

150...控制器150. . . Controller

152...振盪器152. . . Oscillator

154...比較器154. . . Comparators

156...運算轉導放大器156. . . Operational transconductance amplifier

158...電容158. . . capacitance

160...振盪電壓160. . . Oscillating voltage

162...參考電壓162. . . Reference voltage

164...回授電壓164. . . Feedback voltage

166...預設電壓166. . . Preset voltage

168...PWM信號168. . . PWM signal

200...表格200. . . form

301...第一比較器301. . . First comparator

302...第二比較器302. . . Second comparator

303...第三比較器303. . . Third comparator

308...斜坡電容308. . . Ramp capacitor

311...反及閘311. . . Reverse gate

312...斜坡信號312. . . Ramp signal

320...電阻320. . . resistance

322、323...及閘322, 323. . . Gate

324...電流控制電流源324. . . Current controlled current source

342...正反器342. . . Positive and negative

350...斜坡產生電路350. . . Ramp generating circuit

351...緩衝器351. . . buffer

352...脈波寬度調變電路352. . . Pulse width modulation circuit

372...開關372. . . switch

373...電阻373. . . resistance

400...時序圖400. . . Timing diagram

401~408...波形401~408. . . Waveform

501...第一比較器501. . . First comparator

502...第二比較器502. . . Second comparator

503...第三比較器503. . . Third comparator

506...節點506. . . node

508...斜坡電容508. . . Ramp capacitor

509...路徑509. . . path

511...反及閘511. . . Reverse gate

512...斜坡信號512. . . Ramp signal

520...電阻520. . . resistance

522、523...及閘522, 523. . . Gate

542...正反器542. . . Positive and negative

550...斜坡產生電路550. . . Ramp generating circuit

551...運算放大器551. . . Operational Amplifier

552...脈波寬度調變電路552. . . Pulse width modulation circuit

600...時序圖600. . . Timing diagram

601~607...波形601~607. . . Waveform

701...第一比較器701. . . First comparator

702...第二比較器702. . . Second comparator

703...第三比較器703. . . Third comparator

704...驅動電路704. . . Drive circuit

708...斜坡電容708. . . Ramp capacitor

712...斜坡信號712. . . Ramp signal

713...開關713. . . switch

714...電感714. . . inductance

720...電阻720. . . resistance

722...及閘722. . . Gate

723...反及閘723. . . Reverse gate

725...及閘725. . . Gate

742...鎖存器742. . . Latches

750...斜坡產生電路750. . . Ramp generating circuit

751...運算放大器751. . . Operational Amplifier

752...脈波寬度調變電路752. . . Pulse width modulation circuit

771...電阻771. . . resistance

800...時序圖800. . . Timing diagram

801~805...波形801~805. . . Waveform

900...流程圖900. . . flow chart

902、904...步驟902, 904. . . step

1000、1000’、1000A、1000B...直流/直流轉換器1000, 1000', 1000A, 1000B. . . DC/DC converter

1002、1002A、1002B...控制器1002, 1002A, 1002B. . . Controller

1004...驅動器1004. . . driver

1008...斜坡電容1008. . . Ramp capacitor

1010...高側開關1010. . . High side switch

1012...低側開關1012. . . Low side switch

1013...第一端1013. . . First end

1014...電感1014. . . inductance

1015...第二端1015. . . Second end

1016...輸出電容1016. . . Output capacitor

1018...電路1018. . . Circuit

1020...電阻1020. . . resistance

1022...切換節點1022. . . Switch node

1023...第一端1023. . . First end

1024...電阻1024. . . resistance

1025...第二端1025. . . Second end

1026...電容1026. . . capacitance

1028...電阻1028. . . resistance

1030、1030A、1030B...斜坡信號產生器1030, 1030A, 1030B. . . Ramp signal generator

1032...斜坡信號1032. . . Ramp signal

1040、1040A、1040B...PWM信號產生器1040, 1040A, 1040B. . . PWM signal generator

1070...回授電路1070. . . Feedback circuit

1082...致能信號1082. . . Enable signal

1084...PWM信號1084. . . PWM signal

1086...高側端1086. . . High side

1088...低側端1088. . . Low side

1100...表格1100. . . form

1201、1202、1203...比較器1201, 1202, 1203. . . Comparators

1220、1221...次電阻1220, 1221. . . Secondary resistance

1232、1234...開關1232, 1234. . . switch

1236...信號1236. . . signal

1242...偏移電路1242. . . Offset circuit

1244...電流源1244. . . Battery

1246...電阻1246. . . resistance

1248...SR正反器1248. . . SR flip-flop

1252...偏移電路1252. . . Offset circuit

1254...電流源1254. . . Battery

1256...電阻1256. . . resistance

1258...SR正反器1258. . . SR flip-flop

1260...信號1260. . . signal

1262、1264...及閘1262, 1264. . . Gate

1272、1274...電阻1272, 1274. . . resistance

1300...時序圖1300. . . Timing diagram

1401、1402、1403...比較器1401, 1402, 1403. . . Comparators

1436...開關1436. . . switch

1442...偏移電路1442. . . Offset circuit

1448...SR正反器1448. . . SR flip-flop

1462...及閘1462. . . Gate

1500...時序圖1500. . . Timing diagram

1600...流程圖1600. . . flow chart

1602~1610...步驟1602~1610. . . step

以下結合附圖和具體實施例對本發明的技術方法進行詳細的描述,以使本發明的特徵和優點更為明顯。其中:The technical method of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments to make the features and advantages of the present invention more obvious. among them:

圖1A所示為傳統直流/直流轉換器中的控制器。Figure 1A shows the controller in a conventional DC/DC converter.

圖1所示為根據本發明一實施例直流/直流轉換器示意圖。1 is a schematic diagram of a DC/DC converter in accordance with an embodiment of the present invention.

圖2所示為根據本發明一實施例的開關狀態的示例性表格。2 is an exemplary table of switch states in accordance with an embodiment of the present invention.

圖3所示為根據本發明一實施例直流/直流轉換器的示意圖。3 is a schematic diagram of a DC/DC converter in accordance with an embodiment of the present invention.

圖4所示為根據本發明一實施例的示例性時序圖。4 is an exemplary timing diagram in accordance with an embodiment of the present invention.

圖5所示為根據本發明一實施例的直流/直流轉換器的示意圖。Figure 5 is a schematic diagram of a DC/DC converter in accordance with an embodiment of the present invention.

圖6所示為根據本發明一實施例的示例性時序圖。FIG. 6 shows an exemplary timing diagram in accordance with an embodiment of the present invention.

圖7所示為根據本發明一實施例的直流/直流轉換器的示意圖。7 is a schematic diagram of a DC/DC converter in accordance with an embodiment of the present invention.

圖8所示為根據本發明一實施例的示例性時序圖。FIG. 8 shows an exemplary timing diagram in accordance with an embodiment of the present invention.

圖9所示為根據本發明一實施例電流控制的示例性方法流程圖。9 is a flow chart of an exemplary method of current control in accordance with an embodiment of the present invention.

圖10A所示為根據本發明一實施例直流/直流轉換器的示意圖。Figure 10A is a schematic diagram of a DC/DC converter in accordance with an embodiment of the present invention.

圖10B所示為根據本發明另一實施例直流/直流轉換器的示意圖。Figure 10B is a schematic diagram of a DC/DC converter in accordance with another embodiment of the present invention.

圖11所示為高側開關和低側開關為回應致能信號和PWM信號的狀態變化表格。Figure 11 shows the state change table for the high side switch and the low side switch in response to the enable signal and the PWM signal.

圖12所示為根據本發明一實施例直流/直流轉換器示意圖。Figure 12 is a schematic diagram of a DC/DC converter in accordance with an embodiment of the present invention.

圖13所示為根據本發明一實施例與圖12的直流/直流轉換器相關的信號時序圖。Figure 13 is a timing diagram of signals associated with the DC/DC converter of Figure 12, in accordance with an embodiment of the present invention.

圖14所示為根據本發明一實施例的直流/直流轉換器的示意圖。Figure 14 is a schematic diagram of a DC/DC converter in accordance with an embodiment of the present invention.

圖15所示為根據本發明的一個實施例的與圖14的直流/直流轉換器相關的信號時序圖。Figure 15 is a timing diagram of signals associated with the DC/DC converter of Figure 14 in accordance with one embodiment of the present invention.

圖16所示為根據本發明一實施例電流控制方法流程圖。Figure 16 is a flow chart showing a current control method in accordance with an embodiment of the present invention.

100...直流/直流轉換器100. . . DC/DC converter

102...控制電路102. . . Control circuit

104...驅動電路104. . . Drive circuit

106...開關電路106. . . Switch circuit

108...輸出電路108. . . Output circuit

110...高側開關110. . . High side switch

112...低側開關112. . . Low side switch

114...電感114. . . inductance

116...電容116. . . capacitance

118...路徑118. . . path

120...路徑120. . . path

122...切換節點122. . . Switch node

124...電阻124. . . resistance

126...電容126. . . capacitance

128...電阻128. . . resistance

Claims (19)

一種控制器,包括:一斜坡信號產生器,提供流經一阻性元件的一控制電流,以控制儲存在一第二能量儲存元件的一能量,並且基於儲存在該第二能量儲存元件中的該能量產生一斜坡信號;以及一控制電路,耦接該斜坡信號產生器,調節該阻性元件一端之一電壓,進而控制該控制電流指示橫跨一第一能量儲存元件上的一電壓,並且基於該斜坡信號控制流經該第一能量儲存元件的一電流在一預設範圍內。 A controller comprising: a ramp signal generator providing a control current flowing through a resistive element to control an energy stored in a second energy storage element and based on being stored in the second energy storage element The energy generates a ramp signal; and a control circuit coupled to the ramp signal generator to adjust a voltage at one end of the resistive element to control the control current to indicate a voltage across a first energy storage element, and A current flowing through the first energy storage element is controlled to be within a predetermined range based on the ramp signal. 如申請專利範圍第1項的控制器,其中,該控制電路控制該阻性元件一端之該電壓趨於該第一能量儲存元件一端之一電壓。 The controller of claim 1, wherein the control circuit controls the voltage at one end of the resistive element to a voltage at one end of the first energy storage element. 如申請專利範圍第2項的控制器,其中,該控制電路包含:一第一比較器,比較該阻性元件一端之該電壓和一第一參考電壓;以及一第二比較器,比較該阻性元件一端之該電壓和一第二參考電壓,其中,該第一參考電壓等於該第一能量儲存元件一端之該電壓加上一第一預設電壓,該第二參考電壓等於該第一能量儲存元件一端之該電壓減去一第二預設電壓。 The controller of claim 2, wherein the control circuit comprises: a first comparator that compares the voltage at one end of the resistive element with a first reference voltage; and a second comparator that compares the resistance The voltage at one end of the element and a second reference voltage, wherein the first reference voltage is equal to the voltage at one end of the first energy storage element plus a first predetermined voltage, the second reference voltage being equal to the first energy The voltage at one end of the storage element is subtracted from a second predetermined voltage. 如申請專利範圍第2項的控制器,其中,該控制電路包括一比較器,比較該阻性元件一端之該電壓和一參 考電壓,根據一比較結果控制耦接於該阻性元件一端和該第一能量儲存元件一端之間的一開關,其中,該參考電壓等於該第一能量儲存元件一端之該電壓減去一預設電壓。 The controller of claim 2, wherein the control circuit comprises a comparator for comparing the voltage and a reference of one end of the resistive component Testing a voltage, according to a comparison result, controlling a switch coupled between one end of the resistive element and one end of the first energy storage element, wherein the reference voltage is equal to the voltage of one end of the first energy storage element minus a pre- Set the voltage. 如申請專利範圍第1項的控制器,其中,該控制電路控制該控制電流線性正比於橫跨該第一能量儲存元件上的該電壓。 The controller of claim 1, wherein the control circuit controls the control current to be linearly proportional to the voltage across the first energy storage element. 如申請專利範圍第1項的控制器,其中,該控制電路包括一脈波寬度調變信號產生器,耦接該第二能量儲存元件,產生一脈波寬度調變信號以控制一高側路徑和一低側路徑的導通性,其中,該高側路徑和低側路徑係經由一切換節點耦接該第一能量儲存元件。 The controller of claim 1, wherein the control circuit comprises a pulse width modulation signal generator coupled to the second energy storage element to generate a pulse width modulation signal to control a high side path. And a continuity of the low side path, wherein the high side path and the low side path are coupled to the first energy storage element via a switching node. 如申請專利範圍第6項的控制器,其中,該控制電路比較該斜坡信號和一參考電壓,根據一比較結果控制該脈波寬度調變信號。 The controller of claim 6, wherein the control circuit compares the ramp signal with a reference voltage, and controls the pulse width modulation signal according to a comparison result. 如申請專利範圍第1項的控制器,其中,該控制電路透過控制該斜坡信號之一漣波恒定控制流經該第一能量儲存元件的該電流之一漣波恒定。 The controller of claim 1, wherein the control circuit chops constant by one of the currents flowing through the first energy storage element by controlling one of the ramp signals. 一種控制流經能量儲存元件之電流的方法,包括:提供流經一阻性元件的一控制電流,以控制儲存在一第二能量儲存元件的一能量;調節該阻性元件一端之一電壓;基於該阻性元件一端之該電壓控制該控制電流指示橫跨一第一能量儲存元件上的一電壓;基於儲存在該第二能量儲存元件的該能量產生一斜 坡信號;以及基於該斜坡信號控制流經該第一能量儲存元件的一電流在一預設範圍內。 A method of controlling a current flowing through an energy storage element, comprising: providing a control current flowing through a resistive element to control an energy stored in a second energy storage element; and adjusting a voltage at one end of the resistive element; Controlling the control current based on the voltage at one end of the resistive element to indicate a voltage across a first energy storage element; generating an oblique based on the energy stored in the second energy storage element a slope signal; and controlling a current flowing through the first energy storage element to be within a predetermined range based on the ramp signal. 如申請專利範圍第9項的方法,其中,調節該阻性元件一端之該電壓之該步驟包含:控制該阻性元件一端之該電壓趨於該第一能量儲存元件一端之一電壓。 The method of claim 9, wherein the step of adjusting the voltage at one end of the resistive element comprises: controlling the voltage at one end of the resistive element to a voltage at one end of the first energy storage element. 如申請專利範圍第9項的方法,其中,基於該阻性元件一端之該電壓控制該控制電流指示橫跨該第一能量儲存元件上的之該電壓之該步驟包含:控制該控制電流線性正比於橫跨該第一能量儲存元件上的該電壓。 The method of claim 9, wherein the step of controlling the voltage based on the voltage at one end of the resistive element to indicate the voltage across the first energy storage element comprises: controlling the linear proportionality of the control current The voltage across the first energy storage element. 如申請專利範圍第9項的方法,其中,基於該斜坡信號控制流經該第一能量儲存元件的該電流在該預設範圍內之該步驟包含:透過控制該斜坡信號之一漣波恒定,進而控制流經該第一能量儲存元件之該電流之一漣波恒定。 The method of claim 9, wherein the step of controlling the current flowing through the first energy storage element within the predetermined range based on the ramp signal comprises: chopping a constant wave by controlling one of the ramp signals, Further, one of the currents flowing through the first energy storage element is controlled to be constant. 一種直流/直流轉換器,包括:一第一能量儲存元件,提供該直流/直流轉換器輸出一輸出電壓;一對開關,耦接該第一能量儲存元件;以及一控制器,耦接該第一能量儲存元件和該對開關,提供流經一阻性元件的一控制電流,以控制儲存在一第二能量儲存元件的一能量,基於儲存在該第二能量儲存元件中的該能量產生一斜坡信號,透過調節該阻性 元件一端之一電壓控制該控制電流指示橫跨該第一能量儲存元件上的一電壓,並且基於該斜坡信號控制該對開關進而控制該輸出電壓和流經該第一能量儲存元件的一電流。 A DC/DC converter includes: a first energy storage component, the DC/DC converter outputting an output voltage; a pair of switches coupled to the first energy storage component; and a controller coupled to the first An energy storage element and the pair of switches provide a control current flowing through a resistive element to control an energy stored in a second energy storage element, based on the energy stored in the second energy storage element Ramp signal, by adjusting the resistance A voltage at one end of the component controls the control current to indicate a voltage across the first energy storage component, and the pair of switches are controlled based on the ramp signal to control the output voltage and a current flowing through the first energy storage component. 如申請專利範圍第13項的直流/直流轉換器,其中,該控制器控制該阻性元件一端之該電壓趨於該第一能量儲存元件一端之一電壓。 A DC/DC converter according to claim 13 wherein the controller controls the voltage at one end of the resistive element to a voltage at one end of the first energy storage element. 如申請專利範圍第13項的直流/直流轉換器,其中,該控制器控制該控制電流線性正比於橫跨該第一能量儲存元件上的該電壓。 A DC/DC converter according to claim 13 wherein the controller controls the control current to be linearly proportional to the voltage across the first energy storage element. 如申請專利範圍第13項的直流/直流轉換器,其中,該控制器包括一脈波寬度調變信號產生器,耦接該對開關,產生一脈波寬度調變信號以控制該對開關。 The DC/DC converter of claim 13, wherein the controller comprises a pulse width modulation signal generator coupled to the pair of switches to generate a pulse width modulation signal to control the pair of switches. 如申請專利範圍第16項的直流/直流轉換器,其中,該控制器還包括:一比較器,比較該斜坡信號和一參考電壓,根據一比較結果控制該脈波寬度調變信號,進而控制流經該第一能量儲存元件之該電流的一漣波。 The DC/DC converter of claim 16, wherein the controller further comprises: a comparator, comparing the ramp signal and a reference voltage, and controlling the pulse width modulation signal according to a comparison result, thereby controlling A chopping of the current flowing through the first energy storage element. 如申請專利範圍第16項的直流/直流轉換器,其中,該控制器還包括:一比較器,比較指示該輸出電壓的一回授信號和一參考電壓,根據一比較結果控制該脈波寬度調變信號,進而控制該輸出電壓。 The DC/DC converter of claim 16, wherein the controller further comprises: a comparator that compares a feedback signal indicating the output voltage with a reference voltage, and controls the pulse width according to a comparison result. The signal is modulated to control the output voltage. 如申請專利範圍第13項的直流/直流轉換器,其中,該控制器透過控制該斜坡信號之一漣波恒定控制流 經該第一能量儲存元件之該電流之一漣波恒定。A DC/DC converter according to claim 13 wherein the controller controls a chopper constant control flow by controlling one of the ramp signals One of the currents through the first energy storage element is chopped constant.
TW100131405A 2010-09-02 2011-09-01 Dc/dc converter, controller and control method thereof TWI431906B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/874,438 US9059632B2 (en) 2008-03-24 2010-09-02 Controllers for DC to DC converters

Publications (2)

Publication Number Publication Date
TW201223088A TW201223088A (en) 2012-06-01
TWI431906B true TWI431906B (en) 2014-03-21

Family

ID=45825843

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131405A TWI431906B (en) 2010-09-02 2011-09-01 Dc/dc converter, controller and control method thereof

Country Status (2)

Country Link
CN (1) CN102386771B (en)
TW (1) TWI431906B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487233B (en) * 2012-11-09 2015-06-01 Alchip Technologies Ltd High voltage tolerant input/output circuit
CN104079171B (en) * 2014-07-17 2017-01-18 电子科技大学 DC-DC converter with quick response characteristic
TWI681613B (en) * 2018-02-02 2020-01-01 茂達電子股份有限公司 Voltage converter for simulating inductor current control
US10931201B2 (en) 2019-02-04 2021-02-23 Analog Devices International Unlimited Company Dead-time supply voltage compensation
CN112015093B (en) * 2019-05-31 2022-02-11 广东美的制冷设备有限公司 Drive control method, device, household appliance and computer readable storage medium
CN115191080A (en) * 2020-04-01 2022-10-14 德州仪器公司 Constant ripple injection circuit for switching converter
TWI777531B (en) * 2021-04-28 2022-09-11 力林科技股份有限公司 Llc converter circuit
CN114142861B (en) * 2022-01-30 2022-04-26 钰泰半导体股份有限公司 Integral accumulation storage circuit
CN116540823B (en) * 2023-07-07 2023-08-25 深圳安森德半导体有限公司 DCDC voltage stabilizer intelligent control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949226A (en) * 1995-04-10 1999-09-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakush DC/DC converter with reduced power consumpton and improved efficiency
US6791306B2 (en) * 2002-01-29 2004-09-14 Intersil Americas Inc. Synthetic ripple regulator
CN101546957B (en) * 2008-03-24 2012-07-25 凹凸电子(武汉)有限公司 DC to DC converter having controller and control method thereof

Also Published As

Publication number Publication date
CN102386771A (en) 2012-03-21
CN102386771B (en) 2014-10-01
TW201223088A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
TWI431906B (en) Dc/dc converter, controller and control method thereof
US9059632B2 (en) Controllers for DC to DC converters
US11418119B2 (en) Wide switching frequency range switched mode power supply control topology
US9467043B2 (en) Buck DC-DC converter with fixed frequency
US9093899B2 (en) Timer based PFM exit control method for a boost regulator
US9548651B2 (en) Advanced control circuit for switched-mode DC-DC converter
US8593125B1 (en) Buck DC-DC converter with dual feedback control
US9423808B2 (en) DC to DC converter with pseudo constant switching frequency
US7443148B2 (en) Constant on-time regulator with increased maximum duty cycle
US7372239B2 (en) Multi-output type DC/DC converter
US7298124B2 (en) PWM regulator with discontinuous mode and method therefor
US8773099B2 (en) Methods to reduce output voltage ripple in constant on-time DC-DC converters
US7652453B2 (en) Topology for a positive buck-boost switching regulator
US7180274B2 (en) Switching voltage regulator operating without a discontinuous mode
US9455626B2 (en) Hysteretic buck DC-DC converter
US9287779B2 (en) Systems and methods for 100 percent duty cycle in switching regulators
US10056822B1 (en) Constant on-time switching regulator for zero ESR output capacitor without output voltage offset
US20100141222A1 (en) Load transient sensing circuit for a power converter
US8344711B2 (en) Power supply device, control circuit and method for controlling power supply device
CN105075089A (en) Duty-cycle dependent slope compensation for a current mode switching regulator
US10326366B2 (en) Zero-voltage switch-mode power converter
TWI796869B (en) Adaptive constant on-time control circuit and switching converter and method thereof
JP7118937B2 (en) switching power supply circuit
US20080224681A1 (en) Controller for a DC to DC Converter
US8164319B2 (en) System and method for adapting clocking pulse widths for DC-to-DC converters