TWI429909B - Biochip, manufacturing method thereof and sensing method for cells - Google Patents

Biochip, manufacturing method thereof and sensing method for cells Download PDF

Info

Publication number
TWI429909B
TWI429909B TW100113254A TW100113254A TWI429909B TW I429909 B TWI429909 B TW I429909B TW 100113254 A TW100113254 A TW 100113254A TW 100113254 A TW100113254 A TW 100113254A TW I429909 B TWI429909 B TW I429909B
Authority
TW
Taiwan
Prior art keywords
flow
main
channel
groove
zone
Prior art date
Application number
TW100113254A
Other languages
Chinese (zh)
Other versions
TW201241435A (en
Inventor
Long Sun Huang
Yu Wei Chung
Y H Wang
F L Lai
yu ting Liu
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW100113254A priority Critical patent/TWI429909B/en
Publication of TW201241435A publication Critical patent/TW201241435A/en
Application granted granted Critical
Publication of TWI429909B publication Critical patent/TWI429909B/en

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

細胞檢測晶片、其製造方法及細胞檢測方法Cell detection wafer, manufacturing method thereof and cell detection method

本發明係有關於一種生物檢測晶片,特別是有關於一種細胞檢測晶片、其製造方法及細胞檢測方法。The present invention relates to a biodetection wafer, and more particularly to a cell detection wafer, a method of manufacturing the same, and a method of detecting cells.

癌症在國人十大死因排行榜中已經連續蟬聯榜首達29年,98年國人因癌症死亡人數39,917人,占所有死亡人數28.1%。當細胞變成異常且持續的自行分裂形成更多變異細胞時,就會產生癌症。癌症之所以可怕,是因為目前的治療方法仍不完善,常被視為不治之症。Cancer has been the leader of the top ten causes of death in China for 29 years. In 1998, the number of cancer deaths among Chinese people was 39,917, accounting for 28.1% of all deaths. Cancer occurs when cells become abnormal and continue to divide themselves to form more mutant cells. The reason why cancer is terrible is that the current treatment is still not perfect and is often regarded as an incurable disease.

1973年,美國科學家發現在人體免疫系統中,有一群細胞能夠有效的殺死癌細胞,而將之命名為自然殺手細胞(Nature Killer cell;簡稱NK細胞)。從那時起,自然殺手細胞在活化其他白血球細胞(包括:T淋巴球(T細胞)與吞噬細胞(噬菌細胞)),以及在指揮免疫系統如何回應廣泛的一系列傳染中所扮演的角色也已確立。因此,自然殺手細胞也廣泛地被視為有益於對抗癌症與感染。In 1973, American scientists discovered that in the human immune system, a group of cells can effectively kill cancer cells, and named it Nature Killer Cell (NK Cell). Since then, natural killer cells have been used to activate other white blood cells (including T lymphocytes (T cells) and phagocytic cells (phagocytic cells)) and how the immune system responds to a wide range of infections. It has also been established. Therefore, natural killer cells are also widely regarded as beneficial for fighting cancer and infection.

傳統化學抗癌藥物多採抑制細胞生長的策略,通常會導致抗藥性或引發副作用。因此,在新穎抗癌療法上,所採取的策略則是引發患者自身的自然免疫的抵抗力,來減少副作用。Traditional chemical anticancer drugs have a strategy of inhibiting cell growth, often leading to drug resistance or side effects. Therefore, in novel anti-cancer therapies, the strategy adopted is to induce the patient's own natural immunity to reduce side effects.

癌症病患體內「專一性T細胞」或「自然殺手細胞」機能多半較不健全。自然殺手T細胞相當於先鋒部隊,一但先鋒活躍起來,緊接著的專一性T細胞(如同特攻隊)就自然跟著驅動並攻擊癌細胞。Most of the "specific T cells" or "natural killer cells" in cancer patients are less robust. Natural killer T cells are equivalent to vanguards. Once the pioneers are active, the next specific T cells (like the special forces) will naturally drive and attack the cancer cells.

自然殺手細胞具有自發性殺死癌細胞的能力(又稱毒殺能力)。不像抗體反應及T細胞,自然殺手細胞可直接和腫瘤細胞接觸而產生毒殺作用,並且其不具特異性和抗體依賴性,所以自然殺手細胞可以說是對抗癌症的第一道防線。Natural killer cells have the ability to kill cancer cells spontaneously (also known as poisoning ability). Unlike antibody responses and T cells, natural killer cells can directly contact tumor cells to produce a toxic effect, and they are not specific and antibody-dependent, so natural killer cells can be said to be the first line of defense against cancer.

於抗癌研究上,目前對於細胞篩選及配對之檢測,仍以傳統生物實驗來進行。然而,傳統生物實驗需要較多細胞樣本,無法精確觀測特定比例下細胞與細胞間之反應,且成本較高。因此,無法有效地監控自然殺手細胞的毒殺能力。For anti-cancer research, the current screening and matching of cells is still carried out in traditional biological experiments. However, traditional biological experiments require more cell samples, and it is impossible to accurately observe the cell-to-cell reaction at a specific ratio, and the cost is high. Therefore, the ability to kill natural killer cells cannot be effectively monitored.

鑒於以上的問題,本發明在於提供一種細胞檢測晶片、其製造方法及細胞檢測方法,藉以解決先前技術所存在的問題。In view of the above problems, the present invention provides a cell detecting wafer, a method of manufacturing the same, and a cell detecting method, thereby solving the problems of the prior art.

在一實施例中,細胞檢測晶片包括一主流道、一第一溝槽、一第二溝槽、一第一副流道及一第二副流道。In one embodiment, the cell detection wafer includes a main channel, a first trench, a second trench, a first secondary runner, and a second secondary runner.

主流道包括一第一端、一第二端及一管路。第一端和第二端彼此相對。管路係連接在第一端與第二端之間。The main channel includes a first end, a second end, and a conduit. The first end and the second end are opposite each other. The piping is connected between the first end and the second end.

第一溝槽設置在主流道的管路的一側邊。第二溝槽則設置在主流道的管路的相對於第一溝槽的另一側邊。The first groove is disposed on one side of the pipe of the main flow path. The second groove is disposed on the other side of the conduit of the main flow channel with respect to the first groove.

第一副流道設置在第一溝槽相對於主流道的另一側,且第一副流道的側邊銜接第一溝槽。The first secondary flow channel is disposed on the other side of the first groove relative to the main flow channel, and a side of the first secondary flow channel is coupled to the first groove.

第二副流道設置在第二溝槽相對於主流道的另一側,且第二副流道的側邊銜接第二溝槽。The second secondary flow channel is disposed on the other side of the second groove relative to the main flow channel, and the side of the second secondary flow channel is coupled to the second groove.

在另一實施例中,細胞檢測晶片更包括第一氣動閥及第二氣動閥。In another embodiment, the cell detection wafer further includes a first pneumatic valve and a second pneumatic valve.

第一氣動閥設置在第一溝槽與第二溝槽同一側的主流道上。第二氣動閥則設置在第一溝槽與第二溝槽相對於第一氣動閥的另一側的主流道上。The first pneumatic valve is disposed on the main flow channel on the same side of the first groove and the second groove. The second pneumatic valve is disposed on the main flow path of the first groove and the second groove with respect to the other side of the first pneumatic valve.

在一實施例中,細胞檢測方法包括:同步注入一第一細胞樣本、一第一緩衝溶液和一第二細胞樣本至一主流道;將一第二緩衝溶液和一第三緩衝溶液以相對主流道之彼此相同之流向且不同於主流道的流速分別注入至二副流道;在第一細胞樣本、第一緩衝溶液和第二細胞樣本於主流道中且第二緩衝溶液和第三緩衝溶液於些副流道中同時流通一段時間後,阻斷導入區與混合區之間的連通以及導出區與混合區之間的連通,並將第二緩衝溶液和第三緩衝溶液以相對主流道之彼此相反之流向分別注入至副流道;以及在副流道具有相反流向一段時間後,觀察混合區。In one embodiment, the cell detection method comprises: simultaneously injecting a first cell sample, a first buffer solution, and a second cell sample to a main channel; and comparing a second buffer solution and a third buffer solution to a mainstream The flow rates of the same flow and different from the main flow are respectively injected into the secondary flow channels; in the first cell sample, the first buffer solution and the second cell sample are in the main flow channel and the second buffer solution and the third buffer solution are After flowing for a while in some of the secondary flow passages, the communication between the introduction zone and the mixing zone and the communication between the lead-out zone and the mixing zone are blocked, and the second buffer solution and the third buffer solution are opposite to each other in the opposite main flow channel. The flow direction is separately injected into the secondary flow path; and after the secondary flow path has the opposite flow direction for a period of time, the mixed area is observed.

其中,主流道包括一混合區、一導入區及一導出區。導入區連通於混合區的左側邊,而導出區則連通混合區的右側邊。第一細胞樣本與第二細胞樣本在第一緩衝溶液的分隔下從導入區經過混合區流至導出區。The mainstream track includes a mixing zone, a lead-in zone and a lead-out zone. The lead-in area is connected to the left side of the mixing area, and the lead-out area is connected to the right side of the mixing area. The first cell sample and the second cell sample flow from the introduction zone through the mixing zone to the lead-out zone under the separation of the first buffer solution.

其中,一副流道的側邊經由第一溝槽連通混合區的上側邊,以及另一副流道的側邊經由第二溝槽連通混合區的下側邊。Wherein, a side of one of the flow channels communicates with an upper side of the mixing zone via the first groove, and a side of the other of the secondary flow paths communicates with a lower side of the mixing zone via the second groove.

在一實施例中,細胞檢測晶片的製造方法包括:形成一流道層;將流道層以具有主流道、二溝槽以及二副流道之表面與一透明基板結合;形成表面具有二腔室的一氣動閥層;以及將流道層以相對於具有主流道、溝槽以及副流道之表面的另一表面與氣動閥層具有二腔室的表面結合。In one embodiment, the method for manufacturing a cell detection wafer includes: forming a first-order channel layer; combining the channel layer with a surface having a main channel, two grooves, and two sub-channels with a transparent substrate; forming a surface having a two-chamber a pneumatic valve layer; and combining the flow channel layer with a surface having a two chamber with respect to the surface having the main flow path, the groove and the secondary flow path and the pneumatic valve layer.

其中,流道層的表面形成有主流道、二溝槽以及二副流道。一副流道的一側邊透過一溝槽而與主流道的一側邊相通,而另一副流道的一側邊透過另一溝槽而與主流道的另一側邊相通。Wherein, the surface of the flow channel layer is formed with a main channel, two grooves and two secondary channels. One side of one of the flow passages communicates with one side of the main flow passage through a groove, and one side of the other auxiliary flow passage communicates with the other side of the main flow passage through the other.

其中,氣動閥層的一表面形成有二腔室,且氣動閥層的另一表面形成有連通此二腔室的至少一注入口。Wherein, one surface of the pneumatic valve layer is formed with two chambers, and the other surface of the pneumatic valve layer is formed with at least one injection port communicating with the two chambers.

並且,於氣動閥層與流道層結合後,氣動閥層的二腔室會分別位於對應於二溝槽的二側之主流道上。Moreover, after the pneumatic valve layer is combined with the flow channel layer, the two chambers of the pneumatic valve layer are respectively located on the main channels corresponding to the two sides of the two grooves.

於此,一實施例的細胞檢測晶片是應用鞘流原理同步流入兩種細胞的樣本溶液,並使細胞在輸送過程中不會相互反應。然後,利用微流道溝槽結構捕捉樣本溶液中細胞。再將捕捉到的細胞限制在固定空間中,並且產生渦流使兩種細胞在固定空間中充分混合並相互反應。最後,即可直接利用光學顯觀察系統觀測之。或者,進一步計算細胞反應狀態的各項檢測數值。Here, the cell detecting wafer of one embodiment is a sample solution which simultaneously flows into two cells using the sheath flow principle, and does not react with each other during transport. The microfluidic channel structure is then used to capture cells in the sample solution. The captured cells are then confined in a fixed space, and eddy currents are generated to sufficiently mix and react the two cells in a fixed space. Finally, it can be directly observed using an optical display system. Alternatively, the respective detection values of the state of the cell reaction are further calculated.

其中,可透過不同長度之微流道溝槽的結構設計,來捕捉特定比例之細胞。Among them, the structure of microchannel channels of different lengths can be designed to capture cells of a specific ratio.

並且,可利用微氣動閥將捕捉到的細胞限制於固定空間中。Also, the micropneumatic valve can be used to confine the captured cells to a fixed space.

再者,更可藉由以不同的流向提供相鄰二流道溶液,來產生渦流使固定空間中的細胞充分混合反應。Furthermore, by providing adjacent two-channel solutions in different flow directions, eddy currents are generated to sufficiently mix the cells in the fixed space.

第1圖係為一實施例之細胞檢測晶片的示意圖。第2圖係為對應第1圖之中心線框A的仰視結構示意圖。Figure 1 is a schematic illustration of a cell detection wafer of one embodiment. Fig. 2 is a schematic bottom view showing the center line frame A corresponding to Fig. 1.

參照第1及2圖,細胞檢測晶片包括:一主流道110、二副流道(以下分別稱之為第一副流道132和第二副流道134)以及二溝槽(以下分別稱之為第一溝槽152和第二溝槽154)。Referring to Figures 1 and 2, the cell detecting wafer includes a main channel 110, two sub-channels (hereinafter referred to as a first sub-channel 132 and a second sub-channel 134, respectively) and two grooves (hereinafter referred to as respectively It is a first trench 152 and a second trench 154).

主流道110係為一微流道。第一副流道132和第二副流道134亦可為微流道。微流道係指流道中心區域的流場狀態為層流,即雷諾數(Renolds number)小於2300。The main channel 110 is a micro flow channel. The first secondary flow channel 132 and the second secondary flow channel 134 may also be micro flow channels. The micro flow channel means that the flow field state in the central region of the flow channel is laminar, that is, the Renolds number is less than 2300.

主流道110包括一第一端110a、一第二端110b和一管路110c。第一端110a和第二端110b彼此相對,即為主流道110的二端。管路110則連接在第一端110a和第二端110b之間。The main flow channel 110 includes a first end 110a, a second end 110b, and a conduit 110c. The first end 110a and the second end 110b are opposite to each other, that is, the two ends of the main flow channel 110. The line 110 is then connected between the first end 110a and the second end 110b.

第一溝槽152設置在主流道110的管路110c的一側邊。第一副流道132設置在第一溝槽152相對於主流道110的另一側,並且第一副流道132的側邊銜接第一溝槽152。換言之,第一副流道132的管路132c的側邊與主流道110的管路110c的側邊分別銜接於第一溝槽152的相對二側邊,以致使第一副流道132的管路132c經由第一溝槽152與主流道110的管路110c相互連通。The first groove 152 is disposed at one side of the pipe 110c of the main flow path 110. The first secondary flow channel 132 is disposed on the other side of the first trench 152 with respect to the main flow channel 110, and the side of the first secondary flow channel 132 is coupled to the first trench 152. In other words, the side of the line 132c of the first auxiliary flow path 132 and the side of the line 110c of the main flow path 110 are respectively engaged with the opposite sides of the first groove 152, so that the tube of the first auxiliary flow path 132 is caused. The path 132c communicates with the line 110c of the main flow path 110 via the first groove 152.

第二溝槽154設置在主流道110的管路110c的相對於第一溝槽152的另一側邊。第二副流道134設置在第二溝槽154相對於主流道110的另一側,並且第二副流道134的側邊銜接第二溝槽154。換言之,第二副流道134的管路134c的側邊與主流道110的管路110c的側邊分別銜接於第二溝槽154的相對二側邊,以致使第二副流道134的管路134c經由第二溝槽154與主流道110的管路110c相互連通。The second groove 154 is disposed on the other side of the line 110c of the main flow path 110 with respect to the first groove 152. The second secondary flow path 134 is disposed on the other side of the second groove 154 with respect to the main flow path 110, and the side of the second secondary flow path 134 is coupled to the second groove 154. In other words, the side of the line 134c of the second auxiliary flow path 134 and the side of the line 110c of the main flow path 110 are respectively engaged with the opposite sides of the second groove 154, so that the tube of the second auxiliary flow path 134 The path 134c communicates with the line 110c of the main flow path 110 via the second groove 154.

也就是說,第一副流道132、第一溝槽152、主流道110、第二溝槽154和第二副流道134依序以側邊相鄰並列。並且,二流道(132、110/110、134)之間以溝槽(152/154)相通。That is, the first sub-flow path 132, the first groove 152, the main flow path 110, the second groove 154, and the second sub-flow path 134 are sequentially adjacent to each other side by side. Also, the two flow paths (132, 110/110, 134) are in communication with the grooves (152/154).

在一實施例中,第一溝槽152與第二溝槽154具有不同長度L1、L2,即連接主流道110的管路110c的側邊的長度L1、L2不相同。例如:第一溝槽152的長度L1可小於第二溝槽154的長度L2。In an embodiment, the first trench 152 and the second trench 154 have different lengths L1, L2, that is, the lengths L1, L2 of the sides of the pipeline 110c connecting the main channel 110 are different. For example, the length L1 of the first trench 152 may be smaller than the length L2 of the second trench 154.

在一實施例中,二溝槽(152、154)的高度小於主流道110的高度。各溝槽(152/154)的高度亦可小於相鄰之副流道(132/134)的高度。In an embodiment, the height of the two grooves (152, 154) is less than the height of the main flow channel 110. The height of each groove (152/154) may also be less than the height of the adjacent secondary flow path (132/134).

第3圖係為對應第2圖之中心線框B的立體結構示意圖。參照第3圖,微流道層10可為一體成形之具有表面結構的材料層。微流道層10的表面具有主流道110、副流道(132、134)以及溝槽(152、154)之表面結構。其中,微流道層10可為一體成形之具有表面結構的材料層。Figure 3 is a schematic perspective view of the center frame B corresponding to Figure 2; Referring to Figure 3, the microchannel layer 10 can be an integrally formed layer of material having a surface structure. The surface of the microchannel layer 10 has a surface structure of the main flow path 110, the auxiliary flow paths (132, 134), and the grooves (152, 154). Wherein, the microchannel layer 10 can be an integrally formed material layer having a surface structure.

參照第3圖,主流道110、副流道(132、134)以及溝槽(152、154)可設置在一透明基板20的表面20a上。透明基板20的表面20相對於各溝槽(152/154)的頂部的高度H1/H2小於透明基板20的表面20a相對於主流道110的頂部的高度H3。並且,透明基板20的表面20a相對於各溝槽(152/154)的頂部的高度H1/H2亦可小於透明基板20的表面20a相對於各溝槽(152/154)所對應之副流道(132/134)的頂部的高度H4/H5。Referring to FIG. 3, the main flow path 110, the auxiliary flow paths (132, 134), and the grooves (152, 154) may be disposed on the surface 20a of the transparent substrate 20. The height H1/H2 of the surface 20 of the transparent substrate 20 with respect to the top of each trench (152/154) is smaller than the height H3 of the surface 20a of the transparent substrate 20 with respect to the top of the main channel 110. Moreover, the height H1/H2 of the surface 20a of the transparent substrate 20 with respect to the top of each of the grooves (152/154) may be smaller than the secondary flow path of the surface 20a of the transparent substrate 20 with respect to each of the grooves (152/154). The height of the top of (132/134) is H4/H5.

在一實施例中,參照回第1及2圖,主流道110的管路110c包括有導入區112、混合區114和導出區116。In one embodiment, referring back to Figures 1 and 2, the conduit 110c of the main flow channel 110 includes a lead-in area 112, a mixing zone 114, and a lead-out zone 116.

混合區114的上側邊與下側邊分別設置有第一溝槽152與第二溝槽154。導入區112連通混合區114的左側邊,且導出區116連通混合區114的右側邊。在一實施例中,管路110c可為導入區112、混合區114和導出區116依序連接之直線延伸的管線。其中,在俯視細胞檢測晶片下,混合區114可為矩形腔室、或圓形腔室、或為任意多邊形。導入區112和導出區116則相對設置在混合區114的二側。而二溝槽(152、154)則相對設置導入區112與導出區116的連線的二側。The upper side and the lower side of the mixing zone 114 are respectively provided with a first groove 152 and a second groove 154. The lead-in area 112 communicates with the left side of the mixing zone 114, and the lead-out area 116 communicates with the right side of the mixing zone 114. In one embodiment, the conduit 110c can be a straight-lined pipeline that is sequentially connected to the lead-in zone 112, the mixing zone 114, and the lead-out zone 116. Wherein, under the top view cell detection wafer, the mixing zone 114 can be a rectangular chamber, or a circular chamber, or an arbitrary polygon. The lead-in area 112 and the lead-out area 116 are oppositely disposed on both sides of the mixing area 114. The two grooves (152, 154) are opposite to the two sides of the line connecting the lead-in area 112 and the lead-out area 116.

在一實施例中,主流道110的第一端110a具有三溶液入口E1、E2、E3,依序連接有邊鞘流流道122、中間流道124和邊鞘流流道126。而主流道110的第二端110b則為溶液出口。In one embodiment, the first end 110a of the main flow channel 110 has three solution inlets E1, E2, E3, and a side sheath flow channel 122, an intermediate flow channel 124, and an edge sheath flow channel 126 are sequentially connected. The second end 110b of the main flow channel 110 is a solution outlet.

邊鞘流流道122的一端具有注入口122a,而邊鞘流流道122的另一端則銜接主流道110的第一端110a的溶液入口E1。One end of the side sheath flow channel 122 has an injection port 122a, and the other end of the edge sheath flow channel 122 engages the solution inlet E1 of the first end 110a of the main channel 110.

中間流道124的一端具有注入口124a,而中間流道124的另一端則銜接主流道110的第一端110a的溶液入口E2。The intermediate flow passage 124 has an injection port 124a at one end, and the other end of the intermediate flow passage 124 engages the solution inlet E2 of the first end 110a of the main flow channel 110.

邊鞘流流道126的一端具有注入口126a,而邊鞘流流道126的另一端則銜接主流道110的第一端110a的溶液入口E3。One end of the side sheath flow channel 126 has an injection port 126a, and the other end of the side sheath flow channel 126 engages the solution inlet E3 of the first end 110a of the main channel 110.

第4圖係為另一實施例之細胞檢測晶片的示意圖。第5圖係為對應第4圖之中心線框C的仰視結構示意圖。Figure 4 is a schematic illustration of a cell detection wafer of another embodiment. Fig. 5 is a bottom view showing the structure of the center frame C corresponding to Fig. 4.

在一實施例中,參照第4及5圖,細胞檢測晶片可更包括第一氣動閥172和第二氣動閥174。In one embodiment, referring to Figures 4 and 5, the cell detection wafer may further include a first pneumatic valve 172 and a second pneumatic valve 174.

第一氣動閥172設置在第一溝槽152與第二溝槽154同一側的主流道110的管路110c上。即,第一氣動閥172可設置在導入區112與混合區114的連通處,並且第一氣動閥172可控制導入區112與混合區114之間的連通。The first pneumatic valve 172 is disposed on the line 110c of the main flow path 110 on the same side of the first groove 152 and the second groove 154. That is, the first pneumatic valve 172 can be disposed in communication with the mixing zone 112 and the mixing zone 114, and the first pneumatic valve 172 can control communication between the lead-in zone 112 and the mixing zone 114.

第二氣動閥174設置在第一溝槽152與第二溝槽154相對於第一氣動閥172的另一側的主流道110的管路110c上。即,第二氣動閥174可設置在導出區116與混合區114的連通處,並且第二氣動閥174可控制導出區116與混合區114之間的連通。The second pneumatic valve 174 is disposed on the line 110c of the main passage 110 of the first groove 152 and the second groove 154 with respect to the other side of the first pneumatic valve 172. That is, the second pneumatic valve 174 can be disposed in communication with the mixing zone 116 and the mixing zone 114, and the second pneumatic valve 174 can control communication between the lead-out zone 116 and the mixing zone 114.

第6圖係為對應第5圖之中心線框D的立體結構示意圖。參照第6圖,氣動閥層30的表面具有腔室之表面結構。其中,氣動閥層30可為一體成形之具有表面結構的材料層。Fig. 6 is a schematic perspective view showing the center line frame D corresponding to Fig. 5. Referring to Figure 6, the surface of the pneumatic valve layer 30 has the surface structure of the chamber. Wherein, the pneumatic valve layer 30 can be an integrally formed material layer having a surface structure.

第一氣動閥172和第二氣動閥174可為分別位於第一溝槽152與第二溝槽154二側之主流道110上方的腔室。換言之,作為第一氣動閥172的腔室位於導入區112與混合區114的連通處的上方,而作為第二氣動閥174的腔室則位於導出區116與混合區114的連通處的上方。The first pneumatic valve 172 and the second pneumatic valve 174 may be chambers above the main flow channel 110 on either side of the first trench 152 and the second trench 154, respectively. In other words, the chamber as the first pneumatic valve 172 is located above the junction of the lead-in zone 112 and the mixing zone 114, while the chamber as the second pneumatic valve 174 is located above the junction of the lead-out zone 116 and the mixing zone 114.

參照第7圖,於細胞檢測晶片的製造上,可先形成一流道層10和一氣動閥層30(步驟S510),然後再將氣動閥層30、流道層10和透明基板10依序層疊結合(步驟S530)。Referring to Fig. 7, in the manufacture of the cell detecting wafer, the first-order layer 10 and a pneumatic valve layer 30 may be formed first (step S510), and then the pneumatic valve layer 30, the flow channel layer 10 and the transparent substrate 10 are sequentially laminated. Combined (step S530).

請合併參照前述之第3或6圖,流道層10的表面形成有主流道110、二溝槽(152、154)以及二副流道(132、134),並且一副流道(132)的一側邊透過一溝槽(152)而與主流道110的一側邊相通。而另一副流道(134)的一側邊則透過另一溝槽(154)而與主流道110的相對溝槽(152)的另一側邊相通。Referring to the third or sixth drawing described above, the surface of the flow channel layer 10 is formed with a main flow path 110, two grooves (152, 154) and two secondary flow paths (132, 134), and a secondary flow path (132). One side communicates with one side of the main channel 110 through a groove (152). The other side of the other flow path (134) communicates with the other side of the opposite groove (152) of the main flow path 110 through the other groove (154).

請合併參照第4圖,氣動閥層30的一表面形成有二腔室(172、174),且氣動閥層30的另一表面(即,細胞檢測晶片的外表面)形成有連通二腔室(172、174)的至少一注入口172a、172b。於此,雖然是以二腔室(172、174)具有各自的注入口172a、172b為例,但此並非本發明之限制。舉例來說,在實際製作上,亦可考慮設計成二腔室(172、174)共用一注入口。Referring to FIG. 4, one surface of the pneumatic valve layer 30 is formed with two chambers (172, 174), and the other surface of the pneumatic valve layer 30 (ie, the outer surface of the cell detecting wafer) is formed with a communicating two chamber. At least one injection port 172a, 172b of (172, 174). Here, although the two chambers (172, 174) have their respective injection ports 172a, 172b as an example, this is not a limitation of the present invention. For example, in actual production, it is also considered to design a two chamber (172, 174) to share an injection port.

於步驟S530中,流道層10係以具有主流道110、溝槽(152、154)以及副流道(132、134)之表面與透明基板10結合。並且,流道層10係以相對於具有主流道110、溝槽(152、154)以及副流道(132、134)之表面的另一表面與氣動閥層30具有腔室(172、174)的表面結合。也就是說,腔室(172、174)會分別位於對應於溝槽(152、154)的二側之主流道110的管路110c上。In step S530, the flow channel layer 10 is bonded to the transparent substrate 10 with the surfaces of the main flow path 110, the grooves (152, 154), and the auxiliary flow paths (132, 134). Also, the flow channel layer 10 has chambers (172, 174) with respect to the other surface having the surfaces of the main flow path 110, the grooves (152, 154) and the secondary flow paths (132, 134) and the pneumatic valve layer 30. The surface is combined. That is, the chambers (172, 174) are respectively located on the line 110c corresponding to the main flow path 110 on both sides of the grooves (152, 154).

其中,氣動閥層30、流道層10和透明基板10可利用電漿治療來致使三者依序接合。於此,電漿治療可採用氧氣電漿。再者,電漿治療的參數可設定為500mTorr、30mW且進行約60秒。舉例來說,先以氧電漿處理各層(氣動閥層30、流道層10和透明基板10)的表面,並且於處理後立即將三者依序層疊接合。接合後,可再將整個結構放置於約120℃之熱板上約30分鐘,以加強結合強度。Among them, the pneumatic valve layer 30, the flow channel layer 10 and the transparent substrate 10 can be treated by plasma treatment to cause the three to be sequentially joined. Here, the plasma treatment can use oxygen plasma. Further, the parameters of the plasma treatment can be set to 500 mTorr, 30 mW and performed for about 60 seconds. For example, the surfaces of the various layers (the pneumatic valve layer 30, the flow channel layer 10, and the transparent substrate 10) are first treated with oxygen plasma, and the three are sequentially laminated and joined immediately after the treatment. After bonding, the entire structure can be placed on a hot plate at about 120 ° C for about 30 minutes to enhance the bond strength.

於步驟S510中,流道層可利用微射出成形來形成,或者是藉由一模板而形成。In step S510, the flow channel layer may be formed by micro-extrusion or formed by a template.

參照第8A圖,首先,形成具有對應主流道、溝槽以及副流道之表面結構412的模板40。參照第8B圖,再利用模板40形成流道層10。參照第8C圖,接著,進行模板40與流道層10的脫模程序,即可得到流道層10。Referring to Fig. 8A, first, a template 40 having a surface structure 412 corresponding to a main flow path, a groove, and a secondary flow path is formed. Referring to Fig. 8B, the flow path layer 10 is formed by using the template 40. Referring to Fig. 8C, next, the mold release process of the template 40 and the flow path layer 10 is performed to obtain the flow path layer 10.

此外,亦可先將氣動閥層30結合至流道層10相對於模板40的另一側表面後,再進行模板40與流道層10的脫模程序。In addition, the pneumatic valve layer 30 may be first bonded to the other side surface of the flow channel layer 10 relative to the template 40, and then the mold release process of the template 40 and the flow channel layer 10 may be performed.

舉例來說,可先於模板40的表面塗佈矽油,以便於剝離成形後的流道層10。接著,將製備好的透明材料灌注於模板40上,再將模板40(其上具有透明材料)設置於真空腔中約30分鐘,以去除橡膠材料中的氣泡。氣泡去除後,將模板40(其上具有透明材料)設置於約120℃的熱板上約15分鐘,以固化其上的透明材料。固化後的透明材料即為流道層10,再從模板40上剝離成形的流道層10。For example, the sputum oil may be applied prior to the surface of the stencil 40 to facilitate stripping of the formed flow channel layer 10. Next, the prepared transparent material is poured onto the stencil 40, and the stencil 40 (having a transparent material thereon) is placed in the vacuum chamber for about 30 minutes to remove air bubbles in the rubber material. After the bubbles were removed, the template 40 (having a transparent material thereon) was placed on a hot plate at about 120 ° C for about 15 minutes to cure the transparent material thereon. The cured transparent material is the flow channel layer 10, and the formed flow channel layer 10 is peeled off from the template 40.

或者是,直接以模板40的結構表面壓印作為流道層10之材料的表面來形成微流道之表面結構。Alternatively, the surface of the material of the flow path layer 10 is directly imprinted on the surface of the template 40 to form the surface structure of the micro flow path.

於步驟S512中,模板40可藉由二道微影製程形成。In step S512, the template 40 can be formed by a two-dimensional lithography process.

參照第9A及9B圖,先於一基底410的表面上形成與主流道110、溝槽(152、154)和副流道(132、134)的外輪廓相同之遮罩420。Referring to Figures 9A and 9B, a mask 420 identical to the outer contours of the main channel 110, the grooves (152, 154) and the secondary flow paths (132, 134) is formed on the surface of a substrate 410.

在遮罩420的遮蔽下對基底410的表面進行圖案化。The surface of the substrate 410 is patterned under the masking of the mask 420.

參照第10A及10B圖,於圖案化後,移除遮罩420,即可得到具有對應主流道110、溝槽(152、154)和副流道(132、134)的輪廓之表面結構412的基底410。Referring to Figures 10A and 10B, after patterning, the mask 420 is removed to obtain a surface structure 412 having contours corresponding to the main channel 110, the grooves (152, 154) and the secondary runners (132, 134). Substrate 410.

參照第11A及11B圖,再次形成遮罩422在基底410具有表面結構412的表面上。於此,遮罩422曝露出基底410對應溝槽(152、154)的位置處的表面410a、410b。Referring to Figures 11A and 11B, mask 422 is again formed on the surface of substrate 410 having surface structure 412. Here, the mask 422 exposes the surface 410a, 410b at the location of the substrate 410 corresponding to the trenches (152, 154).

接著,在遮罩422的遮蔽下對基底410的表面410a、410b進行蝕刻。並且,蝕刻深度h1小於表面結構412的厚度h2,如第12A及12B圖所示。Next, the surfaces 410a, 410b of the substrate 410 are etched under the masking of the mask 422. Also, the etching depth h1 is smaller than the thickness h2 of the surface structure 412 as shown in FIGS. 12A and 12B.

於圖案化後,移除遮罩422,即可得到具有對應主流道、溝槽以及副流道之表面結構412的模板40。After patterning, the mask 422 is removed to obtain a template 40 having surface structures 412 corresponding to the main runners, trenches, and secondary runners.

其中,流道層10和氣動閥層30的材質可為具有良好的光學特性(足以提供光學觀測系統進行觀測)之材料(即,透明材料)。透明基板20的材質可為玻璃,或具有良好的光學特性(足以提供光學觀測系統進行觀測)之材料(即,透明材料)。The material of the flow channel layer 10 and the pneumatic valve layer 30 may be a material (ie, a transparent material) having good optical properties (enough to provide an optical observation system for observation). The material of the transparent substrate 20 may be glass, or a material having good optical properties (enough to provide an optical observation system for observation) (ie, a transparent material).

透明材料例如樹脂、明膠(gelatin)及矽材料等。橡膠例如PDMS(polydimethylsiloxane;聚二甲基硅氧烷)、PMMA(聚甲基丙烯酸甲酯)、PBA(聚丁二酸丁二醇酯)、ABS(Acrylonitrile Butadiene Styrene;丙烯腈-苯乙烯-丁二烯共聚物)、聚對二甲苯(parylene)、PC(Polycarbonate;聚碳酸酯樹脂)及壓克力等。Transparent materials such as resins, gelatin and enamel materials. Rubber such as PDMS (polydimethylsiloxane; polydimethylsiloxane), PMMA (polymethyl methacrylate), PBA (polybutylene succinate), ABS (Acrylonitrile Butadiene Styrene; acrylonitrile-styrene-butyl Diene copolymer), parylene, PC (Polycarbonate; polycarbonate resin), acrylic, and the like.

模板40的材質可為矽材。並且,透明基板20的厚度(高度)可約為170μm。模板40的厚度(高度)可約為30μm。The material of the template 40 can be a coffin. Also, the thickness (height) of the transparent substrate 20 may be about 170 μm. The thickness (height) of the template 40 may be about 30 μm.

參照第13圖,並搭配參照第3-6圖,以下說明上述之細胞檢測晶片的使用。Referring to Fig. 13, and referring to Figs. 3-6, the use of the above cell detecting wafer will be described below.

首先,利用鞘流原理,同步注入第一細胞樣本S1、第一緩衝溶液Buf-1和第二細胞樣本S2至主流道110(步驟S610)。First, the first cell sample S1, the first buffer solution Buf-1, and the second cell sample S2 are simultaneously injected into the main channel 110 by the sheath flow principle (step S610).

再搭配參照第14圖,於步驟S610中,第一細胞樣本S1可由位於鞘流流道122的一端上之注入口122a注入。第一緩衝溶液Buf-1可由位於中間流道124的一端上的注入口124a注入。第二細胞樣本S2則可由位於邊鞘流流道126的一端上的注入口126a注入。Referring again to FIG. 14, in step S610, the first cell sample S1 may be injected by the injection port 122a located at one end of the sheath flow channel 122. The first buffer solution Buf-1 may be injected by an injection port 124a located at one end of the intermediate flow path 124. The second cell sample S2 can then be injected by an injection port 126a located on one end of the side sheath flow channel 126.

第一細胞樣本S1、第一緩衝溶液B1和第二細胞樣本S2注入後,第一細胞樣本S1與第二細胞樣本S2會在第一緩衝溶液B1的分隔下從導入區112經過混合區114流至導出區116。After the first cell sample S1, the first buffer solution B1, and the second cell sample S2 are injected, the first cell sample S1 and the second cell sample S2 are flowed from the introduction zone 112 through the mixing zone 114 under the separation of the first buffer solution B1. To the lead-out area 116.

並且,將第二緩衝溶液Buf-2和第三緩衝溶液Buf-3以相對主流道110之彼此相同之流向且不同於主流道110的流速分別注入至二副流道(132、134)(步驟S620)。And, the second buffer solution Buf-2 and the third buffer solution Buf-3 are respectively injected into the two secondary flow paths (132, 134) in the same flow direction as the main flow channels 110 and different from the flow rate of the main flow path 110 (steps) S620).

於步驟S620中,第二緩衝溶液Buf-2可以不同於主流道110中的流體的流速,從位於第一副流道132的一端132a上之注入口注入,以致第一副流道132中的第二緩衝溶液Buf-2與主流道110中的流體具有相同流向但不同流速。即,第二緩衝溶液Buf-2係從第一副流道132的一端132a流向另一端132b。In step S620, the second buffer solution Buf-2 may be injected from the injection port located at one end 132a of the first sub-flow channel 132, different from the flow rate of the fluid in the main flow channel 110, so that the first sub-flow channel 132 The second buffer solution Buf-2 has the same flow direction but different flow rates as the fluid in the main flow channel 110. That is, the second buffer solution Buf-2 flows from one end 132a of the first sub-flow path 132 to the other end 132b.

第三緩衝溶液Buf-3亦以不同於主流道110中的流體的流速,從位於第二副流道134的一端134a上之注入口注入,以致第二副流道134中的第三緩衝溶液Buf-3與主流道110中的流體具有相同流向但不同流速。即,第三緩衝溶液Buf-3係從第二副流道134的一端134a流向另一端134b。The third buffer solution Buf-3 is also injected from the injection port located at one end 134a of the second auxiliary flow path 134 at a flow rate different from that of the fluid in the main flow path 110, so that the third buffer solution in the second auxiliary flow path 134 Buf-3 has the same flow direction but different flow rates as the fluid in the main flow channel 110. That is, the third buffer solution Buf-3 flows from one end 134a of the second sub-flow path 134 to the other end 134b.

此時,流經混合區114的第一細胞樣本S1中的細胞cell-1會因為第一副流道132與主流道110因不同流速所產生的壓差而被捕抓在第一溝槽152中。同時,流經混合區114的第二細胞樣本S2中的細胞cell-2則會因為第二副流道134與主流道110因不同流速所產生的壓差而被捕抓在第二溝槽154中。At this time, the cell cell-1 in the first cell sample S1 flowing through the mixing zone 114 is caught in the first groove 152 due to the pressure difference generated by the first secondary flow path 132 and the main flow path 110 due to different flow rates. in. At the same time, the cell cell-2 in the second cell sample S2 flowing through the mixing zone 114 is trapped in the second trench 154 due to the pressure difference generated by the second secondary flow channel 134 and the main flow channel 110 due to different flow rates. in.

於此,第一緩衝溶液Buf-1、第二緩衝溶液Buf-2和第三緩衝溶液Buf-3可採用相同緩衝溶液。再者,第一緩衝溶液Buf-1亦可與第一細胞樣本S1和第二細胞樣本S2的基底溶液相同。Here, the first buffer solution Buf-1, the second buffer solution Buf-2, and the third buffer solution Buf-3 may employ the same buffer solution. Furthermore, the first buffer solution Buf-1 may also be the same as the base solution of the first cell sample S1 and the second cell sample S2.

在注入到主流道110和副流道(132、134)中的溶液同時流通一段時間後,阻斷導入區112與混合區114之間的連通以及導出區116與混合區114之間的連通,並且將第二緩衝溶液Buf-2或第三緩衝溶液Buf-3改以相對主流道110之彼此相反之流向分別注入至副流道(132、134)(步驟S630)。After the solutions injected into the main flow path 110 and the secondary flow paths (132, 134) are simultaneously circulated for a while, the communication between the introduction zone 112 and the mixing zone 114 and the communication between the lead-out zone 116 and the mixing zone 114 are blocked. Further, the second buffer solution Buf-2 or the third buffer solution Buf-3 is changed to be injected into the auxiliary flow paths (132, 134) with respect to the flow directions opposite to each other with respect to the main flow path 110 (step S630).

於步驟S630中,於一實施例中,可從注入口172a、172b注入氣體至作為第一氣動閥172和第二氣動閥174的二腔室中,以形成向下(朝向流道層10)之壓力而致使主流道110於導入區112與混合區114的連通處以及導出區116與混合區114的連通處發生管路110c變形。即,透過注入氣體至腔室(172、174)來施加壓力於入區112與混合區114的連通處以及導出區116與混合區114的連通處,因而壓扁二腔室(172、174)下方的管路110c。In step S630, in an embodiment, gas may be injected from the injection ports 172a, 172b into the two chambers as the first pneumatic valve 172 and the second pneumatic valve 174 to form downward (toward the flow channel layer 10). The pressure causes the main flow path 110 to deform the line 110c at the communication between the lead-in area 112 and the mixing zone 114 and the junction of the lead-out area 116 and the mixing zone 114. That is, pressure is applied to the chamber (172, 174) to apply pressure to the junction of the inlet region 112 and the mixing zone 114 and the junction of the lead-out zone 116 with the mixing zone 114, thereby flattening the two chambers (172, 174). The line 110c below.

再搭配參照第15圖,此時,第二緩衝溶液Buf-2仍從位於第一副流道132的一端132a上之注入口注入。但第三緩衝溶液Buf-3則係從位於第二副流道134的另一端134b上之注入口注入,以致第二副流道134中的第三緩衝溶液Buf-3與第一副流道132中的流體具有不同流向。Referring again to Fig. 15, at this time, the second buffer solution Buf-2 is still injected from the injection port located at one end 132a of the first sub-flow path 132. However, the third buffer solution Buf-3 is injected from the injection port located at the other end 134b of the second auxiliary flow path 134, so that the third buffer solution Buf-3 in the second auxiliary flow path 134 and the first auxiliary flow path The fluids in 132 have different flow directions.

於此,透過阻斷導入區112與混合區114的連通處以及導出區116與混合區114的連通處,可將第一溝槽152與第二溝槽154所捕抓到的細胞cell-1、cell-2限制在混合區114中。並且,透過第一副流道132與第二副流道134中流體的相反流向,可在混合區114產生渦流,而致使細胞cell-1、cell-2充分混合。Here, by blocking the communication between the lead-in area 112 and the mixing area 114 and the communication between the lead-out area 116 and the mixing area 114, the cell cell-1 captured by the first trench 152 and the second trench 154 can be grasped. The cell-2 is limited to the mixing zone 114. Further, by the opposite flow direction of the fluid in the first sub-flow passage 132 and the second sub-flow passage 134, eddy currents can be generated in the mixing zone 114, so that the cells cell-1 and cell-2 are sufficiently mixed.

在產生渦流進行混合後,可利用即時光學觀測系統觀察混合區114中的細胞cell-1、cell-2的反應狀態(步驟S640)。After the vortex is generated and mixed, the reaction state of the cells cell-1 and cell-2 in the mixing zone 114 can be observed by an instant optical observation system (step S640).

於第13圖中,雖然是繪製出先執行步驟S610,而後再執行步驟S620,然此執行順序並非本發明之限制。舉例來說,可配合實際操作狀態,而同時執行步驟S610和步驟S620,或者是先執行步驟S620,而後再執行步驟S610。In Fig. 13, although the step S610 is performed first, and then the step S620 is performed, the order of execution is not a limitation of the present invention. For example, step S610 and step S620 may be performed simultaneously with the actual operation state, or step S620 may be performed first, and then step S610 may be performed.

於此,透過設計不同長度的第一溝槽152和第二溝槽154則可捕捉不同比例的細胞cell-1、cell-2。Here, by designing the first trench 152 and the second trench 154 of different lengths, different ratios of cells cell-1 and cell-2 can be captured.

以應用於監控自然殺手細胞的毒殺能力為例,於此利用三種不同第一溝槽152和第二溝槽154的細胞檢測晶片(以下分別稱之為第一晶片、第二晶片和第三晶片)。Taking the poisoning ability for monitoring natural killer cells as an example, a cell detecting wafer using three different first trenches 152 and second trenches 154 (hereinafter referred to as a first wafer, a second wafer, and a third wafer, respectively) ).

第一細胞樣本S1係為具有自然殺手細胞(NK92)(作為效應細胞)之溶液。The first cell sample S1 is a solution having natural killer cells (NK92) as an effector cell.

第二細胞樣本S2係為具有癌細胞(K562)(作為目標細胞)之溶液。The second cell sample S2 is a solution having cancer cells (K562) (as target cells).

第一緩衝溶液Buf-1、第二緩衝溶液Buf-2和第三緩衝溶液Buf-3均採用PBS(磷酸鹽緩衝溶液)。The first buffer solution Buf-1, the second buffer solution Buf-2, and the third buffer solution Buf-3 were both treated with PBS (phosphate buffer solution).

第一晶片具有長度約100μm的第一溝槽152和長度約180μm的第二溝槽154。The first wafer has a first trench 152 having a length of about 100 μm and a second trench 154 having a length of about 180 μm.

第二晶片具有長度約200μm的第一溝槽152和長度約360μm的第二溝槽154。The second wafer has a first trench 152 having a length of about 200 μm and a second trench 154 having a length of about 360 μm.

第三晶片具有長度約400μm的第一溝槽152和長度約720μm的第二溝槽154。The third wafer has a first trench 152 having a length of about 400 μm and a second trench 154 having a length of about 720 μm.

也就是說,於此用以捕抓效應細胞的溝槽的長度小於用以捕抓目標細胞的溝槽的長度。That is to say, the length of the groove for capturing effector cells is smaller than the length of the groove for capturing the target cells.

第一溝槽152和第二溝槽154的寬度(狹縫間隙)為約5μm,此寬度係指從鄰接主流道110之側邊到鄰接副流道(132/134)之另一側邊之間的距離。The width (slit gap) of the first trench 152 and the second trench 154 is about 5 μm, which width means from the side adjacent to the main flow channel 110 to the other side adjacent to the auxiliary flow path (132/134). The distance between them.

混合區114的寬度為約560μm,此寬度係指從鄰接第一溝槽152的側邊到鄰接第二溝槽154的另一側邊之間的距離。The width of the mixing zone 114 is about 560 [mu]m, which is the distance from the side adjacent the first trench 152 to the other side adjacent the second trench 154.

副流道(132/134)於鄰接溝槽(152/154)處的管路(132c/134c)的寬度為約280μm,此寬度係指從鄰接溝槽的側邊到相對之另一側邊之間的距離。The width of the conduit (132c/134c) of the secondary flow passage (132/134) adjacent the groove (152/154) is about 280 μm, which width refers to from the side of the adjacent groove to the opposite side. the distance between.

於實例中,第一細胞樣本S1和第二細胞樣本S2係使用針筒式幫浦以2μl/h的流速注入至主流道110中。第二緩衝溶液Buf-2和第三緩衝溶液Buf-3係使用針筒式幫浦以4μl/h的流速注入至副流道(132、134)中。In the example, the first cell sample S1 and the second cell sample S2 were injected into the main flow channel 110 using a syringe pump at a flow rate of 2 μl/h. The second buffer solution Buf-2 and the third buffer solution Buf-3 were injected into the secondary flow path (132, 134) at a flow rate of 4 μl/h using a syringe pump.

於此,利用即時觀察即時光學觀測系統記錄整個實驗過程,並且在適當的溫度及氣體混合物(約37℃,5%CO2 )的環境下進行實驗。於混合反應後,以細胞染劑(例如:PhiPhiLux)染色約一小時。再利用螢光顯微鏡觀察並計數裂解的K562細胞。Here, the entire experimental procedure was recorded using an instant observation instant optical observation system, and the experiment was carried out under an appropriate temperature and gas mixture (about 37 ° C, 5% CO 2 ). After the mixing reaction, the cells were stained with a cell stain (for example, PhiPhiLux) for about one hour. The lysed K562 cells were observed and counted using a fluorescence microscope.

於第一晶片上,可計算得總接合的效應細胞與目標細胞的比例(tcE/T)為2.1。On the first wafer, the ratio of the total engaged effector cells to the target cells (tcE/T) was calculated to be 2.1.

於第二晶片上,可計算得總接合的效應細胞與目標細胞的比例為2.3。On the second wafer, the ratio of total engaged effector cells to target cells was calculated to be 2.3.

於第三晶片上,可計算得總接合的效應細胞與目標細胞的比例為2.3。On the third wafer, the ratio of total engaged effector cells to target cells was calculated to be 2.3.

並且,三種晶片所得到的細胞毒性分析的平均值均高於0.6。三種晶片所得到的毒性平均值分別為0.85、0.72和0.63。Moreover, the average cytotoxicity analysis obtained for the three wafers was higher than 0.6. The toxic average values obtained for the three wafers were 0.85, 0.72, and 0.63, respectively.

在第一晶片上,目標細胞上接合有1、2、3或4個效應細胞之4種接合狀態下的接合的效應細胞與目標細胞的比例(cE/T)分別為0.75、0.8、1和1。On the first wafer, the ratio of the effector cells to the target cells (cE/T) in the four junction states in which 1, 2, 3 or 4 effector cells are ligated on the target cell are 0.75, 0.8, 1 and 1.

在第三晶片上,4種接合狀態下的cE/T分別為0.63、0.33、0.75和0.67。On the third wafer, cE/T in the four bonding states were 0.63, 0.33, 0.75, and 0.67, respectively.

綜上所述,於此是提供一個微小化、低成本之細胞檢測晶片,能夠更精確的觀測特定比例下細胞和細胞間反應之結果。此細胞檢測晶片應用在移植細胞篩選、配對之檢測,可降低細胞檢測成本、縮短細胞捕捉時間、並提升細胞檢測晶片之可靠性,極具競爭力。In summary, this is to provide a miniaturized, low-cost cell detection wafer that can more accurately observe the results of cell-to-cell reactions at specific ratios. This cell detection wafer is used in the screening and matching of transplanted cells, which can reduce the cost of cell detection, shorten the cell capture time, and improve the reliability of cell detection wafers, which is very competitive.

10...微流道層10. . . Microchannel layer

20...透明基板20. . . Transparent substrate

20a...表面20a. . . surface

30...氣動閥層30. . . Pneumatic valve layer

40...模板40. . . template

110...主流道110. . . Mainstream road

110a...第一端110a. . . First end

110b...第二端110b. . . Second end

110c...管路110c. . . Pipeline

112...導入區112. . . Lead-in area

114...混合區114. . . Mixed area

116...導出區116. . . Export area

122...邊鞘流流道122. . . Edge sheath flow channel

122a...注入口122a. . . Note entry

124...中間流道124. . . Intermediate flow channel

124a...注入口124a. . . Note entry

126...邊鞘流流道126. . . Edge sheath flow channel

126a...注入口126a. . . Note entry

132...第一副流道132. . . First secondary flow channel

132a...一端132a. . . One end

132b...另一端132b. . . another side

132c...管路132c. . . Pipeline

134...第二副流道134. . . Second secondary flow channel

134a...一端134a. . . One end

134b...另一端134b. . . another side

134c...管路134c. . . Pipeline

152...第一溝槽152. . . First groove

154...第二溝槽154. . . Second groove

172...第一氣動閥172. . . First pneumatic valve

172a...注入口172a. . . Note entry

174...第二氣動閥174. . . Second pneumatic valve

174a...注入口174a. . . Note entry

410...基底410. . . Base

410a...表面410a. . . surface

410b...表面410b. . . surface

412...表面結構412. . . Surface structure

420...遮罩420. . . Mask

422...遮罩422. . . Mask

A...中心線框A. . . Center wireframe

C...中心線框C. . . Center wireframe

B...中心線框B. . . Center wireframe

D...中心線框D. . . Center wireframe

L1...長度L1. . . length

L2...長度L2. . . length

H1...高度H1. . . height

H2...高度H2. . . height

H3...高度H3. . . height

H4...高度H4. . . height

H5...高度H5. . . height

E1...溶液入口E1. . . Solution inlet

E2...溶液入口E2. . . Solution inlet

E3...溶液入口E3. . . Solution inlet

h1...深度H1. . . depth

h2...厚度H2. . . thickness

S1...第一細胞樣本S1. . . First cell sample

S2...第二細胞樣本S2. . . Second cell sample

Buf-1...第一緩衝溶液Buf-1. . . First buffer solution

Buf-2...第二緩衝溶液Buf-2. . . Second buffer solution

Buf-3...第三緩衝溶液Buf-3. . . Third buffer solution

cell-1...細胞Cell-1. . . cell

cell-2...細胞Cell-2. . . cell

第1圖係為一實施例之細胞檢測晶片的示意圖。Figure 1 is a schematic illustration of a cell detection wafer of one embodiment.

第2圖係為對應第1圖之中心線框A的仰視結構示意圖。Fig. 2 is a schematic bottom view showing the center line frame A corresponding to Fig. 1.

第3圖係為對應第2圖之中心線框B的立體結構示意圖。Figure 3 is a schematic perspective view of the center frame B corresponding to Figure 2;

第4圖係為另一實施例之細胞檢測晶片的示意圖。Figure 4 is a schematic illustration of a cell detection wafer of another embodiment.

第5圖係為對應第4圖之中心線框C的仰視結構示意圖。Fig. 5 is a bottom view showing the structure of the center frame C corresponding to Fig. 4.

第6圖係為對應第5圖之中心線框D的立體結構示意圖。Fig. 6 is a schematic perspective view showing the center line frame D corresponding to Fig. 5.

第7圖係為一實施例之細胞檢測晶片的製造方法的流程圖。Fig. 7 is a flow chart showing a method of manufacturing a cell detecting wafer of an embodiment.

第8A、8B至8C圖係為一實施例之流道層的形成方法的流程圖。8A, 8B to 8C are flowcharts showing a method of forming a flow path layer of an embodiment.

第9A、10A、11A至12A圖係為一實施例之模板的形成方法的流程圖。9A, 10A, 11A to 12A are flowcharts showing a method of forming a template of an embodiment.

第9B圖係為第9A圖中I-I剖線的截面圖。Fig. 9B is a cross-sectional view taken along line I-I of Fig. 9A.

第10B圖係為第10A圖中II-II剖線的截面圖。Fig. 10B is a cross-sectional view taken along line II-II of Fig. 10A.

第11B圖係為第11A圖中III-III剖線的截面圖。Fig. 11B is a cross-sectional view taken along the line III-III in Fig. 11A.

第12B圖係為第12A圖中IV-IV剖線的截面圖。Fig. 12B is a cross-sectional view taken along the line IV-IV in Fig. 12A.

第13圖係為一實施例之細胞檢測方法的流程圖。Figure 13 is a flow chart showing the cell detection method of one embodiment.

第14圖係為一實施例之執行細胞捕抓程序的示意圖。Figure 14 is a schematic illustration of an embodiment of a cell capture procedure.

第15圖係為一實施例之執行細胞混合程序的示意圖。Figure 15 is a schematic illustration of an embodiment of performing a cell mixing procedure.

110...主流道110. . . Mainstream road

110c...管路110c. . . Pipeline

112...導入區112. . . Lead-in area

114...混合區114. . . Mixed area

116...導出區116. . . Export area

132...第一副流道132. . . First secondary flow channel

132c...管路132c. . . Pipeline

134...第二副流道134. . . Second secondary flow channel

134c...管路134c. . . Pipeline

152...第一溝槽152. . . First groove

154...第二溝槽154. . . Second groove

172...第一氣動閥172. . . First pneumatic valve

174...第二氣動閥174. . . Second pneumatic valve

C...中心線框C. . . Center wireframe

D...中心線框D. . . Center wireframe

L1...長度L1. . . length

L2...長度L2. . . length

Claims (12)

一種細胞檢測晶片,包括:一主流道,包括彼此相對的一第一端和一第二端以及連接在該第一端與該第二端之間的一管路;一第一溝槽,設置在該主流道的該管路的一側邊;一第二溝槽,設置在該主流道的該管路的相對於該第一溝槽的另一側邊;一第一副流道,設置在該第一溝槽相對於該主流道的另一側,且該第一副流道的側邊銜接該第一溝槽;以及一第二副流道,設置在該第二溝槽相對於該主流道的另一側,且該第二副流道的側邊銜接該第二溝槽;其中,該第一溝槽為該管路與該第一副流道的一共用管壁上的開口,以藉由該主流道與該第一副流道之間的流速壓差捕抓細胞;以及該第二溝槽為該管路與該第二副流道的一共用管壁上的開口,以藉由該主流道與該第二副流道之間的流速壓差捕抓細胞。 A cell detecting wafer comprising: a main channel comprising a first end and a second end opposite to each other and a pipe connected between the first end and the second end; a first groove, set a side of the pipeline of the main flow channel; a second groove disposed on the other side of the pipeline of the main flow channel opposite to the first trench; a first sub-flow passage, The first trench is opposite to the other side of the main flow channel, and the side of the first auxiliary flow channel is connected to the first trench; and a second secondary flow channel is disposed on the second trench opposite to the second trench The other side of the main flow path, and the side of the second auxiliary flow path is connected to the second groove; wherein the first groove is a common pipe wall of the pipe and the first auxiliary flow path Opening to capture cells by a flow pressure difference between the main flow path and the first auxiliary flow path; and the second groove is an opening on a common pipe wall of the pipe and the second auxiliary flow path And capturing the cells by the flow velocity difference between the main flow channel and the second auxiliary flow channel. 如請求項1所述之細胞檢測晶片,更包括:一第一氣動閥,設置在該第一溝槽與該第二溝槽同一側的該主流道上;以及一第二氣動閥,設置在該第一溝槽與該第二溝槽相對於該第一氣動閥的另一側的該主流道上。 The cell detecting wafer of claim 1, further comprising: a first pneumatic valve disposed on the main channel on the same side of the first groove and the second groove; and a second pneumatic valve disposed at the The first groove and the second groove are on the main flow path of the other side of the first pneumatic valve. 如請求項1所述之細胞檢測晶片,其中該管路包括:一混合區,該混合區的上側邊與下側邊分別設置有該第一溝槽與該第二溝槽;一導入區,連通該混合區的左側邊:以及一導出區,連通該混合區的右側邊。 The cell detecting wafer of claim 1, wherein the pipeline comprises: a mixing zone, the first side and the second side of the mixing zone are respectively provided with the first groove and the second groove; , connecting the left side of the mixing zone: and a lead-out zone connecting the right side of the mixing zone. 如請求項3所述之細胞檢測晶片,更包括:一第一氣動閥,設置在該導入區與該混合區的連通處,以控制該導入區與該混合區之間的連通;以及一第二氣動閥,設置在該導出區與該混合區的連通處,以控制該導出區與該混合區之間的連通。 The cell detecting wafer according to claim 3, further comprising: a first pneumatic valve disposed at a communication between the lead-in area and the mixing area to control communication between the lead-in area and the mixing area; A pneumatic valve is disposed at a communication between the lead-out area and the mixing zone to control communication between the lead-out zone and the mixing zone. 如請求項1所述之細胞檢測晶片,更包括:二邊鞘流流道,連通至該主流道的該第一端;以及一中間流道,位於該些邊鞘流流道之間,且連通至該主流道的該第一端。 The cell detecting wafer of claim 1, further comprising: a sheath flow channel connected to the first end of the main channel; and an intermediate flow channel between the edge sheath flow channels, and Connected to the first end of the main channel. 如請求項1所述之細胞檢測晶片,其中該第一溝槽與該第二溝槽具有不同長度。 The cell detecting wafer of claim 1, wherein the first trench and the second trench have different lengths. 一種細胞檢測方法,包括:利用鞘流原理同步注入一第一細胞樣本、一第一緩衝溶液和一第二細胞樣本至一主流道,其中該主流道包括一混合區、連通於該混合區的左側邊的一導入區以及連通該混合區的右側邊的一導出區,並且該第一細胞樣本與該第二細胞樣本在該第一緩衝溶液的分隔下從該導入區經過該混合區流至該導出區;將一第二緩衝溶液和一第三緩衝溶液以相對該主流道之彼此相同之流向且不同於該主流道的流速分別注入至二副流道,其中該些副流道中之一副流道的側邊經由一第一溝槽連通該混合區的上側邊,以及該些副流道中之另一副流道的側邊經由一第二溝槽連通該混合區的下側邊;在該第一細胞樣本、該第一緩衝溶液和該第二細胞樣本於該主流道中且該第二緩衝溶液和該第三緩衝溶液於該些副流道中同時流通一段時間後,阻斷該導入區與該混合區之間的連通以及該導出區與該混合區之間的連通,並將該第二緩衝溶液和該第三緩衝溶液以相對該主流道之彼此相反之流向分別注入至該些副流道;以及在該些副流道具有相反流向一段時間後,觀察該混合區。 A cell detecting method comprises: simultaneously injecting a first cell sample, a first buffer solution and a second cell sample into a main channel by using a sheath flow principle, wherein the main channel comprises a mixing zone and is connected to the mixing zone. a lead-in area on the left side and a lead-out area connecting the right side of the mixing area, and the first cell sample and the second cell sample flow from the lead-in area through the mixing area under the separation of the first buffer solution to a lead-out area; a second buffer solution and a third buffer solution are respectively injected into the second side flow path at a flow rate different from the flow direction of the main flow path and different from the main flow path, wherein one of the auxiliary flow channels The side of the auxiliary flow channel communicates with the upper side of the mixing zone via a first groove, and the side of the other of the secondary flow channels communicates with the lower side of the mixing zone via a second groove After the first cell sample, the first buffer solution, and the second cell sample are in the main channel, and the second buffer solution and the third buffer solution are simultaneously flowed in the sub-flow channels for a period of time, blocking the guide The communication between the zone and the mixing zone and the communication between the lead-out zone and the mixing zone, and the second buffer solution and the third buffer solution are respectively injected into the opposite flow directions of the main flow channel to the respective a secondary flow channel; and viewing the mixed zone after the secondary flow paths have reverse flow for a period of time. 如請求項7所述之細胞檢測方法,其中該阻斷步驟包括:利用二氣動閥分別阻斷該導入區與該混合區之間的連通以及該導出區與該混合區之間的連通。 The cell detecting method according to claim 7, wherein the blocking step comprises: respectively blocking communication between the lead-in area and the mixing zone and communication between the lead-out zone and the mixing zone by using two pneumatic valves. 如請求項7所述之細胞檢測方法,其中該阻斷步驟包括:施加壓力於該導入區與該混合區的連通處以及該導出區與該混合區的連通處,致使該主流道於該導入區與該混合區的連通處 以及該導出區與該混合區的連通處發生管路變形。 The cell detection method according to claim 7, wherein the blocking step comprises: applying pressure to the junction of the introduction zone and the mixing zone, and the communication zone of the lead-out zone with the mixing zone, so that the main channel is introduced into the introduction The intersection of the zone and the mixed zone And the pipeline is deformed at the intersection of the lead-out zone and the mixing zone. 如請求項7所述之細胞檢測方法,其中該將該第二緩衝溶液和該第三緩衝溶液以相對該主流道之彼此相反之流向分別注入至該些副流道的步驟包括:改變該第二緩衝溶液和該第三緩衝溶液中之一於對應之該副流道中的流向。 The cell detecting method according to claim 7, wherein the step of separately injecting the second buffer solution and the third buffer solution in opposite flow directions with respect to the main flow channel to the auxiliary flow channels comprises: changing the first One of the two buffer solutions and the third buffer solution is in a corresponding flow direction in the secondary flow channel. 一種細胞檢測晶片的製造方法,包括:形成一流道層,其中該流道層的表面形成有一主流道、二溝槽以及二副流道、該些副流道中之一的一側邊透過該些溝槽中之一而與該主流道的一側邊相通、該些副流道中之另一的一側邊透過該些溝槽中之另一而與該主流道的相對該側邊的另一側邊相通、以及各該溝槽為該些副流道中之一與該主流道的一共用管壁上的開口,以致使各溝槽藉由該主流道與對應之該副流道之間的流速壓差捕抓細胞;將該流道層以具有該主流道、該些溝槽以及該些副流道之該表面與一透明基板結合;形成一氣動閥層,其中該氣動閥層的一表面形成有二腔室,且該氣動閥層的另一表面形成有連通該些腔室的至少一注入口;以及將該流道層以相對於具有該主流道、該些溝槽以及該些副流道之該表面的另一表面與該氣動閥層具有該些腔室的該表面結合,其中該些腔室分別位於對應於該些溝槽的二側之該主流道上。 A method for manufacturing a cell detection wafer, comprising: forming a first-order channel layer, wherein a surface of the channel layer is formed with a main channel, two grooves, and two secondary channels, and one side of one of the auxiliary channels passes through the holes One of the trenches is in communication with one side of the main channel, and the other of the other of the subchannels passes through the other of the trenches and the other side of the main channel opposite the side The sides communicate, and each of the grooves is an opening in one of the auxiliary flow channels and a common pipe wall of the main flow path, so that each groove is between the main flow path and the corresponding auxiliary flow path The flow rate differentially captures the cells; the flow channel layer is combined with the transparent substrate by the surface having the main flow channels, the grooves and the auxiliary flow paths; forming a pneumatic valve layer, wherein the pneumatic valve layer The surface is formed with two chambers, and the other surface of the pneumatic valve layer is formed with at least one injection port communicating with the chambers; and the flow channel layer is opposite to the main channel, the grooves, and the The other surface of the surface of the secondary flow channel and the pneumatic valve layer have the chambers Binding surface, wherein the plurality of chambers are located at the two sides of the main track corresponding to the plurality of trenches. 如請求項11所述之細胞檢測晶片的製造方法,其中該形成一流道層的步驟包括:形成一模板,其中該模板包括對應該主流道、該些溝槽以及該些副流道之一表面結構;利用該模板形成該流道層;以及進行該模板與該流道層的脫模程序,以得到該流道層。 The method of manufacturing a cell detection wafer according to claim 11, wherein the step of forming a first-order layer comprises: forming a template, wherein the template comprises a surface corresponding to the main channel, the trenches, and one of the sub-channels Structure; forming the flow channel layer by using the template; and performing a demolding process of the template and the flow channel layer to obtain the flow channel layer.
TW100113254A 2011-04-15 2011-04-15 Biochip, manufacturing method thereof and sensing method for cells TWI429909B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100113254A TWI429909B (en) 2011-04-15 2011-04-15 Biochip, manufacturing method thereof and sensing method for cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100113254A TWI429909B (en) 2011-04-15 2011-04-15 Biochip, manufacturing method thereof and sensing method for cells

Publications (2)

Publication Number Publication Date
TW201241435A TW201241435A (en) 2012-10-16
TWI429909B true TWI429909B (en) 2014-03-11

Family

ID=47600090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113254A TWI429909B (en) 2011-04-15 2011-04-15 Biochip, manufacturing method thereof and sensing method for cells

Country Status (1)

Country Link
TW (1) TWI429909B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678536B (en) * 2018-11-19 2019-12-01 長庚大學 Microfluidic chip for automatic blood detection and use method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498552B (en) * 2013-01-14 2015-09-01 Nat Univ Chung Hsing A disposable capillary electrophoresis detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678536B (en) * 2018-11-19 2019-12-01 長庚大學 Microfluidic chip for automatic blood detection and use method thereof

Also Published As

Publication number Publication date
TW201241435A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
US7718420B2 (en) Microfluidic biochip for blood typing based on agglutination reaction
Kim et al. Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding
KR100719238B1 (en) Plastic microchip for microparticle analysis and method for manufacturing the same
JP4686683B2 (en) Microchannel for plasma separation
CN102513169B (en) Microfluidic device used in micron-grade particle high-flux separation, and manufacturing method thereof
KR100764022B1 (en) Microfluidic biochip for blood typing based on agglutination reaction
US8951782B2 (en) Apparatus for separating cells using magnetic force and cell separation method using the same
US8590710B2 (en) Target particles-separating device and method using multi-orifice flow fractionation channel
WO1997012665A1 (en) Micro-mixer and mixing method
US20150076049A1 (en) Microfilter and apparatus for separating a biological entity from a sample volume
TWI429909B (en) Biochip, manufacturing method thereof and sensing method for cells
KR20080051516A (en) Plastic microchip for microparticle analysis and method for manufacturing the same
CN202356108U (en) Micro-current control device for high-throughput separation of nano-grade particles
KR20100047977A (en) Microfluidic chip using hydrophillic film
CN107362844A (en) Micro-fluidic chip of 3D solid knurl model based on administration nano-drug administration system screening and its preparation method and application
KR101113727B1 (en) Vertical lamination micromixer
JP2010279908A (en) Three-dimensional sheath flow forming structure and method for collecting fine particles
Shirinkami et al. Red blood cell and white blood cell separation using a lateral-dimension scalable microchip based on hydraulic jump and sedimentation
TW200531919A (en) Microfluidic chip
KR100788458B1 (en) Microfluidic chip for cell separation based on hydrophoresis and its separation method of blood cells
KR20130067200A (en) Extremely high aspect ratio filter for capturing cell
WO2024098566A1 (en) Microfluidic chip for drug delivery system
KR101176175B1 (en) Micro mixer and method for fabricating thereof
CN115245847B (en) Micro-hybrid chip based on Tesla valve
US11440009B2 (en) Plurality of filters

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees