JP2010279908A - Three-dimensional sheath flow forming structure and method for collecting fine particles - Google Patents

Three-dimensional sheath flow forming structure and method for collecting fine particles Download PDF

Info

Publication number
JP2010279908A
JP2010279908A JP2009135665A JP2009135665A JP2010279908A JP 2010279908 A JP2010279908 A JP 2010279908A JP 2009135665 A JP2009135665 A JP 2009135665A JP 2009135665 A JP2009135665 A JP 2009135665A JP 2010279908 A JP2010279908 A JP 2010279908A
Authority
JP
Japan
Prior art keywords
flow
sheath
sample solution
flow path
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009135665A
Other languages
Japanese (ja)
Other versions
JP5700189B2 (en
Inventor
Shuichi Shoji
習一 庄子
Jun Mizuno
潤 水野
Mineo Goto
峰生 後藤
Tomoya Kato
友也 加藤
Hidetoshi Shinohara
秀敏 篠原
Takashi Funatsu
高志 船津
Takahiro Arakawa
貴博 荒川
Osamu Obara
收 小原
Yoshitaka Shirasaki
善隆 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Kazusa DNA Research Institute Foundation
Original Assignee
Waseda University
Kazusa DNA Research Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Kazusa DNA Research Institute Foundation filed Critical Waseda University
Priority to JP2009135665A priority Critical patent/JP5700189B2/en
Publication of JP2010279908A publication Critical patent/JP2010279908A/en
Application granted granted Critical
Publication of JP5700189B2 publication Critical patent/JP5700189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional sheath flow forming structure which can be produced easily by an extremely simple method and in which a sample solution can be collected in the central part of a flow path only by pouring a sheath liquid thereinto. <P>SOLUTION: The sheath flow forming structure for collecting a sample solution flow to the central direction of the flow path includes such a first structure that sheath liquid introduction flow paths, each of which has a plane common with a first plane of the flow path including the sample solution flow and which are arranged at different steps (depths), are joined from both sides of the flow path including the sample solution flow to collect the sample solution flow to the central direction of the flow path by a sheath liquid flow, in at least one region of the first collection region and the second collection region. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、三次元シースフロー構造、特に、中空構造を含まない多段構造であって単一の転写工程による加工によって経済的に作製することが可能な三次元シースフロー形成構造及び該構造を有するマイクロシステム(マイクロ流体装置又はマイクロチップ等)、並びに、これらを用いた粒子集束方法等に関する。   The present invention has a three-dimensional sheath flow structure, particularly a three-dimensional sheath flow forming structure that is a multistage structure that does not include a hollow structure and can be economically manufactured by processing by a single transfer process, and the structure. The present invention relates to a microsystem (such as a microfluidic device or a microchip), and a particle focusing method using these.

近年のマイクロファブリケーション技術の発展により、ガラスや樹脂などのチップ上にミクロンオーダーの液体流路を形成し、この液体流路に試料を流すことによって、試料の分析、反応または分離を行わせるマイクロシステムの開発が進められている。このようなマイクロシステムは、試料が少量であっても試料の分析が可能であること、また、試料をチップ内に閉じ込めたまま操作することが出来るなどの利点を有している。 With the recent development of microfabrication technology, a micron-order liquid flow path is formed on a chip such as glass or resin, and the sample is allowed to flow through the liquid flow path to perform sample analysis, reaction, or separation. System development is underway. Such a microsystem has an advantage that the sample can be analyzed even if the amount of the sample is small, and the sample can be operated while being confined in the chip.

ところで、一般に、細胞を蛍光標識する場合、蛍光は極めて弱くブレやボケなどなしにこの蛍光を検出するのは極めて困難である。従って、検出を確実に行うには高倍率なレンズを使用し、S/N比を上げることが不可欠となる。しかし、高倍率なレンズは焦点深度が浅く、焦点面から離れた蛍光物質はぼやけて見えるため、輝度が落ちてしまう。 By the way, in general, when cells are fluorescently labeled, the fluorescence is extremely weak and it is very difficult to detect this fluorescence without blurring or blurring. Therefore, in order to perform detection reliably, it is essential to use a high-power lens and increase the S / N ratio. However, a high-power lens has a shallow depth of focus, and a fluorescent material that is far from the focal plane appears blurry, resulting in a decrease in luminance.

又、このようなマイクロシステムにおいて、検出物が検出エリアを低速で通り抜ければ検出物は二重検出され、高速で通り抜ければ検出されない可能性がある。このように検出物が検出エリアを異なる速度で通り抜けることは正確な検出を妨げる。 Further, in such a micro system, there is a possibility that the detected object is detected twice if the detected object passes through the detection area at a low speed and is not detected if it passes through the detection area at a high speed. Thus, the detection object passing through the detection area at different speeds prevents accurate detection.

更に、このようなマイクロシステムにおいて流路を形成する素材として最も一般的に使用されるポリジメチルシロキサン(PDMS)は吸着性が強く試料流のみを流路に流し込めば、検出物の多くが流路壁面に吸着することが考えられる。さらに回収物が検出エリア内で壁面に張り付けば,検出エリア内では常に蛍光が検出されることとなり、これではソーティングができない。 Furthermore, polydimethylsiloxane (PDMS), which is most commonly used as a material for forming a channel in such a microsystem, has a strong adsorptive property, and if only a sample stream is flowed into the channel, most of the detected substance flows. It can be considered to adsorb to the road wall. Further, if the collected material is stuck to the wall surface in the detection area, the fluorescence is always detected in the detection area, so that sorting is not possible.

シースフローは、微小流路をポアズイユ流として知られる放物曲線状の流速分布の頂点付近に試料溶液及び微粒子を集束するため、微粒子が特定の領域を通過する時間を均一にすることが可能である。従って、このようなマイクロシステムにおいて、特に、細胞などの微粒子を流し、個々に分析する場合、シースフローによって試料溶液及び微粒子を微小流路中央に集束させるシースフロー構成を用いることによって、焦点深度の幅を小さくでき、流路壁面におけるせん断力を受けず、試料の流速を一定とすることができ、更に、PDMSによる試料の吸着の防止・流路壁面におけるせん断力を回避し、上記の問題を解消することができる。 In the sheath flow, the sample solution and the fine particles are focused in the vicinity of the top of a parabolic flow velocity distribution known as a Poiseuille flow through the microchannel, so that the time for the fine particles to pass through a specific region can be made uniform. is there. Therefore, in such a microsystem, particularly when flowing fine particles such as cells and analyzing individually, by using a sheath flow configuration in which the sample solution and the fine particles are focused on the center of the microchannel by the sheath flow, the depth of focus can be reduced. The width can be reduced, the shearing force on the channel wall surface is not received, the sample flow rate can be kept constant, the sample adsorption by PDMS can be prevented, and the shearing force on the channel wall surface can be avoided. Can be resolved.

このように、シースフローは、例えば個々の微粒子から生じる光学的情報の定量的分析や、個々の微粒子の高精度の分別に重要である。 As described above, the sheath flow is important for quantitative analysis of optical information generated from, for example, individual fine particles and high-precision separation of individual fine particles.

マイクロシステムにおけるシースフローの形成方法及び微粒子の集束方法はこれまでにも多数報告されている。例えば、3次元的に微小流路を加工し、4方向から試料溶液及び微粒子をシース液流によって囲う方法(例えば、特許文献1、非特許文献1,2)や、2次元的に加工された曲がりを有する微小流路において、流速の分布を利用して微粒子を微小流路の中央に集束させる方法(非特許文献3)などが挙げられる。更に、単一の転写工程により加工が可能な多段構造によって試料溶液及び微粒子を集束させる方法(非特許文献4)は、流路上部および側部の3方向から試料溶液及び微粒子を流路下部中央へと集束する片面構造を提供している。 A number of methods for forming a sheath flow and fine particle focusing in a microsystem have been reported so far. For example, a method of processing a microchannel three-dimensionally and enclosing a sample solution and fine particles from four directions by a sheath liquid flow (for example, Patent Document 1, Non-Patent Documents 1 and 2) or two-dimensional processing For example, there is a method of focusing fine particles on the center of a microchannel using a flow velocity distribution (Non-patent Document 3). Further, the method of focusing the sample solution and the fine particles by a multi-stage structure that can be processed by a single transfer process (Non-patent Document 4) is that the sample solution and the fine particles are placed in the center of the lower part of the flow path from the three directions of the upper and side of the flow path. Provides a single-sided structure that converges to

特開2007−514522号公報JP 2007-514522 A

Micro Total Analysis systems 2000, 209-212Micro Total Analysis systems 2000, 209-212 Lab on a chip, 2009, 9, 972 - 981, DOI: 10.1039/b808336cLab on a chip, 2009, 9, 972-981, DOI: 10.1039 / b808336c Lab on a chip, 2007,7, 1260-1262, DOI: 10.1039/b711155jLab on a chip, 2007,7, 1260-1262, DOI: 10.1039 / b711155j Sensors and Actuators A: 135 (2007) 99-105, DOI:10.1016/j.sna.2006.06.074Sensors and Actuators A: 135 (2007) 99-105, DOI: 10.1016 / j.sna.2006.06.074

しかしながら、特許文献1又は非特許文献1及び2に記載されているような従来の微小流路を用いる方法は、加工する際に両面の基板に段差構造を加工したり、片方の基板に中空構造を設ける必要があり、非常に手間が掛かる、という難点を持つ。特に両面の基板を加工した場合には両面の構造体の位置を高い精度で一致させて張り合わせを行う工程(「アライメント」工程)が必要である。一方で、非特許文献3にあるような2次元的な加工を施した微小流路を用いる方法は加工が容易であり、さらにアライメントをする必要がないため、生産性に優れているが、構造体では微粒子を集束させるためには0.837mL/min (= 1.86 m/sec)という高い流速を必要とする難点がある。又 非特許文献4に記載された方法では試料溶液及び微粒子を流路下部から流路中央方向に絞り込むことが出来ない。 However, the conventional method using a micro flow path as described in Patent Document 1 or Non-Patent Documents 1 and 2 processes a step structure on both substrates when processing, or a hollow structure on one substrate. There is a drawback that it takes a lot of time and effort. In particular, when a double-sided substrate is processed, a step (“alignment” step) is required in which the positions of the structures on both sides are aligned with high accuracy. On the other hand, the method using a micro flow path subjected to two-dimensional processing as described in Non-Patent Document 3 is easy to process and does not need to be aligned. The body has the difficulty of requiring a high flow rate of 0.837 mL / min (= 1.86 m / sec) in order to focus fine particles. In addition, the method described in Non-Patent Document 4 cannot narrow the sample solution and the fine particles from the lower part of the flow path toward the center of the flow path.

本発明者は上記課題を解決すべく研究の結果、単一の転写工程により中空構造を含まない片面の多段(段差)構造のみによって、試料溶液及び微粒子を流路中央部に集束させるシースフローの形成が可能であることを見出し、本発明を完成した。   As a result of research to solve the above problems, the present inventor has conducted a sheath flow for focusing the sample solution and the fine particles on the center of the flow path only by a single-stage multi-step (step) structure that does not include a hollow structure by a single transfer process. The present invention has been completed by finding that it can be formed.

即ち、本発明は、以下の各態様に係るものである。
[態様1]
少なくとも第一集束領域又は第二集束領域を有する、試料溶液流を流路中央方向に集束させるシースフロー形成構造であって:
(1)該第一集束領域又は第二集束領域の少なくともいずれか一つの領域において、試料溶液(サンプル)流を含む流路の第一の面と共通する面を有し且段差(深さ)が異なるシ−ス液(キャリア)導入流路を該試料溶液流を含む流路の両側方から合流させ、シース液流によって該試料溶液流を流路の中央方向へ集束させる第一の構造;
(2)第一の構造を有していない該第一集束領域又は第二集束領域において、試料溶液流を含む流路の第一の面以外の3つの面からシ−ス液を合流させ、シース液流によって第一の面と対向する第二の面及び第一の面に対する側面の3方向から該試料溶液流を流路の中央方向へ集束させる第二の構造、を有することを特徴とする前記シースフロー形成構造。
[態様2]
態様1のシースフロー形成構造を有するマイクロシステム。
[態様3]
段差構造が設けられた基板及び平面基板を接合することを含む、態様1のシースフロー形成構造又は態様2のマイクロシステムの作製方法。
[態様4]
態様1のシースフロー形成構造又は態様2のマイクロシステムを用いる、粒子の集束方法。
That is, the present invention relates to the following aspects.
[Aspect 1]
A sheath flow forming structure for focusing a sample solution stream toward the center of the flow path, having at least a first focusing area or a second focusing area:
(1) At least one of the first focusing area and the second focusing area has a surface common to the first surface of the flow path containing the sample solution (sample) flow, and a step (depth). A first structure in which a sheath liquid (carrier) introduction flow path having a different flow rate is joined from both sides of the flow path including the sample solution flow, and the sample solution flow is focused toward the center of the flow path by the sheath liquid flow;
(2) In the first focusing region or the second focusing region not having the first structure, the sheath liquid is merged from three surfaces other than the first surface of the flow path including the sample solution flow, A second structure for converging the sample solution flow from the three directions of the second surface facing the first surface and the side surface with respect to the first surface to the center direction of the flow path by the sheath liquid flow; The sheath flow forming structure.
[Aspect 2]
A microsystem having the sheath flow forming structure according to aspect 1.
[Aspect 3]
A method for manufacturing a sheath flow forming structure according to aspect 1 or a microsystem according to aspect 2, which includes joining a substrate provided with a step structure and a planar substrate.
[Aspect 4]
A method for focusing particles using the sheath flow forming structure of Aspect 1 or the microsystem of Aspect 2.

本発明のシースフロー形成構造に試料溶液とシース液を流し込むだけで試料溶液の流路中央部への集束が可能となる。更に、本発明のシースフロー形成構造は、段差構造が設けられた基板及び平面基板を接合する、という極めて簡便で方法で容易に作製することが可能であり、該シースフロー形成構造を有するマイクロチップ等のマイクロシステムを製造する際の工程が飛躍的に少なく済み、該製造過程における再現性及び生産性が非常に高いものとなる。 The sample solution can be focused on the central portion of the flow path simply by pouring the sample solution and the sheath liquid into the sheath flow forming structure of the present invention. Furthermore, the sheath flow forming structure of the present invention can be easily manufactured by an extremely simple method of joining a substrate provided with a step structure and a flat substrate, and the microchip having the sheath flow forming structure The number of steps for manufacturing a microsystem such as the above is drastically reduced, and reproducibility and productivity in the manufacturing process are extremely high.

本発明のシースフロー形成構造に含まれる第一の構造の一具体例を示す。The specific example of the 1st structure contained in the sheath flow formation structure of this invention is shown. 本発明のシースフロー形成構造の一具体例を示す。The specific example of the sheath flow formation structure of this invention is shown. 本発明のシースフロー形成構造の一具体例を模式的に示す。ここで、第一集束領域、第二集束領域及び第一集束領域は、夫々、図中の、a, b, 及びcに相当し、キャリア流はシース液流のことである。One specific example of the sheath flow formation structure of this invention is typically shown. Here, the first focusing region, the second focusing region, and the first focusing region correspond to a, b, and c in the drawing, respectively, and the carrier flow is a sheath liquid flow. 各流路を含む本発明のシースフロー形成構造の一例を模式的に示す。ここで、「フォーカス」は集束領域を意味する。An example of the sheath flow formation structure of this invention containing each flow path is shown typically. Here, “focus” means a focusing area. 流体シミュレーションソフトウェア(Coventor Ware,丸紅情報システムス株式会社)を使用して本発明のシースフロー形成構造における第一の構造の機能のシミュレーションを示す。The simulation of the function of the 1st structure in the sheath flow formation structure of the present invention using fluid simulation software (Coventor Ware, Marubeni Information Systems Co., Ltd.) is shown. 本発明のシースフロー形成構造において試料として蛍光色素を用いて実際にシースフローを形成した例を示す。An example in which a sheath flow is actually formed using a fluorescent dye as a sample in the sheath flow forming structure of the present invention will be described. 本発明のシースフロー形成構造において試料として蛍光ビーズを用いて実際にシースフローを形成した例を示す。An example in which a sheath flow is actually formed using fluorescent beads as a sample in the sheath flow forming structure of the present invention will be described. シースフローの有無による蛍光ビーズの線速度を比較したグラフである。It is the graph which compared the linear velocity of the fluorescent bead by the presence or absence of a sheath flow. シースフロー形成構造の第一の構造における、シ−ス液導入流路と試料溶液流を含む流路の深さの割合の最適化のシュレーションの結果を示す。ここで、Y軸:流路高さ方向の位置(境界)(μm)、X軸:キャリア流路の高さ(μm)、及び、%:境界を規定するサンプルの相対濃度である。尚、図中の各グラフにおいて矢印はサンプル相対濃度0.00%で規定した時の流路上方への遷移量が減少するキャリア流路の高さを指示している。又、サンプル相対濃度は各グラフにおいて上から順に、0.50, 0.25, 0.10, 0.05, 0.01, 及び、0.00%である。The result of the optimization of the ratio of the depth ratio of the flow path including the sheath liquid introduction flow path and the sample solution flow in the first structure of the sheath flow forming structure is shown. Here, Y axis: position (boundary) in the channel height direction (boundary) (μm), X axis: height of carrier channel (μm), and%: relative concentration of the sample defining the boundary. In each graph in the figure, the arrow indicates the height of the carrier flow path where the amount of transition upward in the flow path when the sample relative concentration is defined as 0.00% is reduced. The sample relative concentrations are 0.50, 0.25, 0.10, 0.05, 0.01, and 0.00% in order from the top in each graph.

本発明に係る試料溶液流を流路中央方向に集束させるシースフロー形成構造の主な特徴は、第一集束領域又は第二集束領域の少なくともいずれか一つの領域において、試料溶液流を含む流路の第一の面と共通する面を有し、且、段差(「深さ」又は「高さ」)が異なるシ−ス液導入流路を該試料溶液流を含む流路の両側方から合流させ、シース液流によって該試料溶液流を流路の中央方向へ集束させる第一の構造を有していることである。 The main feature of the sheath flow forming structure for focusing the sample solution flow according to the present invention toward the center of the flow path is that the flow path including the sample solution flow in at least one of the first focusing area and the second focusing area. The seed liquid introduction flow path having a surface common to the first surface and having different steps ("depth" or "height") is joined from both sides of the flow path including the sample solution flow. And having a first structure that focuses the sample solution flow toward the center of the flow path by the sheath liquid flow.

上記の第一の構造において、試料溶液流とシース液流が合流した後の下流域において、シース液流によって該試料溶液流を流路の中央方向へ集束させることが出来る限り、試料溶液流を含む流路の第一の面と共通する面を有し且段差が異なるシ−ス液導入流路が該試料溶液流を含む流路に合流する角度については特に制限はない。シース液流によって該試料溶液流を流路の中央方向へより効率よく集束させるためには、シ−ス液導入流路が該試料溶液流を含む流路と、約45度〜略直交の角度で合流することが好ましい。この具体例を図1に示す。 In the first structure described above, in the downstream region after the sample solution flow and the sheath liquid flow merge, the sample solution flow is reduced as long as the sample solution flow can be focused toward the center of the flow path by the sheath liquid flow. There is no particular limitation on the angle at which the sheath liquid introduction flow path having the same surface as the first face of the flow path including the difference and the step difference joins the flow path including the sample solution flow. In order to more efficiently focus the sample solution flow toward the center of the flow path by the sheath liquid flow, the sheath liquid introduction flow path is at an angle of approximately 45 degrees to approximately orthogonal to the flow path including the sample solution flow. It is preferable to join together. A specific example is shown in FIG.

尚、シースフロー形成構造を有するマイクロシステムの種類(例えば、マイクロチップ)、その使用目的・状態等の諸条件によって、上記の第一の構造における第一の面が試料溶液流を含む流路の上面、下面、又は、側面のいずれかに相当することになる。 Depending on the conditions of the microsystem having a sheath flow forming structure (for example, a microchip), its purpose of use and state, etc., the first surface of the first structure has a flow path including a sample solution flow. It corresponds to either the upper surface, the lower surface, or the side surface.

第一の構造において、シース液流によって該試料溶液流を流路の中央方向へ、好ましくは、試料溶液流を流路高さ方向の中央(50μm)よりも若干下回るところまで集束させるためには、シ−ス液導入流路の深さが試料溶液流を含む流路に較べてより浅いことが好ましい。即ち、マイクロシステムの種類(例えば、マイクロチップ)、その使用目的・状態等の諸条件、並びに、シース液流及び試料溶液流の流量の相対的割合にも依るが、通常、試料溶液流を含む流路の段差(深さ)はシ−ス液導入流路の段差の5倍以上、好ましくは、5〜20倍程度であることが好ましい。又、シース液流(両側方からの合計量)及び試料溶液流の流量の相対的割合は、適宜、設定することができるが、通常、0.5:1〜2:1の範囲である。好ましくは1:1程度である。 In the first structure, in order to focus the sample solution flow toward the center of the flow path by the sheath liquid flow, preferably to a position slightly below the center (50 μm) in the flow path height direction. The depth of the sheath liquid introduction channel is preferably shallower than that of the channel containing the sample solution flow. That is, it usually includes the sample solution flow, although it depends on the conditions of the microsystem type (for example, microchip), its purpose and state of use, and the relative proportions of the sheath liquid flow and the sample solution flow. The step (depth) of the flow path is 5 times or more, preferably about 5 to 20 times the step of the sheath liquid introduction flow path. The relative ratio of the sheath liquid flow (total amount from both sides) and the flow rate of the sample solution flow can be set as appropriate, but is usually in the range of 0.5: 1 to 2: 1. Preferably it is about 1: 1.

本発明のシースフロー形成構造において、第一の構造を有していない該第一集束領域又は第二集束領域においては、試料溶液流を含む流路の第一の面以外の3つの面からシ−ス液を合流させ、シース液流によって第一の面と対向する第二の面及び第一の面に対する側面の3方向から該試料溶液流を流路の中央方向へ集束させる第二の構造をとる。 In the sheath flow forming structure of the present invention, in the first focusing region or the second focusing region that does not have the first structure, the three surfaces other than the first surface of the flow path including the sample solution flow are used as a shim. A second structure for converging the sample solution from the three directions of the second surface facing the first surface and the side surface with respect to the first surface by the sheath liquid flow, toward the center of the flow path; Take.

第一の構造は、第一集束領域又は第二集束領域のいずれかにおいて設けることができる。例えば、第一の構造が第二集束領域(2段目絞込み)に、及び、第二の構造が第一集束領域(1段目絞込み)に設けられている一例を図2に示す。 The first structure can be provided in either the first focusing region or the second focusing region. For example, FIG. 2 shows an example in which the first structure is provided in the second focusing area (second stage narrowing) and the second structure is provided in the first focusing area (first stage narrowing).

或いは、第一集束領域及び第二集束領域のいずれも第一の構造とすることも可能である。このような場合には、試料溶液流を含む流路とシ−ス液導入流路が共通する第一の面は、夫々の集束領域において互いに対向する(例えば、第一集束領域においては上面、及び第二集束領域においては下面)とする。   Alternatively, both the first focusing area and the second focusing area can be the first structure. In such a case, the first surface where the flow path including the sample solution flow and the sheath liquid introduction flow path are common to each other in each focusing area (for example, the upper surface in the first focusing area, And the lower surface in the second focusing region.

更に、本発明のシースフロー形成構造において、第一集束領域及び第二集束領域に加えて、第三集束領域を設け、ここで第二集束領域において形成されたシースフローが流れる流路の段差(深さ)を小さくし、シースフローのより中央部に試料溶液流が流れるようにすることも出来る。このような構造の一例を模式的に図3に示す。 Furthermore, in the sheath flow forming structure of the present invention, in addition to the first focusing area and the second focusing area, a third focusing area is provided, and a step in the flow path (in which the sheath flow formed in the second focusing area flows ( It is also possible to reduce the depth) so that the sample solution flow flows more centrally in the sheath flow. An example of such a structure is schematically shown in FIG.

尚、第一集束領域及び第二集束領域で試料溶液流を含む流路に合流するシース液は、夫々、別の経路であっても良いが、通常は、上流で分岐した後に第一集束領域及び第二集束領域で試料溶液流を含む流路に合流するような構造とすることが好ましい。 The sheath liquid that merges with the flow path including the sample solution flow in the first focusing area and the second focusing area may be different paths, but usually the first focusing area after branching upstream. In addition, it is preferable to have a structure that joins the flow path including the sample solution flow in the second focusing region.

このようなシースフロー形成構造は、試料の分析、反応又は分離等を行わせる様々な種類のマイクロシステムに組み込んで、多様な目的・用途に使用することが出来る。このようなマイクロシステムの例として、例えば、プロテーム解析において重要な技術である細胞の精製・分離に使用されるFACS (Fluorescence Activated Cell Sorter) 、及び、温度感受性ゲル(例えば、メビオール(登録商標))をシース液流として用いたμ−TASセルソータ等を挙げることが出来る。試料としては、例えば、細胞及び各種オルガネラ等の様々な粒子・微粒子を用いることが出来る。 Such a sheath flow forming structure can be used for various purposes and applications by being incorporated into various types of microsystems for performing sample analysis, reaction, or separation. Examples of such microsystems include, for example, FACS (Fluorescence Activated Cell Sorter) used for cell purification / separation, which is an important technique in proteomic analysis, and temperature sensitive gels (eg, Meviol (registered trademark)). Can be mentioned as a μ-TAS cell sorter. As the sample, for example, various particles and fine particles such as cells and various organelles can be used.

通常、本発明のシースフロー形成構造又はマイクロシステムにおいて、試料溶液流、シース液流、及び、シースフロー流の各流路の幅、深さ等は、試料溶液及びそれに含まれる粒子の種類、マイクロシステムの目的・用途等に応じて、当業者が適宜きめることが出来るが、通常、流路幅:10〜100μm、流路深さ:5〜100μmである。   In general, in the sheath flow forming structure or microsystem of the present invention, the width, depth, etc. of each flow path of the sample solution flow, the sheath liquid flow, and the sheath flow flow are determined depending on the type of the sample solution and the particles contained therein, the micro Although those skilled in the art can appropriately determine the system according to the purpose and application of the system, the channel width is usually 10 to 100 μm and the channel depth is 5 to 100 μm.

各流路(深さは、100μm、50μm、及び5μmの3通り)を含む本発明のシースフロー形成構造の一例を模式的に図4に示す。   FIG. 4 schematically shows an example of the sheath flow forming structure of the present invention including each flow path (the depth is three types of 100 μm, 50 μm, and 5 μm).

該マイクロシステムには、目的・用途等に応じて、例えば、試料溶液注入路、試料溶液排出路、シース液注入路、廃液口、回収流路、及び、試料検出部等の任意の要素を備えて成ることも可能である。 The microsystem includes optional elements such as a sample solution injection path, a sample solution discharge path, a sheath liquid injection path, a waste liquid port, a recovery flow path, and a sample detection unit, depending on the purpose and application. It is also possible to consist of

例えば、本発明のマイクロシステムにおいて分離された試料の検出は、例えば、光源からの光を分析流路に入射させ、分析流路内での蛍光を検出器で検出するもの、流路に電極を挿入して電気化学変化量を測定するもの、流路からの溶液を質量分析計に導き測定するもの等、当業者に公知の任意の手段を用いることができる。 For example, in the detection of the sample separated in the microsystem of the present invention, for example, light from a light source is incident on an analysis channel, and fluorescence in the analysis channel is detected by a detector, and an electrode is installed in the channel. Any means known to those skilled in the art can be used, such as one that inserts and measures the amount of electrochemical change, or one that introduces and measures the solution from the flow path to the mass spectrometer.

本発明のシースフロー形成構造又はマイクロシステムは当業者に公知の方法で作製することが出来る。特に、第一の構造が第一集束領域又は第二集束領域のいずれか一つの領域のみに設けられており、他の領域には第二の構造が設けられている場合は、中空構造を含まない多段(段差)構造が設けられた片面の基板をもう一方の平面基板に接合するという、極めて簡便な方法で作製することが可能となる。   The sheath flow forming structure or microsystem of the present invention can be produced by methods known to those skilled in the art. In particular, when the first structure is provided only in one of the first focusing area and the second focusing area and the second structure is provided in the other area, the hollow structure is included. It is possible to manufacture a single-sided substrate provided with a non-multistage (step) structure by an extremely simple method of bonding to the other planar substrate.

例えば、各種ガラス、石英、及びSi基板等上にフォトリソグラフィを用いるマイクロファブリケーションにより鋳型を作製し、これをポリジメチルシロキサン(PDMS)等の適当な樹脂に転写し、得られた多段(段差)構造を有する基板を平面基板とプラズマ接合等の任意の方法で接合することによって、本発明のシースフロー形成構造又はマイクロシステムを容易に作製することが可能である。 For example, a template is produced by microfabrication using photolithography on various glass, quartz, and Si substrates, and this is transferred to an appropriate resin such as polydimethylsiloxane (PDMS). By bonding a substrate having a structure to a flat substrate by an arbitrary method such as plasma bonding, the sheath flow forming structure or the microsystem of the present invention can be easily manufactured.

フォトリソグラフィによる鋳型の作製は、例えば、フォトレジスト塗布、分離流路のパターニング(露光、現像)、Siエッチング、レジスト除去、フォトレジスト塗布、インジェクションホールパターニング、Siエッチング、レジスト除去、表面酸化、陽極接合のプロセスで行なうことが出来る。 For example, photolithographic molds can be prepared by, for example, applying photoresist, patterning separation channels (exposure, development), Si etching, resist removal, photoresist coating, injection hole patterning, Si etching, resist removal, surface oxidation, anodic bonding. This process can be performed.

尚、ポリジメチルシロキサン(PDMS)はシリコーンゴムの一種であり、モールディング(型取り)によりマイクロ構造が製作でき、サブミクロンの構造まで転写可能である。自己吸着性があるため、大きな内圧を必要としない場合は基盤に貼り付けるだけでシール出来る。又、無色透明であり、可視光領域による吸収が小さく、自家蛍光もほとんどみられず、生体適合性材料で細胞や組織に悪影響がないため、バイオ分野で用いられる蛍光検出にも適している。 更に、ガラスやプラスティック製のチップと異なり、 ウェットエッチングや高温接合を必要とせず、比較的容易に作ることができる。 Polydimethylsiloxane (PDMS) is a kind of silicone rubber, and a microstructure can be manufactured by molding (molding), and a sub-micron structure can be transferred. Because of its self-adsorbing property, it can be sealed by simply sticking it to the substrate when large internal pressure is not required. In addition, it is colorless and transparent, has little absorption in the visible light region, hardly shows autofluorescence, and is a biocompatible material that does not adversely affect cells and tissues. Therefore, it is suitable for fluorescence detection used in the bio field. Furthermore, unlike glass and plastic chips, it can be made relatively easily without the need for wet etching or high temperature bonding.

以下、参考例及び実施例を参照して本発明を詳細に説明するが、本発明の技術的範囲はこれらに何ら限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to reference examples and examples. However, the technical scope of the present invention is not limited to these examples.

流体シミュレーションソフトウェア(Coventor Ware,丸紅情報システムス株式会社)を使用してシミュレーションを行ない、本発明のシースフロー形成構造における第一の構造よって、シース液流によって該試料溶液流が流路の中央方向へ集束する様子を確認した(図5)。図中、シース液と試料溶液を同流量で注入したときの流路断面図において試料溶液が流れる範囲を試料の濃度として示した。また、その際の流路断面における流れの向きを→で示した。このシミュレーションによって、シース液を下部より注入することにより、下流において試料溶液の大部分が流路上部方向へと遷移していることが示された。 Simulation is performed using fluid simulation software (Coventor Ware, Marubeni Information Systems Co., Ltd.), and the first solution in the sheath flow forming structure of the present invention causes the sample solution flow to flow in the center direction of the flow path. It was confirmed that it converged to (Fig. 5). In the figure, the range in which the sample solution flows is shown as the concentration of the sample in the flow path cross-sectional view when the sheath liquid and the sample solution are injected at the same flow rate. In addition, the direction of the flow in the cross section of the flow path at that time is indicated by →. This simulation showed that most of the sample solution was shifted toward the upper part of the flow channel downstream by injecting the sheath liquid from the lower part.

図4に示した本発明のシースフロー形成構造において、試料溶液として蛍光色素(ローダミン6G)の水溶液及びシース溶液として水を用いて実際にシースフローを形成した。ローダミン6Gが流路中央付近に集束されていることが判る(図6)。
キャリア溶液流量:試料溶液流量 = 20 μL/min : 1 μL/min。
In the sheath flow forming structure of the present invention shown in FIG. 4, a sheath flow was actually formed using an aqueous solution of a fluorescent dye (rhodamine 6G) as a sample solution and water as a sheath solution. It can be seen that rhodamine 6G is focused near the center of the channel (FIG. 6).
Carrier solution flow rate: Sample solution flow rate = 20 μL / min: 1 μL / min.

試料溶液として直径10μmの蛍光ビーズの水溶液を用いて、実施例2と同様の実験を行なった。流路中央付近にビーズが集束されている(図7)。キャリア溶液流量:試料溶液流量 = 5 μL/min : 1μL/min。 An experiment similar to that of Example 2 was performed using an aqueous solution of fluorescent beads having a diameter of 10 μm as the sample solution. The beads are focused near the center of the flow path (FIG. 7). Carrier solution flow rate: Sample solution flow rate = 5 μL / min: 1 μL / min.

試料溶液として直径2μmの蛍光ビーズの水溶液を用いて、実施例2と同様の実験を行い、同一のマイクロシステムにおいて、シースフローによる絞込みの有り無しにおける各蛍光ビーズの線速度を測定した。シースフローによる絞込みによって流路内を通過する蛍光ビーズの線速度のばらつきが狭くなっていることが分かる(図8)。キャリア溶液流量:試料溶液流量 = 3.5 μL/min : 0.5 μL/min 又は 0μL/min : 4μL/min。
尚、「シースフロー無し」は、同一のシステムにおいて、シース液流を止め、その代わりに合流後の最終流量が同一になるように試料溶液の流量を増やして実施した。
The same experiment as in Example 2 was performed using an aqueous solution of fluorescent beads having a diameter of 2 μm as a sample solution, and the linear velocity of each fluorescent bead with or without narrowing by sheath flow was measured in the same microsystem. It can be seen that the variation in the linear velocity of the fluorescent beads passing through the flow path is narrowed by narrowing down by the sheath flow (FIG. 8). Carrier solution flow rate: Sample solution flow rate = 3.5 μL / min: 0.5 μL / min or 0 μL / min: 4 μL / min.
Note that “no sheath flow” was performed in the same system by stopping the flow of the sheath liquid, and instead increasing the flow rate of the sample solution so that the final flow rate after merging was the same.

更に、本発明のシースフロー形成構造の第一の構造における、シ−ス液(キャリア)導入流路と試料溶液(サンプル)流を含む流路の深さの割合の最適化を実施例1と同様のソフトウェアを使用したシミュレーションにより検討した。即ち、以下の条件でシュレーションを実施した。サンプル濃度をカラーマップで表示し、キャリアとの境界を濃度から算出した。   Further, in the first structure of the sheath flow forming structure of the present invention, the ratio of the depth of the flow path including the sheath liquid (carrier) introduction flow path and the sample solution (sample) flow is optimized as in the first embodiment. The simulation was performed using the same software. That is, the shredding was performed under the following conditions. The sample concentration was displayed as a color map, and the boundary with the carrier was calculated from the concentration.

サンプル流路幅:50μm サンプル流路高さ:100μm キャリア流路幅:50μm
キャリア流路の高さ: 2.5, 5.0, 10, 15, 20, 25, 30, 及び50μm
合流形状:90度(45度でも最終的な分布に目立った差異は見られない)
流量:キャリア : サンプル: キャリア(以下の3通り)
(1)1.0μl/min : 1.0μl/min : 1.0μl/min = 1:1:1
(2)0.5μl/min : 1.0μl/min : 0.5μl/min = 0.5:1:0.5
(3) 0.25μl/min : 1.0μl/min : 0.25μl/min = 0.25:1:0.25
Sample channel width: 50 μm Sample channel height: 100 μm Carrier channel width: 50 μm
Carrier channel height: 2.5, 5.0, 10, 15, 20, 25, 30, and 50μm
Convergence shape: 90 degrees (no significant difference in the final distribution even at 45 degrees)
Flow rate: Carrier: Sample: Carrier (3 types below)
(1) 1.0 μl / min: 1.0 μl / min: 1.0 μl / min = 1: 1: 1
(2) 0.5μl / min: 1.0μl / min: 0.5μl / min = 0.5: 1: 0.5
(3) 0.25μl / min: 1.0μl / min: 0.25μl / min = 0.25: 1: 0.25

図9に示した結果から、キャリアの流入量が多くなるほど、合流させるキャリア流路の高さが大きくてもサンプル流中央部を流路上方に遷移させやすいことがわかった。又、サンプル流中央部が上方に遷移できないキャリア流路高さでは、サンプル流両端部が上方に遷移している。このシミュレーションではキャリアの合計流量とサンプルの流量の比が0.5:1では深さ5μm、1:1では15 μm、2:1では30μmとほぼ流量比に比例してキャリア流路の許容流路深さが増加していることが示された。尚、実際にシースフローを形成する場合、サンプル流を流路高さ方向の中央(50μm)よりも若干下回るところまで遷移させることが望ましいため、流量比0.5:1:0.5程度のシミュレーションが適している。このことより、試料溶液の流路は合流させるキャリア流路に対して5倍以上の高さを持たせることが望ましいといえる。   From the results shown in FIG. 9, it was found that the greater the inflow amount of the carrier, the easier the transition of the central portion of the sample flow upwards the flow path even if the height of the carrier flow path to be merged is large. Further, at the carrier flow path height at which the center portion of the sample flow cannot be shifted upward, both ends of the sample flow are shifted upward. In this simulation, the carrier flow rate to sample flow rate ratio of 0.5: 1 is 5 μm deep, 1: 1 is 15 μm, and 2: 1 is 30 μm. Was shown to increase. When actually forming a sheath flow, it is desirable to make the sample flow transition to a position slightly below the center (50 μm) in the flow path height direction, so a simulation with a flow ratio of about 0.5: 1: 0.5 is suitable. Yes. From this, it can be said that it is desirable that the flow path of the sample solution has a height of 5 times or more than the carrier flow path to be joined.

本発明のシースフロー形成構造を含むマイクロシステム生化学、薬学、及び医学等の分野において様々な目的で使用することが可能である。 The sheath flow forming structure of the present invention can be used for various purposes in fields such as microsystem biochemistry, pharmacy, and medicine.

Claims (13)

少なくとも第一集束領域又は第二集束領域を有する、試料溶液流を流路中央方向に集束させるシースフロー形成構造であって:
(1)該第一集束領域又は第二集束領域の少なくともいずれか一つの領域において、試料溶液流を含む流路の第一の面と共通する面を有し且段差(深さ)が異なるシ−ス液導入流路を該試料溶液流を含む流路の両側方から合流させ、シース液流によって該試料溶液流を流路の中央方向へ集束させる第一の構造;
(2)第一の構造を有していない該第一集束領域又は第二集束領域において、試料溶液流を含む流路の第一の面以外の3つの面からシ−ス液を合流させ、シース液流によって第一の面と対向する第二の面及び第一の面に対する側面の3方向から該試料溶液流を流路の中央方向へ集束させる第二の構造、を有することを特徴とする前記シースフロー形成構造。
A sheath flow forming structure for focusing a sample solution stream toward the center of the flow path, having at least a first focusing area or a second focusing area:
(1) At least one region of the first focusing region or the second focusing region has a surface common to the first surface of the flow path including the sample solution flow and has a different step (depth). -A first structure in which the flow of the sample solution is merged from both sides of the flow path including the sample solution flow, and the sample solution flow is converged toward the center of the flow path by the sheath liquid flow;
(2) In the first focusing region or the second focusing region not having the first structure, the sheath liquid is merged from three surfaces other than the first surface of the flow path including the sample solution flow, A second structure for focusing the sample solution flow from the three directions of the second surface facing the first surface and the side surface of the first surface by the sheath liquid flow toward the center of the flow path. The sheath flow forming structure.
第一の構造において、試料溶液流を含む流路の第一の面と共通する面を有し且段差が異なるシ−ス液導入流路が該試料溶液流を含む流路と該流路方向に対して略直交方向から合流することを特徴とする、請求項1記載のシースフロー形成構造。 In the first structure, the sheath liquid introduction flow path having a surface common to the first face of the flow path including the sample solution flow and having different steps is provided between the flow path including the sample solution flow and the flow path direction. The sheath flow forming structure according to claim 1, wherein the sheath flow is joined from a substantially orthogonal direction. 第一の面が試料溶液流を含む流路の上面又は下面に相当することを特徴とする、請求項1又は2に記載のシースフロー形成構造。 The sheath flow forming structure according to claim 1 or 2, wherein the first surface corresponds to an upper surface or a lower surface of a flow path containing a sample solution flow. 第一の構造において、試料溶液流を含む流路の段差がシ−ス液導入流路の段差の5倍以上であることを特徴とする、請求項1ないし3いずれか一項に記載のシースフロー形成構造。 The sheath according to any one of claims 1 to 3, wherein, in the first structure, the step of the flow path including the sample solution flow is at least five times the step of the sheath liquid introduction flow path. Flow forming structure. 第一の構造が第二集束領域に、及び、第二の構造が第一集束領域に設けられていることを特徴とする、請求項1ないし4いずれか一項に記載のシースフロー形成構造。 The sheath flow forming structure according to any one of claims 1 to 4, wherein the first structure is provided in the second focusing region, and the second structure is provided in the first focusing region. シース液が上流で分岐した後に第一集束領域及び第二集束領域で試料溶液流を含む流路に合流する、請求項1ないし5いずれか一項に記載のシースフロー形成構造。 6. The sheath flow forming structure according to claim 1, wherein after the sheath liquid branches upstream, the sheath liquid joins the flow path including the sample solution flow in the first focusing region and the second focusing region. 更に、第二集束領域において形成されたシースフローが流れる流路の段差(深さ)を小さくし、シースフローのより中央部に試料溶液流が流れるようにする第三の構造を有する第三集束領域を含むことを特徴とする、請求項1ないし6いずれか一項に記載のシースフロー形成構造。 Further, the third converging has a third structure in which the step (depth) of the flow path through which the sheath flow formed in the second converging region flows is reduced, and the sample solution flow flows in the central part of the sheath flow. The sheath flow forming structure according to claim 1, further comprising a region. 請求項1ないし7いずれか一項に記載のシースフロー形成構造を有するマイクロシステム。 A microsystem having the sheath flow forming structure according to any one of claims 1 to 7. 段差構造が設けられた基板及び平面基板を接合することを含む、請求項1ないし7いずれか一項に記載のシースフロー形成構造又は請求項8記載のマイクロシステムの作製方法。 The method for manufacturing a sheath flow forming structure according to any one of claims 1 to 7 or a method for manufacturing a microsystem according to claim 8, comprising joining a substrate provided with a step structure and a planar substrate. 段差構造が設けられた基板がフォトリソグラフィを用いて作製した鋳型から転写された樹脂から成り、平面基板がガラス基板である、請求項8記載の作製方法。 9. The manufacturing method according to claim 8, wherein the substrate provided with the step structure is made of a resin transferred from a mold manufactured using photolithography, and the planar substrate is a glass substrate. 樹脂がポリジメチルシロキサンである、請求項9記載の作製方法。 The production method according to claim 9, wherein the resin is polydimethylsiloxane. 請求項1ないし7いずれか一項に記載のシースフロー形成構造又は請求項8記載のマイクロシステムを用いる、粒子の集束方法。 A particle focusing method using the sheath flow forming structure according to any one of claims 1 to 7 or the microsystem according to claim 8. 粒子が細胞又は各種オルガネラであることを特徴とする、請求項12記載の粒子の集束方法。 The particle focusing method according to claim 12, wherein the particle is a cell or various organelles.
JP2009135665A 2009-06-05 2009-06-05 Three-dimensional sheath flow forming structure and fine particle focusing method Expired - Fee Related JP5700189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135665A JP5700189B2 (en) 2009-06-05 2009-06-05 Three-dimensional sheath flow forming structure and fine particle focusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135665A JP5700189B2 (en) 2009-06-05 2009-06-05 Three-dimensional sheath flow forming structure and fine particle focusing method

Publications (2)

Publication Number Publication Date
JP2010279908A true JP2010279908A (en) 2010-12-16
JP5700189B2 JP5700189B2 (en) 2015-04-15

Family

ID=43537156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135665A Expired - Fee Related JP5700189B2 (en) 2009-06-05 2009-06-05 Three-dimensional sheath flow forming structure and fine particle focusing method

Country Status (1)

Country Link
JP (1) JP5700189B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140273059A1 (en) * 2013-03-14 2014-09-18 Inguran, Llc Methods for high throughput sperm sorting
JP2016514955A (en) * 2013-03-14 2016-05-26 イングラン, エルエルシー Apparatus and method for high throughput sperm sorting
JP2016527502A (en) * 2013-07-16 2016-09-08 プレミアム ジェネティクス (ユーケー) リミテッド Microfluidic chip
US9757726B2 (en) 2013-03-14 2017-09-12 Inguran, Llc System for high throughput sperm sorting
KR101850852B1 (en) * 2016-01-08 2018-04-23 재단법인차세대융합기술연구원 Microfluidic channel device and method for using the same
US10371622B2 (en) 2013-03-14 2019-08-06 Inguran, Llc Device for high throughput sperm sorting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005245317A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Measuring instrument for microorganism and measuring method
JP2005288254A (en) * 2004-03-31 2005-10-20 Ube Ind Ltd Micro-device and method for confluence of fluids
JP2006071388A (en) * 2004-09-01 2006-03-16 Horiba Ltd Microchip and fluid control method in microchip
JP2007514522A (en) * 2003-10-30 2007-06-07 サイトノーム インコーポレーテッド Hydrodynamic multilayer sheath flow structure
JP2007148981A (en) * 2005-11-30 2007-06-14 Univ Waseda Particle sorting microsystem and particle sorting method
JP2008264784A (en) * 2002-04-25 2008-11-06 Tosoh Corp Fine channel structure and solvent extraction method using fine channel structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264784A (en) * 2002-04-25 2008-11-06 Tosoh Corp Fine channel structure and solvent extraction method using fine channel structure
JP2007514522A (en) * 2003-10-30 2007-06-07 サイトノーム インコーポレーテッド Hydrodynamic multilayer sheath flow structure
JP2005245317A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Measuring instrument for microorganism and measuring method
JP2005288254A (en) * 2004-03-31 2005-10-20 Ube Ind Ltd Micro-device and method for confluence of fluids
JP2006071388A (en) * 2004-09-01 2006-03-16 Horiba Ltd Microchip and fluid control method in microchip
JP2007148981A (en) * 2005-11-30 2007-06-14 Univ Waseda Particle sorting microsystem and particle sorting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140273059A1 (en) * 2013-03-14 2014-09-18 Inguran, Llc Methods for high throughput sperm sorting
JP2016514955A (en) * 2013-03-14 2016-05-26 イングラン, エルエルシー Apparatus and method for high throughput sperm sorting
US9757726B2 (en) 2013-03-14 2017-09-12 Inguran, Llc System for high throughput sperm sorting
KR101920732B1 (en) 2013-03-14 2018-11-22 인구란, 엘엘씨 Apparatus and methods for high throughput sperm sorting
US10371622B2 (en) 2013-03-14 2019-08-06 Inguran, Llc Device for high throughput sperm sorting
US10662408B2 (en) 2013-03-14 2020-05-26 Inguran, Llc Methods for high throughput sperm sorting
JP2016527502A (en) * 2013-07-16 2016-09-08 プレミアム ジェネティクス (ユーケー) リミテッド Microfluidic chip
KR101850852B1 (en) * 2016-01-08 2018-04-23 재단법인차세대융합기술연구원 Microfluidic channel device and method for using the same

Also Published As

Publication number Publication date
JP5700189B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
Dalili et al. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches
EP2191895B1 (en) Microparticle analysis device, microfluidic chip for microparticle analysis, and microparticle analysis method
Mawatari et al. Extended-nanofluidics: fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices
Li et al. Probing circulating tumor cells in microfluidics
Chen et al. Microfluidic chip for blood cell separation and collection based on crossflow filtration
US9128091B2 (en) Capturing particles
Zhu et al. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation
Huang et al. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture
US20160296933A1 (en) Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting
Shrirao et al. Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification
JP5700189B2 (en) Three-dimensional sheath flow forming structure and fine particle focusing method
CN109456875B (en) Rare cell multi-stage sorting microfluidic device integrating inertia and deterministic lateral displacement technology
KR20080110167A (en) A apparatus for focusing and detecting particles in a sample and a method of manufacturing the same
Zhang et al. Design of a single-layer microchannel for continuous sheathless single-stream particle inertial focusing
Sahore et al. Droplet microfluidics in thermoplastics: device fabrication, droplet generation, and content manipulation using integrated electric and magnetic fields
US20120252138A1 (en) Methods and Related Devices for Continuous Sensing Utilizing Magnetic Beads
Ellinas et al. Micro-bead immunoassays for the detection of IL6 and PDGF-2 proteins on a microfluidic platform, incorporating superhydrophobic passive valves
Wang et al. Strategy for fast manufacturing of 3D hydrodynamic focusing multilayer microfluidic chips and its application for flow-based synthesis of gold nanoparticles
Xie et al. Latest advances and perspectives of liquid biopsy for cancer diagnostics driven by microfluidic on-chip assays
CN110506201B (en) Particle detection device and particle detection method
Malic et al. Current state of intellectual property in microfluidic nucleic acid analysis
Masuda et al. Cancer cell separator using size-dependent filtration in microfluidic chip
JP6509759B2 (en) Microchip and microparticle analyzer
Mohamed Use of microfluidic technology for cell separation
Wu et al. Biochemical analysis techniques integrated on microfluidic chips and their applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150203

R150 Certificate of patent or registration of utility model

Ref document number: 5700189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees