TWI428882B - Source driver device and method of fabricating the same - Google Patents

Source driver device and method of fabricating the same Download PDF

Info

Publication number
TWI428882B
TWI428882B TW100120658A TW100120658A TWI428882B TW I428882 B TWI428882 B TW I428882B TW 100120658 A TW100120658 A TW 100120658A TW 100120658 A TW100120658 A TW 100120658A TW I428882 B TWI428882 B TW I428882B
Authority
TW
Taiwan
Prior art keywords
well region
region
low voltage
transistor
voltage component
Prior art date
Application number
TW100120658A
Other languages
Chinese (zh)
Other versions
TW201250651A (en
Inventor
Chang Hsin Wu
Hsiang Hua Lu
Cheng Lun Cho
Pi Kuang Chuang
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW100120658A priority Critical patent/TWI428882B/en
Publication of TW201250651A publication Critical patent/TW201250651A/en
Application granted granted Critical
Publication of TWI428882B publication Critical patent/TWI428882B/en

Links

Description

源極驅動器以及其形成方法Source driver and method of forming same

本發明係有關於源極驅動器,特別是關於具有不同臨界電壓值之元件的源極驅動器。The present invention relates to source drivers, and more particularly to source drivers for components having different threshold voltage values.

平面顯示器技術於消費性娛樂電子產業佔有舉足輕重的地位。傳統平面顯示器如液晶顯示器,其呈現影像的方式,係透過驅動晶片組以輸出電壓的方式,改變液晶分子排列方向,藉由每點畫素之透光率高低來構成顯示的畫面。驅動晶片主要包括源極驅動器以及閘極驅動器兩部份,當一畫素呈現色彩時,需以閘極驅動器控制一薄膜電晶體開關,以及源極驅動器分別輸入R、G、B三原色訊號。閘極驅動器負責顯示器每列訊號的開關動作,當顯示器逐列進行掃瞄動作時,閘極驅動器配合打開一整列開關,讓源極驅動器進行訊號輸入動作。源極驅動器負責顯示器每行畫素訊號的輸入動作,當閘極驅動器打開一整列開關時,源極驅動器即時配合輸入該列畫素資料電壓,提供顯示畫面所需訊號。當顯示器逐步提昇解析度、亮度與反應速度時,驅動晶片越需要朝向高頻與高壓方向發展,才能符合高速掃瞄頻率與快速驅動需求。欲改善晶片內的電晶體元件的開關頻率,其中一種方式為降低電晶體元件的臨界電壓(threshold voltage),即於驅動晶片中採用低壓元件。惟低壓元件之低臨界電壓同時會造成閘極漏電流,更因而增加驅動晶片的功率消耗,特別是具有大量電晶體的源極驅動器。傳統的驅動晶片結構如第1圖所示,包括一低壓邏輯區域20以及一高壓區域30。低壓邏輯區域20包括需要高速運算的邏輯電路區域,例如邏輯控制器(Logic Controller)21、移位暫存器(Level Shift Register)22、資料暫存器(Data Register)23,以及資料閂(Data Latch)24等,因此上述區域採用具有一低臨界電壓值的低壓電晶體元件以提昇操作速度以追求運算效能;而高壓區域30包括需要較大驅動電壓的電路區域,如數位類比轉換器(Digital/Analog Converter)31以及輸出緩衝器(Output Buffer)32等,因此上述區域採用具有一較高臨界電壓值的高壓電晶體元件,以達到較低的功率損耗。然而,為進一步針對驅動晶片的效能優化,低壓邏輯區域20內仍然可進一步細分為各個具有不同設計需求的電路區域,如重視低功率損耗的區域、具有高操作電流的區域、需要較高處理速度的區域等等。而傳統的低壓邏輯區域20內一般使用相同臨界電壓值的電晶體元件,已無滿足尖端顯示器技術中對於效能優化的需求。Flat panel display technology plays a pivotal role in the consumer entertainment electronics industry. A conventional flat-panel display, such as a liquid crystal display, exhibits an image by changing the alignment direction of the liquid crystal molecules by driving the wafer set to output a voltage, and forming a displayed image by the transmittance of each dot. The driving chip mainly includes two parts of a source driver and a gate driver. When a pixel is colored, a gate transistor switch is controlled by a gate driver, and the source driver inputs three primary color signals of R, G, and B, respectively. The gate driver is responsible for the switching action of each column of the display. When the display performs the scanning operation column by column, the gate driver cooperates with opening an entire column of switches to allow the source driver to perform signal input. The source driver is responsible for the input action of each pixel of the display. When the gate driver opens an entire column of switches, the source driver immediately inputs the column data voltage to provide the signal required for displaying the screen. When the display gradually increases the resolution, brightness and reaction speed, the more the driver chip needs to develop toward the high frequency and high voltage, in order to meet the high speed scanning frequency and fast driving demand. One way to improve the switching frequency of the transistor elements within the wafer is to lower the threshold voltage of the transistor element, i.e., to employ a low voltage component in the driver wafer. However, the low threshold voltage of the low voltage component also causes gate leakage current, which in turn increases the power consumption of the driver wafer, especially the source driver with a large number of transistors. The conventional drive wafer structure, as shown in FIG. 1, includes a low voltage logic region 20 and a high voltage region 30. The low voltage logic region 20 includes logic circuit regions that require high speed operations, such as a logic controller 21, a shift register (Level Shift Register) 22, a data register 23, and a data latch (Data). Latch) 24, etc., so the above region uses a low voltage transistor element having a low threshold voltage value to increase the operating speed to pursue operational efficiency; and the high voltage region 30 includes a circuit region requiring a large driving voltage, such as a digital analog converter ( Digital/Analog Converter 31 and Output Buffer 32, etc., so the above region uses a high voltage transistor element having a higher threshold voltage value to achieve lower power loss. However, in order to further optimize the performance of the driving chip, the low voltage logic region 20 can be further subdivided into circuit regions having different design requirements, such as regions with low power loss, regions with high operating current, and high processing speeds. Area and so on. While conventional low voltage logic regions 20 typically use transistor elements of the same threshold voltage value, there is no need for performance optimization in cutting-edge display technology.

因此,本發明提出一種源極驅動器,包括高壓電路區域;第一低壓邏輯電路區域,該第一低壓邏輯電路區域包括複數個第一電晶體元件,其中該等第一電晶體元件被配置成具有第一臨界電壓值以符合第一操作需求;一第二低壓邏輯電路區域,與該第一低壓邏輯電路區域電性耦合,該第二低壓邏輯電路區域包括複數個第二電晶體元件,其中該等第二電晶體元件被配置成具有第二臨界電壓值以符合第二操作需求;其中該第一臨界電壓值不等於該第二臨界電壓值。Accordingly, the present invention provides a source driver including a high voltage circuit region; a first low voltage logic circuit region including a plurality of first transistor elements, wherein the first transistor elements are configured to have a first threshold voltage value to meet a first operational requirement; a second low voltage logic circuit region electrically coupled to the first low voltage logic circuit region, the second low voltage logic circuit region including a plurality of second transistor components, wherein the The second transistor element is configured to have a second threshold voltage value to comply with a second operational requirement; wherein the first threshold voltage value is not equal to the second threshold voltage value.

本發明更提出一種形成源極驅動器的方法,包括一基板;對該基板之第一部份進行第一井區離子佈植,以形成至少一高壓元件井區;對該基板之第二部份進行第二井區離子佈植,以形成至少一第一低壓元件井區;對該基板之第三部份進行第三井區離子佈植,以形成至少一第二低壓元件井區,其中上述第一、第二以及第三井區離子佈植之濃度皆相異;於至少一高壓元件井區、至少一第一低壓元件井區以及至少一第二低壓元件井區上分別形成複數個第一閘極結構、第二閘極結構以及第三閘極結構;分別於該等第一閘極結構、第二閘極結構以及第三閘極結構下方形成複數個源極及複數個汲極,以分別於該第一、第二低壓元件井區及該高壓元件井區定義出複數個第一電晶體元件、複數個第二電晶體元件以及複數個第三電晶體元件。The invention further provides a method for forming a source driver, comprising: a substrate; performing a first well ion implantation on the first portion of the substrate to form at least one high voltage component well region; and the second portion of the substrate Performing a second well region ion implantation to form at least one first low voltage component well region; performing a third well region ion implantation on the third portion of the substrate to form at least one second low voltage component well region, wherein The concentrations of the ion implantation in the first, second, and third well regions are different; forming a plurality of the plurality of high-voltage component well regions, at least one first low-voltage component well region, and at least one second low-voltage component well region a gate structure, a second gate structure, and a third gate structure; forming a plurality of sources and a plurality of drain electrodes under the first gate structure, the second gate structure, and the third gate structure, respectively A plurality of first transistor elements, a plurality of second transistor elements, and a plurality of third transistor elements are defined in the first and second low voltage component well regions and the high voltage component well region, respectively.

本發明另提出一種形成源極驅動器的方法,包括一基板;對該基板之第一部份進行第一井區離子佈植,以形成至少一高壓元件井區;對該基板之第二部份進行第二井區離子佈植,以形成至少第一低壓元件井區;於該基板上分別形成複數個第一閘極結構、第二閘極結構以及第三閘極結構,其中該等第一閘極結構與第二閘極結構分別位於該等至少一高壓元件井區以及至少一第一低壓元件井區之上;進行第一輕摻雜離子佈植,以於該第二閘極結構下方形成複數個第一輕摻雜汲極;對該基板之第三部份進行一多階段的第三離子佈植,以形成至少一第二低壓元件井區以及複數個第二輕摻雜汲極;分別於該等第一閘極結構、第二閘極結構以及第三閘極結構形成複數個源極及複數個汲極,以分別於該高壓元件井區以及該第一、第二低壓元件井區定義出複數個第一電晶體元件、複數個第二電晶體元件以及複數個第三電晶體元件;其中上述高壓元件井區、第一低壓元件井區以及第二低壓元件井區之雜質濃度皆相異,且上述第一輕摻雜汲極與第二輕摻雜汲極之雜質濃度相異。The invention further provides a method for forming a source driver, comprising: a substrate; performing a first well ion implantation on the first portion of the substrate to form at least one high voltage component well region; and the second portion of the substrate Performing a second well region ion implantation to form at least a first low voltage component well region; forming a plurality of first gate structures, a second gate structure, and a third gate structure on the substrate, wherein the first The gate structure and the second gate structure are respectively located on the at least one high voltage component well region and the at least one first low voltage component well region; performing a first lightly doped ion implantation to be below the second gate structure Forming a plurality of first lightly doped drains; performing a multi-stage third ion implantation on the third portion of the substrate to form at least one second low voltage component well region and a plurality of second lightly doped drain electrodes Forming a plurality of sources and a plurality of drains respectively in the first gate structure, the second gate structure, and the third gate structure to respectively separate the high voltage component well region and the first and second low voltage components Well area defines a number of first a crystal element, a plurality of second transistor elements, and a plurality of third transistor elements; wherein the impurity concentrations of the high voltage component well region, the first low voltage component well region, and the second low voltage component well region are different, and the first The lightly doped drain is different from the impurity concentration of the second lightly doped drain.

第2A圖為本發明之源極驅動器100示意圖,源極驅動器100包括至少一高壓電路區域110、一低壓電路區域120,其中高壓電路區域110以及低壓電路區域120彼此功能性耦合。於部份實施例中,低壓電路區域120又可分為兩區域,包括第一低壓邏輯電路區域120-1以及第二低壓邏輯電路區域120-2,其中第一低壓邏輯電路區域120-1以及第二低壓邏輯電路區域120-2彼此功能性耦合。第一低壓邏輯電路區域120-1以及第二低壓邏輯電路區域120-2中的電晶體元件具有相異的臨界電壓值(Threshold Voltage),以分別符合第一低壓邏輯電路區域120-1預設的第一操作需求以及第二低壓邏輯電路區域120-2預設的第二操作需求。於其他實施例中,如第2B圖所示,低壓電路區域120又可分為N個區域,包括第一低壓邏輯電路區域120-1至第N低壓電路區域120-N,其中第一低壓邏輯電路區域120-1至第N低壓電路區域120-N彼此功能性耦合,其中N為一大於1之正整數。第一低壓電路區域120-1至第N低壓電路區域120-N中的電晶體元件分別具有相異的臨界電壓值,以分別符合預設的不同的操作需求。2A is a schematic diagram of a source driver 100 of the present invention. The source driver 100 includes at least one high voltage circuit region 110 and a low voltage circuit region 120, wherein the high voltage circuit region 110 and the low voltage circuit region 120 are functionally coupled to each other. In some embodiments, the low voltage circuit region 120 can be further divided into two regions, including a first low voltage logic circuit region 120-1 and a second low voltage logic circuit region 120-2, wherein the first low voltage logic circuit region 120-1 and The second low voltage logic circuit regions 120-2 are functionally coupled to each other. The transistor elements in the first low voltage logic circuit region 120-1 and the second low voltage logic circuit region 120-2 have different threshold voltages to respectively conform to the first low voltage logic circuit region 120-1. The first operational requirement and the second operational requirement preset by the second low voltage logic circuit region 120-2. In other embodiments, as shown in FIG. 2B, the low voltage circuit region 120 can be further divided into N regions, including a first low voltage logic circuit region 120-1 to an Nth low voltage circuit region 120-N, wherein the first low voltage logic The circuit region 120-1 to the Nth low voltage circuit region 120-N are functionally coupled to each other, where N is a positive integer greater than one. The transistor elements in the first low voltage circuit region 120-1 to the Nth low voltage circuit region 120-N respectively have different threshold voltage values to respectively meet predetermined different operational requirements.

第3A至3C圖顯示本發明之源極驅動器350製造過程的示意圖。為簡潔起見,圖式中僅顯示出構成源極驅動器350的部分電晶體元件。首先如第3A圖所示,提供一基板300,並於基板300之上形成隔離區301,接著進行一摻雜製程形成複數個井區,包括高壓井區310,第一低壓井區320與第二低壓井區330。3A through 3C are schematic views showing the manufacturing process of the source driver 350 of the present invention. For the sake of brevity, only a portion of the transistor elements that make up the source driver 350 are shown in the drawings. First, as shown in FIG. 3A, a substrate 300 is provided, and an isolation region 301 is formed on the substrate 300, and then a doping process is performed to form a plurality of well regions, including a high voltage well region 310, a first low pressure well region 320 and a first Two low pressure well zones 330.

於部份實施例中,基板300可為一矽基板。基板300亦可選擇性的包含半導體元素如結晶狀的矽或鍺,或化合物半導體包括碳化矽、氮化鎵、砷化鎵、磷化銦、砷化銦及/或銻化鎵;以及合金化合物包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP,及/或GaInAsP,或是上述材料的組合。基板300亦可為一絕緣層上矽(SOI)、一具摻雜的磊晶層、或一多層化合物半導體結構。In some embodiments, the substrate 300 can be a germanium substrate. The substrate 300 may also optionally include a semiconductor element such as crystalline germanium or germanium, or the compound semiconductor includes tantalum carbide, gallium nitride, gallium arsenide, indium phosphide, indium arsenide, and/or gallium antimonide; and an alloy compound. It includes SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP, or a combination of the above materials. The substrate 300 can also be an insulating layer (SOI), a doped epitaxial layer, or a multilayer compound semiconductor structure.

隔離區(isolation regions)301用以隔絕數種區域,包括基板300上的不同井區。於部份實施例中,隔離區301可使用如局部矽氧化(LOCOS)、淺溝槽隔離(STI)或是深溝槽隔離(DTI)等電性隔離技術,藉此區隔出電晶體元件活動區域(Active Area)。於一具體實施例中,形成淺溝槽隔離的步驟包括一微影製程,並使用乾蝕刻或濕蝕刻於基板上形成一溝槽;並以化學氣相沈積法形成一種或數種介電層填滿該溝槽。Isolation regions 301 are used to isolate several regions, including different well regions on substrate 300. In some embodiments, the isolation region 301 can use electrical isolation techniques such as local oxidation (LOCOS), shallow trench isolation (STI), or deep trench isolation (DTI) to isolate the transistor component activity. Area (Active Area). In one embodiment, the step of forming shallow trench isolation includes a lithography process, and forming a trench on the substrate using dry etching or wet etching; and forming one or several dielectric layers by chemical vapor deposition Fill the groove.

高壓井區310、第一低壓井區320與第二低壓井區330可使用電漿佈植法(PLAD)或離子束植入法(ion implantation)進行摻雜。上述三井區皆各自包括N型井區以及P型井區,分別使用N型雜質如磷或砷,以及P型雜質如硼或BF2 獨立進行摻雜。本發明之高壓井區310、第一低壓井區320與第二低壓井區330中相同摻雜類型的井區其摻雜濃度皆不相同,藉由變化第一低壓井區320與第二低壓井區330的井區摻雜濃度,使低壓邏輯電路區域具有不同臨界電壓值的電晶體元件。於一具體實施例中,以不同能量的離子佈植法,在P型井區進行逆向型井區(retrograde well)摻雜製程。其中高壓井區310的P型雜質濃度每平方公分約為1.0e+12至5.0e+12個個數,第一低壓井區320的P型雜質濃度每平方公分約為1.0e+12至1.0e+13個個數,第二低壓井區330的P型雜質濃度每平方公分約為1.5e+12至1.5e+13個個數。另外於高壓井區310,同時進行高壓DDD(Double Diffused Drain)區域317摻雜。各製程步驟摻雜完成後,可經由適當熱處理過程(thermal process),使摻雜雜質擴散至所需要深度範圍,形成如第3A圖所示的及高壓井區310(包含高壓DDD區域317)、第一低壓井區320以及第二低壓井區330。The high pressure well region 310, the first low pressure well region 320, and the second low pressure well region 330 may be doped using plasma implantation (PLAD) or ion implantation. Each of the above-mentioned Mitsui districts includes an N-type well region and a P-type well region, and are independently doped using N-type impurities such as phosphorus or arsenic, and P-type impurities such as boron or BF 2 , respectively. The well region of the same doping type in the high pressure well region 310, the first low pressure well region 320 and the second low pressure well region 330 of the present invention has different doping concentrations, by changing the first low pressure well region 320 and the second low pressure region. The well region doping concentration of well region 330 is such that the low voltage logic circuit region has transistor elements of different threshold voltage values. In a specific embodiment, a reverse grade well doping process is performed in the P-type well region by ion implantation of different energies. The P-type impurity concentration of the high-pressure well region 310 is about 1.0e+12 to 5.0e+12, and the P-type impurity concentration of the first low-pressure well region 320 is about 1.0e+12 to 1.0 per square centimeter. e+13, the P-type impurity concentration of the second low-pressure well region 330 is about 1.5e+12 to 1.5e+13 per square centimeter. In addition, in the high-pressure well region 310, high-pressure DDD (Double Diffused Drain) region 317 is simultaneously doped. After the doping of each process step is completed, the doping impurities may be diffused to a desired depth range through a suitable thermal process to form a high-pressure well region 310 (including the high-voltage DDD region 317) as shown in FIG. 3A, The first low pressure well region 320 and the second low pressure well region 330.

接著如第3B圖所示,於高壓井區310、第一低壓井區320與第二低壓井區330上分別形成閘極結構G1、G2以及G3。上述閘極結構皆分別包含閘極介電層以及閘極電極層。首先,於高壓井區310、第一低壓井區320與第二低壓井區330上分別形成閘極介電層311、321以及331。其中分別位於第一低壓井區320與第二低壓井區330之上的閘極介電層321與331具有相同的厚度。位於高壓井區310上之閘極介電層311相較於閘極介電層321與331具有較高的厚度,可以耐高壓。閘極介電層311、321以及331可採用氮化矽、氧化矽、碳化矽、氮氧化矽、摻氮碳化矽等絕緣材料,亦可使用HfO2、HfON、HfSiON等高介電係數材料(high-K material)。閘極介電層311、321以及331可以使用雙閘極熱氧化法(Dual Gate Oxide)、電漿強化化學氣相沈積法(PECVD)、低壓化學氣相沈積法(LPCVD)、次大氣壓化學氣相沈積法(SACVD)、原子層沈積法(ALD),或是電漿強化原子層沈積法(PEALD)之類的技術形成。Next, as shown in FIG. 3B, gate structures G1, G2, and G3 are formed on the high voltage well region 310, the first low pressure well region 320, and the second low pressure well region 330, respectively. Each of the gate structures includes a gate dielectric layer and a gate electrode layer. First, gate dielectric layers 311, 321 and 331 are formed on the high voltage well region 310, the first low pressure well region 320 and the second low voltage well region 330, respectively. The gate dielectric layers 321 and 331 located above the first low pressure well region 320 and the second low voltage well region 330, respectively, have the same thickness. The gate dielectric layer 311 on the high voltage well region 310 has a higher thickness than the gate dielectric layers 321 and 331 and is resistant to high voltage. The gate dielectric layers 311, 321 and 331 may be made of an insulating material such as tantalum nitride, hafnium oxide, tantalum carbide, niobium oxynitride or niobium-doped tantalum carbide, or high dielectric constant materials such as HfO2, HfON and HfSiON. -K material). The gate dielectric layers 311, 321 and 331 can use dual gate thermal oxidation (Dual Gate Oxide), plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), sub-atmospheric chemical gas. Formation by techniques such as phase deposition (SACVD), atomic layer deposition (ALD), or plasma enhanced atomic layer deposition (PEALD).

接著於閘極介電層311、321以及331之上分別形成閘極電極層312、322以及332,以構成閘極結構G1、G2以及G3。上述閘極電極層可以使用任何適合的製程,使之成長至適合的厚度。於部份實施例中,閘極電極層312、322以及332可為一多晶矽層或一金屬層。Gate electrode layers 312, 322, and 332 are formed over gate dielectric layers 311, 321, and 331, respectively, to form gate structures G1, G2, and G3. The gate electrode layer described above can be grown to a suitable thickness using any suitable process. In some embodiments, the gate electrode layers 312, 322, and 332 can be a polysilicon layer or a metal layer.

隨之如第3C圖所示,分別於閘極結構G2(閘極電極層322+閘極介電層321)與隔離區301之間,以及閘極結構G3(閘極電極層332+閘極介電層331)與隔離區301之間,進行輕摻雜汲極(lightly doped drain)層323以及333摻雜。這裡的輕摻雜汲極層323以及333摻雜濃度相同。隨後沿著閘極結構G1、G2以及G3的側壁形成間隔層314、324以及334;接著分別於間隔層314、324以及334與隔離區301之間進行一高濃度摻雜製程,形成汲極區域與源極區域315、325以及335,以構成電晶體元件316、326以及336。電晶體元件316、326以及336分別包括複數個N型電晶體元件以及P型電晶體元件。為求簡潔,圖式中僅顯示部份電晶體元件。As shown in FIG. 3C, respectively, between the gate structure G2 (the gate electrode layer 322 + the gate dielectric layer 321) and the isolation region 301, and the gate structure G3 (the gate electrode layer 332 + the gate) Between the dielectric layer 331) and the isolation region 301, lightly doped drain layers 323 and 333 are doped. The lightly doped drain layers 323 and 333 here have the same doping concentration. The spacer layers 314, 324, and 334 are then formed along the sidewalls of the gate structures G1, G2, and G3; then a high concentration doping process is performed between the spacer layers 314, 324, and 334 and the isolation region 301, respectively, to form a drain region. The source regions 315, 325, and 335 are formed to form the transistor elements 316, 326, and 336. The transistor elements 316, 326, and 336 include a plurality of N-type transistor elements and a P-type transistor element, respectively. For the sake of brevity, only some of the transistor components are shown in the figure.

汲極區域與源極區域315、325以及335可使用電漿摻雜法或離子束佈植法,並視電晶體元件為N型或P型選擇適合的摻雜雜質,如N型雜質如磷或砷,或P型雜質如硼或BF2 ,並以適當的雜質濃度進行佈植。The drain region and the source regions 315, 325, and 335 may use a plasma doping method or an ion beam implantation method, and select a suitable doping impurity such as an N-type impurity such as phosphorus depending on whether the transistor element is N-type or P-type. Or arsenic, or P-type impurities such as boron or BF 2 , and implant at the appropriate impurity concentration.

間隔層(spacer)則沿著閘極結構之側壁形成。於一實施例中,可沈積一介電層於閘極結構以及基板300之上,接著對該介電層進行蝕刻,以形成圖案化的間隔層314、324以及334。可用於形成間隔層314、324以及334的介電層可包括例如氮化矽、氧化矽、碳化矽、氮氧化矽、摻氮碳化矽(nitride silicon carbide,SiCN)或其他適合的材料,以及上述材料的各種組合。介電層可以電漿強化化學氣相沈積法(PECVD)、低壓化學氣相沈積法(LPCVD)、次大氣壓化學氣相沈積法(SACVD)、原子層沈積法(ALD),或是電漿強化原子層沈積法(PEALD)之類的技術形成。A spacer is formed along the sidewall of the gate structure. In one embodiment, a dielectric layer can be deposited over the gate structure and substrate 300, and then the dielectric layer is etched to form patterned spacer layers 314, 324, and 334. The dielectric layer that can be used to form the spacer layers 314, 324, and 334 can include, for example, tantalum nitride, hafnium oxide, tantalum carbide, hafnium oxynitride, nitride silicon carbide (SiCN), or other suitable materials, as well as the above. Various combinations of materials. The dielectric layer can be plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), sub-atmospheric chemical vapor deposition (SACVD), atomic layer deposition (ALD), or plasma strengthening. The formation of technologies such as atomic layer deposition (PEALD).

最後,分別於電晶體元件316、326以及336之汲極與源極上形成一具歐姆接觸之金屬電極(未顯示於圖式),以形成電晶體元件316、326以及336之汲極與源極對外的電性連結,並且進行一後段製程(back end of line),利用金屬導線層(未顯示於圖式)將電晶體元件316、326以及336功能性耦合,以形成源極驅動器350。上述製程方法利用井區摻雜濃度的不相同,使源極驅動器350中的低壓電路區域具有不同臨界電壓的電晶體元件,以達成各種不同的設計需求。Finally, an ohmic contact metal electrode (not shown) is formed on the drain and source of the transistor elements 316, 326, and 336, respectively, to form the drain and source of the transistor elements 316, 326, and 336. External electrical connections, and a back end of line, are used to functionally couple the transistor elements 316, 326, and 336 with metal wire layers (not shown) to form the source driver 350. The above process method utilizes different doping concentrations in the well region to cause the low voltage circuit regions in the source driver 350 to have transistor elements of different threshold voltages to achieve various design requirements.

本發明提供另一形成源極驅動器450的方法,顯示於第4A至4C圖。為簡潔起見,圖式中僅顯示出構成源極驅動器450的部分電晶體元件。首先提供一基板400,並於其上形成隔離區401,接著進行摻雜製程以分別形成具有不同摻雜濃度的高壓井區410、第一低壓井區420與第二低壓井區430,以及高壓DDD(Double Diffused Drain)區域417,如第4A圖所示。以上步驟與上述第3A圖之實施例實質上相同。接著如第4B圖所示,利用微影製程定義出圖形並形成閘極結構G1、G2以及G3,包括閘極介電層411、421以及431,與閘極電極層412、422以及432。以上步驟與上述第3B圖之實施例實質上相同。The present invention provides another method of forming source driver 450, shown in Figures 4A through 4C. For the sake of brevity, only a portion of the transistor elements that make up the source driver 450 are shown in the drawings. First, a substrate 400 is provided, and an isolation region 401 is formed thereon, followed by a doping process to respectively form a high voltage well region 410 having different doping concentrations, a first low pressure well region 420 and a second low pressure well region 430, and a high voltage. DDD (Double Diffused Drain) area 417, as shown in Figure 4A. The above steps are substantially the same as the embodiment of the above FIG. 3A. Next, as shown in FIG. 4B, the pattern is defined by the lithography process and the gate structures G1, G2, and G3 are formed, including the gate dielectric layers 411, 421, and 431, and the gate electrode layers 412, 422, and 432. The above steps are substantially the same as the embodiment of the above FIG. 3B.

接著如第4C圖所示,分別於閘極結構G2(閘極電極層422+閘極介電層421)與隔離區401之間,以及閘極結構G3(閘極電極層432+閘極介電層431)與隔離區401之間,進行輕摻雜汲極層423以及433摻雜。這裡的輕摻雜汲極層423以及433摻雜濃度不相同。隨後於閘極結構G1、G2以及G3的側壁分別形成間隔層414、424以及434。接著分別於間隔層414、424以及434與隔離區401之間進行一高濃度摻雜製程,形成汲極區域與源極區域415、425以及435,並構成電晶體元件416、426以及436。Next, as shown in FIG. 4C, respectively, between the gate structure G2 (the gate electrode layer 422 + the gate dielectric layer 421) and the isolation region 401, and the gate structure G3 (the gate electrode layer 432 + the gate electrode The lightly doped drain layers 423 and 433 are doped between the electrical layer 431) and the isolation region 401. The lightly doped drain layers 423 and 433 here have different doping concentrations. Spacer layers 414, 424, and 434 are then formed on the sidewalls of the gate structures G1, G2, and G3, respectively. A high concentration doping process is then performed between spacer layers 414, 424, and 434 and isolation region 401, respectively, to form drain and source regions 415, 425, and 435, and to form transistor elements 416, 426, and 436.

輕摻雜汲極層423以及433之製程可使用電漿摻雜法或離子束佈植法,並視電晶體元件為N型或P型選擇適合的摻雜雜質,如N型雜質如磷或砷,或P型雜質如硼或BF2 。或者搭配相反型輕摻雜汲極層。本發明之源極驅動器,藉由不同摻雜濃度的第一低壓井區420與第二低壓井區430,以及不同摻雜濃度的輕摻雜汲極層423以及433,得以形成具有不同臨界電壓值的低壓電晶體元件,達到微調元件特性以符合低壓邏輯電路區域中不同電路區域之設計需求。於部分實施例中,輕摻雜汲極層423與433的雜質濃度範圍約可為每平方公分1.0e+13至7.0e+14個個數。The process of lightly doping the drain layers 423 and 433 may use a plasma doping method or an ion beam implantation method, and select a suitable doping impurity such as an N type impurity such as phosphorus or an N type or a P type. Arsenic, or P-type impurities such as boron or BF 2 . Or with an opposite type of lightly doped bungee layer. The source driver of the present invention is formed with different threshold voltages by using the first low-pressure well region 420 and the second low-voltage well region 430 of different doping concentrations, and the lightly doped drain layers 423 and 433 of different doping concentrations. The value of the low-voltage transistor component achieves fine-tuning component characteristics to meet the design requirements of different circuit regions in the low-voltage logic circuit region. In some embodiments, the impurity concentration of the lightly doped drain layers 423 and 433 may range from about 1.0e+13 to 7.0e+14 per square centimeter.

汲極區域與源極區域415、425以及435之高濃度摻雜製程可採用電漿摻雜法或離子束佈植法,並視電晶體元件為N型或P型選擇適合的摻雜雜質,例如N型雜質如磷或砷,或P型雜質如硼或BF2 ,並以適當的雜質濃度進行佈植,以形成電晶體元件416、426以及436。上述電晶體元件包括N型元件以及P型元件。相同摻雜類型的電晶體元件426以及436具有不同的臨界電壓值,以符合低壓邏輯電路區域中不同電路區域之設計需求。The high-density doping process of the drain region and the source regions 415, 425, and 435 may adopt a plasma doping method or an ion beam implantation method, and select a suitable doping impurity for the N-type or P-type according to the transistor component. For example, an N-type impurity such as phosphorus or arsenic, or a P-type impurity such as boron or BF 2 is implanted at a suitable impurity concentration to form transistor elements 416, 426, and 436. The above transistor element includes an N-type element and a P-type element. The transistor elements 426 and 436 of the same doping type have different threshold voltage values to meet the design requirements of different circuit regions in the low voltage logic circuit region.

最後,分別於電晶體元件416、426以及436之汲極與源極上形成一具歐姆接觸之金屬電極(未顯示於圖式),以形成對外的電性連結,並且進行一後段製程(back end of line),利用金屬導線層(未顯示於圖式)將電晶體元件416、426以及436功能性耦合,以形成源極驅動器450。上述製程方法利用改變井區以及輕摻雜汲極的摻雜濃度,使源極驅動器450中的低壓電路區域具有不同臨界電壓的電晶體元件,以達成各種不同的設計需求。Finally, a metal electrode (not shown) having an ohmic contact is formed on the drain and source of the transistor elements 416, 426, and 436, respectively, to form an external electrical connection, and a back end process is performed. Of line), the transistor elements 416, 426, and 436 are functionally coupled using a metal wire layer (not shown) to form the source driver 450. The above process method utilizes changing the doping concentration of the well region and the lightly doped drain to cause the low voltage circuit regions in the source driver 450 to have different critical voltage transistor components to achieve various design requirements.

本發明提供另一形成源極驅動器550的方法,顯示於第5A至5C圖。為簡潔起見,圖式中僅顯示出構成源極驅動器550的部分電晶體元件。首先如第5A圖所示,提供一基板500,並於其上形成隔離區501,接著進行摻雜製程以分別形成具有不同摻雜濃度的高壓井區510、第一低壓井區520、以及高壓DDD區域517。The present invention provides another method of forming source driver 550, shown in Figures 5A through 5C. For the sake of brevity, only a portion of the transistor elements that make up the source driver 550 are shown in the drawings. First, as shown in FIG. 5A, a substrate 500 is provided, and an isolation region 501 is formed thereon, followed by a doping process to respectively form a high voltage well region 510 having different doping concentrations, a first low pressure well region 520, and a high voltage. DDD area 517.

接著如第5B圖所示,利用微影製程定義出圖形,分別形成閘極結構G1、G2以及G3。閘極結構G1、G2以及G3分別包括閘極介電層511、521以及531和閘極電極層512、522以及532,其中閘極結構G1、G2分別位於高壓井區510及第一低壓井區520上方。Next, as shown in FIG. 5B, the pattern is defined by the lithography process to form the gate structures G1, G2, and G3, respectively. The gate structures G1, G2, and G3 include gate dielectric layers 511, 521, and 531 and gate electrode layers 512, 522, and 532, respectively, wherein the gate structures G1, G2 are located in the high voltage well region 510 and the first low pressure well region, respectively. Above 520.

接著如第5C圖所示,於閘極結構G2(閘極電極層522+閘極介電層521)與隔離區501之間,進行輕摻雜汲極層523摻雜。於閘極結構G3(閘極電極層532+閘極介電層531)與隔離區501之間,於同一摻雜製程步驟形成第二低壓井區530以及輕摻雜汲極層533。這裡的輕摻雜汲極層533以及523摻雜濃度不相同。這裡的第二低壓井區530與第一低壓井區520摻雜濃度不相同。隨後沿著閘極結構G1、G2以及G3的側壁形成間隔層514、524以及534;接著分別於間隔層514、524以及534與隔離區501之間進行一高濃度摻雜製程,形成汲極區域與源極區域515、525以及535,並構成電晶體元件516、526以及536。電晶體元件516、526以及536皆分別包括複數個N型元件以及P型元件,為簡化圖式,僅顯示部份電晶體元件。Next, as shown in FIG. 5C, the lightly doped gate layer 523 is doped between the gate structure G2 (the gate electrode layer 522 + the gate dielectric layer 521) and the isolation region 501. Between the gate structure G3 (the gate electrode layer 532 + the gate dielectric layer 531) and the isolation region 501, a second low-voltage well region 530 and a lightly doped gate layer 533 are formed in the same doping process step. The lightly doped drain layers 533 and 523 here have different doping concentrations. The second low pressure well region 530 here is different from the first low pressure well region 520. Then, spacer layers 514, 524, and 534 are formed along the sidewalls of the gate structures G1, G2, and G3; then a high concentration doping process is performed between the spacer layers 514, 524, and 534 and the isolation region 501, respectively, to form a drain region. And source regions 515, 525, and 535, and constitutes transistor elements 516, 526, and 536. The transistor elements 516, 526, and 536 each include a plurality of N-type elements and P-type elements, respectively. For the sake of simplicity, only a portion of the transistor elements are shown.

形成輕摻雜汲極區533,以及第二低壓井區530之摻雜步驟可以於同一個製程層次內連續進行。利用高能量離子束佈植法並透過改變離子束的入射角以及能量,使各個摻雜步驟中雜質的濃度及分佈符合電晶體元件的需求。其中第一低壓井區520與第二低壓井區530之摻雜濃度不相同,且輕摻雜汲極區523及533之摻雜濃度亦不相同,使得不同井區內相同摻雜類型的電晶體元件具有不同的臨界電壓值。於一具體實施例中,以能量約為80至550 KeV的離子束佈植以形成第二低壓井區530。其中第二低壓井區530的雜質濃度約為每平方公分5.0e+12至3.0e+13個個數。輕摻雜汲極區523以及533可以電漿摻雜法或離子束佈植法形成,其中輕摻雜汲極區523之雜質濃度與輕摻雜汲極區533之雜質濃度不相同,藉以更精確的調整電晶體元件的臨界電壓值。The doping step of forming the lightly doped drain region 533 and the second low pressure well region 530 can be performed continuously in the same process hierarchy. The high energy ion beam implantation method is used to change the incident angle and energy of the ion beam, so that the concentration and distribution of impurities in each doping step meet the requirements of the transistor element. The doping concentration of the first low-pressure well region 520 and the second low-pressure well region 530 are different, and the doping concentrations of the lightly doped bungee regions 523 and 533 are also different, so that the same doping type of electricity in different well regions is different. Crystal elements have different threshold voltage values. In one embodiment, an ion beam having an energy of about 80 to 550 KeV is implanted to form a second low pressure well region 530. The impurity concentration of the second low pressure well region 530 is approximately 5.0e+12 to 3.0e+13 per square centimeter. The lightly doped drain regions 523 and 533 can be formed by plasma doping or ion beam implantation, wherein the impurity concentration of the lightly doped drain region 523 is different from the impurity concentration of the lightly doped drain region 533, thereby further Accurately adjust the critical voltage value of the transistor component.

形成汲極區域與源極區域515、525以及535可使用電漿摻雜法或離子束佈植法,並視電晶體元件為N型或P型選擇適合的摻雜雜質,例如N型雜質如磷或砷,或P型雜質如硼或BF2 ,並以適當的雜質濃度進行佈植。The formation of the drain region and the source regions 515, 525, and 535 may use a plasma doping method or an ion beam implantation method, and select a suitable dopant impurity such as an N-type impurity as the N-type or P-type of the transistor element. Phosphorus or arsenic, or P-type impurities such as boron or BF 2 , are implanted at an appropriate impurity concentration.

最後,分別於電晶體元件516、526以及536之汲極與源極上形成一具歐姆接觸之金屬電極(未顯示於圖式),以形成對外的電性連結,並且進行一後段製程(back end of line),利用金屬導線層(未顯示於圖式)將電晶體元件516、526以及536功能性耦合,以形成源極驅動器550。上述製程方法利用一額外摻雜步驟,形成具有不同摻雜濃度的井區以及輕摻雜汲極,使源極驅動器550中的低壓電路區域具有不同臨界電壓的電晶體元件,以達成各種不同的設計需求。Finally, a metal electrode (not shown) having an ohmic contact is formed on the drain and source of the transistor elements 516, 526, and 536, respectively, to form an external electrical connection, and a back end process is performed. Of line), the transistor elements 516, 526, and 536 are functionally coupled using a metal wire layer (not shown) to form the source driver 550. The above process method utilizes an additional doping step to form well regions having different doping concentrations and lightly doped drains, such that the low voltage circuit regions in the source driver 550 have different threshold voltages of the transistor elements to achieve various differentities. Design requirements.

綜上所述,本發明所揭露的源極驅動器以及其製造方法利用不同的井區摻雜濃度,改變低壓邏輯元件的臨界電壓值,藉此針對低壓邏輯電路做效能最佳化,更可進一步改變低壓邏輯元件輕摻雜汲極區的摻雜濃度,以更精確的調變低壓邏輯元件的臨界電壓值。實施例的方法構造已於前文中詳述,應能理解在不背離本發明之精神與範疇的前提之下,所作的各種更動、置換、改變皆在本發明之專利保護範圍之內。再者,本發明之範疇並非僅侷限於專利說明書內文中所描述之製程、機台、生產,以及方法、手段及步驟之組合等實施例。擁有相關領域中一般知識技藝者可以根據以上所揭露之實施例或與任何已發展或尚未發展之技術方法結合,而獲得實質上相同的成果。因此,專利保護範圍包括內文中所描述之製程、機台、生產,以及方法、手段及步驟之組合等實施例。並且每個專利請求項皆代表一個獨立的實施例,因此各種專利請求項以及各種實施例之間的組合皆為專利保護之範圍。In summary, the source driver and the manufacturing method thereof disclosed by the present invention utilize different doping concentration of the well region to change the threshold voltage value of the low voltage logic component, thereby optimizing the performance of the low voltage logic circuit, and further The doping concentration of the lightly doped drain region of the low voltage logic element is changed to more precisely modulate the threshold voltage value of the low voltage logic element. The method construction of the embodiment has been described in detail in the foregoing, and it should be understood that various modifications, substitutions and changes may be made without departing from the spirit and scope of the invention. Furthermore, the scope of the invention is not limited to the embodiments of the process, the machine, the production, and the combination of the method, the means and the steps described in the specification. Those of ordinary skill in the relevant art can achieve substantially the same results in accordance with the embodiments disclosed above or in combination with any technical method that has been developed or not yet developed. Accordingly, the scope of patent protection includes the embodiments of the processes, the machines, the production, and the combinations of methods, means and steps described in the context. Each of the patent claims represents a separate embodiment, and thus various patent claims and combinations of various embodiments are within the scope of the patent protection.

20...低壓邏輯區域20. . . Low voltage logic region

21...邏輯控制器twenty one. . . Logic controller

22...移位暫存器twenty two. . . Shift register

23...資料暫存器twenty three. . . Data register

24...資料閂twenty four. . . Data latch

30...高壓區域30. . . High pressure area

31...數位類比轉換器31. . . Digital analog converter

32...輸出緩衝器32. . . Output buffer

100...源極驅動器100. . . Source driver

110...高壓電路區域110. . . High voltage circuit area

120...低壓電路區域120. . . Low voltage circuit area

120-1...第一低壓電路區域120-1. . . First low voltage circuit area

120-2...第二低壓電路區域120-2. . . Second low voltage circuit area

120-N...第N低壓電路區域120-N. . . Nth low voltage circuit area

300...基板300. . . Substrate

301...隔離區301. . . quarantine area

310...高壓井區310. . . High pressure well area

311...閘極介電層311. . . Gate dielectric layer

312...閘極電極層312. . . Gate electrode layer

314...汲極區域與源極區域314. . . Bungee region and source region

315...間隔層315. . . Spacer

316...電晶體元件316. . . Transistor element

317...高壓DDD區域317. . . High voltage DDD area

320...第一低壓井區320. . . First low pressure well area

321...閘極介電層321. . . Gate dielectric layer

322...閘極電極層322. . . Gate electrode layer

323...輕摻雜汲極區323. . . Lightly doped bungee zone

324...汲極區域與源極區域324. . . Bungee region and source region

325...間隔層325. . . Spacer

326...電晶體元件326. . . Transistor element

330...第二低壓井區330. . . Second low pressure well area

331...閘極介電層331. . . Gate dielectric layer

332...閘極電極層332. . . Gate electrode layer

333...輕摻雜汲極區333. . . Lightly doped bungee zone

334...汲極區域與源極區域334. . . Bungee region and source region

335...間隔層335. . . Spacer

336...電晶體元件336. . . Transistor element

350...源極驅動器350. . . Source driver

400...基板400. . . Substrate

401...隔離區401. . . quarantine area

410...高壓井區410. . . High pressure well area

411...閘極介電層411. . . Gate dielectric layer

412...閘極電極層412. . . Gate electrode layer

414...汲極區域與源極區域414. . . Bungee region and source region

415...間隔層415. . . Spacer

416...電晶體元件416. . . Transistor element

417...高壓DDD區域417. . . High voltage DDD area

420...第一低壓井區420. . . First low pressure well area

421...閘極介電層421. . . Gate dielectric layer

422...閘極電極層422. . . Gate electrode layer

423...輕摻雜汲極區423. . . Lightly doped bungee zone

424...汲極區域與源極區域424. . . Bungee region and source region

425...間隔層425. . . Spacer

426...電晶體元件426. . . Transistor element

430...第二低壓井區430. . . Second low pressure well area

431...閘極介電層431. . . Gate dielectric layer

432...閘極電極層432. . . Gate electrode layer

433...輕摻雜汲極區433. . . Lightly doped bungee zone

434...汲極區域與源極區域434. . . Bungee region and source region

435...間隔層435. . . Spacer

436...電晶體元件436. . . Transistor element

450...源極驅動器450. . . Source driver

500...基板500. . . Substrate

501...隔離區501. . . quarantine area

510...高壓井區510. . . High pressure well area

511...閘極介電層511. . . Gate dielectric layer

512...閘極電極層512. . . Gate electrode layer

514...汲極區域與源極區域514. . . Bungee region and source region

515...間隔層515. . . Spacer

516...電晶體元件516. . . Transistor element

517...高壓DDD區域517. . . High voltage DDD area

520...第一低壓井區520. . . First low pressure well area

521...閘極介電層521. . . Gate dielectric layer

522...閘極電極層522. . . Gate electrode layer

523...輕摻雜汲極區523. . . Lightly doped bungee zone

524...汲極區域與源極區域524. . . Bungee region and source region

525...間隔層525. . . Spacer

526...電晶體元件526. . . Transistor element

530...第二低壓井區530. . . Second low pressure well area

531...閘極介電層531. . . Gate dielectric layer

532...閘極電極層532. . . Gate electrode layer

533...輕摻雜汲極區533. . . Lightly doped bungee zone

534...汲極區域與源極區域534. . . Bungee region and source region

535...間隔層535. . . Spacer

536...電晶體元件536. . . Transistor element

550...源極驅動器550. . . Source driver

G1、G2、G3...閘極結構G1, G2, G3. . . Gate structure

第1圖為源極驅動晶片結構示意圖;Figure 1 is a schematic diagram showing the structure of a source driving chip;

第2A及2B圖為本發明之源極驅動晶片示意圖;2A and 2B are schematic views of a source driving chip of the present invention;

第3A至3C圖顯示本發明之源極驅動器350製造過程的示意圖;3A to 3C are views showing a manufacturing process of the source driver 350 of the present invention;

第4A至4C圖顯示本發明之源極驅動器450製造過程的示意圖;4A to 4C are views showing a manufacturing process of the source driver 450 of the present invention;

第5A至5C圖顯示本發明之源極驅動器550製造過程的示意圖;5A to 5C are views showing a manufacturing process of the source driver 550 of the present invention;

100...源極驅動器100. . . Source driver

110...高壓電路區域110. . . High voltage circuit area

120...低壓電路區域120. . . Low voltage circuit area

120-1...第一低壓電路區域120-1. . . First low voltage circuit area

120-2...第二低壓電路區域120-2. . . Second low voltage circuit area

120-N...第N低壓電路區域120-N. . . Nth low voltage circuit area

Claims (13)

一種源極驅動器,包括:一高壓電路區域;一第一低壓邏輯電路區域,該第一低壓邏輯電路區域包括複數個第一電晶體元件,其中該等第一電晶體元件被配置成具有一第一臨界電壓值以符合一第一操作需求;以及一第二低壓邏輯電路區域,與該第一低壓邏輯電路區域電性耦合,該第二低壓邏輯電路區域包括複數個第二電晶體元件,其中該等第二電晶體元件被配置成具有一第二臨界電壓值以符合一第二操作需求;其中該第一臨界電壓值不等於該第二臨界電壓值。A source driver includes: a high voltage circuit region; a first low voltage logic circuit region, the first low voltage logic circuit region including a plurality of first transistor components, wherein the first transistor components are configured to have a first a threshold voltage value to meet a first operational requirement; and a second low voltage logic circuit region electrically coupled to the first low voltage logic circuit region, the second low voltage logic circuit region including a plurality of second transistor components, wherein The second transistor elements are configured to have a second threshold voltage value to comply with a second operational requirement; wherein the first threshold voltage value is not equal to the second threshold voltage value. 如申請專利範圍第1項所述之源極驅動器,該第一低壓邏輯電路區域包括邏輯控制器(Logic Controller)、移位暫存器(Level Shift Register)、資料暫存器(Data Register),以及資料閂(Data Latch)。The source device of claim 1, wherein the first low voltage logic circuit area comprises a logic controller, a level shift register, and a data register. And Data Latch. 如申請專利範圍第1項所述之源極驅動器,該第二低壓邏輯電路區域包括邏輯控制器(Logic Controller)、移位暫存器(Level Shift Register)、資料暫存器(Data Register),以及資料閂(Data Latch)。The source device of claim 1, wherein the second low voltage logic circuit area comprises a logic controller, a level shift register, and a data register. And Data Latch. 如申請專利範圍第1項所述之源極驅動器,該高壓電路區域包括數位類比轉換器(Digital/Analog Converter)以及輸出緩衝器(Output Buffer)。The source driver according to claim 1, wherein the high voltage circuit region includes a digital analog converter and an output buffer. 如申請專利範圍第1項所述之源極驅動器,其中該第一低壓邏輯電路區域中更包括複數個第一井區,具有一第一摻雜濃度,以形成上述第一電晶體元件;該第二低壓邏輯電路區域中更包括複數個第二井區,具有一第二摻雜濃度,以形成上述第二電晶體元件;其中該第一摻雜濃度不等於該第二摻雜濃度。 The source driver of claim 1, wherein the first low voltage logic circuit region further comprises a plurality of first well regions having a first doping concentration to form the first transistor element; The second low voltage logic circuit region further includes a plurality of second well regions having a second doping concentration to form the second transistor element; wherein the first doping concentration is not equal to the second doping concentration. 如申請專利範圍第1項所述之源極驅動器,其中該第一低壓邏輯電路區域中更包括複數個第一輕摻雜汲極(Lightly Doped Drain),具有一第三摻雜濃度;該第二低壓邏輯電路區域中更包括複數個第二輕摻雜汲極,具有一第四摻雜濃度;其中該第三摻雜濃度不等於該第四摻雜濃度。 The source driver of claim 1, wherein the first low voltage logic circuit region further comprises a plurality of first lightly doped drains having a third doping concentration; The second low voltage logic circuit region further includes a plurality of second lightly doped drains having a fourth doping concentration; wherein the third doping concentration is not equal to the fourth doping concentration. 如申請專利範圍第1項所述之源極驅動器,其中更包括至少一額外電路區域,分別與該第一及該第二電路區域電性耦合,上述額外電路區域分別包括複數個電晶體元件,其中上述額外電路區域中上述電晶體元件被配置成具有一第三臨界電壓值以符合一第三操作需求,該第三操作需求不同於該第一、第二操作需求。 The source driver of claim 1, further comprising at least one additional circuit region electrically coupled to the first and second circuit regions, respectively, wherein the additional circuit regions respectively comprise a plurality of transistor elements, Wherein the above-mentioned transistor component in the additional circuit region is configured to have a third threshold voltage value to meet a third operational requirement, the third operational requirement being different from the first and second operational requirements. 如申請專利範圍第1項所述之源極驅動器,其中該第一操作需求為使該第一低壓邏輯電路區域之操作時脈不低於一第一頻率;該第二操作需求為使該第二低壓邏輯電路區域之操作功耗低於一第一功率。 The source driver of claim 1, wherein the first operation requirement is that the operating clock of the first low voltage logic circuit region is not lower than a first frequency; The operating power consumption of the two low voltage logic circuit regions is lower than a first power. 一種形成源極驅動器的方法,包括:一基板;對該基板之一第一部份進行一第一井區離子佈植,以形成至少一高壓元件井區;對該基板之一第二部份進行一第二井區離子佈植, 以形成至少一第一低壓元件井區;對該基板之一第三部份進行一第三井區離子佈植,以形成至少一第二低壓元件井區,其中上述第一、第二以及第三井區離子佈植之濃度皆相異;於該至少一高壓元件井區、該至少一第一低壓元件井區以及該至少一第二低壓元件井區上分別形成複數個第一閘極結構、第二閘極結構以及第三閘極結構;以及分別於該等第一閘極結構、第二閘極結構以及第三閘極結構下方形成複數個源極及複數個汲極,以分別於該第一、第二低壓元件井區及該高壓元件井區定義出複數個第一電晶體元件、複數個第二電晶體元件以及複數個第三電晶體元件。 A method of forming a source driver includes: a substrate; performing a first well region ion implantation on a first portion of the substrate to form at least one high voltage component well region; and a second portion of the substrate Performing a second well ion implantation, Forming at least one first low-voltage component well region; performing a third well region ion implantation on a third portion of the substrate to form at least one second low-voltage component well region, wherein the first, second, and The concentration of the ion implantation in the Mitsui area is different; forming a plurality of first gate structures respectively on the at least one high voltage component well region, the at least one first low voltage component well region, and the at least one second low voltage component well region a second gate structure and a third gate structure; and a plurality of sources and a plurality of drain electrodes respectively formed under the first gate structure, the second gate structure and the third gate structure, respectively The first and second low voltage component well regions and the high voltage component well region define a plurality of first transistor elements, a plurality of second transistor elements, and a plurality of third transistor elements. 如申請專利範圍第9項所述之形成源極驅動器的方法,其中於形成該等源極和該等汲極之前,更包括:對該等第一電晶體元件進行一第一輕摻雜離子佈植,以形成複數個第一輕摻雜汲極(Lightly Doped Drain)區域;以及對該等第二電晶體元件進行一第二輕摻雜離子佈植,以形成複數個第二輕摻雜汲極區域;其中該第一輕摻雜離子佈植之濃度與該第二輕摻雜離子佈植之濃度相異。 The method of forming a source driver according to claim 9, wherein before forming the source and the drain, the method further comprises: performing a first lightly doped ion on the first transistor. Deploying to form a plurality of first Lightly Doped Drain regions; and performing a second lightly doped ion implantation on the second transistor elements to form a plurality of second lightly doped regions a drain region; wherein the concentration of the first lightly doped ion implant is different from the concentration of the second lightly doped ion implant. 如申請專利範圍第9項所述之形成源極驅動器的方法,其中上述至少一第一低壓元件井區、至少一第二低壓元件井區以及至少一高壓元件井區皆分別包括至少一N型井區以及至少一P型井區,且該等第一電晶體元件、第二電晶體元件以及第三電晶體元件皆分別包括複數個N型金氧半場效電晶體以及複數個P型金氧半場效電晶體。The method of forming a source driver according to claim 9, wherein the at least one first low-voltage component well region, the at least one second low-voltage component well region, and the at least one high-voltage component well region respectively comprise at least one N-type a well region and at least one P-type well region, and the first transistor element, the second transistor element and the third transistor element respectively comprise a plurality of N-type MOS field-effect transistors and a plurality of P-type gold oxides Half field effect transistor. 一種形成源極驅動器的方法,包括:一基板;對該基板之一第一部份進行一第一井區離子佈植,以形成至少一高壓元件井區;對該基板之一第二部份進行一第二井區離子佈植,以形成至少一第一低壓元件井區;於該基板上分別形成複數個第一閘極結構、第二閘極結構以及第三閘極結構,其中該等第一閘極結構與第二閘極結構分別位於該等至少一高壓元件井區以及至少一第一低壓元件井區之上;進行一第一輕摻雜離子佈植,以於該第二閘極結構下方形成複數個第一輕摻雜汲極;對該基板之一第三部份進行一多階段的第三離子佈植,以形成至少一第二低壓元件井區以及複數個第二輕摻雜汲極;以及分別於該等第一閘極結構、第二閘極結構以及第三閘極結構形成複數個源極及複數個汲極,以分別於該高壓元件井區以及該第一、第二低壓元件井區定義出複數個第一電晶體元件、複數個第二電晶體元件以及複數個第三電晶體元件;其中上述高壓元件井區、第一低壓元件井區以及第二低壓元件井區之雜質濃度皆相異,且上述第一輕摻雜汲極與第二輕摻雜汲極之雜質濃度相異。A method of forming a source driver includes: a substrate; performing a first well region ion implantation on a first portion of the substrate to form at least one high voltage component well region; and a second portion of the substrate Performing a second well region ion implantation to form at least one first low voltage component well region; forming a plurality of first gate structures, a second gate structure, and a third gate structure on the substrate, wherein The first gate structure and the second gate structure are respectively located on the at least one high voltage component well region and the at least one first low voltage component well region; performing a first lightly doped ion implantation to the second gate Forming a plurality of first lightly doped drains under the polar structure; performing a multi-stage third ion implantation on a third portion of the substrate to form at least one second low voltage component well region and a plurality of second light Doping the drain electrode; and forming a plurality of sources and a plurality of drains respectively in the first gate structure, the second gate structure, and the third gate structure to respectively be in the high voltage component well region and the first , the second low-voltage component well area definition a first transistor component, a plurality of second transistor components, and a plurality of third transistor components; wherein the impurity concentrations of the high voltage component well region, the first low voltage component well region, and the second low voltage component well region are different, And the impurity concentration of the first lightly doped drain and the second lightly doped drain is different. 如申請專利範圍第12項所述之形成源極驅動器的方法,其中上述至少一高壓元件井區、至少一第二低壓元件井區以及至少一第一低壓元件井區皆分別包括至少一N型井區以及至少一P型井區,且該等第一電晶體元件、第二電晶體元件以及第三電晶體元件皆包括複數個N型金氧半場效電晶體以及複數個P型金氧半場效電晶體。The method of forming a source driver according to claim 12, wherein the at least one high voltage component well region, the at least one second low voltage component well region, and the at least one first low voltage component well region respectively comprise at least one N type a well region and at least one P-type well region, and the first transistor element, the second transistor element and the third transistor element comprise a plurality of N-type MOS field-effect transistors and a plurality of P-type MOS fields Effect transistor.
TW100120658A 2011-06-14 2011-06-14 Source driver device and method of fabricating the same TWI428882B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100120658A TWI428882B (en) 2011-06-14 2011-06-14 Source driver device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100120658A TWI428882B (en) 2011-06-14 2011-06-14 Source driver device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201250651A TW201250651A (en) 2012-12-16
TWI428882B true TWI428882B (en) 2014-03-01

Family

ID=48139334

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120658A TWI428882B (en) 2011-06-14 2011-06-14 Source driver device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI428882B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI797796B (en) * 2021-10-25 2023-04-01 大陸商常州欣盛半導體技術股份有限公司 Gate-driving circuit and driver chip containing the same

Also Published As

Publication number Publication date
TW201250651A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
US7067365B1 (en) High-voltage metal-oxide-semiconductor devices and method of making the same
US8536653B2 (en) Metal oxide semiconductor transistor
US6680240B1 (en) Silicon-on-insulator device with strained device film and method for making the same with partial replacement of isolation oxide
US20070158780A1 (en) Semiconductor integrated circuit device and method of fabricating the same
CN100511607C (en) Thin film transistor and method of fabricating the same
JP2008060524A (en) Recessed-gate thin film transistor with self-aligned lightly doped drain, and forming method thereof
KR20110065326A (en) Finfets with multiple fin heights
US8546241B2 (en) Semiconductor device with stress trench isolation and method for forming the same
KR20090032709A (en) Semiconductor integrated circuit device and fabrication method for the same
JP2008199029A (en) Semiconductor device and method of manufacturing the same
US10629734B2 (en) Fabricating method of fin structure with tensile stress and complementary FinFET structure
JP2010177292A (en) Semiconductor device and method for manufacturing the same
JP2009200155A (en) Semiconductor device and method for manufacturing the same
US9112012B2 (en) Transistor device and fabrication method
TWI428882B (en) Source driver device and method of fabricating the same
US20110079823A1 (en) Vertical transistor and array of vertical transistor
JP2015230920A (en) Semiconductor device
KR20040077026A (en) Method for fabricating of high voltage dual gate device
JP2004235634A (en) Manufacturing method of compound logic element
TWI703675B (en) Semiconductor device and manufacturing method thereof
US20090065858A1 (en) Dmos transistor and fabrication method thereof
KR101044775B1 (en) Method for forming Semi-conductor device
US9806150B2 (en) High voltage device and method of fabricating the same
KR20040060487A (en) method for forming transistor of semiconductor device
KR100219073B1 (en) Mosfet and method of manufacturing the same