TWI427956B - Method and base station for transmitting data on reduced transmission time interval(rtti) timeslot pair - Google Patents

Method and base station for transmitting data on reduced transmission time interval(rtti) timeslot pair Download PDF

Info

Publication number
TWI427956B
TWI427956B TW097137622A TW97137622A TWI427956B TW I427956 B TWI427956 B TW I427956B TW 097137622 A TW097137622 A TW 097137622A TW 97137622 A TW97137622 A TW 97137622A TW I427956 B TWI427956 B TW I427956B
Authority
TW
Taiwan
Prior art keywords
mcs
usf
rtti
block
modulation
Prior art date
Application number
TW097137622A
Other languages
Chinese (zh)
Other versions
TW200917718A (en
Inventor
Rudolf Marian
G Dick Stephen
R Chitrapu Prabhakar
Aghili Behrouz
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW200917718A publication Critical patent/TW200917718A/en
Application granted granted Critical
Publication of TWI427956B publication Critical patent/TWI427956B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0086Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

在縮減傳輸時間間隔(RTTI)時槽對上傳送資料的方法與 基地台Method for transmitting data on a slot pair when reducing the transmission time interval (RTTI) Base station

本申請與無線通信有關。This application relates to wireless communications.

全球行動通信系統(GSM)標準版本7(R7)引入了改進上行鏈路(UL)和下行鏈路(DL)的流通量並減小傳輸延遲的若干特徵。在這些特徵中,GSM R7引進了增強的通用封包無線電服務2(EGPRS-2),以改進DL和UL的流通量。DL中EGPRS-2流通量的改進稱為REDHOT(RH)特徵,而UL的改進稱為HUGE特徵。EGPRS-2 DL和REDHOT是同義的。The Global System for Mobile Communications (GSM) Standard Release 7 (R7) introduces several features that improve the throughput of the uplink (UL) and downlink (DL) and reduce transmission delay. Among these features, GSM R7 introduces Enhanced General Packet Radio Service 2 (EGPRS-2) to improve DL and UL throughput. The improvement in EGPRS-2 throughput in the DL is called the REDHOT (RH) feature, and the UL improvement is called the HUGE feature. EGPRS-2 DL and REDHOT are synonymous.

除了基於高斯最小頻移鍵控(GMSK)(MCS-1至MCS-4)和8相移鍵控(8PSK)調變(MCS-5至MCS-9)的傳統增強型通用封包無線電服務(EGPRS)調變和編碼方案(MCS)之外,REDHOT還使用正交PSK(QPSK)、16正交振幅調變(16QAM)以及32QAM調變。用於提高流通量的另一種技術是使用Turbo編碼(與EGPRS的卷積編碼相反)。此外,較高符號速率的操作(傳統的1.2x符號速率)是另一改進。In addition to traditional enhanced general-purpose packet radio services (EGPRS) based on Gaussian Minimum Shift Keying (GMSK) (MCS-1 to MCS-4) and 8-Phase Shift Keying (8PSK) Modulation (MCS-5 to MCS-9) In addition to the Modulation and Coding Scheme (MCS), REDHOT also uses Quadrature PSK (QPSK), 16 Quadrature Amplitude Modulation (16QAM), and 32QAM modulation. Another technique for increasing throughput is to use Turbo coding (as opposed to convolutional coding of EGPRS). Furthermore, higher symbol rate operation (conventional 1.2x symbol rate) is another improvement.

支援REDHOT的網路及/或無線發射/接收單元(WTRU)可以實現REDHOT等級A(RH-A)或REDHOT等級B(RH-B)。雖然實現RH-B的WTRU將藉由使用為REDHOT定義的性能改進特徵的全集而達到最大流通量增益,實現改進技術的被選擇子集的RH-A WTRU還將達到 超越傳統EGPRS的淨改進。RH-A方案還將比完整的RH-B實現更易於實施。A network and/or a wireless transmit/receive unit (WTRU) supporting REDHOT may implement REDHOT Level A (RH-A) or REDHOT Level B (RH-B). While RH-B WTRUs will achieve maximum throughput gain by using a corpus of performance improvement features defined for REDHOT, a selected subset of RH-A WTRUs implementing improved techniques will also reach Beyond the net improvement of traditional EGPRS. The RH-A solution will also be easier to implement than the full RH-B implementation.

特別地,RH-A將使用8PSK、16QAM以及32QAM調變來實現八(8)種新的MCS。這些被稱為下行鏈路等級AMCS(DAS)-5至DAS-12。RH-B將基於QPSK、16QAM以及32QAM調變來實現另一組八(8)種新的MCS。這些被稱為下行鏈路等級B MCS(DBS)-5至DBS-12。不同於傳統EGPRS,RH-A和RH-B二者都使用Turbo編碼來用於無線電塊的資料部分。為了鏈路適配的目的,RH-A和RH-B WTRU二者都將重新使用傳統EGPRS MCS-1至MCS-4(都基於GMSK調變)。此外,RH-A還將為鏈路適配而重新使用傳統EGPRS MCS-7和MCS-8,而RH-B將為鏈路適配而重新使用傳統EGPRS MCS-8和RH-A DAS-6、DAS-9和DAS-11。因此,RH-A WTRU將支援MCS-1至MCS-4、MCS-7至MCS-8、以及DAS-5至DAS-12,而RH-B WTRU將支援MCS-1至MCS-4、MCS-8、DAS-6、DAS-9、DAS-11、以及DBS-5至DBS-12。然而,RH-A WTRU將排他地在傳統(低)EGPRS符號速率(LSR)處進行操作,而RH-B WTRU能夠在較高符號速率(HSR)處進行操作。RH-B WTRU需要根據RH-A和RH-B規範來實現功能。然而,當RH-B WTRU被配置為用於接收封包資料時,它將在傳統EGPRS模式、RH-A或RH-B模式中運轉。In particular, RH-A will implement eight (8) new MCSs using 8PSK, 16QAM, and 32QAM modulation. These are referred to as downlink level AMCS (DAS)-5 to DAS-12. RH-B will implement another set of eight (8) new MCSs based on QPSK, 16QAM, and 32QAM modulation. These are referred to as downlink levels B MCS(DBS)-5 to DBS-12. Unlike traditional EGPRS, both RH-A and RH-B use Turbo coding for the data portion of the radio block. For link adaptation purposes, both RH-A and RH-B WTRUs will reuse legacy EGPRS MCS-1 through MCS-4 (both based on GMSK modulation). In addition, RH-A will reuse traditional EGPRS MCS-7 and MCS-8 for link adaptation, while RH-B will reuse legacy EGPRS MCS-8 and RH-A DAS-6 for link adaptation. , DAS-9 and DAS-11. Therefore, the RH-A WTRU will support MCS-1 to MCS-4, MCS-7 to MCS-8, and DAS-5 to DAS-12, while the RH-B WTRU will support MCS-1 to MCS-4, MCS- 8, DAS-6, DAS-9, DAS-11, and DBS-5 to DBS-12. However, the RH-A WTRU will exclusively operate at the legacy (low) EGPRS symbol rate (LSR) while the RH-B WTRU is capable of operating at a higher symbol rate (HSR). The RH-B WTRU needs to implement functionality according to the RH-A and RH-B specifications. However, when the RH-B WTRU is configured to receive packet data, it will operate in legacy EGPRS mode, RH-A or RH-B mode.

傳統EGPRS與RH-A和RH-B WTRU的新類型可以一起在相同時槽上進行操作,傳統EGPRS上行鏈路狀態旗標 (USF)操作和PAN解碼的原理可能與GSM R7延遲減少(LATRED)特徵相結合(具有特定限制)。Traditional EGPRS and new types of RH-A and RH-B WTRUs can operate together on the same time slot, traditional EGPRS uplink status flag The principle of (USF) operation and PAN decoding may be combined with the GSM R7 Delay Reduction (LATRED) feature (with specific limitations).

RH-A和RH-B WTRU需要在被分配的一個或多個時槽上解碼接收到的無線電塊的USF。此外,因為前向相容的原因,RH-B WTRU需要實現功能性以允許該WTRU在RH-A和RH-B調變叢發(burst)之間進行區別(DAS-x調變和編碼方案相對於DBS-x)。由於用於RH-A和RH-B行動台的資源(例如時槽)能夠容易地被集中到一起的事實,為了增加共用通道使用並減少操作者的無線電規劃勞動強度,存在後面的需要。The RH-A and RH-B WTRUs need to decode the USF of the received radio block on the assigned one or more time slots. In addition, for reasons of forward compatibility, the RH-B WTRU needs to implement functionality to allow the WTRU to distinguish between RH-A and RH-B modulation bursts (DAS-x modulation and coding schemes) Relative to DBS-x). Since the resources for RH-A and RH-B mobile stations (e.g., time slots) can be easily brought together, there is a need in order to increase the use of shared channels and reduce the labor intensity of the operator's radio planning.

USF由依據所使用的編碼方案(CS)而被編碼為可變數量位元的三(3)個資訊位元組成。在GPRS中,為了解碼USF,WTRU首先解碼挪用旗標,該挪用旗標指示是否使用了GPRS CS-1、CS-2、CS-3或CS-4。在每個叢發中的訓練序列之前精確地有一(1)個挪用旗標,並在每個叢發中的訓練序列之後有一(1)個挪用旗標,使無線電塊中總共有八(8)個挪用旗標。The USF consists of three (3) information bits encoded as variable number bits according to the coding scheme (CS) used. In GPRS, in order to decode the USF, the WTRU first decodes the stealing flag, which indicates whether GPRS CS-1, CS-2, CS-3 or CS-4 is used. There is exactly one (1) stealing flag before the training sequence in each burst, and there is one (1) stealing flag after the training sequence in each burst, so that there are a total of eight in the radio block (8). ) a misappropriation flag.

GPRS根據以下規則來設定這些挪用旗標:q(0),q(1),...,q(7)=全1表示編碼方案CS-1;q(0),q(1),...,q(7)=1,1,0,0,1,0,0,0表示編碼方案CS-2;q(0),q(1),...,q(7)=0,0,1,0,0,0,0,1表示編碼方案CS-3;以及q(0),q(1),...,q(7)=0,0,0,1,0,1,1,0表示編碼方案CS-4。GPRS sets these stealing flags according to the following rules: q(0), q(1), ..., q(7) = all 1s indicate the coding scheme CS-1; q(0), q(1),. ..,q(7)=1,1,0,0,1,0,0,0 denotes the coding scheme CS-2;q(0),q(1),...,q(7)=0 , 0, 1, 0, 0, 0, 0, 1 represents the coding scheme CS-3; and q (0), q (1), ..., q (7) = 0, 0, 0, 1, 0 1,1,0 represents the coding scheme CS-4.

在GPRS CS-1至CS-3的情況中,USF由卷積碼與無線電鏈路控制(RLC)/媒體存取控制(MAC)標頭和資料 部分的剩餘部分一起進行編碼。因此,整個無線電塊(4個叢發)的解碼需要擷取USF。然而在CS-4的情況中,3個USF資訊位元被塊編碼到12個被編碼的位元中,並與從無線電塊的RLC/MAC標頭和資料部分分開地被映射。USF可以不用解碼整個無線電塊而被擷取出來。In the case of GPRS CS-1 to CS-3, USF consists of convolutional code and Radio Link Control (RLC)/Media Access Control (MAC) headers and data. The remainder of the section is encoded together. Therefore, decoding of the entire radio block (4 bursts) requires USF. In the case of CS-4, however, three USF information bits are block coded into 12 encoded bits and mapped separately from the RLC/MAC header and data portions of the radio block. The USF can be extracted without decoding the entire radio block.

在GPRS CS-4的情況中,12個被編碼的USF位元被包含在通過叢發的資料部分而分佈的以下符號位置中:無線電塊的(1)第一個叢發中的{0,50,100};(2)第二個叢發中的{34,84,98};(3)第三個叢發中的{18,68,82};以及(4)第四個(最後的)叢發中的{2,52,66}。In the case of GPRS CS-4, the 12 encoded USF bits are included in the following symbol locations distributed through the data portion of the burst: {0 in the first burst of the radio block (1), 50,100}; (2) {34,84,98} in the second burst; (3) {18,68,82} in the third burst; and (4) fourth (final) {2,52,66} in the hair.

第3圖示出了在20ms中發送的USF的叢發映射。被編碼的USF位元依據無線電塊中的叢發而被放置在不同的符號位置。因為所有的叢發是GMSK調變(每符號1位元)的,所以符號位置等同於位元位置。因為這些位元位置是已知並固定的,所以不需要為了讀取USF而解碼無線電塊的整個RLC/MAC標頭和整個資料部分(不同於CS-1至CS-3編碼方案)。然而,資料部分的均衡仍然是個問題,這是因為來自資料符號的符號間干擾(ISI)使包含在其中間的USF符號失真。Figure 3 shows the burst map of the USF sent in 20ms. The encoded USF bits are placed at different symbol locations depending on the bursts in the radio block. Since all bursts are GMSK modulations (1 bit per symbol), the symbol position is equivalent to the bit position. Because these bit locations are known and fixed, there is no need to decode the entire RLC/MAC header and the entire data portion of the radio block in order to read the USF (unlike the CS-1 to CS-3 coding scheme). However, the equalization of the data portion is still a problem because inter-symbol interference (ISI) from the data symbols distorts the USF symbols contained therein.

具有EGPRS能力的WTRU需要解碼EGPRS無線電塊的USF。EGPRS無線電塊可以是GMSK調變(MCS-1至MCS-4)的或者是8PSK調變(MCS-5至MCS-9)的。雖 然最初GPRS WTRU不能接收8PSK調變的塊,GMSK調變的EGPRS無線電塊的解決方法是編碼USF,並以與由傳統GPRS編碼方案CS-4所定義的完全相同的方式來放置GMSK調變的EGPRS無線電塊的12個塊編碼的USF位元。因而使GPRS WTRU相信CS-4無線電塊是藉由將GMSK調變的EGPRS無線電塊中的挪用位元放置在與傳統GPRS無線電塊中精確相同的位置中、並將這些挪用旗標設定為用於CS-4的碼字而被接收的。A WTRU with EGPRS capability needs to decode the USF of the EGPRS radio block. The EGPRS radio block can be either GMSK modulation (MCS-1 to MCS-4) or 8PSK modulation (MCS-5 to MCS-9). although Although the original GPRS WTRU cannot receive 8PSK modulated blocks, the solution for the GMSK modulated EGPRS radio block is to encode the USF and place the GMSK modulated in exactly the same way as defined by the traditional GPRS coding scheme CS-4. 12 block encoded USF bits of the EGPRS radio block. Thus the GPRS WTRU is convinced that the CS-4 radio block is placed in the exact same location as in the legacy GPRS radio block by placing the stealing bits in the GMSK modulated EGPRS radio block and setting these stealing flags for The code word of CS-4 is received.

GPRS CS-4和由此隱式的EGPRS MCS-1至MCS-4藉由將挪用位元設定為00010110來被指示。從而,GPRS WTRU將成功地(除非無線電條件太差)解碼USF,同時相信該塊是CS-4無線電塊。接下來,GPRS WTRU將嘗試解碼作為CS-4塊和失敗(由於循環冗餘檢查(CRC)失敗)的EGPRS無線電塊的其餘部分。EGPRS WTRU還將讀取傳統挪用位元,但是對於EGPRS WTRU,CS-4挪用位元碼字意味著EGPRS無線電塊已經被發送(MCS-1至MCS-4)。因此,假設這樣,該GPRS WTRU進行解碼USF,並且由於USF被放置在正確的位置(與CS-4的位置相同),這將會成功。隨後,為了確定已經使用了哪種調變和編碼方案(例如,MCS-1至MCS-4),EGPRS WTRU解碼RLC/MAC標頭並查看編碼和刪餘方案(CPS)欄位,並且解碼無線電塊的其餘部分。如果無線電塊確實是CS-4無線電塊,則該後面的部分將會失敗(由於RLC/MAC標頭解碼期間的CRC失敗)。GPRS CS-4 and thus implicit EGPRS MCS-1 to MCS-4 are indicated by setting the stealing bit to 00010110. Thus, the GPRS WTRU will successfully (unless the radio conditions are too bad) decode the USF while believing that the block is a CS-4 radio block. Next, the GPRS WTRU will attempt to decode the rest of the EGPRS radio block as a CS-4 block and fail (due to a Cyclic Redundancy Check (CRC) failure). The EGPRS WTRU will also read the legacy stealing bit, but for the EGPRS WTRU, the CS-4 stealing bit codeword means that the EGPRS radio block has been transmitted (MCS-1 to MCS-4). Therefore, assuming that the GPRS WTRU performs decoding of the USF, and since the USF is placed in the correct location (same location as CS-4), this will succeed. Subsequently, in order to determine which modulation and coding scheme (eg, MCS-1 to MCS-4) has been used, the EGPRS WTRU decodes the RLC/MAC header and looks at the coding and puncturing scheme (CPS) field, and decodes the radio. The rest of the block. If the radio block is indeed a CS-4 radio block, then the latter part will fail (due to a CRC failure during RLC/MAC header decoding).

當使用了EGPRS MCS-5至MCS-9(全部8PSK)時,3位元USF被塊編碼為三十六(36)位元,並且如果在CS-4和MCS-1至MCS-4的情況中,被獨立於RLC/MAC標頭和無線電塊中的資料部分而處理。然而,不同於CS-4和MCS-1至MCS-4,這些三十六(36)塊編碼的USF位元被映射到構成無線電塊的4叢發的每個中的位元位置完全相同的集合{150,151,168-169,171-172,177,178和195}。When using EGPRS MCS-5 to MCS-9 (all 8PSK), the 3-bit USF is block coded to thirty-six (36) bits, and if CS-4 and MCS-1 to MCS-4 Medium is handled independently of the RLC/MAC header and the data portion of the radio block. However, unlike CS-4 and MCS-1 to MCS-4, these thirty-six (36)-block encoded USF bits are mapped to exactly the same bit position in each of the four bursts that make up the radio block. Collections {150, 151, 168-169, 171-172, 177, 178 and 195}.

第4圖示出了在位元互換之前或之後用於MCS-5和MCS-6映射的叢發。第5圖示出了在位元互換之前或之後用於MCS-7、MCS-8和MCS-9映射的叢發。Figure 4 shows the bursts used for MCS-5 and MCS-6 mapping before or after bit swapping. Figure 5 shows the bursts used for MCS-7, MCS-8, and MCS-9 mapping before or after bit swapping.

WTRU藉由檢測叢發的訓練序列上的正確相位旋轉,來在GMSK調變的無線電塊(CS-4和MCS-1至MCS-4)與8PSK調變的無線電塊(MCS-5至MCS-9)之間進行區別。接下來,為了從正確的位置中擷取USF符號/位元,WTRU需要適當地配置解碼器,這是因為在GMSK叢發(MCS-1至MCS-4)中映射的USF位元不同於在8PSK叢發(MCS-5至MCS-9)中使用的映射。The WTRU modulates the GMSK modulated radio blocks (CS-4 and MCS-1 to MCS-4) and the 8PSK modulated radio blocks (MCS-5 to MCS- by detecting the correct phase rotation on the burst training sequence). 9) Make a distinction between. Next, in order to retrieve the USF symbols/bits from the correct location, the WTRU needs to properly configure the decoder because the USF bits mapped in the GMSK bursts (MCS-1 to MCS-4) are different from Mapping used in 8PSK bursts (MCS-5 to MCS-9).

在全球演進(邊緣)無線電存取網路(GERAN)的GSM增強型資料速率中,USF編碼以與基於DAS-5至DAS-7方案的新8PSK的EGPRS MCS-5至MCS-9相似的方式來實現。這意味著3個USF位元被塊編碼為36個完全的USF編碼位元,並映射為構成無線電塊的4個叢發中的每個的位元位置的完全相同的集合{150,151,168-169,171-172,177,178和195},如對傳統EGPRS MCS-5至 MCS-9情況的描述。In the GSM Enhanced Data Rate of the Global Evolution (Edge) Radio Access Network (GERAN), the USF is encoded in a similar manner to the new 8PSK EGPRS MCS-5 to MCS-9 based on the DAS-5 to DAS-7 scheme. to realise. This means that the three USF bits are block coded into 36 full USF coded bits and mapped to the exact same set of bit positions of each of the four bursts that make up the radio block {150, 151, 168-169, 171-172, 177, 178 and 195}, as for the traditional EGPRS MCS-5 to Description of the MCS-9 situation.

對於基於DAS-8和DAS-9方案的新的16QAM,3個USF位元塊被編碼為48個總的USF編碼位元。這些然後映射為構成無線電塊的4個叢發的各叢發中的位元位置232至243。這意味著USF被映射為緊接著訓練序列的三(3)個16QAM符號。For the new 16QAM based on the DAS-8 and DAS-9 schemes, the 3 USF bit blocks are encoded as 48 total USF coded bits. These are then mapped to bit positions 232 through 243 in the bursts of the four bursts that make up the radio block. This means that the USF is mapped to three (3) 16QAM symbols immediately following the training sequence.

對於基於DAS-10至DAS-12方案的新的32QAM,3個USF位元被編碼為60個總的USF通道編碼位元。然後這些被映射為構成無線電塊的四(4)個叢發的各叢發中的位元位置290至304。這意味著USF被映射為緊接著訓練序列的三(3)個32QAM符號。For the new 32QAM based on the DAS-10 to DAS-12 scheme, 3 USF bits are encoded as 60 total USF channel coding bits. These are then mapped to bit positions 290 through 304 in the bursts of the four (4) bursts that make up the radio block. This means that the USF is mapped to three (3) 32QAM symbols immediately following the training sequence.

對於所有的新RH-A方案DAS-5至DAS-12,包含被通道編碼的USF位元的位元位置是固定的,並且與構成無線電塊的所有四(4)個叢發中的位置精確地相同。然而,存在3個待支援的不同類型的USF編碼表並且REDHOT叢發中存在2個不同USF位置集合。在RH-A WTRU中,USF編碼按照CS-4/MCS-1至MCS-4所描述的方式來實現,並且因此RH-A WTRU還必須在REDHOT時槽上支援傳統的EGPRS MCS-1至MCS-4。由於這個原因,RH-A WTRU必須支援總共4種類型的USF編碼表和3種不同的USF位置集合。還要注意,傳統MCS-1至MCS-4、以及DAS-5至DAS-7的USF的擷取,仍然需要叢發的資料部分的均衡,這是因為USF編碼位元被包含在這些叢發中間。這對於DAS-8至DAS-12不是必需的,這裏僅需要與來自訓練序 列的帶有ISI的均衡,這是因為3個USF符號恰好在資料部分開始之前追隨(trail)中間碼(midamble)。For all new RH-A schemes DAS-5 to DAS-12, the location of the bit containing the channel-coded USF bit is fixed and accurate with respect to all four (4) bursts that make up the radio block. The same ground. However, there are 3 different types of USF code tables to be supported and there are 2 different USF location sets in the REDHOT burst. In the RH-A WTRU, the USF encoding is implemented in the manner described in CS-4/MCS-1 to MCS-4, and thus the RH-A WTRU must also support the legacy EGPRS MCS-1 to MCS on the REDHOT time slot. -4. For this reason, the RH-A WTRU must support a total of 4 types of USF code tables and 3 different USF location sets. Also note that the traditional MCS-1 to MCS-4, and DAS-5 to DAS-7 USF captures still require equalization of the data portion of the burst because the USF coded bits are included in these bursts. intermediate. This is not required for DAS-8 to DAS-12, and only needs to be from the training sequence. The column has an ISI equalization because the 3 USF symbols just trail the midamble before the data portion begins.

由於RH-B WTRU必須能夠擷取USF,即使當叢發使用新的RH-A DAS-5至DAS-12方案中任一個進行發送時,因此USF編碼表的數量和USF位元位置映射表進一步增加,如下所述。Since the RH-B WTRU must be able to retrieve the USF, even when the burst uses any of the new RH-A DAS-5 to DAS-12 schemes for transmission, the number of USF code tables and the USF bit location mapping table are further Increase as described below.

RH-B叢發的新類型(DBS-5至DBS-12)將USF放置到緊接著訓練序列的4個符號中。這允許由RH-B WTRU進行的USF位元的擷取,不需要WTRU均衡整個叢發。與RH-A類似,由於最初總是需要基於訓練序列的調變類型檢測和通道估計,USF被鄰接著訓練序列放置。因而,RH-B WTRU僅需要檢測訓練序列和鄰近的USF符號。USF被放置在中間碼之後。這樣做的原因是典型的通道叢發回應僅有相對小的前體(precursor)(例如與若干奈秒相似),但是有更大的後向體(post cursor)(例如與若干微秒相似)。當USF緊接著訓練序列時,USF符號上最關鍵的ISI將由訓練序列和USF符號本身直接產生。因此不需要均衡酬載符號。The new type of RH-B burst (DBS-5 to DBS-12) places the USF into the 4 symbols immediately following the training sequence. This allows the USF bit to be fetched by the RH-B WTRU without requiring the WTRU to equalize the entire burst. Similar to RH-A, since the modulation type detection and channel estimation based on the training sequence are always required at first, the USF is placed adjacent to the training sequence. Thus, the RH-B WTRU only needs to detect the training sequence and neighboring USF symbols. The USF is placed after the intermediate code. The reason for this is that typical channel burst responses have only relatively small precursors (eg, similar to several nanoseconds), but have larger post cursors (eg, similar to several microseconds) . When the USF follows the training sequence, the most critical ISI on the USF symbol will be generated directly by the training sequence and the USF symbol itself. Therefore, there is no need to balance the payload symbols.

在GERAN中,使用每RH-B叢發四(4)個USF符號(並且由此每無線電塊4x4=16個符號總數)。其轉化為16x2=32、16x4=64以及16x5=80的位元位置,該位置分別來自RLC/MAC標頭、夾帶的肯定確認(ACK)/否定確認(NACK)、如果存在的話也包括PAN、以及QPSK(DBS-5-6)、16QAM(DBS-7至DBS-9)和32QAM(DBS-10 至DBS-12)調變的叢發的資料部分。由於QPSK是RH-B的一部分,原理必須作用於每叢發四個四進制符號。因此,將USF通道編碼位元基本映射為符號會使用QPSK,並且然後通過僅使用16或32星座點以外的4個角的星座點來擴展到16-QAM和32-QAM叢發格式。In GERAN, four (4) USF symbols are used per RH-B burst (and thus 4x4 = 16 total symbols per radio block). It translates to 16x2=32, 16x4=64, and 16x5=80 bit positions, respectively, from the RLC/MAC header, the enqueried positive acknowledgement (ACK)/negative acknowledgement (NACK), and if present, the PAN, And QPSK (DBS-5-6), 16QAM (DBS-7 to DBS-9) and 32QAM (DBS-10) To the DBS-12) section of the data section of the modulation. Since QPSK is part of RH-B, the principle must act on four quaternary symbols per burst. Therefore, basically mapping the USF channel coding bits to symbols will use QPSK and then extend to the 16-QAM and 32-QAM burst formats by using only the constellation points of the four corners other than the 16 or 32 constellation points.

對於所有新的RH-B叢發格式DBS-5至DBS-12,三(3)個位元的USF總是被編碼為16位元長的編碼的USF。對於每個叢發,四(4)個USF編碼位元被映射為緊接著訓練序列的四(4)個符號。前兩(2)個USF編碼位元被映射到第一符號,並且第二符號包含第一符號的相位旋轉的複製。相同的原理被應用於第二組映射到第三和第四符號的兩(2)個USF編碼的位元。RH-B叢發的映射到四(4)個符號的映射在第6圖中示出。For all new RH-B burst formats DBS-5 to DBS-12, the USF of three (3) bits is always encoded as a 16-bit long encoded USF. For each burst, four (4) USF coded bits are mapped to four (4) symbols immediately following the training sequence. The first two (2) USF coded bits are mapped to the first symbol and the second symbol contains a copy of the phase rotation of the first symbol. The same principle applies to the second set of two (2) USF encoded bits mapped to the third and fourth symbols. The mapping of RH-B bursts to four (4) symbols is shown in Figure 6.

特別地,RH-B WTRU必須執行GMSK、8PSK、QPSK、16QAM和32QAM的調變類型檢測。這通過與依據所使用的調變類型的中間碼的相位旋轉版本相關性來完成。此外,用於16QAM和32QAM的相關性必須以傳統符號速率和新的更高符號速率來完成。In particular, the RH-B WTRU must perform modulation type detection of GMSK, 8PSK, QPSK, 16QAM, and 32QAM. This is done by rotating the version correlation with the phase of the intermediate code depending on the modulation type used. Furthermore, the correlation for 16QAM and 32QAM must be done at the traditional symbol rate and the new higher symbol rate.

接下來,WTRU必須依據檢測的調變類型來重新配置其接收器。例如,如果檢測到GMSK(MCS-1至MCS-4),則WTRU從第一組位置(如上所述)中擷取USF。如果檢測到8PSK(DAS-5至DAS-7),則WTRU從如上所述的第二組位置中擷取USF,並採用不同的映射表。在兩種情況中,WTRU均衡叢發的資料部分以處理USF。如果檢測到 16QAM或32QAM,則WTRU依據是否檢測到HSR(RH-B)或LSR(RH-A),來仍然在第三組USF位置上處理三(3)個或四(4)個符號。在這些後面的情況中,WTRU均衡叢發中資料的任何部分,這是因為USF符號追隨中間碼。對於GMSK和8PSK叢發類型的叢發,USF位於在中間碼之前或之後的資料部分的中間,因此整個叢發需要被均衡以擷取USF。對於QPSK/16QAM/32QAM MCS,USF接著中間碼,並且僅有來自中間碼的干擾在擷取USF符號之前需要消除。Next, the WTRU must reconfigure its receiver based on the detected modulation type. For example, if GMSK (MCS-1 to MCS-4) is detected, the WTRU retrieves USF from the first set of locations (as described above). If 8PSK (DAS-5 to DAS-7) is detected, the WTRU retrieves the USF from the second set of locations as described above and employs a different mapping table. In both cases, the WTRU equalizes the portion of the burst of data to process the USF. If detected 16QAM or 32QAM, the WTRU still processes three (3) or four (4) symbols at the third set of USF locations depending on whether HSR (RH-B) or LSR (RH-A) is detected. In these latter cases, the WTRU equalizes any portion of the data in the burst because the USF symbol follows the midamble. For bursts of the GMSK and 8PSK burst types, the USF is located in the middle of the data portion before or after the midamble, so the entire burst needs to be equalized to capture the USF. For QPSK/16QAM/32QAM MCS, the USF follows the midamble and only the interference from the midamble needs to be removed before the USF symbol is retrieved.

因為RH-B WTRU必須實現RH-A WTRU的所有功能性,所以需要有效等級的複雜度。雖然WTRU不能在其被分配的一個或多個時槽上接收每個無線電塊中傳輸的資料或控制塊,並且一旦其確定該塊要供另一個WTRU使用,該WTRU可以丟棄所接收到的塊的其餘部分,該WTRU仍然需要在任何這種接收到的塊上擷取和處理USF欄位,即使該USF欄位可能被定址到另一個WTRU。另一個缺點是該方法導致接收器中顯著的WTRU處理延遲。還有另一個問題是RH-A WTRU需要均衡專用於USF擷取的叢發的資料部分的所有或至少一個有效片斷,這是因為EGPRS MCS-1至MCS-4和DAS-5至DAS-7映射某處的USF符號到叢發的中間。Because the RH-B WTRU must implement all of the functionality of the RH-A WTRU, an effective level of complexity is required. The WTRU may discard the received block if it cannot receive the data or control block transmitted in each radio block on one or more time slots it is assigned to, and once it determines that the block is to be used by another WTRU. For the remainder, the WTRU still needs to retrieve and process the USF field on any such received block, even though the USF field may be addressed to another WTRU. Another disadvantage is that this approach results in significant WTRU processing delays in the receiver. Yet another problem is that the RH-A WTRU needs to balance all or at least one valid segment of the data portion of the burst dedicated to the USF, because EGPRS MCS-1 to MCS-4 and DAS-5 to DAS-7 Map the USF symbol somewhere to the middle of the burst.

因此,非常需要用於降低RH WTRU的USF解碼複雜度的方法。Therefore, a method for reducing the USF decoding complexity of an RH WTRU is highly desirable.

EGPRS2中的USF解碼的額外的複雜性起因於結合縮 減的傳輸時間間隔(RTTI)傳輸格式而進行的操作,該RTTI傳輸格式由GSM版本7 LATRED特徵提供。在版本7之前,傳統EGPRS僅為使用基本傳輸時間間隔(BTTI)的傳統傳輸格式的可能性提供。典型的BTTI傳輸包括構成傳統EGPRS無線電塊的四(4)個叢發,該傳統EGPRS無線電塊在四(4)個連續訊框上每訊框的相同分配時槽上被發送。例如,如果WTRU被分配時槽(TS)#3,則WTRU將藉由從GSM訊框N中的TS#3擷取叢發#1,從GSM訊框N+1中的TS#3擷取叢發#2,從GSM訊框N+2中的TS#3擷取叢發#3,以及最後從GSM訊框N+4中的TS#3擷取叢發#4,來接收整個無線電塊。因此整個無線電塊的任何傳輸將耗費4訊框乘以4.615毫秒GSM訊框持續時間,或粗略地20毫秒。注意,當WTRU被分配多於1個TS以用於資料的接收時,這些時槽中的任一個包括在20毫秒的持續時間上接收的分開的無線電塊。GSM標準定義了精確地指定何時無線電塊可以開始的定時訊框規則(例如哪個GSM訊框包括叢發#1)。GSM版本7提供使用RTTI傳輸格式的額外的可能性,其中GSM訊框N中的一個時槽對包括第一組兩(2)個叢發,而GSM訊框N+1包括構成無線電塊的四(4)個總的叢發中的第二組兩(2)個叢發。因此使用RTTI的傳輸僅耗費2訊框乘以4.615毫秒,或粗略地10毫秒。RTTI操作對於EGPRS和EGPRS2是可能的。在任何給定的時槽上,BTTI和RTTI WTRU能夠被多工,同時仍然允許使用RTTI無線電塊將USF傳送到BTTI WTRU 的可能性,反之亦然。GSM標準還允許排他地將時槽分配給僅BTTI的WTRU,或排他地分配給僅RTTI的WTRU的可能性。對於傳統EGPRS設備,被多工到共用時槽的到縮減的延遲(RL)-EGPRS WTRU的RTTI傳輸,必須考慮傳統USF格式和對應的傳統BTTI EGPRS WTRU的挪用旗標設定。因此為了不影響傳統BTTI EGPRS WTRU的USF解碼能力,被發送到一個傳統BTTI時間間隔中的RL-EGPRS WTRU的任何兩個RTTI無線電塊必須選擇精確地相同的調變類型(GMSK/GMSK或8PSK/8PSK)。The additional complexity of USF decoding in EGPRS2 is due to the combination of shrinkage Operation performed with reduced transmission time interval (RTTI) transport format provided by the GSM Release 7 LATRED feature. Prior to Release 7, legacy EGPRS was only offered with the possibility of using the traditional transmission format of Basic Transmission Time Interval (BTTI). A typical BTTI transmission includes four (4) bursts that make up a conventional EGPRS radio block that is transmitted on the same assigned time slot of each frame on four (4) consecutive frames. For example, if the WTRU is allocated slot (TS) #3, the WTRU will retrieve from TS#3 in GSM frame N+1 by extracting burst #1 from TS#3 in GSM frame N. Congfa #2, extracting Congfa #3 from TS#3 in GSM frame N+2, and finally extracting C## from TS#3 in GSM frame N+4 to receive the entire radio block . Therefore any transmission of the entire radio block will cost 4 frames multiplied by 4.615 milliseconds of GSM frame duration, or roughly 20 milliseconds. Note that when the WTRU is assigned more than one TS for reception of data, any of these time slots includes separate radio blocks received over a duration of 20 milliseconds. The GSM standard defines timing frame rules that specify exactly when a radio block can begin (eg, which GSM frame includes burst #1). GSM Release 7 provides an additional possibility to use the RTTI transport format, where one time slot pair in the GSM frame N includes the first two (2) bursts, and the GSM frame N+1 includes four radio blocks. (4) The second group of two (2) bursts in the total burst. Therefore, the transmission using RTTI only takes 2 frames multiplied by 4.615 milliseconds, or roughly 10 milliseconds. RTTI operation is possible for EGPRS and EGPRS2. At any given time slot, the BTTI and RTTI WTRUs can be multiplexed while still allowing the USF to be transmitted to the BTTI WTRU using the RTTI radio block. The possibility and vice versa. The GSM standard also allows for the possibility of exclusively allocating time slots to BTTI-only WTRUs, or exclusively to RTTI-only WTRUs. For legacy EGPRS devices, the reduced-delay (RL)-EGPRS WTRU's RTTI transmissions that are multiplexed to the shared time slot must take into account the legacy USF format and the corresponding legacy BTTI EGPRS WTRU's stealing flag settings. Therefore, in order not to affect the USF decoding capability of a conventional BTTI EGPRS WTRU, any two RTTI radio blocks transmitted to a RL-EGPRS WTRU in a legacy BTTI time interval must select exactly the same modulation type (GMSK/GMSK or 8PSK/). 8PSK).

然而,在EGPRS2 RH-A及/或RH-B WTRU的情況中,在原理上,這種採用精確地相同的調變類型的限制並不存在。如果這種限制不存在,則這允許EGPRS2系統達到更高的資料流通量,因為它能夠為相同BTTI間隔上的第一和第二RTTI WTRU獨立地排程適當的調變和編碼方案(MCS/DAS/DBS)。特別地,第一間隔上的GMSK MCS不強制網路在第二RTTI間隔上發送GMSK MCS,例如在傳統EGPRS WTRU的RTTI/BTTI操作情況中所需要的,並且因此減小流通量,這是因為EGPRS2 WTRU能夠被設計為適當地處理(使用正確的解碼方案)這種情況。然而結果是BTTI EGPRS2 WTRU能夠感知使用第一組兩個叢發上的第一調變方案和第二組兩個叢發上的另一個不同調變方案的叢發的可能的USF結合的廣闊範圍,因而大大增加了解碼的複雜度,甚至超過了目前領域狀態。因此,EGPRS2 WTRU被惡化(處理時間被增加了),這是因為它 需要在第一RTTI間隔上檢測第一調變類型,確定對應的第一組USF位置和對應的USF編碼表,然後在第二RTTI間隔上確定第二調變類型,以及第二組USF位置和各自的USF編碼表。如上所述,因為USF位置隨著每個調變方案(至少三(3)個不同組)而變化,與EGPRS2無線電塊的傳輸相關聯的額外的RTTI/BTTI操作模式導致了不期望的大量的USF解碼嘗試的組合。在某些情況中(例如GMSK),由於第一或第二RTTI間隔之間的調變變化,並且因為對應的USF編碼表對於每個調變和編碼(例如MCS/DAS/DBS)方案(多於五(5)個編碼表)不同,所以存在更多的USF解碼嘗試的組合。However, in the case of EGPRS2 RH-A and/or RH-B WTRUs, in principle this limitation of employing exactly the same type of modulation does not exist. If this restriction does not exist, this allows the EGPRS2 system to achieve higher throughput because it can schedule the appropriate modulation and coding scheme (MCS/) independently for the first and second RTTI WTRUs on the same BTTI interval. DAS/DBS). In particular, the GMSK MCS on the first interval does not force the network to transmit GMSK MCS on the second RTTI interval, such as is required in the RTTI/BTTI operation of a legacy EGPRS WTRU, and thus reduces throughput, because The EGPRS2 WTRU can be designed to handle this situation properly (using the correct decoding scheme). However, the result is that the BTTI EGPRS2 WTRU is able to perceive a wide range of possible USF combinations using the first modulation on the first set of two bursts and the burst on the other of the second set of two bursts. Therefore, the complexity of decoding is greatly increased, even exceeding the current state of the field. Therefore, the EGPRS2 WTRU is degraded (processing time is increased) because it The first modulation type needs to be detected on the first RTTI interval, the corresponding first group of USF locations and the corresponding USF coding table are determined, and then the second modulation type is determined on the second RTTI interval, and the second group of USF locations and The respective USF code table. As described above, because the USF location varies with each modulation scheme (at least three (3) different groups), the additional RTTI/BTTI mode of operation associated with the transmission of the EGPRS2 radio block results in an undesirably large amount of A combination of USF decoding attempts. In some cases (eg GMSK), due to modulation variations between the first or second RTTI intervals, and because of the corresponding USF coding table for each modulation and coding (eg MCS/DAS/DBS) scheme (multiple There are five (5) code tables), so there are more combinations of USF decoding attempts.

因此,要尋求方法來簡化與WTRU USF解碼相關聯的處理複雜度,並通過採用具有EGPRS2傳輸的混合調變RTTI/BTTI間隔來達到更高的流通量。Therefore, methods are sought to simplify the processing complexity associated with WTRU USF decoding and achieve higher throughput by employing a mixed-modulation RTTI/BTTI interval with EGPRS2 transmission.

一種當RTTI和BTTI設備在一個或多個相同時槽上操作時,允許EGPRS2通信叢發的可靠和低複雜度的解碼的方法和裝置。用於上行鏈路狀態旗標(USF)映射的各種配置使用通信叢發中某些或所有USF通道編碼位元的可調整位元互換。還揭露了允許發射器或接收器中的符號映射階段的可調整使用,以允許更高的流通量及/或降低的複雜度的配置。可允許的映射規則對接收器和發射器是已知的,並且因此降低了解碼該資訊的複雜度。為了增加EGPRS2通信叢發的流通量,引入了不同調變類型的RTTI傳輸或 BTTI間隔期間EGPRS/EGPRS2調變和編碼方案,其允許可靠的USF解碼和降低的解碼器複雜度。A method and apparatus for allowing reliable and low complexity decoding of EGPRS2 communication bursts when RTTI and BTTI devices operate on one or more of the same time slots. The various configurations for Uplink State Flag (USF) mapping use the adjustable bit swapping of some or all of the USF channel encoding bits in the communication burst. Adjustable use of the symbol mapping phase in the transmitter or receiver is also allowed to allow for higher throughput and/or reduced complexity configuration. Allowable mapping rules are known to the receiver and transmitter, and thus reduce the complexity of decoding the information. In order to increase the throughput of EGPRS2 communication bursts, different modulation types of RTTI transmissions are introduced or EGPRS/EGPRS2 modulation and coding scheme during BTTI interval, which allows reliable USF decoding and reduced decoder complexity.

下文提及的“無線發射/接收單元(WTRU)”包括但不局限於用戶設備(UE)、行動站、固定或行動用戶單元、呼叫器、蜂窩電話、個人數位助理(PDA)、電腦或能夠在無線環境中操作的任何其他類型的用戶設備。下文提及的“基地台”包括但不局限於節點-B、站點控制器、存取點(AP)或能夠在無線環境中操作的任何其他類型的介面裝置。變數“x”、“y”和“z”指任意的和可互換的數,其對應於給定的調變和編碼方案,例如MCS-x,其中x可以取值的範圍為從1至9,DAS-y,其中y可以取值的範圍為從5至12,DBS-z,其中z可以取值的範圍為從5至12。"Wireless transmit/receive unit (WTRU)" as referred to below includes, but is not limited to, user equipment (UE), mobile station, fixed or mobile subscriber unit, pager, cellular telephone, personal digital assistant (PDA), computer or capable Any other type of user device that operates in a wireless environment. The "base station" referred to below includes, but is not limited to, a Node-B, a site controller, an access point (AP), or any other type of interface device capable of operating in a wireless environment. The variables "x", "y", and "z" refer to any and interchangeable numbers that correspond to a given modulation and coding scheme, such as MCS-x, where x can take values from 1 to 9 , DAS-y, where y can take values from 5 to 12, DBS-z, where z can take values from 5 to 12.

參考第1圖,無線通信網路(NW)10包括WTRU 20,和胞元40中的一個或多個節點B(NB或演進型NB(eNB))30。WTRU 20包括配置用於實現用於編碼封包傳輸的揭露方法的處理器9。每個節點B 30還具有配置用於實現用於編碼封包傳輸的揭露方法的處理器13。Referring to FIG. 1, a wireless communication network (NW) 10 includes a WTRU 20, and one or more Node Bs (NBs or evolved NBs (eNBs)) 30 in cells 40. The WTRU 20 includes a processor 9 configured to implement an uncovering method for encoding a packet transmission. Each Node B 30 also has a processor 13 configured to implement an uncovering method for encoding packet transmissions.

第2圖是收發器110、120的功能方塊圖。除包括在典型的收發器中的元件例如WTRU或節點B之外,收發器110、120還包括配置用於執行這裏揭露的方法的處理器115、125;接收器116、126與處理器115、125通信,發射器117、127與處理器115、125通信;以及天線118、128與接收器116、120和發射器117、127通信,以促進無線 資料的傳輸和接收。此外,接收器116、發射器117和天線118可以是單一接收器、發射器和天線,或者可以分別包括多個單一接收器、發射器和天線。發射器110可以位於WTRU中,或者多個發射器110可位於基地台中。接收器120可以位於WTRU或基地台、或者兩者中。FIG. 2 is a functional block diagram of the transceivers 110, 120. In addition to elements included in a typical transceiver, such as a WTRU or Node B, the transceivers 110, 120 also include processors 115, 125 configured to perform the methods disclosed herein; receivers 116, 126 and processor 115, 125 communications, transmitters 117, 127 are in communication with processors 115, 125; and antennas 118, 128 are in communication with receivers 116, 120 and transmitters 117, 127 to facilitate wireless Transmission and reception of data. Further, receiver 116, transmitter 117, and antenna 118 may be a single receiver, transmitter, and antenna, or may include multiple single receivers, transmitters, and antennas, respectively. Transmitter 110 may be located in the WTRU or multiple transmitters 110 may be located in the base station. Receiver 120 can be located in the WTRU or base station, or both.

對RLC/MAC標頭位元使用位元互換,並且該位元互換被認為是在發射器側使用的低複雜度技術,以降低解碼器側的接收器複雜度。位元互換被應用於MCS-1至MCS-4、DAS-5至DAS-12和DBS-5至DBS-12方案的一個或多個定義的USF位元/符號,該方案被定義用於EGPRS2 DL(REDHOT)傳輸,以減小可能的組合的總數。Bit swapping is used for the RLC/MAC header bits, and this bit swap is considered to be a low complexity technique used on the transmitter side to reduce receiver complexity on the decoder side. Bit swapping is applied to one or more defined USF bits/symbols of the MCS-1 to MCS-4, DAS-5 to DAS-12 and DBS-5 to DBS-12 schemes, which is defined for EGPRS2 DL (REDHOT) transmission to reduce the total number of possible combinations.

一個或多個USF位元/符號能夠與攜帶RLC/MAC標頭資訊(資料、PAN等等)的叢發(例如一個或多個位元/符號)中的任何其他位置互換。因為被應用於編碼的映射規則在接收器中已知,所以位元互換可以在接收器側被反轉,以重新建構RLC/MAC標頭資訊(資料、PAN等等)。 位元互換過程可以作為叢發格式化階段使用的映射規則而在發射器和接收器中被編碼,例如“交換”(互換)位元B_n1相對於B_m1,位元B_n2相對於B_m2,等等。One or more USF bits/symbols can be interchanged with any other location in the burst (e.g., one or more bits/symbols) carrying RLC/MAC header information (data, PAN, etc.). Since the mapping rules applied to the encoding are known in the receiver, the bit swapping can be reversed on the receiver side to reconstruct the RLC/MAC header information (data, PAN, etc.). The bit swapping process can be encoded in the transmitter and receiver as a mapping rule used in the burst formatting phase, such as "swap" (interchange) bit B_n1 relative to B_m1, bit B_n2 relative to B_m2, and so on.

全部或部分位元互換被應用於EGPRS的REDHOT版本,例如MCS-1至MCS-4方案,其使用CS-4類型USF編碼,並映射到新的REDHOT等級A(RH-A),DAS-5至DAS-7方案,其使用MCS-5至MCS-9類型USF編碼並映射(例如EGPRS2)到其他REDHOT叢發類型的位元/符號 位置。All or part of the bit swap is applied to the REDHOT version of EGPRS, such as the MCS-1 to MCS-4 scheme, which uses CS-4 type USF encoding and maps to the new REDHOT Level A (RH-A), DAS-5 To the DAS-7 scheme, which uses MCS-5 to MCS-9 type USF encoding and mapping (eg EGPRS2) to other REDHOT burst type bits/symbols position.

與RH-B DBS-5至DBS-12編碼類似,使用MCS-1至MCS-4及/或RH-A DAS-5至DAS-7方案所編碼的所有或選擇的USF位元子集,可以互換為接著訓練序列的所有或符號/位元位置的子集,以減少USF位元位置組合的總數,並同等地降低WTRU實現複雜度。Similar to the RH-B DBS-5 to DBS-12 encoding, all or selected subsets of USF bits encoded by the MCS-1 to MCS-4 and/or RH-A DAS-5 to DAS-7 schemes may be used. The interchange is followed by a subset of all or symbol/bit locations of the training sequence to reduce the total number of USF bit position combinations and to equally reduce WTRU implementation complexity.

一個或多個EGPRS或新REDHOT調變和編碼方案的位元互換被應用於編碼的USF位元的目前定義的位元位置,被應用於另一個或另一個MCS-1至MCS-4、DAS-5至DAS-12及/或DBS-5至DBS-12方案的選擇子集,以減少USF映射星座的總數,該USF映射星座用於將符號/位元映射為用於REDHOT傳輸的叢發。The bit swapping of one or more EGPRS or new REDHOT modulation and coding schemes is applied to the currently defined bit position of the encoded USF bit, applied to another or another MCS-1 to MCS-4, DAS -5 to a selected subset of DAS-12 and/or DBS-5 to DBS-12 schemes to reduce the total number of USF mapping constellations used to map symbols/bits to bursts for REDHOT transmission .

對於下述討論,術語“N”表示從3個USF資訊位元獲得的通道編碼位元;NX(X=1,n)是基於編碼規則X從三(3)個USF資訊位元中獲得的通道編碼位元;以及PX(X=1,n)是NX位元將被映射(互換)後的位元位置。數值n表示編碼規則的數量。雖然下面的實例參考3種編碼規則,但是可以有任何數量的編碼規則,從而n能夠代表任何整數值。For the following discussion, the term "N" denotes the channel coding bit obtained from the 3 USF information bits; NX (X = 1, n) is obtained from the three (3) USF information bits based on the encoding rule X. The channel coding bit; and PX (X = 1, n) is the bit position after the NX bit is to be mapped (interchanged). The value n represents the number of encoding rules. Although the following examples refer to three encoding rules, there can be any number of encoding rules such that n can represent any integer value.

USF編碼規則可應用於特定的EGPRS或EGPRS2 MCS。當MCS在BTTI配置中被發送時,應用第一USF編碼規則,描述如下:(a)如何從三(3)個USF資訊位元中獲得N1通道編碼USF位元;以及(b)指定哪一組位元位置{P1}以映射無線電塊的叢發B0,B1,B2和B3中的這些 N個產生的位元。然而,當MCS在RTTI配置中被發送時,應用第二USF編碼規則,描述如下:(a)如何獲得N2通道編碼USF位元;以及(b)位元位置組{P2}。N1和N2、與{P1}或{P2}可以部分相同。打算使用第二USF編碼規則來發送使用RTTI配置的無線電塊的發射器能夠實現以下過程:發射器編碼無線電塊,假設該無線電塊使用第一USF編碼規則而在BTTI模式中被發送。接下來,只要N1=N2,發射器就互換包括位元位置{P1}的位元與包括位元位置{P2}的位元。或者,如果MCS在RTTI/BTTI混合配置中被發送,則應用第三USF編碼規則N3,{P3}。USF encoding rules can be applied to specific EGPRS or EGPRS2 MCS. When the MCS is sent in the BTTI configuration, the first USF encoding rule is applied as follows: (a) how to obtain the N1 channel encoded USF bit from the three (3) USF information bits; and (b) specify which one Group bit position {P1} to map these in the bursts B0, B1, B2 and B3 of the radio block N generated bits. However, when the MCS is transmitted in the RTTI configuration, the second USF encoding rule is applied as follows: (a) how to obtain the N2 channel encoded USF bit; and (b) the bit location group {P2}. N1 and N2 may be partially the same as {P1} or {P2}. A transmitter intended to transmit a radio block configured using RTTI using a second USF encoding rule can implement the following procedure: The transmitter encodes a radio block, assuming that the radio block is transmitted in BTTI mode using the first USF encoding rule. Next, as long as N1 = N2, the transmitter swaps the bit including the bit position {P1} with the bit including the bit position {P2}. Alternatively, if the MCS is transmitted in the RTTI/BTTI hybrid configuration, the third USF encoding rule N3, {P3} is applied.

接收器(WTRU)明確地知道如何解碼接收的無線電塊中的USF。RLC/MAC建立信令向WTRU指示接收的無線電塊是在BTTI、RTTI還是在RTTI/BTTI模式中操作,並且這指示必須由WTRU應用的特定的USF編碼規則以解碼USF。在上面提及的情況中,USF編碼規則可以是相同的。例如,第一USF編碼規則、第二USF編碼規則或第三編碼規則可以是相同的規則。The receiver (WTRU) explicitly knows how to decode the USF in the received radio block. The RLC/MAC setup signaling indicates to the WTRU whether the received radio block is operating in BTTI, RTTI, or in RTTI/BTTI mode, and this indicates a particular USF encoding rule that must be applied by the WTRU to decode the USF. In the case mentioned above, the USF encoding rules can be the same. For example, the first USF encoding rule, the second USF encoding rule, or the third encoding rule may be the same rule.

目前USF位元/符號的子集及/或其位置可以互換為另一個REDHOT或EGPRS方案的USF位元/符號位置。或者,USF位元/符號的整個集合及/或其位置可互以換為另一個EGPRS或REDHOT方案的USF位元/符號的整個集合及/或其位置。The current subset of USF bits/symbols and/or their locations can be swapped for USF bit/symbol locations of another REDHOT or EGPRS scheme. Alternatively, the entire set of USF bits/symbols and/or their locations may be interchanged with each other for the entire set of USF bits/symbols of the EGPRS or REDHOT scheme and/or its location.

當在REDHOT封包資料通道(PDCH)上傳送時,USF位元/符號位置可以使用EGPRS MCS-1至MCS-4,通過在 每個叢發上應用EGPRS MCS-5至MCS-9(和DAS-5至DAS-7)來進行從無線電塊的第一個叢發上的{0,50,100}、第二個叢發上的{34,84,98}、第三個叢發上的{18,68,82}和第四個叢發上的{2,52,66}到新位置{150,151,168-169,171-172,177,178和195}的全部或子集的互換。如對本領域中具有通常知識者來說顯而易見的,MCS-1至MCS-4的十六(16)個USF編碼的位元可以直接映射到這些選擇的位元位置、或相同位置的子集上。When transmitting on the REDHOT Packet Data Channel (PDCH), the USF bit/symbol location can be used with EGPRS MCS-1 to MCS-4. EGPRS MCS-5 to MCS-9 (and DAS-5 to DAS-7) are applied to each burst to perform {0, 50, 100} and second bursts from the first burst of the radio block. {34,84,98} on the top, {18,68,82} on the third plexus, and {2,52,66} on the fourth plexus to the new position {150,151,168-169 , all or a subset of 171-172, 177, 178 and 195} are interchanged. As will be apparent to those of ordinary skill in the art, sixteen (16) USF encoded bits of MCS-1 through MCS-4 can be mapped directly to these selected bit positions, or subsets of the same position. .

或者,可以應用類似的簡單映射擴展技術來從三(3)個USF位元或十六(16)個USF編碼位元(假設使用了MCS-1至MCS-4方案)中獲得使用MCS-5至MCS-9的三十六(36)個位元。Alternatively, a similar simple mapping extension technique can be applied to obtain MCS-5 from three (3) USF bits or sixteen (16) USF coded bits (assuming the MCS-1 to MCS-4 scheme is used). Thirty-six (36) bits to the MCS-9.

由EGPRS DAS-5至DAS-7(目前與EGPRS MCS-5至MCS-9相同)定義的USF位元/符號位置{150,151,168-169,171-172,177,178和195}可以在每個叢發期間互換為對應於RH-A DAS-8至DAS-12的USF位元/符號位置(即緊接著訓練序列的三(3)個符號)。USF bit/symbol locations {150, 151, 168-169, 171-172, 177, 178 and 195} defined by EGPRS DAS-5 to DAS-7 (currently identical to EGPRS MCS-5 to MCS-9) The USF bit/symbol position corresponding to RH-A DAS-8 to DAS-12 (i.e., three (3) symbols immediately following the training sequence) is interchanged during each burst.

EGPRS MCS-1至MCS-4及/或DAS-5至DAS-7或這些方案的組合的USF位元/符號位置可以互換為對應於RH-A DAS-8至DAS-12的USF位元/符號位置(即緊接著訓練序列的三(3)個符號)。例如,當選擇將MCS-1至MCS-4和DAS-5至DAS-7的USF位元位置位元互換到所定義的DAS-7至DAS-12方案的USF位置時,使用兩(2)個不同的位元互換結合和USF編碼位元重複/擴展方案。The USF bit/symbol position of EGPRS MCS-1 to MCS-4 and/or DAS-5 to DAS-7 or a combination of these schemes can be interchanged with USF bits corresponding to RH-A DAS-8 to DAS-12/ Symbol position (ie three (3) symbols immediately following the training sequence). For example, when the USF bit position bits of MCS-1 to MCS-4 and DAS-5 to DAS-7 are selected to be interchanged to the USF position of the defined DAS-7 to DAS-12 scheme, two (2) are used. A different bit swapping and USF encoding bit repeat/expansion scheme.

MCS-x、DAS-y或DBS-z的一個或其子集的USF位元/符號編碼/映射過程可以改變為另一個編碼方案或編碼方案的子集。例如,一個或多個MCS-x、DAS-y或DBS-z的USF編碼位元的數量從N1減少或增加到N2位元。這使USF要根據至少一個其他的MCS-x、DAS-y或DBS-z的解碼方案來調整,以減小可能性(可能的組合)的數量和解碼複雜度。The USF bit/symbol encoding/mapping process of one or a subset of MCS-x, DAS-y, or DBS-z can be changed to another encoding scheme or a subset of encoding schemes. For example, the number of USF coded bits of one or more MCS-x, DAS-y, or DBS-z is reduced or increased from N1 to N2 bits. This allows the USF to adjust according to at least one other MCS-x, DAS-y or DBS-z decoding scheme to reduce the number of possible (possible combinations) and decoding complexity.

或者,MCS-x、DAS-y或DBS-z中的一個或其子集的USF碼字產生過程/編碼表可變化為另一種編碼方案的USF碼字產生過程/編碼表,以減小進行解碼的可能組合的數量。Alternatively, the USF codeword generation process/encoding table of one of MCS-x, DAS-y or DBS-z or a subset thereof may be changed to a USF codeword generation process/coding table of another coding scheme to reduce The number of possible combinations of decoding.

或者,選擇用來將USF編碼位元映射為MCS-x、DAS-y或DBS-z方案的一個或其子集的符號的方法,使用MCS-x、DAS-y或DBS-z方案的中的一個其他的或另一個子集來進行調整,作為子集編碼方案或導出來減小USF配置的總數量,該USF配置與EGPRS/EGPRS2基準格式相比是可能的。Alternatively, a method for mapping a USF coded bit to a symbol of one or a subset of the MCS-x, DAS-y, or DBS-z scheme, using the MCS-x, DAS-y, or DBS-z scheme One other or another subset is adjusted to reduce the total number of USF configurations as a subset coding scheme or derivation, which is possible compared to the EGPRS/EGPRS2 reference format.

一個或多個RH-A方案可以調整為RH-B方案。例如,基於QPSK的DBS-5和DBS-6的USF符號/碼字減小為基於16/32QAM的DAS-8至DAS-12/DBS-7至DBS-12(或相反)的對應的USF符號/碼字,以調整RH-A和RH-B方案。直接的好處是混合調變星座的數量減小為總共4個。One or more RH-A schemes can be adjusted to the RH-B scheme. For example, QPSK-based DBS-5 and DBS-6 USF symbols/codewords are reduced to corresponding USF symbols based on 16/32QAM-based DAS-8 to DAS-12/DBS-7 to DBS-12 (or vice versa) /codeword to adjust the RH-A and RH-B schemes. The immediate benefit is that the number of mixed modulation constellations is reduced to a total of four.

在另一個實施方式中,對於EGPRS MCS的特定或選擇的子集、及/或EGPRS2 DAS-x或DBS-y調變和編碼方案,USF位元/符號映射過程及/或USF碼字產生被用來依 據BTTI和RTTI WTRU是否被多工到相同的PDCH資源,而將無線電塊編碼為BTTI或RTTI發送。例如,如果無線電塊以RTTI模式或BTTI模式或BTTI/RTTI共存模式發送,當被用於編碼相同的無線電塊時,到一個或多個MCS-x、DAS-y及/或DBS-z方案的USF位元/符號映射過程及/或USF碼字產生將根據基準BTTI格式而進行變化。In another embodiment, for a particular or selected subset of EGPRS MCS, and/or EGPRS2 DAS-x or DBS-y modulation and coding schemes, the USF bit/symbol mapping process and/or USF codeword generation is Used to The radio block is encoded as a BTTI or RTTI transmission depending on whether the BTTI and RTTI WTRU are multiplexed to the same PDCH resource. For example, if a radio block is transmitted in RTTI mode or BTTI mode or BTTI/RTTI coexistence mode, when used to encode the same radio block, to one or more MCS-x, DAS-y, and/or DBS-z schemes The USF bit/symbol mapping process and/or USF codeword generation will vary according to the reference BTTI format.

在一個實施方式中,一個或多個MCS-x、DAS-y或DBS-z的USF位元/符號編碼方案及/或USF碼字產生表是基於另一個方案(例如,MCS-x,DAS-y或DBS-z)的。例如,USF編碼表的叢發方式(burst-wise)部分或確定性映射規則的全部或部分重複,所有這些是等價的,可被用於在發射器和接收器中實現這一過程。In one embodiment, the USF bit/symbol coding scheme and/or the USF codeword generation table for one or more MCS-x, DAS-y, or DBS-z is based on another scheme (eg, MCS-x, DAS) -y or DBS-z). For example, the burst-wise portion of the USF code table or all or part of the deterministic mapping rule is repeated, all of which are equivalent and can be used to implement this process in the transmitter and receiver.

WTRU依據從網路中接收的配置訊息來實現這一過程,例如臨時塊流(TBF)DL分配和類似訊息,對於本領域中具有通常知識者來說顯而易見的是,依據封包資料通道(PDCH)是否被分配給EGPRS操作或REDHOT操作,接收器被配置為解碼傳統的EGPRS MCS-1至MCS-4。在第一種情況中,EGPRS叢發使用傳統方法來進行接收和處理。在第二種情況中,WTRU配置其解碼器以考慮任何USF解碼技術的存在,例如位元互換、USF位元/符號上的擴展等等,如上所述。The WTRU implements this process based on configuration messages received from the network, such as Temporary Block Flow (TBF) DL allocations and the like, as will be apparent to those of ordinary skill in the art, based on the Packet Data Channel (PDCH). Whether assigned to EGPRS operation or REDHOT operation, the receiver is configured to decode legacy EGPRS MCS-1 to MCS-4. In the first case, EGPRS bursts use traditional methods for reception and processing. In the second case, the WTRU configures its decoder to account for the existence of any USF decoding technique, such as bit swapping, extensions on USF bits/symbols, etc., as described above.

對於本領域中具有通常知識者來說顯而易見的是,將位元互換應用到MCS-1至MCS-4、DAS-5至DAS-12、以及DBS-5至DBS-12中的USF位元/符號從而減小可能組合 的總數的方法,可以在允許R7中GERAN延遲減少(LATRED)即考慮RH-A或RH-B的RTTI操作的可能性時,被擴展或獨立地應用。It will be apparent to those of ordinary skill in the art that bitwise interchange is applied to USF bits in MCS-1 to MCS-4, DAS-5 to DAS-12, and DBS-5 to DBS-12/ Symbol to reduce possible combinations The method of the total number can be extended or independently applied while allowing the GERAN delay reduction (LATRED) in R7, that is, considering the possibility of RTI-A or RH-B RTTI operation.

在BTTI模式中操作的EGPRS2 WTRU可以解碼來自第一RTTI傳輸的USF,該第一RTTI傳輸可能使用EGPRS或EGPRS2調變和編碼方案的調變類型/集合,該EGPRS或EGPRS2調變和編碼方案的調變類型/集合與在一個或多個分配時槽上BTTI時間週期期間的第二RTTI傳輸不同。第7B圖示出了該實施方式與第7A圖中現有技術的比較。第7B圖中示出了4個訊框(N至N+3),並且每訊框包括攜帶構成無線電塊的四(4)個叢發中兩(2)個的兩個時槽(TS2和TS3)。在第7A圖中,構成整個無線電塊的四(4)個中的每個時槽必須具有相同的調變類型,從而RTTI傳輸的包括前兩(2)個叢發的第一訊框和包括最後兩(2)個叢發的第二訊框具有相同的調變類型。An EGPRS2 WTRU operating in BTTI mode may decode a USF from a first RTTI transmission, which may use a modulation type/set of EGPRS or EGPRS2 modulation and coding schemes, the EGPRS or EGPRS2 modulation and coding scheme The modulation type/set is different from the second RTTI transmission during the BTTI time period on one or more allocation time slots. Figure 7B shows a comparison of this embodiment with the prior art in Figure 7A. Four frames (N to N+3) are shown in Figure 7B, and each frame includes two time slots (TS2 and two (2) of the four (4) bursts that make up the radio block. TS3). In Figure 7A, each of the four (4) constituting the entire radio block must have the same modulation type, such that the first frame of the RTTI transmission includes the first two (2) bursts and includes The last two (2) bursts of the second frame have the same modulation type.

如第7B圖中所示,RTTI傳輸的包括前兩(2)個叢發的訊框和包括後兩(2)個叢發的訊框可以具有不同的調變類型。在這種情況中,目前兩個訊框的調變類型不同於後兩訊框的調變類型時,WTRU1從四個叢發中擷取USF。在這個實例中,為了說明的目的,第一訊框720和第二訊框730使用8PSK調變進行編碼,而第三訊框740和第四訊框750使用16QAM編碼。通過處理所有4個叢發,WTRU1能夠適當地解碼USF。As shown in FIG. 7B, the frame including the first two (2) bursts of the RTTI transmission and the frame including the last two (2) bursts may have different modulation types. In this case, when the modulation type of the two frames is different from the modulation type of the last two frames, WTRU1 retrieves the USF from the four bursts. In this example, for purposes of illustration, first frame 720 and second frame 730 are encoded using 8PSK modulation, while third frame 740 and fourth frame 750 are encoded using 16QAM. By processing all four bursts, WTRUl is able to properly decode the USF.

第10圖中示出了USF解碼過程的另一個實施方式。在 1000,WTRU(或其他接收裝置)接收在BTTI間隔分配的時槽上的四(4)個叢發。前兩(2)個叢發的調變類型(類型1)在1010確定。後兩(2)個叢發的調變類型(類型2)在1020確定。或者,第一組中的一個或多個接收的叢發的調變類型能夠在WTRU仍然在接收或處理第二組中一個或多個叢發時進行確定。Another embodiment of the USF decoding process is shown in FIG. in 1000, the WTRU (or other receiving device) receives four (4) bursts on the time slot allocated by the BTTI interval. The modulation type (type 1) of the first two (2) bursts is determined at 1010. The modulation type (type 2) of the last two (2) bursts is determined at 1020. Alternatively, the modulation type of one or more received bursts in the first group can be determined while the WTRU is still receiving or processing one or more bursts in the second group.

調變類型(類型1和類型2)在1030進行比較,並且如果它們相同,則USF和RLC/MAC在1040解碼。如果USF是1050的分配的USF,那麼資料可以在上行鏈路通道上被傳送。如果該USF不是所分配的USF,那麼WTRU在1000等待接收另外四(4)個叢發。The modulation types (Type 1 and Type 2) are compared at 1030, and if they are the same, the USF and RLC/MAC are decoded at 1040. If the USF is an assigned USF of 1050, then the data can be transmitted on the uplink channel. If the USF is not the assigned USF, then the WTRU is waiting for another four (4) bursts at 1000.

如果調變類型在1030不相同,那麼在1080確定是否允許特定的調變組合(類型1與類型2組合)。如果這樣,USF在1110解碼。然後,在1050,解碼的USF與分配的USF相比較,並且如果它們相同,則資料能夠在上行鏈路通道上傳送。如果該USF不是所分配的USF,那麼WTRU在1000等待接收另外的四(4)個叢發。If the modulation type is not the same at 1030, then at 1080 it is determined whether a particular modulation combination (type 1 and type 2 combination) is allowed. If so, the USF decodes at 1110. Then, at 1050, the decoded USF is compared to the assigned USF, and if they are the same, the data can be transmitted on the uplink channel. If the USF is not the assigned USF, then the WTRU is waiting for another four (4) bursts at 1000.

如果不允許1080處的調變組合,那麼解碼失敗,WTRU在1000等待接收另外的四(4)個叢發。If the modulation combination at 1080 is not allowed, the decoding fails and the WTRU waits for another four (4) bursts at 1000.

或者,第一和第二RTTI間隔中的可允許調變類型(或以等價的方式從MCS-x、DAS-y、DBS-z中選取可允許的子集)是不受限制的。在這種情況下,接收器繼續進行到1110中的USF解碼步驟。Alternatively, the allowable modulation type in the first and second RTTI intervals (or an allowable subset from MCS-x, DAS-y, DBS-z in an equivalent manner) is not limited. In this case, the receiver proceeds to the USF decoding step in 1110.

在另一個實施方式中,第一和第二RTTI間隔中的可允 許調變類型(或以等價的方式從MCS-x、DAS-y、DBS-z中選取可允許的子集)是受限制的。該限制可以依據BTTI間隔期間的第一或第二RTTI間隔中調變類型的選擇(或MCS-x、DAS-y、DBS-z的子集),以減少接收器為了解碼USF而必須處理的可能組合的數量。該實施方式的示範性流程圖在第8圖中示出。在820,檢測第一RTTI間隔的第一調變類型。在860,接收器(Rx)被配置用於檢測第二RTTI間隔上的可允許調變類型。在870,擷取USF。在880,解碼USF。然後在882,解碼的USF與分配的USF相比較,並且如果它們相等(相同),則資料可以在上行鏈路(UL)890中傳送,否則檢測820、配置860、擷取870、以及解碼880被重複進行。In another embodiment, the first and second RTTI intervals are acceptable The type of modulation (or the selection of an allowable subset from MCS-x, DAS-y, DBS-z in an equivalent manner) is limited. The limitation may be based on a selection of a modulation type (or a subset of MCS-x, DAS-y, DBS-z) in the first or second RTTI interval during the BTTI interval to reduce the amount of processing that the receiver must process in order to decode the USF. The number of possible combinations. An exemplary flow chart of this embodiment is shown in FIG. At 820, a first modulation type of the first RTTI interval is detected. At 860, the receiver (Rx) is configured to detect an allowable modulation type on the second RTTI interval. At 870, the USF is retrieved. At 880, the USF is decoded. Then at 882, the decoded USF is compared to the assigned USF, and if they are equal (same), the material can be transmitted in the uplink (UL) 890, otherwise detection 820, configuration 860, capture 870, and decode 880 Repeated.

對於一個或多個給定的調變類型(GMSK、8PSK、QPSK、16QAM、32QAM)的限制與對於MCS、DAS及/或DBS調變和編碼方案的特定選擇子集的限制是等價的。例如,對於僅GMSK的調變類型的限制與僅允許CS-1至CS-4和MCS-1至MCS-4是等價的。調變類型8PSK包括MCS-5至MCS-9和DAS-5至DAS-7。調變類型32QAM包括DAS-10至DAS-12和DBS-10至DBS-12。The restrictions for one or more given modulation types (GMSK, 8PSK, QPSK, 16QAM, 32QAM) are equivalent to the restrictions for a particular selected subset of MCS, DAS, and/or DBS modulation and coding schemes. For example, the restriction on the modulation type of only GMSK is equivalent to allowing only CS-1 to CS-4 and MCS-1 to MCS-4. Modulation type 8PSK includes MCS-5 to MCS-9 and DAS-5 to DAS-7. Modulation type 32QAM includes DAS-10 to DAS-12 and DBS-10 to DBS-12.

可能的調變類型或調變和編碼方案的子集的限制可以由在網路、WTRU或兩者上實現的規則來給定,其中該調變和編碼方案可發生在第一或第二RTTI間隔上(或MCS-x、DAS-y、DBS-z的被選擇子集)。第二RTTI間隔的可能組合的限制依據在之前的第一RTTI間隔期間出現 的調變類型或調變和編碼方案子集。或者,第一RTTI間隔的可能組合的限制依據在第二RTTI間隔(下面的RTTI間隔)期間出現的調變類型或EGPRS或EGPRS2調變和編碼方案的子集。或者,該限制被施加給用於第一和第二RTTI間隔的可允許調變類型或調變和編碼方案的子集。較佳地,限制規則是固定的,並且對於WTRU和網路都是已知的。或者,限制規則可以通過信令被進行配置,例如作為實例的用於建立無線電鏈路、TBF的或分配無線電資源的RLC/MAC訊息。The possible modulation types or limitations of the subset of modulation and coding schemes may be given by rules implemented on the network, the WTRU, or both, where the modulation and coding scheme may occur at the first or second RTTI Interval (or selected subset of MCS-x, DAS-y, DBS-z). The limitation of the possible combination of the second RTTI interval occurs according to the previous first RTTI interval The modulation type or the subset of modulation and coding schemes. Alternatively, the possible combination of the first RTTI interval is limited by the modulation type or subset of the EGPRS or EGPRS2 modulation and coding scheme that occurs during the second RTTI interval (the lower RTTI interval). Alternatively, the restriction is applied to a subset of allowable modulation types or modulation and coding schemes for the first and second RTTI intervals. Preferably, the restriction rules are fixed and are known to both the WTRU and the network. Alternatively, the restriction rules may be configured by signaling, such as an RLC/MAC message for establishing a radio link, a TBF, or allocating radio resources as an example.

此外,能夠在隨後的RTTI間隔中互相遵循的可能調變類型或EGPRS或EGPRS2調變和編碼方案子集的限制,可以依據特定WTRU支援的能力集合。因為不需要RH-A WTRU解碼來自RH-B DBS-z方案的USF,所以RH-A WTRU可以使用與RH-B WTRU(需要解碼更大數量的組合)相比不同的限制集合。當兩(2)個不同調變類型的部分碼字是成對的時,施加到可允許調變類型或EGPRS或EGPRS2調變和編碼方案的(子)集合上的限制,可以被選擇作為USF碼字和其最小漢明距離的功能,以消除和排除特定的反常(pathologic)情況(在孤立點的感知的碼字組合之間很小的漢明距離),以改進通常情況中的USF檢測性能。Moreover, the possible modulation types or EPON or EGPRS2 modulation and coding scheme subsets that can follow each other in subsequent RTTI intervals can be based on a set of capabilities supported by a particular WTRU. Since the RH-A WTRU is not required to decode the USF from the RH-B DBS-z scheme, the RH-A WTRU may use a different set of restrictions than the RH-B WTRU (which requires decoding a larger number of combinations). When two (2) partial code words of different modulation types are paired, the restrictions imposed on the (sub)set of allowable modulation types or EGPRS or EGPRS2 modulation and coding schemes may be selected as USF The function of the codeword and its minimum Hamming distance to eliminate and exclude specific pathologic conditions (small Hamming distance between perceived codeword combinations at isolated points) to improve USF detection in normal situations performance.

下面的表格示出了可允許調變類型或EGPRS或EGPRS2調變和編碼方案的(子)集上的這種限制的一個實例。該特定的實例給出了第二RTTI間隔(橫向)中允許的 相對於不允許的調變類型的列表,該第二RTTI間隔(橫向)作為在第一RTTI間隔(縱向)上使用的調變類型的函數。該示意性的實例僅代表一個可能的折衷方案,並且可擴展到與通用情況相比的流通量的降低相對於解碼簡化之間的其他可能折衷方案(其中在原理上任何調變類型可以遵循其他任何一個)。The table below shows an example of such a restriction on a (sub)set of allowable modulation types or EGPRS or EGPRS2 modulation and coding schemes. This particular example gives the allowed in the second RTTI interval (lateral) The second RTTI interval (lateral) is a function of the modulation type used on the first RTTI interval (longitudinal) relative to the list of disallowed modulation types. This illustrative example represents only one possible compromise and can be extended to other possible tradeoffs between the reduction in throughput compared to the general case versus the decoding simplification (where in principle any modulation type can follow other anyone).

第9圖示出了這種示範性限制的實施方式的流程圖(並且也表示第8圖中檢測820中所發生過程的描述)。在824開始第一RTTI上調變類型的檢測820,其中第一RTTI間隔被測試以確定是否是GMSK調變。如果該確定是肯定的,那麼在826,第二RTTI間隔可以是下述調變類型的任何一個:GMSK、8PSK、16QAM或32QAM。如果不是,那麼在828,第一RTTI間隔類似地被進行測試來確定是否是8PSK。如果該確定是肯定的,那麼在830,第二RTTI間隔可以是下述調變類型的任何一個:GMSK、8PSK或 QPSK。否則在832,該過程繼續測試第一RTTI間隔以確定是否是QPSK。如果該確定是肯定的,那麼在834,第二RTTI間隔可以是下述調變類型的任何一個:8PSK、QPSK、16QAM或32QAM。否則,在836中該過程繼續測試第一RTTI間隔以確定是否是16QAM。如果該確定是肯定的,那麼在838,第二RTTI間隔可以是下述調變類型的任何一個:GMSK、QPSK、16QAM或32QAM。否則,在840該過程繼續測試第一RTTI間隔以確定是否是32QAM。如果該確定是肯定的,那麼在842,第二RTTI間隔可以是所有的類型。接下來,在844檢測第二RTTI上的調變類型,並在846中進行測試以確定是否是允許的調變類型。如果該確定是肯定的,那麼在848解碼USF,並且資料可以在上行鏈路上隨後進行傳送。否則,在850不解碼USF,並且不傳送資料。在其他情況中,過程等待下一個RTTI間隔(資料傳輸)。Figure 9 shows a flow diagram of an embodiment of such an exemplary limitation (and also a description of the process occurring in detection 820 in Figure 8). A first RTTI up-variable type of detection 820 is initiated at 824, where the first RTTI interval is tested to determine if it is a GMSK modulation. If the determination is affirmative, then at 826, the second RTTI interval can be any of the following modulation types: GMSK, 8PSK, 16QAM, or 32QAM. If not, then at 828, the first RTTI interval is similarly tested to determine if it is 8PSK. If the determination is affirmative, then at 830, the second RTTI interval can be any of the following modulation types: GMSK, 8PSK, or QPSK. Otherwise at 832, the process continues to test the first RTTI interval to determine if it is QPSK. If the determination is affirmative, then at 834, the second RTTI interval can be any of the following modulation types: 8PSK, QPSK, 16QAM, or 32QAM. Otherwise, the process continues at 836 to test the first RTTI interval to determine if it is 16QAM. If the determination is affirmative, then at 838, the second RTTI interval can be any of the following modulation types: GMSK, QPSK, 16QAM, or 32QAM. Otherwise, at 840 the process continues to test the first RTTI interval to determine if it is 32QAM. If the determination is affirmative, then at 842, the second RTTI interval can be of all types. Next, the modulation type on the second RTTI is detected at 844 and tested in 846 to determine if it is an allowed modulation type. If the determination is affirmative, the USF is decoded at 848 and the data can be subsequently transmitted on the uplink. Otherwise, the USF is not decoded at 850 and no data is transmitted. In other cases, the process waits for the next RTTI interval (data transfer).

在系統中被使用的可以有不止一組限制規則(等價於在第一RTTI和第二RTTI間隔之間允許的調變類型轉換)。該限制規則可以依據多工到特定PDCH資源上的WTRU的類型和能力。在單一限制規則或存在一組限制規則(多個規則)的情況中,這些限制規則可以在TBF/資源建立/分配階段期間用信號通知給WTRU,或類似地通過EGPRS RLC/MAC信令訊息的擴展來傳達,或由在WTRU及/或網路中實現的固定規則來給定。這可以包括訊息,例如,封包下行鏈路分配,多TBF下行鏈路分配,封包上行鏈路分 配,多TBF上行鏈路分配,封包時槽重新配置,多TBF時槽重新配置,或封包CS釋放指示訊息。There may be more than one set of restriction rules that are used in the system (equivalent to the modulation type conversion allowed between the first RTTI and the second RTTI interval). The restriction rule may be based on the type and capability of the WTRU on the multiplex to a particular PDCH resource. In the case of a single restriction rule or the existence of a set of restriction rules (multiple rules), these restriction rules may be signaled to the WTRU during the TBF/resource establishment/distribution phase, or similarly via EGPRS RLC/MAC signaling messages. Extended to convey, or given by fixed rules implemented in the WTRU and/or the network. This can include messages such as packet downlink allocation, multi-TBF downlink allocation, and packet uplink. Provisioning, multi-TBF uplink allocation, packet reconfiguration at the time of packet, multi-TBF time slot reconfiguration, or packet CS release indication message.

在另一個實施方式中,不同的挪用旗標設定可以應用於EGPRS或EGPRS2 MCS-x、DAS-y及/或DBS-z中的一個或被選擇的子集的EGPRS2傳輸,以幫助接收器來確定正確的USF解碼格式,RTTI或BTTI或混合RTTI/BTTI間隔中無線電塊的順序,或與基準編碼情況例如BTTI傳輸相比,USF編碼格式是否變化,或所接收的一個或多個叢發或無線電塊是否屬於BTTI間隔中第一或第二RTTI間隔(其中最後可以應用某些叢發部分的不同設定)。這可以包括具有/不具有BTTI共存的RTTI USF模式指示(是否支援這一特徵)。例如,用於EGPRS2 MCS-x、DAS-y及/或DBS-z無線電塊(或每時間週期)的一個或多個不同挪用旗標的配置可用於指示以下一個或多個:正確的USF格式以進行相對的解碼,並幫助接收器確定正確的USF解碼格式,以測試接收的一個或多個叢發、無線電塊等、在BTTI配置中發送的USF、在RTTI配置中發送的USF、使用BTTI共存模式在RTTI配置中發送的USF、以及對應於BTTI間隔中第一相對於第二RTTI間隔所接收的無線電塊。In another embodiment, different stealing flag settings may be applied to EGPRS2 transmission of one or a selected subset of EGPRS or EGPRS2 MCS-x, DAS-y and/or DBS-z to assist the receiver Determining the correct USF decoding format, the order of radio blocks in RTTI or BTTI or hybrid RTTI/BTTI intervals, or whether the USF encoding format changes, or one or more bursts or received, compared to a reference encoding situation such as BTTI transmission Whether the radio block belongs to the first or second RTTI interval in the BTTI interval (where different settings for some burst portions can be applied last). This may include an RTTI USF mode indication with/without BTTI coexistence (whether or not this feature is supported). For example, a configuration of one or more different stealing flags for EGPRS2 MCS-x, DAS-y, and/or DBS-z radio blocks (or per time period) can be used to indicate one or more of the following: the correct USF format is Perform relative decoding and help the receiver determine the correct USF decoding format to test the received one or more bursts, radio blocks, etc., USF sent in BTTI configuration, USF sent in RTTI configuration, coexistence using BTTI The mode transmits the USF in the RTTI configuration and corresponds to the first radio block received in the BTTI interval relative to the second RTTI interval.

為了說明的目的,並且不失去通用性,挪用旗標可以在DAS-8/9的第一/第二連續的RTTI間隔中的該DAS-8/9情況中進行如下設定: For purposes of illustration, and without loss of versatility, the stealing flag can be set as follows in the DAS-8/9 case in the first/second consecutive RTTI interval of the DAS-8/9:

選擇的用來指示特定USF模式的給定挪用旗標碼字的特定值可以是任何特定值,只要該值相對於指示的上下文/模式是唯一的。The particular value selected to indicate a given stealing flag codeword for a particular USF mode may be any particular value as long as the value is unique relative to the indicated context/mode.

對於不同組的EGPRS2 MCS-x、DAS-y及/或DBS-z調變和編碼方案,可以使用清楚的挪用旗標配置。For different sets of EGPRS2 MCS-x, DAS-y and/or DBS-z modulation and coding schemes, a clear vanishing flag configuration can be used.

有很多不同和等價的方式來調整MCS-1至MCS-4、DAS-5至DAS-12、DBS-5至DBS-12中USF位元/符號的USF編碼和位置映射來減小和調整它們,從而用於在WTRU實現中的不同叢發類型。There are many different and equivalent ways to adjust the USF encoding and position mapping of USF bits/symbols in MCS-1 to MCS-4, DAS-5 to DAS-12, DBS-5 to DBS-12 to reduce and adjust They are thus used for different burst types in WTRU implementations.

雖然本發明的特徵和元件以特定的結合進行了描述,但每個特徵或元件可以在沒有其他特徵和元件的情況下單獨使用,或在與或不與其他特徵和元件結合的各種情況下使用。這裏提供的方法或流程圖可以在由通用電腦或處理器執行的電腦程式、軟體或韌體中實施。關於電腦可讀儲存媒體的實例包括唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、緩衝記憶體、半導體記憶裝置、內部硬碟和可移動磁片之類的磁性媒體、磁光媒體以及CD-ROM 磁片和數位多功能光碟(DVD)之類的光學媒體。Although the features and elements of the present invention are described in a particular combination, each feature or element can be used alone or in combination with other features and elements. . The methods or flow diagrams provided herein can be implemented in a computer program, software or firmware executed by a general purpose computer or processor. Examples of computer readable storage media include magnetic memory such as read only memory (ROM), random access memory (RAM), scratchpad, buffer memory, semiconductor memory device, internal hard disk, and removable magnetic disk. Media, magneto-optical media, and CD-ROM Optical media such as magnetic sheets and digital versatile discs (DVDs).

舉例來說,適當的處理器包括:通用處理器、專用處理器、傳統處理器、數位信號處理器(DSP)、多個微處理器、與DSP核相關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、任何一種積體電路(IC)及/或狀態機。Suitable processors, for example, include: general purpose processors, special purpose processors, conventional processors, digital signal processors (DSPs), multiple microprocessors, one or more microprocessors associated with a DSP core, Controller, microcontroller, dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any integrated circuit (IC) and/or state machine.

與軟體相關聯的處理器可以用於實現一個射頻收發器,以便在無線發射接收單元(WTRU)、用戶設備(UE)、終端、基地台、無線電網路控制器(RNC)或任何主機電腦中加以使用。WTRU可以與採用硬體及/或軟體形式實施的模組結合使用,例如相機、攝像機模組、可視電話、揚聲器電話、振動裝置、揚聲器、麥克風、電視收發器、免持耳機、鍵盤、藍牙®模組、調頻(FM)無線單元、液晶顯示器(LCD)顯示單元、有機發光二極體(OLED)顯示單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器及/或任何無線區域網路(WLAN)或超寬頻(UWB)模組。A processor associated with the software can be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer Use it. The WTRU can be used in conjunction with modules implemented in hardware and/or software, such as cameras, camera modules, video phones, speaker phones, vibrators, speakers, microphones, TV transceivers, hands-free headsets, keyboards, Bluetooth® Module, frequency modulation (FM) wireless unit, liquid crystal display (LCD) display unit, organic light emitting diode (OLED) display unit, digital music player, media player, video game machine module, internet browser and / or any wireless local area network (WLAN) or ultra-wideband (UWB) module.

9、13‧‧‧處理器9, 13‧‧‧ processor

10‧‧‧無線通信網路(NW)10‧‧‧Wireless Communication Network (NW)

20‧‧‧無線發射/接收單元(WTRU)20‧‧‧Wireless Transmitting/Receiving Unit (WTRU)

30‧‧‧演進型節點B(Enb)30‧‧‧Evolved Node B (Enb)

40‧‧‧胞元40‧‧‧cell

110、120‧‧‧收發器110, 120‧‧‧ transceiver

115、125‧‧‧處理器115, 125‧‧‧ processor

116、126‧‧‧接收器116, 126‧‧‧ Receiver

117、127‧‧‧發射器117, 127‧‧‧ transmitter

118、128‧‧‧天線118, 128‧‧‧ antenna

USF‧‧‧上行鏈路狀態旗標USF‧‧‧Uplink Status Flag

TS‧‧‧時槽TS‧‧‧ slot

RTTI‧‧‧縮減的傳輸時間間隔RTTI‧‧‧ Reduced transmission time interval

BTTI‧‧‧基本傳輸時間間隔BTTI‧‧‧Basic transmission time interval

從以下描述中可以更詳細地理解本發明,這些描述是以實例結合圖式的方式給出的,其中:第1圖是3GPP無線通信系統的實例;第2圖說明了兩個收發器,例如示範性的WTRU和節點B(或演進型節點B)的功能方塊圖;第3圖示出了在20ms中所發送的USF的叢發映射;第4圖示出了MCS-5和MCS-6的叢發映射;第5圖示出了MCS-7、MCS-8以及MCS-9的叢發映射;第6圖示出了RED HOT B(DBS-5至DBS-12)情況中的USF的叢發映射。The invention can be understood in more detail from the following description, which is given by way of example in conjunction with the drawings, wherein: FIG. 1 is an example of a 3GPP wireless communication system; FIG. 2 illustrates two transceivers, for example Functional block diagram of an exemplary WTRU and Node B (or evolved Node B); Figure 3 shows the burst map of the USF sent in 20ms; Figure 4 shows MCS-5 and MCS-6 Cluster mapping; Figure 5 shows the burst mapping of MCS-7, MCS-8, and MCS-9; Figure 6 shows the USF in the RED HOT B (DBS-5 to DBS-12) case. Crowd mapping.

第7A圖將現有技術單一調變解碼技術與第7B圖中示出的一個實施方式進行比較,該實施方式能夠處理和解碼不同調變類型;第8圖是示例性的USF解碼過程的流程圖;第9圖示出了用於確定調變類型的實施方式;以及第10圖示出了用於EGPRS WTRU在BTTI模式中操作的解碼過程的實施方式。Figure 7A compares a prior art single modulation decoding technique with one embodiment shown in Figure 7B, which is capable of processing and decoding different modulation types; Figure 8 is a flow diagram of an exemplary USF decoding process FIG. 9 shows an embodiment for determining a modulation type; and FIG. 10 shows an embodiment of a decoding process for an EGPRS WTRU operating in a BTTI mode.

USF‧‧‧上行鏈路狀態旗標USF‧‧‧Uplink Status Flag

Claims (8)

一種用於在一基地台中使用的方法,該方法用於在一基本傳輸時間間隔(BTTI)週期的一第二半部與該BTTI週期的一第一半部上的一縮減的傳輸時間間隔(RTTI)時槽對上傳送一資料,該方法包括:使用一第一調變與編碼方案(MCS)來編碼一第一塊;在該基本傳輸時間間隔(BTTI)週期的該第一半部中的該RTTI時槽對上傳送該被編碼的第一塊至一無線發射/接收單元(WTRU);決定允許用於一第二塊的一MCS子集作為該第一MCS的一功能;從該MCS子集決定一第二MCS以用於編碼該第二塊;使用該第二MCS編碼該第二塊;以及在該BTTI週期的該第二半部中的該RTTI時槽對上傳送該被編碼的第二塊。 A method for use in a base station for a reduced transmission time interval between a second half of a basic transmission time interval (BTTI) period and a first half of the BTTI period ( RTTI) time slot pair transmitting a data, the method comprising: encoding a first block using a first modulation and coding scheme (MCS); in the first half of the basic transmission time interval (BTTI) period Transmitting the encoded first block to a wireless transmit/receive unit (WTRU) on the RTTI slot pair; determining to allow a subset of MCS for a second block as a function of the first MCS; The MCS subset determines a second MCS for encoding the second block; encoding the second block using the second MCS; and transmitting the quilt on the slot pair in the RTTI in the second half of the BTTI period The second block of coding. 如申請專利範圍第1項所述的方法,其中該第二MCS是基於該第一MCS的一流通量特徵而決定。 The method of claim 1, wherein the second MCS is determined based on a flux characteristic of the first MCS. 如申請專利範圍第1項所述的方法,其中傳送該被編碼的第一塊或傳送該被編碼的第二塊是透過一GSM增強資料速率全球演進(EDGE)無線電存取網路(GERAN)存取網路來執行。 The method of claim 1, wherein transmitting the encoded first block or transmitting the encoded second block is via a GSM Enhanced Data Rate Global Evolution (EDGE) Radio Access Network (GERAN) Access the network to execute. 如申請專利範圍第1項所述的方法,其中與該第一MCS或與該第二MCS相關的一調變型態是高斯最小頻移鍵控(GMSK)、8相移鍵控(8PSK)、正交PSK(QPSK)、16正交振幅調變(16QAM)以及32QAM調變其中之一。 The method of claim 1, wherein a modulation pattern associated with the first MCS or the second MCS is Gaussian Minimum Shift Keying (GMSK), 8 Phase Shift Keying (8PSK) One of orthogonal PSK (QPSK), 16 quadrature amplitude modulation (16QAM), and 32QAM modulation. 一種基地台,該基地台被配置為在一基本傳輸時間間隔(BTTI)週期的一第二半部與該BTTI週期的一第一半部上的一縮減的傳輸時間間隔(RTTI)時槽對上傳送一資料,該基地台包括:一收發器,其被配置為:使用一第一調變與編碼方案(MCS)來編碼一第一塊,以及使用一第二MCS來編碼一第二塊;在該基本傳輸時間間隔(BTTI)的該第一半部中的該RTTI時槽對上傳送該被編碼的第一塊至一無線發射/接收單元(WTRU),以及在該BTTI週期的一第二半部中的一RTTI時槽對上傳送該被編碼的第二塊至該WTRU;以及一處理器,被配置用以決定允許用於該第二塊的一MCS子集作為該第一MCS的一功能,以及從該MCS子集決定該第二MCS以用於編碼該第二塊。 A base station configured to be a reduced transmission time interval (RTTI) slot pair on a second half of a basic transmission time interval (BTTI) period and a first half of the BTTI period Transmitting a data, the base station includes: a transceiver configured to: encode a first block using a first modulation and coding scheme (MCS), and encode a second block using a second MCS Transmitting the encoded first block to a wireless transmit/receive unit (WTRU) on the RTTI time slot pair in the first half of the basic transmission time interval (BTTI), and one of the BTTI periods An RTTI time slot pair in the second half transmits the encoded second block to the WTRU; and a processor configured to determine an MCS subset allowed for the second block as the first A function of the MCS, and determining the second MCS from the subset of MCS for encoding the second block. 如申請專利範圍第5項所述的基地台,其中該第二MCS是基於該第一MCS的一流通量特徵而決定。 The base station of claim 5, wherein the second MCS is determined based on a flow characteristic of the first MCS. 如申請專利範圍第5項所述的基地台,其中該收發器被配置為透過一GSM增強資料速率全球演進(EDGE)無線電存取網路(GERAN)存取網路來傳送該被編碼的第一塊或該被編碼的第二塊。 The base station of claim 5, wherein the transceiver is configured to transmit the encoded first through a GSM Enhanced Data Rate Global Evolution (EDGE) Radio Access Network (GERAN) access network One or the second block to be encoded. 如申請專利範圍第5項所述的基地台,其中與該第一MCS或與該第二MCS相關的一調變型態是高斯最小頻移鍵控(GMSK)、8相移鍵控(8PSK)、正交PSK(QPSK)、16正交振幅調變(16QAM)以及32QAM調變其中之一。 The base station according to claim 5, wherein a modulation type associated with the first MCS or the second MCS is Gaussian Minimum Shift Keying (GMSK) and 8-phase shift keying (8PSK). One of orthogonal PSK (QPSK), 16 quadrature amplitude modulation (16QAM), and 32QAM modulation.
TW097137622A 2007-10-01 2008-09-30 Method and base station for transmitting data on reduced transmission time interval(rtti) timeslot pair TWI427956B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US97655307P 2007-10-01 2007-10-01
US3325608P 2008-03-03 2008-03-03

Publications (2)

Publication Number Publication Date
TW200917718A TW200917718A (en) 2009-04-16
TWI427956B true TWI427956B (en) 2014-02-21

Family

ID=40419053

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097137622A TWI427956B (en) 2007-10-01 2008-09-30 Method and base station for transmitting data on reduced transmission time interval(rtti) timeslot pair
TW098115606A TW201014253A (en) 2007-10-01 2008-09-30 Method to simplify uplink state flag (USF) decoding complexity for redhot a and b wireless transmit/receive units

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW098115606A TW201014253A (en) 2007-10-01 2008-09-30 Method to simplify uplink state flag (USF) decoding complexity for redhot a and b wireless transmit/receive units

Country Status (8)

Country Link
US (1) US20090086686A1 (en)
EP (1) EP2201712A2 (en)
JP (2) JP5386494B2 (en)
KR (2) KR20100077019A (en)
CN (1) CN101933272B (en)
AR (1) AR068647A1 (en)
TW (2) TWI427956B (en)
WO (1) WO2009046028A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981544B1 (en) * 2007-03-02 2010-09-10 삼성전자주식회사 Method and apparatus for generating burst in a communication system
US8396068B2 (en) * 2007-12-20 2013-03-12 Lg Electronics Inc. Method for transmitting data in wireless communication system
WO2009100533A1 (en) * 2008-02-15 2009-08-20 Research In Motion Limited Systems and methods for assignment and allocation of mixed-type combinations of slots
US8638732B2 (en) * 2009-01-07 2014-01-28 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources using codebook in a broadband wireless communication system
WO2010108257A1 (en) 2009-03-23 2010-09-30 Research In Motion Limited Systems and methods for allocating and transmitting uplink data block transmissions with piggy-backed ack/nack bitmap
WO2010108259A1 (en) * 2009-03-23 2010-09-30 Research In Motion Limited Systems and methods for allocating and transmitting uplink data block transmissions
US8837388B2 (en) 2010-07-22 2014-09-16 Blackberry Limited Methods and apparatus to perform assignments in wireless communications
US8745231B2 (en) * 2010-07-22 2014-06-03 Blackberry Limited Methods and apparatus to poll in wireless communications
US8830981B2 (en) 2010-07-22 2014-09-09 Blackberry Limited Methods and apparatus to poll in wireless communications based on assignments
US9001649B2 (en) 2010-07-22 2015-04-07 Blackberry Limited Methods and apparatus to communicate data between a wireless network and a mobile station
WO2012115617A1 (en) * 2011-02-21 2012-08-30 Research In Motion Limited Method and system for burst formatting of precoded egprs2 supporting legacy user multiplexing
CN102695214A (en) * 2011-03-24 2012-09-26 华为技术有限公司 Method and apparatus for data transmission
GB2506658B (en) * 2012-10-05 2015-01-21 Broadcom Corp Method and apparatus for signal detection and decoding
CN103906115B (en) * 2012-12-28 2017-06-27 联芯科技有限公司 GGE systems receive data processing method and processing unit under multi-user
EP2984766B1 (en) * 2013-03-22 2020-02-12 Telefonaktiebolaget LM Ericsson (publ) Method and mobile device for use in a mobile communication network
JP2016072843A (en) * 2014-09-30 2016-05-09 Kddi株式会社 Base station device, communication method, and communication system
CN106576017B (en) 2015-01-27 2019-09-24 瑞典爱立信有限公司 For to the transmission device of receiving device transmission block, receiving device, control node and method therein
WO2017067613A1 (en) * 2015-10-23 2017-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Decoding margin estimation
CN108702239B (en) * 2016-02-15 2021-01-29 华为技术有限公司 Uplink transmitter and receiver using UE-selected modulation and coding scheme

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511686B2 (en) * 2000-05-26 2010-07-28 パナソニック株式会社 Wireless communication apparatus and wireless communication method
US6631277B2 (en) * 2001-03-02 2003-10-07 Telefonaktiebolaget Lm Ericsson (Publ) Compensation for antenna diagram optimization
US7149245B2 (en) * 2002-04-29 2006-12-12 Lucent Technologies Inc. Link adaption in enhanced general packet radio service networks
US6919829B2 (en) * 2003-06-20 2005-07-19 Nokia Corporation Bit swapping for different interleaving depths
CN100452688C (en) * 2003-06-27 2009-01-14 上海贝尔阿尔卡特股份有限公司 Self-adaptive modulating and coding method and device based on channel information second order statistics
JP2005142923A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Radio communication equipment and mcs determination method
JP4658727B2 (en) * 2005-07-22 2011-03-23 シャープ株式会社 Adaptive modulation control apparatus, radio communication apparatus, and adaptive modulation control method
JP4373410B2 (en) * 2006-01-18 2009-11-25 株式会社エヌ・ティ・ティ・ドコモ Transmitting apparatus and transmitting method
US7751368B2 (en) * 2006-05-01 2010-07-06 Intel Corporation Providing CQI feedback to a transmitter station in a closed-loop MIMO system
CA2659878C (en) * 2006-08-09 2013-10-22 Lg Electronics Inc. Method of estimating signal-to-noise ratio, method of adjusting feedback information transmission, adaptive modulation and coding method using the same, and transceiver thereof
KR100987269B1 (en) * 2006-08-22 2010-10-12 삼성전자주식회사 High-order modulation-based burst mapping method and apparatus in mobile telecommunication systems
GB0702325D0 (en) * 2007-02-07 2007-03-21 Siemens Ag Uplink allocation strategies
KR20080041096A (en) * 2007-03-13 2008-05-09 엘지전자 주식회사 Method of link adaptation in wireless communication system
WO2008115114A2 (en) * 2007-03-16 2008-09-25 Telefonaktiebolaget Lm Ericsson (Publ) Detecting the presence of coding scheme cs-i rlc/mac control message
CN103354480B (en) * 2007-03-21 2017-07-21 马维尔以色列(M.I.S.L.)有限公司 The method for using Uplink State Flag information over a cellular network
TW200901689A (en) * 2007-06-12 2009-01-01 Interdigital Tech Corp Transmission of radio blocks in reduced transmission time interval (RTTI) mode
WO2008157770A2 (en) * 2007-06-21 2008-12-24 Interdigital Technology Corporation Signaling in a wireless communication system
WO2009029511A1 (en) * 2007-08-24 2009-03-05 Interdigital Patent Holdings, Inc. Method and apparatus for reliably transmitting radio blocks with piggybacked ack/nack fields

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TSG GERAN#35。 *

Also Published As

Publication number Publication date
EP2201712A2 (en) 2010-06-30
TW200917718A (en) 2009-04-16
JP2014003719A (en) 2014-01-09
WO2009046028A2 (en) 2009-04-09
KR101293824B1 (en) 2013-08-07
JP5386494B2 (en) 2014-01-15
AR068647A1 (en) 2009-11-25
US20090086686A1 (en) 2009-04-02
KR20100077019A (en) 2010-07-06
KR20100075557A (en) 2010-07-02
CN101933272B (en) 2014-03-19
WO2009046028A3 (en) 2009-09-24
JP2010541489A (en) 2010-12-24
CN101933272A (en) 2010-12-29
TW201014253A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
TWI427956B (en) Method and base station for transmitting data on reduced transmission time interval(rtti) timeslot pair
US9247535B2 (en) Resource selection for transmission of multiple ACK/NACK on PUCCH channel
TWI451792B (en) Method and devices for providing enhanced signaling
JP6170981B2 (en) Method and apparatus for improving channel capacity and spectral efficiency in a wireless communication system
US8670774B2 (en) Systems and methods for uplink control resource allocation
TWI555347B (en) Method and apparatus for reliably transmitting radio blocks with piggybacked ack/nack fields
TW200926639A (en) Measurement reporting for transmissions supporting latency reduction
US20090323588A1 (en) Signaling for multi-user reusing one slot (muros) operation in gsm
WO2019054388A1 (en) Terminal device, base station device, and communication method
WO2009015315A1 (en) Method and apparatus for reducing signaling overhead during a dual codeword hybrid automatic repeat request operation
AU2008233147A1 (en) Power control in orthogonal sub-channels in wireless communications
TW201507392A (en) Method and apparatus for time-based fast ACK/NACK response operation with enhanced general packet radio service 2 uplink
TWI693854B (en) Method and user equipment for uplink control information handling
US20090279625A1 (en) Legacy-compliant burst formats for multiple users reusing one slot (muros) operation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees