TWI426699B - Driving controller of synchronous motor and the driving control method thereof - Google Patents

Driving controller of synchronous motor and the driving control method thereof Download PDF

Info

Publication number
TWI426699B
TWI426699B TW100105622A TW100105622A TWI426699B TW I426699 B TWI426699 B TW I426699B TW 100105622 A TW100105622 A TW 100105622A TW 100105622 A TW100105622 A TW 100105622A TW I426699 B TWI426699 B TW I426699B
Authority
TW
Taiwan
Prior art keywords
current
axis
zero
module
command
Prior art date
Application number
TW100105622A
Other languages
Chinese (zh)
Other versions
TW201236356A (en
Inventor
Jonq Chin Hwang
Chien Tsun Liu
Original Assignee
Univ Nat Taiwan Science Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Science Tech filed Critical Univ Nat Taiwan Science Tech
Priority to TW100105622A priority Critical patent/TWI426699B/en
Publication of TW201236356A publication Critical patent/TW201236356A/en
Application granted granted Critical
Publication of TWI426699B publication Critical patent/TWI426699B/en

Links

Description

同步電動機之驅動控制器及驅動控制方法Synchronous motor drive controller and drive control method

本發明係關於一種同步電動機的驅動控制器,特別是指可以維持同步電動機的中性點電流為零的驅動控制器。The present invention relates to a drive controller for a synchronous motor, and more particularly to a drive controller that can maintain a neutral current of a synchronous motor at zero.

一般行動載具必須考量操控性、穩定性、安全性與經濟等各層面,而穩定安全之需求為其設計考量之第一要務。電動車輛針對個別輪內電動機獨立操作控制。於高速行駛下,輪內電動機若是故障例如欠相,將直接衝擊使用者與乘客之人身安全。因此,高穩定性之永磁式同步電動機驅動系統為電動車輛研發設計重點。General mobile vehicles must consider all aspects of handling, stability, safety and economy, and the need for stability and safety is the first priority of design considerations. Electric vehicles are independently operated for individual in-wheel motors. At high speeds, if the in-wheel motor is faulty, such as an owing phase, it will directly impact the safety of the user and the passenger. Therefore, the high stability permanent magnet synchronous motor drive system is the focus of research and development of electric vehicles.

一般三相變頻器架構以三臂三相變頻器為其電力架構,其電力電路如第一圖所示。三臂三相變頻器17多採電壓空間向量調變控制技術(voltage space vector pulse-width modulation,VSVPWM),藉由複數功率電晶體開關 相互切換產生所需之電壓向量來控制三相同步電動機11的運轉。此控制技術成熟且發展已趨穩定,唯其電壓使用率僅能達到直流鏈電壓之倍,須藉由弱磁控制或是相位超前控制,方能提高電動機之轉速。The general three-phase inverter architecture uses a three-arm three-phase inverter for its power architecture, and its power circuit is shown in the first figure. Three-arm three-phase inverter 17 voltage space vector pulse-width modulation (VSVPWM), with multiple power transistor switches Switching to each other produces a desired voltage vector to control the operation of the three-phase synchronous motor 11. This control technology is mature and its development has become stable, but its voltage usage can only reach the DC link voltage. In addition, the motor speed can be increased by weak field control or phase advance control.

當單相繞組或一臂功率級電晶體故障,系統將無法構成迴路而運轉。為此,國內、外學者提出數種電力架構,期使系統於單相繞組或一臂功率級電晶體故障後仍能持續運轉。其中,有可容錯變頻器,如第二圖所示,其中三相同步電動機611的中性點n銜接雙電容C 1C 2 ,並搭配三相變頻器27於單相繞組或一臂功率級電晶體故障之時,由未故障之雙臂與中性點n形成四開關型之三相變頻器27之架構,使系統仍可構成迴路而持續運轉;但此種方式之電壓使用率將會大幅降低,令系統轉速難以提昇。When a single-phase winding or an arm-level power stage transistor fails, the system will not be able to form a loop to operate. To this end, domestic and foreign scholars have proposed several power architectures, which enable the system to continue to operate after a single-phase winding or an arm-powered transistor failure. Among them, there is a fault-tolerant frequency converter, as shown in the second figure, wherein the neutral point n of the three-phase synchronous motor 611 is connected to the double capacitors C 1 , C 2 and is matched with the three-phase inverter 27 for single-phase winding or one arm power. When the stage transistor fails, the structure of the three-switch type three-phase inverter 27 is formed by the unbroken arms and the neutral point n, so that the system can still form a loop and continue to operate; but the voltage utilization rate of this mode will be Will be greatly reduced, making the system speed difficult to increase.

亦有四臂三相變頻器,其電力電路如第三圖所示;同樣將三相同步電動機31的中性點n接出,輔以四臂三相變頻器37之複數個單臂雙功率級電晶體 控制,提供不平衡負載所造成之零相序電流路徑;於單相繞組或一臂功率級電晶體故障時,由未故障之繞組或功率級電晶體與中性點形成迴路,使三相同步電動機31能降載並持續運轉;惟此架構多採用三維電壓空間向量脈波寬度調變(3D VSVPWM)控制技術,此種控制方式複雜,大幅增加軟體編撰之複雜性與演算時間。There is also a four-arm three-phase inverter, the power circuit is as shown in the third figure; the neutral point n of the three-phase synchronous motor 31 is also taken out, supplemented by a plurality of single-arm dual powers of the four-arm three-phase inverter 37 Graded transistor Control, providing zero-phase current path caused by unbalanced load; when single-phase winding or one-arm power stage transistor fails, loop is formed by unbroken winding or power stage transistor and neutral point to synchronize three-phase The motor 31 can be loaded and continuously operated; however, the three-dimensional voltage space vector pulse width modulation (3D VSVPWM) control technology is often used in this architecture, and the control method is complicated, which greatly increases the complexity and calculation time of the software compilation.

此外,永磁式同步電動機於三相平衡運轉下,三相電流將會產生一穩定且固定方向之旋轉磁場,提供電動機平滑運轉之轉矩。但當單相繞組故障時,永磁式同步電動機將運作在不平衡之情形,其旋轉磁場受到零相序與負相序影響而產生週期性之畸變,使電動機有固定頻率之晃動。In addition, in the three-phase balanced operation of the permanent magnet synchronous motor, the three-phase current will generate a stable and fixed direction of the rotating magnetic field, providing the torque of the smooth running of the motor. However, when the single-phase winding fails, the permanent-magnet synchronous motor will operate in an unbalanced situation, and its rotating magnetic field is affected by the zero-phase sequence and the negative phase sequence to generate periodic distortion, so that the motor has a fixed frequency of shaking.

為此,有人提出變頻器架構採用可容錯變頻器為其電力電路,其控制策略改良自直接轉矩控制法;當單相繞組故障時,將斷開故障繞組之開關,並銜接上中性點之開關以構成迴路,再藉由回授之估測轉矩與直流鏈電流相互比較與調節,用以決定各臂輸出之開關切換信號。To this end, it has been proposed that the inverter architecture adopts a fault-tolerant inverter as its power circuit, and its control strategy is improved from the direct torque control method; when the single-phase winding fails, the switch of the fault winding is disconnected and connected to the neutral point. The switch constitutes a loop, and the estimated torque and the DC link current are compared and adjusted by the feedback to determine the switching signal of each arm output.

上述兩種方式皆有控制複雜之缺點,因此,電動機故障後控制仍為亟待解決的問題。Both of the above methods have the disadvantages of complicated control. Therefore, the control after the motor failure is still an urgent problem to be solved.

本發明的目的係為了提供一種同步電動機的驅動控制器,利用電流調節模組根據零軸電流命令調節零軸電流,以控制同步電動機的電樞電壓,使中性點的電流為零,以減少銅損之損耗,達到維持同步電動機運轉效率的效果;此外,驅動控制器藉由偵測電樞電流來判斷故障種類並根據不同的故障種類操作在不同的運轉策略,以維持故障後之電樞電流維持故障前的電樞電流,藉此,維持同步電動機的運轉速度穩定。The object of the present invention is to provide a driving controller for a synchronous motor, which uses a current regulating module to adjust a zero-axis current according to a zero-axis current command to control the armature voltage of the synchronous motor, so that the current at the neutral point is zero, thereby reducing The loss of copper loss achieves the effect of maintaining the operating efficiency of the synchronous motor; in addition, the drive controller determines the type of fault by detecting the armature current and operates in different operating strategies according to different fault types to maintain the armature after the fault. The current maintains the armature current before the failure, thereby maintaining the stable operation speed of the synchronous motor.

為了達成上述目的,本發明的一技術手段為一種驅動控制器,應用於同步電動機,同步電動機耦接於一電流回授電路及一轉速回授模組。驅動控制器包括一交直軸矩陣轉換模組、一轉速調節模組、一電流調節模組及一交直軸矩陣反轉換模組。其中交直軸矩陣轉換模組耦接於電流回授電路及轉速回授模組;轉速調節模組耦接於轉速回授模組;電流調節模組耦接於交直軸矩陣轉換模組及轉速調節模組;交直軸矩陣反轉換模組耦接於電流調節模組及一控制同步電動機之電動機驅動模組。In order to achieve the above object, a technical device of the present invention is a driving controller, which is applied to a synchronous motor, and the synchronous motor is coupled to a current feedback circuit and a rotational speed feedback module. The driving controller comprises a cross-axis matrix conversion module, a rotation speed adjustment module, a current adjustment module and an orthogonal-axis matrix inverse conversion module. The cross-axis matrix conversion module is coupled to the current feedback circuit and the speed feedback module; the speed adjustment module is coupled to the speed feedback module; the current adjustment module is coupled to the cross-axis matrix conversion module and the speed adjustment The module; the cross-axis matrix inverse conversion module is coupled to the current adjustment module and a motor drive module for controlling the synchronous motor.

上述的交直軸矩陣轉換模組用以接收同步電動機的一組電樞電流,並根據同步電動機的一轉子角位置估測將所述的電樞電流以一第一矩陣作座標軸轉換為一組交直軸電流及一零軸電流,其中所述的零軸電流與所述的電樞電流的總和成正比。The above-mentioned orthogonal axis matrix conversion module is configured to receive a set of armature currents of the synchronous motor, and convert the armature current into a set of intersections by using a first matrix as a coordinate axis according to a rotor angular position estimation of the synchronous motor. A shaft current and a zero-axis current, wherein the zero-axis current is proportional to the sum of the armature currents.

上述的轉速調節模組耦接於轉速回授模組,轉速調節模組用以將該轉速回授模組輸出的一轉速回授訊號與一轉速命令訊號的差值轉換為一組交直軸電流命令。The speed adjustment module is coupled to the speed feedback module, and the speed adjustment module is configured to convert the difference between a speed feedback signal and a speed command signal outputted by the speed feedback module into a set of orthogonal shaft currents. command.

上述的電流調節模組耦接於交直軸矩陣轉換模組及轉速調節模組,電流調節模組用以將交直軸電流回授訊號與交直軸電流命令訊號的差值轉換為一組交直軸電壓命令訊號,並將零軸電流回授訊號與一零軸電流命令的差值轉換為一零軸電壓命令訊號,其中零軸電流命令為零。The current adjustment module is coupled to the cross-axis matrix conversion module and the rotation speed adjustment module, and the current adjustment module is configured to convert the difference between the cross-axis current feedback signal and the cross-axis current command signal into a set of cross-axis voltages. The command signal converts the difference between the zero-axis current feedback signal and the zero-axis current command into a zero-axis voltage command signal, wherein the zero-axis current command is zero.

上述的交直軸矩陣反轉換模組用以將所述的交直軸電壓命令及零軸電壓命令以一第二矩陣作座標軸轉換為一組第一電壓命令,並輸出第一電壓命令至一電動機驅動模組,以控制同步電動的電樞電壓,使所述的電樞電流的總和維持零,其中所述的第二矩陣與第一矩陣互為反矩陣。The cross-axis matrix inverse conversion module is configured to convert the cross-axis voltage command and the zero-axis voltage command into a set of first voltage commands by using a second matrix as a coordinate axis, and output a first voltage command to a motor drive. And a module for controlling the synchronous electric armature voltage such that the sum of the armature currents is maintained at zero, wherein the second matrix and the first matrix are opposite to each other.

為了達成上述目的,本發明的另一技術手段為一種同步電動機之驅動控制方法,此方法的步驟包括:接收同步電動機的一組電樞電流;根據同步電動機的一轉子角位置估測將電樞電流經第一矩陣作座標軸轉換為一組交直軸電流及一零軸電流;根據同步電動機的一轉速回授與一轉速命令的比較結果產生一組交直軸電流命令;根據所述的交直軸電流與交直軸電流命令的比較結果產生一組交直軸電壓命令,並根據所述的零軸電流與一零軸電流命令的比較結果產生一零軸電壓命令;最後,將交直軸電壓命令及零軸電壓命令以第二矩陣作座標軸轉換為一組第一電壓命令,並輸出至一電動機驅動模組,電動機驅動模組根據第一電壓命令控制同步電動機的電樞電壓,使電樞電流的總和維持零。In order to achieve the above object, another technical means of the present invention is a driving control method for a synchronous motor, the method comprising the steps of: receiving a set of armature currents of the synchronous motor; estimating the armature according to a rotor angular position of the synchronous motor The current is converted into a set of straight-axis current and a zero-axis current through the first matrix as a coordinate axis; a set of cross-axis current commands are generated according to a comparison between a rotational speed feedback of the synchronous motor and a rotational speed command; The comparison with the cross-axis current command produces a set of cross-axis voltage commands and generates a zero-axis voltage command based on the comparison of the zero-axis current with a zero-axis current command; finally, the straight-axis voltage command and the zero-axis The voltage command is converted into a set of first voltage commands by using the second matrix as a coordinate axis, and is output to a motor driving module. The motor driving module controls the armature voltage of the synchronous motor according to the first voltage command, so that the sum of the armature currents is maintained. zero.

關於本發明之技術手段的詳細說明,請參閱以下的實施方式,並配合所附圖式一併參照。For a detailed description of the technical means of the present invention, refer to the following embodiments, and refer to the accompanying drawings.

為了清楚地說明本發明的操作原理以及其所能達到的功效,以下將舉一較佳的實施例作為說明。In order to clearly illustrate the principles of operation of the present invention and the achievable efficiencies thereof, a preferred embodiment will be described below.

請參考第四圖,為本發明所提供的一種同步電動機控制系統的一實施例之方塊圖,如第四圖所示,同步電動機控制系統400包括一驅動控制器410、一轉速回授模組430、一電流回授電路450及一電動機驅動模組470。其中轉速回授模組430及電流回授電路450分別耦接於同步電動機61,驅動控制器410耦接於轉速回授模組430、電流回授電路450及電動機驅動模組470,電動機驅動模組470耦接於同步電動機61。經由上述連接關係形成一閉迴路控制系統。Please refer to the fourth figure, which is a block diagram of an embodiment of a synchronous motor control system according to the present invention. As shown in the fourth figure, the synchronous motor control system 400 includes a drive controller 410 and a rotational speed feedback module. 430, a current feedback circuit 450 and a motor drive module 470. The speed feedback module 430 and the current feedback circuit 450 are respectively coupled to the synchronous motor 61. The drive controller 410 is coupled to the speed feedback module 430, the current feedback circuit 450, and the motor drive module 470. Group 470 is coupled to synchronous motor 61. A closed loop control system is formed via the above connection relationship.

轉速回授模組430用以偵測同步電動機61的轉速,並根據偵測結果輸出一轉速回授及一轉子位置估測訊號,其中轉子位置估測訊號與轉子角位置估測對應;電流回授電路450用以偵測同步電動機61的電樞電流,並根據偵測結果輸出一組電樞電流。The rotational speed feedback module 430 is configured to detect the rotational speed of the synchronous motor 61, and output a rotational speed feedback and a rotor position estimation signal according to the detection result, wherein the rotor position estimation signal corresponds to the rotor angular position estimation; The circuit 450 is configured to detect the armature current of the synchronous motor 61 and output a set of armature currents according to the detection result.

驅動控制器410包括一交直軸矩陣轉換模組413、一轉速調節模組411,一電流調節模組415、一交直軸矩陣反轉換模組419,其中交直軸矩陣轉換模組413耦接於電流回授電路450,轉速調節模組411耦接於轉速回授模組430,電流調節模組415耦接於轉速調節模組411及交直軸矩陣轉換模組413,交直軸矩陣反轉換模組419耦接於電流調節模組415及電動機驅動模組470。The drive controller 410 includes an AC-DC matrix conversion module 413, a rotation speed adjustment module 411, a current adjustment module 415, and an AC-DC matrix inverse conversion module 419. The AC-axis matrix conversion module 413 is coupled to the current. The feedback circuit 450 is coupled to the rotational speed feedback module 430. The current adjustment module 415 is coupled to the rotational speed adjustment module 411 and the orthogonal axis matrix conversion module 413, and the orthogonal axis matrix inverse conversion module 419. The current adjustment module 415 and the motor drive module 470 are coupled to each other.

交直軸矩陣轉換模組413用以根據轉子角位置估測將所述的電流回授作座標轉換後,產生一組交直軸電流及一零軸電流;轉速調節模組411用以根據所述的轉速回授訊號與一預設的轉速命令訊號產生一組交直軸電流命令。The cross-axis matrix conversion module 413 is configured to generate a set of cross-axis current and a zero-axis current after the current feedback is converted as a coordinate according to the rotor angular position estimation; the rotation speed adjustment module 411 is configured to The speed feedback signal and a preset speed command signal generate a set of cross-axis current commands.

電流調節模組415用以根據所述的交直軸電流回授與所述的交直軸電流命令產生一組交直軸電壓命令;驅動控制器410用以根據零軸電流回授與一預設的零軸電流命令訊號輸出一零軸電壓命令訊號。The current adjustment module 415 is configured to generate a set of cross-axis voltage commands according to the cross-axis current feedback and the cross-axis current command; and the driving controller 410 is configured to return a preset zero according to the zero-axis current. The axis current command signal outputs a zero axis voltage command signal.

交直軸矩陣反轉換模組419用以根據所述的交直軸電壓命令訊號及所述的零軸電壓命令訊號作座標轉換後,產生一組第一電壓命令訊號,並輸出所述的第一電壓命令至電動機驅動模組470;電動機驅動模組470用以根據第一電壓命令控制同步電動機61的電樞電壓,使電樞電流總和為零,藉此減少銅損之損耗,以維持同步電動機61的運轉效率。The cross-axis matrix inverse conversion module 419 is configured to generate a set of first voltage command signals according to the coordinate voltage command signal and the zero-axis voltage command signal, and output the first voltage. The motor drive module 470 is configured to control the armature voltage of the synchronous motor 61 according to the first voltage command, so that the total armature current is zero, thereby reducing the loss of copper loss to maintain the synchronous motor 61. Operational efficiency.

接著,請參考第五A圖,為本發明所提供的一種電動機控制系統的一實施例之控制方塊圖。第五A圖顯示了電動機控制系統500所包括的各模組以及其利用的運算函數,其中轉速回授模組530包括一轉速回授電路531及一轉速估測及磁極位置偵測電路533;電動機驅動模組570包括一脈寬調變控制單元573及一變頻單元571。Next, please refer to FIG. 5A, which is a control block diagram of an embodiment of a motor control system provided by the present invention. 5A shows the modules included in the motor control system 500 and the operational functions utilized therein, wherein the rotational feedback module 530 includes a rotational feedback circuit 531 and a rotational speed estimation and magnetic pole position detecting circuit 533; The motor drive module 570 includes a pulse width modulation control unit 573 and a frequency conversion unit 571.

同步電動機61可為一三相或六相永磁式同步電動機,在本實施例中舉六相永磁式同步電動機為例,如第五B圖所示,為同步電動機61之Y接線等效電路圖包括兩組三相繞組,分別為abc相繞組611及xyz相繞組613,其各具有一中性點n 1n 2 ,且兩組三相繞組彼此相差30度之電機角,而兩組繞組中的每一相電流相差120度之相位。The synchronous motor 61 can be a three-phase or six-phase permanent magnet synchronous motor. In the embodiment, a six-phase permanent magnet synchronous motor is taken as an example. As shown in FIG. 5B, the Y wiring equivalent of the synchronous motor 61 is used. The circuit diagram includes two sets of three-phase windings, respectively abc phase winding 611 and xyz phase winding 613, each having a neutral point n 1 , n 2 , and two sets of three-phase windings differing from each other by a motor angle of 30 degrees, and two groups Each phase current in the winding differs by a phase of 120 degrees.

變頻單元571與同步電動機61的電路連接關係可如第五C圖所示。變頻單元571具有二十四個功率開關,利用十二臂以單極雙臂式連接同步電動機61,同步電動機61與變頻單元571可視為六個單相全橋式變頻器。其中,R s L s 分別為同步電動機61的等效定子側電阻及電感,e a e b e c e x e y e z 分別為反電動勢電壓。The circuit connection relationship between the inverter unit 571 and the synchronous motor 61 can be as shown in the fifth C diagram. The frequency conversion unit 571 has twenty-four power switches, and the synchronous motor 61 is connected by a single-pole double-arm type using twelve arms. The synchronous motor 61 and the frequency conversion unit 571 can be regarded as six single-phase full-bridge inverters. Where R s and L s are the equivalent stator side resistances and inductances of the synchronous motor 61, respectively, and e a , e b , e c , e x , e y , and e z are respectively back electromotive voltages.

由於本發明所選用的電動機驅動模組570採獨立控制同步電動機61中的每一相繞組,兩組三相繞組的中性點n 1n 2 分離,使同步電動機61故障後電流及諧波成分無法耦合於中性點n 1n 2 ,亦即中性點電流i n1i n 2 不為零。以下將說明本發明如何平衡中性點電流i n1i n 2 ,以提高同步電動機61的運轉性能。Due to the choice of a motor driving module 570 according to the present invention, taken independently controls each of the phase windings of the synchronous motor 61, the neutral point of the two three-phase windings n 1, n 2 separation, the synchronous motor 61 after the fault current and harmonic The components cannot be coupled to the neutral points n 1 , n 2 , that is, the neutral point currents i n1 , i n 2 are not zero. How the present invention balances the neutral point currents i n1 , i n 2 to improve the operational performance of the synchronous motor 61 will be described below.

舉例來說,同步電動機61中的a相繞組61a及連接其兩臂的變頻單元571a之等效電路圖如第五D圖所示。變頻單元571a的左臂開關訊號S a 1 與右臂開關訊號S a 2 使得a相繞組61a的電壓v a 可以產生v dc 、-v dc 、0,使用這三種電壓組合產生電壓命令For example, an equivalent circuit diagram of the a-phase winding 61a in the synchronous motor 61 and the inverter unit 571a connecting the both arms thereof is as shown in FIG. 5D. The left arm switching signal S a 1 and the right arm switching signal S a 2 of the frequency conversion unit 571a enable the voltage v a of the a-phase winding 61 a to generate v dc , - v dc , 0, and use these three voltage combinations to generate a voltage command. .

請參考第五E圖,為本發明所提供的一種同步電動機控制系統的脈寬調變控制單元的一實施例之方塊圖。脈寬調變控制單元573a用以控制左臂開關訊號S a 1 與右臂開關訊號S a 2 的責任週期。脈寬調變控制單元573a可為一單極性正弦脈寬調變控制單元,包括一數位訊號處理單元(digital signal processor,DSP)5731及一複合型可程式邏輯元件(complex programmable logic device,CPLD)5733,數位訊號處理單元5731根據電壓命令輸出脈寬調變訊號PWM1、PWM2及通用輸出入埠訊號GPIO至複合型可程式邏輯元件5731,以控制複合型可程式邏輯元件5733的輸出電壓的責任週期及高低。在一實施例中,複合型可程式邏輯元件5733所包含的邏輯閘之方塊圖如第五F圖所示,舉例來說,當電壓命令大於零時,藉由通用輸出入埠訊號GPIO控制複合型可程式邏輯元件5733的路徑將右臂開關訊號S a 2 低電位。Please refer to FIG. 5E, which is a block diagram of an embodiment of a pulse width modulation control unit of a synchronous motor control system according to the present invention. PWM control unit 573a for controlling the switch signal of the left arm right arm switch signal S a S a duty cycle of 1 and 2. The pulse width modulation control unit 573a can be a unipolar sinusoidal pulse width modulation control unit, including a digital signal processor (DSP) 5731 and a complex programmable logic device (CPLD). 5733, the digital signal processing unit 5731 is based on a voltage command The pulse width modulation signals PWM1, PWM2 and the general-purpose output signal GPIO to the composite programmable logic element 5731 are output to control the duty cycle and the level of the output voltage of the composite programmable logic element 5733. In an embodiment, the block diagram of the logic gate included in the composite programmable logic element 5733 is as shown in the fifth F diagram, for example, when the voltage command Is greater than zero, by a general purpose output port into a control signal GPIO complex programmable logic element 5733 switches the path of the right arm signal S a 2 low.

請再次參考第五A圖,轉速回授電路531偵測同步電動機61的轉子轉速,並根據偵測結果產生反電動勢電壓e af e bf e cf ,轉速估測及磁極位置偵測電路533根據反電動勢電壓e af e bf e cf 產生一轉速回授w m 及一轉子角位置估測Referring again to FIG. 5A, the speed feedback circuit 531 detects the rotor speed of the synchronous motor 61, and generates a counter electromotive voltage e af , e bf , e cf according to the detection result, and the rotational speed estimation and magnetic pole position detecting circuit 533 According to the counter electromotive voltages e af , e bf , e cf , a rotational speed feedback w m and a rotor angular position estimation are generated. .

驅動控制器510將轉速回授訊號w m 與預設之轉速命令作比較運算得到轉速誤差值Δw ,轉速調節模組511根據轉速誤差值Δw 輸出一組交直軸電流命令。其中分別為a相及x相的交軸電流命令,分別為a相及x相的直軸電流命令。為了簡化圖示與計算,令直軸電流命令The drive controller 510 sends the speed feedback signal w m and the preset speed command The comparison operation obtains the rotational speed error value Δ w , and the rotational speed adjustment module 511 outputs a set of orthogonal linear current commands according to the rotational speed error value Δ w . among them The cross-axis current commands for phase a and phase x, respectively. They are the direct current commands of phase a and phase x, respectively. In order to simplify the illustration and calculation, the straight axis current command .

在本實施例中,轉速調節模組511包括一轉速運算單元5111及一第一轉矩運算單元5113,轉速運算單元5111以一轉速調節函數G s 將轉速誤差值Δw 轉換為一轉矩命令訊號。第一轉矩運算單元5113以一轉矩運算函數將轉矩命令轉換為一組交直軸電流命令。其中K T 為轉矩常數,如式(1)所示。In this embodiment, the rotational speed adjustment module 511 includes a rotational speed computing unit 5111 and a first torque computing unit 5113. The rotational speed computing unit 5111 converts the rotational speed error value Δ w into a torque command by a rotational speed adjustment function G s . Signal . The first torque operation unit 5113 uses a torque operation function Torque command Convert to a set of cross-axis current commands . Where K T is the torque constant as shown in equation (1).

其中N p 為同步電動機61的極數,λ' m 為等效至定子側的轉子磁通量。Where N p is the number of poles of the synchronous motor 61, and λ' m is equivalent to the rotor flux on the stator side.

電流回授電路550用以偵測同步電動機61的電樞電流,並根據偵測結果輸出一組電樞電流i a i b i c i x i y i z 。在本實施例中,電流回授電路550可包括一電流偵測電路及類比轉數位轉換單元。The current feedback circuit 550 is configured to detect the armature current of the synchronous motor 61, and output a set of armature currents i a , i b , i c , i x , i y , i z according to the detection result. In this embodiment, the current feedback circuit 550 can include a current detecting circuit and an analog-to-digital conversion unit.

由於,同步電動機61的六相座標系統之數學模式具有時變性,為了簡化分析,將六相時變物理量投影至同步旋轉座標系統,座標系統如第五G圖所示,同步旋轉座標系統700包括交軸q-axis與直軸d-axis,交軸q-axis與直軸d-axis相差90度,θ r 為同步電動機61的轉子角位置。Since the mathematical mode of the six-phase coordinate system of the synchronous motor 61 is time-varying, in order to simplify the analysis, the six-phase time-varying physical quantity is projected to the synchronous rotary coordinate system, and the coordinate system is as shown in the fifth G diagram, and the synchronous rotary coordinate system 700 includes The quadrature axis q-axis and the straight axis d-axis, the quadrature axis q-axis and the straight axis d-axis are 90 degrees apart, and θ r is the rotor angular position of the synchronous motor 61.

由於abc相繞組及xyz相繞組相差30度電機角,交直軸矩陣轉換模組513以一abc相轉換矩陣函數T qdoa 及一xyz相轉換矩陣函數T qdox 分別對電樞電流回授訊號i a i b i c i x i y i z 作座標軸轉換,abc相轉換矩陣函數T qdoa 位移30度即可得到xyz相轉換矩陣函數T qdox 。abc相轉換矩陣函數T qdoa 如式(2)所示。Since the abc phase winding and the xyz phase winding are different from each other by a 30 degree motor angle, the orthogonal axis matrix conversion module 513 respectively supplies the armature current feedback signal i a with an abc phase conversion matrix function T qdoa and an xyz phase conversion matrix function T qdox . i b , i c , i x , i y , i z are coordinate axis transformation, and the abc phase conversion matrix function T qdoa is shifted by 30 degrees to obtain the xyz phase transformation matrix function T qdox . The abc phase conversion matrix function T qdoa is as shown in equation (2).

交直軸矩陣轉換模組513根據轉子角位置估測將電樞電流i a i b i c i x i y i z 以轉換矩陣函數T qd0x T qd0a 轉換為一組交直軸電流i qa i da i qx i dx 及一組零軸電流i 0 a i 0 x 。其關係如式(3)、(4)所示。其中i qa i qx 分別為a相及x相的交軸電流,i da i dx 分別為a相及x相的直軸電流,i 0 a i 0 x 分別為a相及x相的零軸電流。The orthogonal axis matrix conversion module 513 estimates the rotor angular position The armature currents i a , i b , i c , i x , i y , i z are converted into a set of orthogonal axis currents i qa , i da , i qx , i dx and one by a transformation matrix function T qd0x , T qd0a Group zero axis currents i 0 a , i 0 x . The relationship is as shown in equations (3) and (4). Where i qa and i qx are the intersection currents of the a-phase and the x-phase, respectively, i da and i dx are the direct-axis currents of the a-phase and the x-phase, respectively, and i 0 a and i 0 x are the a-phase and the x-phase, respectively. Zero axis current.

驅動控制器510將所述的交直軸電流i qa i da i qx i dx 與所述的交直軸電流命令作比較運算得到電流誤差值Δi qa 、Δi da 、Δi qx 、Δi dx ,並將所述的零軸電流i 0 a i 0 x 與一組預設之零軸電流命令作比較運算後得到電流誤差值Δi 0 a 、Δi 0 x 。其中,預設之零軸電流命令為零,即為零。其關係可表示如式(5)至式(10)。The drive controller 510 and the intersecting-axis currents i qa , i da , i qx , i dx and the intersecting-axis current command Performing a comparison operation to obtain current error values Δ i qa , Δ i da , Δ i qx , Δ i dx , and the zero-axis currents i 0 a , i 0 x and a set of preset zero-axis current commands After the comparison operation to obtain a current error value Δ i 0 a, Δ i 0 x. Among them, the preset zero-axis current command Zero, ie Zero. The relationship can be expressed as in the formulas (5) to (10).

電流調節模組515包括交直軸電流調節單元515a、515x及零軸電流調節單元515a0 、515x0 。其中,交直軸電流調節單元515a將電流誤差值Δi qa 、Δi da 分別以交軸電流調節函數G qa 及直軸電流調節函數G da 運算後得到交直軸調節電壓命令。交直軸電流調節單元515x將電流誤差值Δi qx 、Δi dx 分別以交軸電流調節函數G q x 及一直軸電流調節函數G dx 運算後得到交直軸調節電壓命令。零軸電流調節單元515a0 將電流誤差值Δi 0 a 經過零軸電流調節函數G 0 a 運算後得到零軸調節電壓命令。零軸電流調節單元515x0 將電流誤差值Δi 0 x 經過零軸電流調節函數G 0 x 運算後得到零軸調節電壓命令。在本實施例中,電流調節函數G qa G da G qx G dx G 0 a G 0 x 可採用比例-積分控制函數,函數表示如式(11)至式(16)。The current regulation module 515 includes cross-axis current adjustment units 515a, 515x and zero-axis current adjustment units 515a 0 , 515x 0 . The cross-axis current adjustment unit 515a calculates the current error values Δ i qa and Δ i da by the cross-axis current adjustment function G qa and the linear-axis current adjustment function G da , respectively, to obtain a cross-axis adjustment voltage command. . The cross-axis current adjustment unit 515x calculates the current error values Δ i qx and Δ i dx by the cross-axis current adjustment function G q x and the constant-axis current adjustment function G dx , respectively, to obtain an orthogonal-axis adjustment voltage command. . The zero-axis current adjustment unit 515a 0 obtains the zero-axis adjustment voltage command after the current error value Δ i 0 a is calculated by the zero-axis current adjustment function G 0 a . The zero-axis current adjustment unit 515x 0 obtains the zero-axis adjustment voltage command after the current error value Δ i 0 x is calculated by the zero-axis current adjustment function G 0 x . In the present embodiment, the current adjustment functions G qa , G da , G qx , G dx , G 0 a , G 0 x may employ a proportional-integral control function, and the functions are expressed as equations (11) to (16).

其中,k pqa k pda k pqx k pdx k p 0 a k p 0 x 為比例控制增益,k iqa k ida k iqx k idx k i 0 a k i 0 x 為積分控制增益。S為積分運算函數。Where k pqa , k pda , k pqx , k pdx , k p 0 a , k p 0 x are proportional control gains, k iqa , k ida , k iqx , k idx , k i 0 a , k i 0 x Integral control gain. S is an integral operation function.

電壓補償模組517包括一abc相電壓補償單元517a及一xyz相電壓補償單元517x,其中,abc相電壓補償單元517a將交直軸調節電壓命令經過運算後得到交直軸電壓命令,xyz相電壓補償單元517x將交直軸調節電壓命令經過運算後得到交直軸電壓命令。其關係表示如式(17)至式(20)所示。The voltage compensation module 517 includes an abc phase voltage compensation unit 517a and an xyz phase voltage compensation unit 517x, wherein the abc phase voltage compensation unit 517a will adjust the voltage command to the orthogonal axis. After the operation, the straight-axis voltage command is obtained. , xyz phase voltage compensation unit 517x will adjust the voltage command to the straight axis After the operation, the straight-axis voltage command is obtained. . The relationship is expressed as shown in the equations (17) to (20).

其中,w r 為同步電動機61的同步角速度,L daa L qaa L dxx L qxx 為同步旋轉座標系統下的交直軸互感。零軸調節電壓命令等於零軸電壓命令,即Wherein, w r is the synchronization of the angular velocity of the synchronous motor 61, L daa, L qaa, L dxx, L qxx mutual inductance of the direct axis in the cross-synchronous rotation coordinate system. Zero axis adjustment voltage command Equal to the zero-axis voltage command, ie .

交直軸矩陣反轉換模組519根據轉子角位置估測以一abc相反轉換矩陣函數及一xyz相反轉換矩陣函數將交直軸電壓命令及零軸電壓命令 轉換為電壓命令。其中The orthogonal axis matrix inverse conversion module 519 estimates the rotor angular position Conversion matrix function with an abc inverse And an xyz inverse conversion matrix function Straight axis voltage command And zero axis voltage commands Convert to voltage command . among them , .

驅動控制器510將電壓命令輸出至脈寬調變控制單元573,脈寬調變控制單元573根據電壓命令控制變頻單元571中開關電晶體的開關週期。藉此,控制同步電動機61的電樞電壓,以維持同步電動機61的零軸電流為零,即中性點n 1n 2 的電流i n 1i n 2 為零。Drive controller 510 will voltage command Output to pulse width modulation control unit 573, pulse width modulation control unit 573 according to voltage command The switching period of the switching transistor in the inverter unit 571 is controlled. Thereby, the armature voltage of the synchronous motor 61 is controlled to maintain the zero-axis current of the synchronous motor 61 to zero, that is, the currents i n 1 , i n 2 of the neutral points n 1 and n 2 are zero.

接著,考慮同步電動機61的故障判斷與故障後控制策略。請參考第六A圖,為本發明的一種故障控制模組之一實施例之方塊圖。如第五A圖所示,故障控制模組660包括一電流偵測單元661及一故障判斷單元663。其中電流偵測單元661將同步電動機61的一組電樞電流i a i b i c i x i y i z 作取樣計算,也就是在一偵測時間T s 下,偵測n次電樞電流i a i b i c i x i y i z ,並將每次所偵測到的電樞電流i a i b i c i x i y i z 積分後得到一組偵測電流 ,其關係表示如式(21)至式(26)。Next, the failure judgment and the post-fault control strategy of the synchronous motor 61 are considered. Please refer to FIG. 6A, which is a block diagram of an embodiment of a fault control module of the present invention. As shown in FIG. 5A, the fault control module 660 includes a current detecting unit 661 and a fault determining unit 663. The current detecting unit 661 performs sampling calculation on a set of armature currents i a , i b , i c , i x , i y , i z of the synchronous motor 61, that is, at a detecting time T s , detecting n times of armature currents i a , i b , i c , i x , i y , i z , and the armature currents i a , i b , i c , i x , i y , A set of detection currents is obtained after i z integration , the relationship is expressed as equations (21) to (26).

其中,t 2 -t 1 =nT s ,故障判斷單元663根據所述的偵測電流來判斷同步電動機61是否正常運轉。當所述的偵測電流 的值皆不為零時,同步電動機61操作在正常狀態。當所述的電流偵測訊號 的其中一個為零時,則表示同步電動機61或變頻單元151發生斷線,故障判斷單元663以一故障判斷因子k j 來判斷abc相繞組及xyz相繞組的故障狀態,故障判斷因子k j 可表示如式(27)。Where t 2 - t 1 = nT s , the fault judging unit 663 is based on the detected current It is judged whether or not the synchronous motor 61 is operating normally. When the detected current When the values are not zero, the synchronous motor 61 operates in a normal state. When the current detection signal Wherein when a is zero, the synchronous motor 61 or the inverter unit 151 is disconnected, the fault determination unit 663 determines a failure factor to a k j to determine a fault condition abc and xyz-phase winding phase windings, failure judgment factor k j may be Expressed as in equation (27).

其中,j =a ,b ,c ,x ,y ,z。故障判斷單元663根據故障判斷因子k j 的值來判斷abc相繞組及xyz相繞組的故障狀態,如表1所示。Where j = a , b , c , x , y , z. The fault judging unit 663 judges the fault state of the abc phase winding and the xyz phase winding according to the value of the fault judging factor k j , as shown in Table 1.

故障判斷單元663並依故障判斷因子k j 的各種組合將故障種類分為五大類,若在此五大類以外的故障種類,則同步電動機61無法運轉。故障判斷單元663再依不同故障種類輸出運轉策略訊號,運轉策略訊號與故障後的控制策略有關,故障後的控制策略與故障種類的關係如表2所示。The failure judging unit 663 classifies the fault types into five categories according to various combinations of the fault judging factors k j . If the fault types other than the five categories are, the synchronous motor 61 cannot operate. The fault judging unit 663 further outputs the operation strategy signal according to different fault types, and the operation strategy signal is related to the control strategy after the fault, and the relationship between the control strategy and the fault type after the fault is as shown in Table 2.

請參考第六B圖,為本發明的同步電動機故障後與故障前的電樞電流的一實施例之向量關係圖。如第六B圖所示,舉例來說,當a相繞組61a或a相的變頻單元571a發生故障時,由於故障後的同步電動機61為了使abc相繞組中的各相電樞電流i b i c 獨立控制,使得未故障的兩相電樞電流i b i c 相差60度電機角,則故障後的電樞電流會比故障前的電樞電流i b i c 領先或落後30度電機角,且峰值會變為故障前的倍,以維持原輸出功率。然而,故障後的電樞電流將會超出額定電流的倍,可能會使未故障的b、c相繞組燒毀。因此,需要調整電流命令訊號使故障後的電樞電流維持故障前的電樞電流i b i c Please refer to FIG. 6B, which is a vector diagram of an embodiment of the armature current after the failure of the synchronous motor and the fault before the fault of the present invention. As shown in FIG. 6B, for example, when the frequency conversion unit 571a of the a-phase winding 61a or the a phase fails, since the synchronous motor 61 after the failure makes the armature current i b of each phase in the abc phase winding, i c independent control, so that the two-phase armature currents i b and i c that are not faulted are different by 60 degrees motor angle, then the armature current after the fault It will lead or fall behind the 30 degree motor angle than the armature currents i b and i c before the fault, and the peak will become the fault before the fault. Double to maintain the original output power. However, the armature current after the fault Will exceed the rated current Times may cause the unbroken b and c phase windings to burn out. Therefore, it is necessary to adjust the current command signal to make the armature current after the fault. Maintaining armature current before the fault i b, i c.

請參考第六C圖,為本發明的同步電動機故障後的驅動控制器的一實施例之方塊圖。如第六C圖所示,當abc相繞組發生單相斷線故障且xyz相繞組正常運轉時,例如a相繞組61a發生故障時,則驅動控制器610將未故障的b相繞組及c相繞組切換成由轉速調節模組611及電流調節模組615控制,以調整故障後的電流命令,而未故障的xyz相繞組能由前述驅動控制器510控制。Please refer to FIG. 6C, which is a block diagram of an embodiment of a drive controller after a synchronous motor failure of the present invention. As shown in FIG. C, when a single-phase disconnection fault occurs in the abc phase winding and the xyz phase winding is normally operated, for example, when the a-phase winding 61a fails, the drive controller 610 turns the unfaulted b-phase winding and the c-phase. The windings are switched to be controlled by the speed regulation module 611 and the current regulation module 615 to adjust the current command after the fault, and the unfaulted xyz phase windings can be controlled by the aforementioned drive controller 510.

在本實施例中,轉速調節模組611及電流調節模組615僅在固障後執行控制,實際實施時,轉速調節模組611可與轉速調節模組511整合在同一模組裡。電流調節模組615可與電流調節模組515整合在同一模組裡。In this embodiment, the speed adjustment module 611 and the current adjustment module 615 perform control only after the barrier is fixed. In actual implementation, the speed adjustment module 611 can be integrated with the speed adjustment module 511 in the same module. The current regulation module 615 can be integrated in the same module as the current regulation module 515.

轉速調節模組611包括轉速運算單元6111及第二轉矩運算單元6113,其中,第一轉矩運算單元5113與第二轉矩運算單元6113皆耦接於轉速運算單元6111。轉速運算單元6111以轉速調節函數G s 將轉速誤差值Δw 轉換為一故障後轉矩命令訊號,故障後轉矩命令訊號如式(28)所示。The rotational speed adjustment module 611 includes a rotational speed computing unit 6111 and a second torque computing unit 6113. The first torque computing unit 5113 and the second torque computing unit 6113 are both coupled to the rotational speed computing unit 6111. The rotational speed computing unit 6111 converts the rotational speed error value Δ w into a post-fault torque command signal by the rotational speed adjustment function G s , after the fault torque command signal As shown in equation (28).

其中,N p 為同步電動機61的極數,為同步電動機61的轉子磁通鏈,為電流峰值命令。而未故障之xyz相繞組的轉矩命令如式(29)所示。Where N p is the number of poles of the synchronous motor 61, To synchronize the rotor flux linkage of the motor 61, For current peak command. Torque command for the unbroken xyz phase winding As shown in equation (29).

實際實施時,轉速調節模組611根據故障後的控制策略將故障後轉矩命令切換輸出至第二轉矩運算單元6113,而將未故障的轉矩命令輸出至第一轉矩運算單元5113。其中,第二轉矩運算單元6113以一轉矩運算函數將故障後轉矩命令訊號轉換為一電流峰值命令,轉矩常數K ' T K T 如式(30)、(31)所示。In actual implementation, the speed adjustment module 611 sets the fault torque command according to the control strategy after the fault. Switching the output to the second torque computing unit 6113, and the unbroken torque command The output is output to the first torque operation unit 5113. Wherein, the second torque computing unit 6113 uses a torque operation function Torque command signal after failure Convert to a current peak command The torque constants K ' T and K T are as shown in equations (30) and (31).

驅動控制器610更包括一b相電流命令控制單元612b及c相電流命令控制單元612c,b相電流命令控制單元612b及c相電流命令控制單元612c分別以運算函數cos(θ r -150 o )及cos(θ r +150 o )將電流峰值命令運算後,得到故障後電流命令The drive controller 610 further includes a b-phase current command control unit 612b and a c-phase current command control unit 612c, and the b-phase current command control unit 612b and the c-phase current command control unit 612c respectively use an operation function cos(θ r -150 o ) And cos(θ r +150 o ) will current peak command After the operation, the current command after the fault is obtained. .

電流調節模組615包括一b相電流調節單元615b及一c相電流調節單元615c。驅動控制器610將故障後電流命令與故障後的電樞電流作比較運算後得到故障後電流誤差值,b相電流調節單元615b及一c相電流調節單元615c分別以電流調節函數G b G c 將電流誤差值轉換為故障後調節電壓命令The current regulation module 615 includes a b-phase current adjustment unit 615b and a c-phase current adjustment unit 615c. Drive controller 610 will fault current command Armature current after failure After the comparison operation, the current error value after the fault is obtained. , the b-phase current adjustment unit 615b and the c-phase current adjustment unit 615c respectively use the current adjustment functions G b , G c to calculate the current error value Convert to fault after adjusting voltage command and .

電流調節函數G b G c 分別為b相電流調節函數及c向電流調節函數,電流調節函數G b G c 皆採用比例-積分控制函數,其函數表示如式(32)所示。The current adjustment functions G b and G c are a b-phase current adjustment function and a c-direction current adjustment function, respectively, and the current adjustment functions G b and G c all adopt a proportional-integral control function, and the function is expressed as shown in the equation (32).

其中k pk k ik 分別為abc相繞組的電流調節比例控制增益集積分控制增益,S為積分運算函數。Where k pk and k ik are respectively the current regulation proportional control gain set integral control gain of the abc phase winding, and S is an integral operation function.

驅動控制器610還包括電動勢估測單元618b、618c,電動勢估測單元618b、618c將故障後調節電壓命令經補償運算後得到故障後電壓命令。其中故障後電壓命令訊號與故障後調節電壓命令訊號的關係表示為式(33)、(34)。The drive controller 610 further includes an electromotive force estimating unit 618b, 618c, and the electromotive force estimating unit 618b, 618c adjusts the voltage command after the fault After the compensation operation, the voltage command after the fault is obtained. . Voltage command signal after fault Adjust voltage command signal after failure The relationship is expressed by equations (33) and (34).

其中分別為應電勢估測值,藉由電動勢估測單元618b、618c估測同度電動機2的反電動勢e b e c 得到,應電勢估測值可經由轉速回授估測值及為同步電動機61的轉子磁通鏈計算得到。among them Respectively shall estimate the potential, by the electromotive force estimation unit 618b, 618c with the estimate of the motor back electromotive force e b 2 a, e c obtained should estimate the potential Estimated value via speed feedback And the rotor flux linkage of the synchronous motor 61 Calculated.

上述僅舉a相繞組61a故障來說明,熟悉該項技藝領域者應可以推得其他故障狀態的控制。經由上述推算,可得到不同的故障狀態下的故障後電流命令 ,以及不同故障狀態下的故障後電壓命令 。其關係整理如表3所示。The above description only shows the failure of the a-phase winding 61a, and those skilled in the art should be able to push the control of other fault states. Through the above calculation, the fault current command can be obtained under different fault conditions. And voltage commands after failure in different fault conditions . The relationship is organized as shown in Table 3.

若令abc相繞組輸出功率為P abc ,xyz相繞組輸出功率為P xyz ,則abc相繞組和xyz相繞組整體輸出功率P total 如式(35)所示。If the output power of the abc phase winding is P abc and the output power of the xyz phase winding is P xyz , the overall output power P total of the abc phase winding and the xyz phase winding is as shown in equation (35).

P total =P abc +P xyz  (35) P total = P abc + P xyz (35)

在正常運轉下,abc相繞組輸出功率及xyz相繞組輸出功率平均分擔整體輸出功率,P abc P xyz 可分別表示如式(36)及(37)。Under normal operation, the output power of the abc phase winding and the output power of the xyz phase winding share the overall output power equally, and P abc and P xyz can be expressed as equations (36) and (37), respectively.

當abc相繞組發生單相斷線故障後,xyz相繞組正常,若要使故障後電流維持故障前之電樞電流大小,需使abc相繞組輸出功率P abc 變為原來之倍,如式(38)及(39)所示。When the single-phase disconnection fault occurs in the abc phase winding, the xyz phase winding is normal. If the current after the fault is maintained, the abc phase winding output power P abc needs to be changed to the original. Times, as shown in equations (38) and (39).

此時故障後之二相對三相運轉整體輸出功率如式(40)所示。At this time, the second output of the fault is the relative output power of the three-phase operation. As shown in formula (40).

由式(40)可知,發生abc相繞組發生單相斷線故障或xyz相繞組發生單相斷線故障後之整體輸出功率下降,變為未故障時之整體輸出功率P total 的0.7887倍。當abc相繞組發生單相斷線故障後及xyz相繞組發生單相斷線,若要使故障後的電樞電流維持故障前之電樞電流i a i b i c i x i y i z 大小,則需使abc相繞組和xyz相繞組輸出功率P abc P xyz 變為原來之倍,如式(41)及式(42)所示。It can be known from equation (40) that the overall output power of the abc phase winding occurs after a single-phase disconnection fault or a single-phase disconnection fault occurs in the xyz phase winding. When it falls, it becomes 0.7887 times of the total output power P total at the time of failure. When a single-phase disconnection fault occurs in the abc phase winding and a single-phase disconnection occurs in the xyz phase winding, if the armature current after the fault is to be made To maintain the armature currents i a , i b , i c , i x , i y , i z before the fault, the output powers P abc and P xyz of the abc phase winding and the xyz phase winding must be changed to the original Times, as shown in equations (41) and (42).

故障後之二相對二相運轉整體輸出功率如式(43)所示。The second output of the two-phase operation As shown in equation (43).

由式(43)可知,發生abc相繞組發生單相斷線故障及xyz相繞組發生單相斷線故障後之整體輸出功率變為未故障的整體輸出功率P total 的0.57735倍。It can be known from equation (43) that the single-phase disconnection fault occurs in the abc phase winding and the overall output power after the single-phase disconnection fault occurs in the xyz phase winding. 0.57735 times becomes not failed overall output power of P total.

綜合上述,已說明了本發明所提供的同步電動機控制系統所使用的驅動控制器的技術手段,採用零軸電流調節單元控制零軸電流為零,以減少銅損。並利用驅動控制器判斷故障種類以及依據不同故障種類執行不同的故障後控制,達到穩定轉速及安全運轉的效果。In summary, the technical means of the drive controller used in the synchronous motor control system provided by the present invention has been described, and the zero-axis current adjustment unit is used to control the zero-axis current to zero to reduce copper loss. The drive controller is used to judge the type of fault and perform different post-fault control according to different fault types to achieve stable speed and safe operation.

以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are all It is still within the scope of the invention patent.

11、21、31...三相同步電動機11, 21, 31. . . Three-phase synchronous motor

17、27、37...三臂三相變頻器17, 27, 37. . . Three-arm three-phase inverter

400、500...同步電動機控制系統400, 500. . . Synchronous motor control system

410、510、610...驅動控制器410, 510, 610. . . Drive controller

411、511、611...轉速調節模組411, 511, 611. . . Speed adjustment module

5111、6111...轉速運算單元5111, 6111. . . Speed calculation unit

5113...第一轉矩運算單元5113. . . First torque computing unit

6113...第二轉矩運算單元6113. . . Second torque computing unit

612b...b相電流命令控制單元612b. . . Phase b current command control unit

612c...c相電流命令控制單元612c. . . Phase c current command control unit

413、513...交直軸矩陣轉換模組413, 513. . . Cross-axis matrix conversion module

415、515、615...電流調節模組415, 515, 615. . . Current regulation module

515a、515x...交直軸電流調節單元515a, 515x. . . Straight shaft current adjustment unit

515a0 、515x0 ...零軸電流調節單元515a 0 , 515x 0 . . . Zero-axis current adjustment unit

615b...b相電流調節單元615b. . . Phase b current regulation unit

615c...c相電流調節單元615c. . . Phase c current regulation unit

517...電壓補償模組517. . . Voltage compensation module

517a...abc相電壓補償單元517a. . . Abc phase voltage compensation unit

517x...xyz相電壓補償單元517x. . . Xyz phase voltage compensation unit

419、519...交直軸矩陣反轉換模組419, 519. . . Cross-axis matrix inverse conversion module

430、530...轉速回授模組430, 530. . . Speed feedback module

531...轉速回授電路531. . . Speed feedback circuit

533...轉速估測及磁極位置偵測電路533. . . Speed estimation and magnetic pole position detection circuit

450、550...電流回授電路450, 550. . . Current feedback circuit

470、570...電動機驅動模組470,570. . . Motor drive module

571、571a...變頻單元571, 571a. . . Frequency conversion unit

573、573a...脈寬調變控制單元573, 573a. . . Pulse width modulation control unit

5731...數位訊號處理單元5731. . . Digital signal processing unit

5733...複合型可程式邏輯元件5733. . . Composite programmable logic component

660...故障控制模組660. . . Fault control module

661...電流偵測單元661. . . Current detection unit

663...故障判斷單元663. . . Fault judging unit

618b、618c...電動勢估測單元618b, 618c. . . Electromotive force estimation unit

61...同步電動機61. . . Synchronous motor

611...abc相繞組611. . . Abc phase winding

613...xyz相繞組613. . . Xyz phase winding

61a...a相繞組61a. . . Phase a winding

700...同步旋轉座標系統700. . . Synchronous rotary coordinate system

...功率電晶體開關 . . . Power transistor switch

n、n 1n 2 ...中性點n, n 1 , n 2 . . . Neutral point

C 1C 2 ...電容 C 1 , C 2 . . . capacitance

R s ...等效定子側電阻 R s . . . Equivalent stator side resistance

L s ...等效定子側電感 L s . . . Equivalent stator side inductance

e a e b e c e x e y e z e af e bf e cf ...反電動勢電壓 e a , e b , e c , e x , e y , e z , e af , e bf , e cf . . . Back electromotive voltage

S a 1 ...左臂開關訊號 S a 1 . . . Left arm switch signal

S a 2 ...右臂開關訊號 S a 2 . . . Right arm switch signal

PWM1、PWM2...脈寬調變訊號PWM1, PWM2. . . Pulse width modulation signal

GPIO...通用輸出入埠訊號GPIO. . . General purpose input signal

v a v dc 、-v dc ...電壓 v a , v dc , - v dc . . . Voltage

...電壓命令 . . . Voltage command

w m ...轉速回授 w m . . . Speed feedback

...轉子角位置估測 . . . Rotor angular position estimation

θ r ...轉子角位置θ r . . . Rotor angular position

...交直軸電流命令 . . . Straight axis current command

...直軸電流命令 . . . Straight axis current command

G s ...轉速調節函數 G s . . . Speed adjustment function

...轉矩命令 . . . Torque command

...轉矩運算函數 . . . Torque calculation function

i a i b i c i x i y i z ...電樞電流 i a , i b , i c , i x , i y , i z . . . Armature current

q-axis...交軸Q-axis. . . Cross axis

d-axis...直軸D-axis. . . Straight axis

T qdoa ...abc相轉換矩陣函數 T qdoa . . . Abc phase conversion matrix function

T qdox ...xyz相轉換矩陣函數 T qdox . . . Xyz phase conversion matrix function

i qa i da i qx i dx ...交直軸電流回授訊號 i qa , i da , i qx , i dx . . . Straight axis current feedback signal

i 0 a i 0 x ...零軸電流回授訊號 i 0 a , i 0 x . . . Zero-axis current feedback signal

Δi qa 、Δi da 、Δi qx 、Δi dx ...電流誤差值Δ i qa , Δ i da , Δ i qx , Δ i dx . . . Current error value

...零軸電流命令 . . . Zero axis current command

G qa G qx ...交軸電流調節函數 G qa, G qx. . . Cross-axis current adjustment function

G da G dx ...直軸電流調節函數 G da, G dx. . . Straight axis current regulation function

G 0 a G 0 x ...零軸電流調節函數 G 0 a , G 0 x . . . Zero-axis current regulation function

...交直軸調節電壓命令訊號 . . . Straight axis adjustment voltage command signal

...零軸調節電壓命令訊號 . . . Zero axis adjustment voltage command signal

...交直軸電壓命令訊號 . . . Straight axis voltage command signal

W r ...同步電動機之同步角速度 W r . . . Synchronous angular velocity of synchronous motor

...零軸電壓命令訊號 . . . Zero-axis voltage command signal

...abc相反轉換矩陣函數 . . . Abc reverse conversion matrix function

...xyz相反轉換矩陣函數 . . . Xyz inverse conversion matrix function

...電壓命令訊號 . . . Voltage command signal

...電流偵測訊號 . . . Current detection signal

k a k b k c k x k y k z ...故障判斷因子 k a , k b , k c , k x , k y , k z . . . Fault judgment factor

...故障後的操作電流 . . . Operating current after failure

...故障後轉矩命令訊號 . . . Torque command signal after failure

...故障後電流命令訊號 . . . Current command signal after fault

cos(θ r -150 o )、cos(θ r +150 o )...運算函數Cos(θ r -150 o ), cos(θ r +150 o ). . . Arithmetic function

...故障後調節電壓命令訊號 . . . Adjust voltage command signal after fault

G b G c ...電流調節函數 G b , G c . . . Current regulation function

...故障後電壓命令訊號 . . . Voltage command signal after failure

...同步電動機的應電勢估測值 . . . Estimated value of the potential of the synchronous motor

第一圖:習知三相變頻器的一實施例之電路圖;First: a circuit diagram of an embodiment of a conventional three-phase inverter;

第二圖:習知三相變頻器的一實施例之電路圖;Second figure: a circuit diagram of an embodiment of a conventional three-phase inverter;

第三圖:習知三相變頻器的一實施利之電路圖;The third figure: a circuit diagram of a practical implementation of a conventional three-phase inverter;

第四圖:本發明的同步電動機控制系統的一實施例之方塊圖;Fourth: a block diagram of an embodiment of a synchronous motor control system of the present invention;

第五A圖:本發明的同步電動機控制系統的一實施例之控制方塊圖;Figure 5A is a control block diagram of an embodiment of the synchronous motor control system of the present invention;

第五B圖:本發明的同步電動機控制系統的同步電動機的一實施例之等效電路圖;Figure 5B is an equivalent circuit diagram of an embodiment of a synchronous motor of the synchronous motor control system of the present invention;

第五C圖:本發明的同步電動機控制系統的變頻單元之一實施例之電路圖;Figure 5C is a circuit diagram of an embodiment of a frequency conversion unit of the synchronous motor control system of the present invention;

第五D圖:本發明的同步電動機的a相繞組及其變頻單元之一實施例之等效電路圖;Figure 5D is an equivalent circuit diagram of an embodiment of the a-phase winding of the synchronous motor of the present invention and its frequency conversion unit;

第五E圖:本發明的同步電動機控制系統的脈寬調變控制單元的一實施例之方塊圖;Figure 5E is a block diagram of an embodiment of a pulse width modulation control unit of the synchronous motor control system of the present invention;

第五F圖:本發明的同步電動機控制系統的複合型可程式邏輯元件的方塊圖;Figure F is a block diagram of a composite programmable logic element of the synchronous motor control system of the present invention;

第五G圖:本發明的同步電動機控制系統的同步旋轉座標系統之一實施例之座標圖;Fifth G diagram: a coordinate diagram of an embodiment of a synchronous rotary coordinate system of the synchronous motor control system of the present invention;

第六A圖:本發明的同步電動機控制系統的故障控制模組之一實施例之方塊圖;Figure 6A is a block diagram showing an embodiment of a fault control module of the synchronous motor control system of the present invention;

第六B圖:本發明的同步電動機故障後與故障前的操作電流的向量關係圖;及Figure 6B: a vector diagram of the operating current of the synchronous motor of the present invention after failure and before the fault; and

第六C圖:本發明的同步電動機故障後的驅動控制器的一實施例之方塊圖。Figure 6C is a block diagram of an embodiment of a drive controller after a synchronous motor failure of the present invention.

400...電動機控制系統400. . . Motor control system

61...同步電動機61. . . Synchronous motor

410...驅動控制器410. . . Drive controller

411...轉速調節模組411. . . Speed adjustment module

413...交直軸矩陣轉換模組413. . . Cross-axis matrix conversion module

415...電流調節模組415. . . Current regulation module

419...交直軸矩陣反轉換模組419. . . Cross-axis matrix inverse conversion module

430...轉速回授模組430. . . Speed feedback module

450...電流回授電路450. . . Current feedback circuit

470...電動機驅動模組470. . . Motor drive module

Claims (12)

一種驅動控制器,應用於一同步電動機,該同步電動機為單極雙臂式之同步電動機,該驅動控制器耦接於一電流回授電路及一轉速回授模組,該電流回授電路及該轉速回授模組分別耦接於該同步電動機,該驅動控制器包括:一交直軸矩陣轉換模組,用以根據該轉速回授模組輸出的一轉子角位置估測將電流回授電路輸出的一組電樞電流以一第一矩陣作座標軸轉換為一組交直軸電流及一零軸電流,其中該零軸電流與該組電樞電流的總和成正比;一轉速調節模組,耦接於該轉速回授模組,該轉速調節模組用以將該轉速回授模組輸出的一轉速回授與一轉速命令的差值轉換為一組交直軸電流命令;一電流調節模組,耦接於該交直軸矩陣轉換模組及該轉速調節模組,該電流調節模組用以將該組交直軸電流與該組交直軸電流命令的差值轉換為一組交直軸電壓命令,並將該零軸電流與一零軸電流命令的差值轉換為一零軸電壓命令,其中該零軸電流命令為零;一交直軸矩陣反轉換模組,耦接於該電流調節模組,該交直軸矩陣反轉換模組用以將該組交直軸電壓命令及該零軸電壓命令以一第二矩陣作座標軸轉換為一組第一電壓命令,並輸出該組第一電壓命令至一電動機驅動模組,該電動機驅動模組根據該組第一電壓命令控制該同步電動機的一組電樞電壓,使該組電樞電流的總和維持零,其中該第二矩陣與該第一矩陣互為反矩陣。A drive controller is applied to a synchronous motor, which is a single-pole dual-synchronous motor, and the drive controller is coupled to a current feedback circuit and a speed feedback module, and the current feedback circuit and The speed feedback module is respectively coupled to the synchronous motor, and the driving controller comprises: an orthogonal axis matrix conversion module, configured to estimate a current feedback circuit according to a rotor angular position output of the speed feedback module output The output armature current is converted into a set of cross-axis current and a zero-axis current by a first matrix as a coordinate axis, wherein the zero-axis current is proportional to the sum of the armature currents; a speed adjustment module, coupled Connected to the speed feedback module, the speed adjustment module is configured to convert the difference between a speed feedback and a speed command outputted by the speed feedback module into a set of cross-axis current commands; a current adjustment module And coupled to the cross-axis matrix conversion module and the rotation speed adjustment module, the current adjustment module is configured to convert the difference between the set of cross-axis currents and the set of cross-axis current commands into a set of cross-axis voltage commands And converting the difference between the zero-axis current and the zero-axis current command into a zero-axis voltage command, wherein the zero-axis current command is zero; and an orthogonal-axis matrix inverse conversion module is coupled to the current adjustment module, The cross-axis matrix inverse conversion module is configured to convert the set of orthogonal axis voltage commands and the zero-axis voltage command into a set of first voltage commands by using a second matrix as a coordinate axis, and output the set of first voltage commands to a motor a driving module, the motor driving module controls a set of armature voltages of the synchronous motor according to the set of first voltage commands, so that the sum of the armature currents of the group is maintained at zero, wherein the second matrix and the first matrix are mutually Inverse matrix. 如申請專利範圍第1項所述之驅動控制器,其中,該電流調節模組包括一交直軸電流調節單元及一零軸電流調節單元,其中該交直軸電流調節單元以一交直軸電流調節函數將該組交直軸電流與該組交直軸電流命令的差值轉換為該組交直軸電壓命令,該零軸電流調節單元以一零軸電流調節函數將該零軸電流與該零軸電流命令的差值轉換為該零軸電壓命。 The drive controller of claim 1, wherein the current adjustment module comprises a cross-axis current adjustment unit and a zero-axis current adjustment unit, wherein the cross-axis current adjustment unit has a cross-axis current adjustment function Converting the difference between the set of straight-axis currents and the set of cross-axis current commands to the set of cross-axis voltage commands, the zero-axis current adjustment unit commanding the zero-axis current with the zero-axis current with a zero-axis current adjustment function The difference is converted to the zero-axis voltage. 如申請專利範圍第1項所述之驅動控制器,其中,該轉速調節模組包括一轉速運算單元及一第一轉矩運算單元,該第一轉矩運算單元耦接於該轉速運算單元,該轉速運算單元以一轉速轉矩轉換函數將該轉速回授與該轉速命令的差值轉換為一轉矩命令,該第一轉矩運算單元以一轉矩轉電流轉換函數該轉矩命令轉換為一交直軸電流命令。 The driving controller of claim 1, wherein the speed adjusting module comprises a rotational speed computing unit and a first torque computing unit, wherein the first torque computing unit is coupled to the rotational speed computing unit. The rotational speed computing unit converts the difference between the rotational speed feedback and the rotational speed command into a torque command by a rotational speed torque conversion function, and the first torque computing unit converts the torque command by a torque to current conversion function For a straight axis current command. 如申請專利範圍第3項所述之驅動控制器,更包括一故障控制模組,該故障控制模組包括一電流偵測單元及一故障判斷單元,該電流調節單元耦接於該故障判斷單元,該電流偵測單元用以將該組電樞電流作取樣計算後輸出一偵測電流,該故障判斷單元根據該偵測電流判斷該同步電動機的故障種類,並根據故障種類輸出一運轉策略訊號。 The drive controller of claim 3, further comprising a fault control module, the fault control module comprising a current detecting unit and a fault determining unit, wherein the current adjusting unit is coupled to the fault determining unit The current detecting unit is configured to perform sampling calculation on the set of armature currents, and output a detecting current. The fault determining unit determines the fault type of the synchronous motor according to the detected current, and outputs a running strategy signal according to the fault type. . 如申請專利範圍第4項所述之驅動控制器,其中,該轉速調節模組更包括一第二轉矩運算單元與該轉速運算單元耦接,該轉速調節模組根據該運轉策略訊號控制該轉速運算單元輸出該轉矩命令至該第一轉矩運算單元或該第二轉矩運算單元。 The drive controller of claim 4, wherein the speed adjustment module further includes a second torque calculation unit coupled to the rotation speed calculation unit, and the rotation speed adjustment module controls the operation according to the operation strategy signal. The rotational speed computing unit outputs the torque command to the first torque computing unit or the second torque computing unit. 如申請專利範圍第5項所述之驅動控制器,其中,當該運轉策略訊號為故障後控制訊號時,該轉速運算單元輸出該轉矩命令至該第二轉矩運算單元,該第二轉矩運算 單元將該轉矩命令轉換為一故障後電流命令。 The drive controller of claim 5, wherein when the operation strategy signal is a fault control signal, the rotation speed calculation unit outputs the torque command to the second torque operation unit, the second rotation Moment operation The unit converts the torque command into a post-fault current command. 如申請專利範圍第6項所述之驅動控制器,其中,該電流調節模組將該故障後電流命令與故障後的電樞電流的差值轉換為一組第二電壓命令,並輸出至該電動機驅動模組,該電動機驅動模組根據該組第二電壓命令控制該同步電動機的電樞電壓,使該同步電動機故障後未截止的電樞電流維持故障前的電樞電流。 The driving controller of claim 6, wherein the current regulating module converts the difference between the current command after the fault and the armature current after the fault into a set of second voltage commands, and outputs the same The motor drive module controls the armature voltage of the synchronous motor according to the set of second voltage commands, so that the armature current that is not cut off after the synchronous motor fails maintains the armature current before the fault. 一種同步電動機之驅動控制方法,包括:接收該同步電動機的一組電樞電流;根據該同步電動機的一轉子角位置估測將該組電樞電流以一第一矩陣作座標軸轉換為一組交直軸電流及一零軸電流,其中,該零軸電流與該組電樞電流的總和成正比;根據該同步電動機的一轉速回授與一轉速命令的比較結果產生一組交直軸電流命令;將該組交軸電流與該交直軸電流命令的比較結果以一交直軸電流調節函數轉換為一組交直軸電壓命令,並將該零軸電流與一零軸電流命令的比較結果以一零軸電流調節函數轉換為一零軸電壓命令,其中,該零軸電流命令為零;及將該組交直軸電壓命令及該零軸電壓命令以一第二矩陣作座標軸轉換為一組第一電壓命令,並輸出至一電動機驅動模組,該電動機驅動模組根據該組第一電壓命令控制該同步電動機的電樞電壓,使該電樞電流的總和維持零。 A driving control method for a synchronous motor, comprising: receiving a set of armature currents of the synchronous motor; and estimating, according to a rotor angular position of the synchronous motor, converting the set of armature currents into a set of intersections by using a first matrix as a coordinate axis A shaft current and a zero-axis current, wherein the zero-axis current is proportional to a sum of the armature currents; a set of cross-axis current commands are generated according to a comparison between a rotational speed feedback of the synchronous motor and a rotational speed command; The comparison result of the set of quadrature axis currents and the cross-axis current command is converted into a set of cross-axis voltage commands by an AC-axis current adjustment function, and the zero-axis current is compared with a zero-axis current command by a zero-axis current. The adjustment function is converted to a zero-axis voltage command, wherein the zero-axis current command is zero; and the set of cross-axis voltage commands and the zero-axis voltage command are converted into a set of first voltage commands by using a second matrix as a coordinate axis, And outputting to a motor drive module, the motor drive module controls the armature voltage of the synchronous motor according to the set of first voltage commands, so that the armature The sum of the stream remains at zero. 如申請專利範圍第8項所述之同步電動機之驅動控制方法,其中,根據該轉速回授與該轉速命令的比較結果產生該組交直軸電流命令的步驟包括:根據該轉速回授與該轉速命令的比較結果產生一轉 矩命令;及將該轉矩命令轉換為該組交直軸電流命令。 The driving control method for a synchronous motor according to claim 8, wherein the step of generating the set of the orthogonal axis current command according to the comparison result of the rotational speed feedback with the rotational speed command comprises: feeding back the rotational speed according to the rotational speed The comparison result of the command produces a turn a moment command; and converting the torque command into the set of cross-axis current commands. 如申請專利範圍第9項所述之同步電動機之驅動控制方法,更包括:將該組電樞電流作取樣計算後輸出一偵測電流;及根據該偵測電流判斷故障種類,並據以產生一運轉策略訊號。 The driving control method for the synchronous motor according to claim 9 further includes: outputting a detection current after sampling the armature current; and determining a fault type according to the detected current, and generating the fault type according to the detected current A running strategy signal. 如申請專利範圍第10項所述之同步電動機之驅動控制方法,更包括:根據該運轉策略訊號將該轉矩命令轉換為一故障後電流命令;及將該故障後電流命令與故障後的電樞電流的比較結果轉換為一組第二電壓命令,並輸出至該電動機驅動模組。 The driving control method for the synchronous motor according to claim 10, further comprising: converting the torque command into a fault current command according to the operation strategy signal; and the current command after the fault and the power after the fault The comparison result of the pivot current is converted into a set of second voltage commands and output to the motor drive module. 一種同步電動機控制系統,用以控制一單極雙臂式之同步電動機,該同步電動機控制系統包括:一轉速回授模組,耦接於該同步電動機,該轉速回授模組用以偵測該同步電動機的一轉子轉速及一轉子位置,以輸出一轉速回授及一轉子角位置估測;一電流回授電路,耦接於該同步電動機,該電流回授電路用以偵測該同步電動機的一組電樞電流,並輸出該組電樞電流;一驅動控制器,耦接於該轉速回授模組及該電流回授電路,該驅動控制器根據該轉速回授及一轉速命令取得一組交軸電流命令,並藉由一交直軸矩陣轉換模組將該組電樞電流作座標軸轉換為一組交直軸電流及一零軸電流,該驅動控制器藉由一電流調節模組將該組交直軸電流命令與該組交直軸 電流的差值轉換為一組交直軸電壓命令,並將該零軸電流與一零軸電流命令的差轉換為一零軸電壓命令,其中該零軸電流命令為零,該驅動控制器藉由一交直軸反矩陣轉換模組將該組交直軸電壓命令及該零軸電壓命令轉換為一組第一電壓命令;一電動機驅動模組,耦接於該驅動控制器,該電動機驅動模組包括一脈寬調節控制單元及一變頻單元,該脈寬調節控制單元耦接於該變頻單元,該脈寬調節控制單元根據該第一電壓命令調節該變頻單元的開關責任週期,以控制該同步電動機的電樞電壓,使該同步電動機的電樞電流總和為零。 A synchronous motor control system for controlling a single-pole, two-armed synchronous motor, the synchronous motor control system comprising: a rotational speed feedback module coupled to the synchronous motor, the rotational speed feedback module for detecting a rotor rotational speed and a rotor position of the synchronous motor are outputted with a rotational speed feedback and a rotor angular position estimate; a current feedback circuit coupled to the synchronous motor, the current feedback circuit is configured to detect the synchronization a set of armature currents of the motor, and outputting the set of armature currents; a drive controller coupled to the speed feedback module and the current feedback circuit, the drive controller is based on the speed feedback and a speed command Obtaining a set of intersecting current commands, and converting the set of armature currents into coordinate axes and a zero-axis current by a cross-axis matrix conversion module, wherein the driving controller is controlled by a current regulating module Directing the set of straight axis current commands with the set of straight axes The difference in current is converted into a set of cross-axis voltage commands, and the difference between the zero-axis current and the zero-axis current command is converted to a zero-axis voltage command, wherein the zero-axis current command is zero, the drive controller An off-axis inverse matrix conversion module converts the set of straight-axis voltage commands and the zero-axis voltage command into a set of first voltage commands; a motor drive module coupled to the drive controller, the motor drive module includes a pulse width adjustment control unit and a frequency conversion unit, the pulse width adjustment control unit is coupled to the frequency conversion unit, and the pulse width adjustment control unit adjusts a switching duty cycle of the frequency conversion unit according to the first voltage command to control the synchronous motor The armature voltage causes the sum of the armature currents of the synchronous motor to be zero.
TW100105622A 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof TWI426699B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105622A TWI426699B (en) 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105622A TWI426699B (en) 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof

Publications (2)

Publication Number Publication Date
TW201236356A TW201236356A (en) 2012-09-01
TWI426699B true TWI426699B (en) 2014-02-11

Family

ID=47222812

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105622A TWI426699B (en) 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof

Country Status (1)

Country Link
TW (1) TWI426699B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9680397B2 (en) * 2015-10-13 2017-06-13 National Tsing Hua University Three-phase inverting apparatus and control method and paralleled power conversion system thereof
CN112398398A (en) * 2020-12-03 2021-02-23 湖南大学 Method and device for controlling weak magnetism of double three-phase permanent magnet synchronous motor
CN112953318B (en) * 2021-02-01 2022-08-30 哈尔滨工业大学 Nonlinear compensation method for permanent magnet synchronous motor driving system inverter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW265485B (en) * 1993-05-10 1995-12-11 Hallidy William M
TW546908B (en) * 2001-09-03 2003-08-11 Mitsubishi Electric Corp An apparatus for detecting a step-out in a synchronous motor, a method for detecting the step-out in the synchronous motor, a drive of a closed compressor, and a drive of a fan motor
TW200424531A (en) * 2002-11-25 2004-11-16 Tmt & D Corp System for compensating a voltage of a negative-phase-sequence component in a power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW265485B (en) * 1993-05-10 1995-12-11 Hallidy William M
TW546908B (en) * 2001-09-03 2003-08-11 Mitsubishi Electric Corp An apparatus for detecting a step-out in a synchronous motor, a method for detecting the step-out in the synchronous motor, a drive of a closed compressor, and a drive of a fan motor
TW200424531A (en) * 2002-11-25 2004-11-16 Tmt & D Corp System for compensating a voltage of a negative-phase-sequence component in a power system

Also Published As

Publication number Publication date
TW201236356A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
Sui et al. Open-circuit fault-tolerant control of five-phase PM machine based on reconfiguring maximum round magnetomotive force
US7855526B2 (en) Power conversion control device, power conversion control method, and power conversion control program
TWI229493B (en) Speed controller of synchronous motor
JP4429338B2 (en) Motor control device, current detection unit
CN112332735B (en) Fault-tolerant control method of 3X 3-phase permanent magnet auxiliary synchronous reluctance motor
US10992246B2 (en) Controller for AC rotary machine
CN110504889B (en) Fault-tolerant direct torque control method for five-phase permanent magnet synchronous motor
CN108574439B (en) Space vector control method for fault-tolerant system of permanent magnet synchronous motor
CN106533310B (en) A kind of direct current biasing sinusoidal current electric machine controller
Haghbin et al. An integrated split-phase dual-inverter permanent magnet motor drive and battery charger for grid-connected electric or hybrid vehicles
CN111431453A (en) Fault-tolerant control method for open-winding permanent magnet synchronous motor based on single-phase fault of inverter
CN108667379B (en) Direct torque control method for fault-tolerant system of two-phase permanent magnet synchronous motor
An et al. A fault-tolerant operation method of PMSM fed by cascaded two-level inverters
Teng et al. Fault tolerant model predictive control of three-phase permanent magnet synchronous motors
CN108429491B (en) Fault-tolerant control system and method for double permanent magnet synchronous motors
TWI426699B (en) Driving controller of synchronous motor and the driving control method thereof
JP6687228B1 (en) AC rotating electric machine control device
CN109981017B (en) Fault-tolerant control system and method for two-unit same-phase permanent magnet synchronous motor under open-circuit fault
Zhu et al. Direct torque control of three-phase PM brushless AC motor with one phase open-circuit fault
Qi et al. Research on the characteristics of open winding brushless DC motor
Jiang et al. Analysis of highly reliable electric drive system based on dual-winding fault-tolerant permanent magnet motor
CN113659907B (en) Direct torque control method of six-phase permanent magnet fault-tolerant motor based on torque model prediction
Yan et al. A maximum current sharing method for dual-redundancy brushless DC Motor control
Mini et al. A novel sensorless control strategy based on sliding mode observer for non-sinusoidal seven-phase PMSM
JP7092257B2 (en) Rotating electric machine control system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees