TW201236356A - Driving controller of synchronous motor and the driving control method thereof - Google Patents

Driving controller of synchronous motor and the driving control method thereof Download PDF

Info

Publication number
TW201236356A
TW201236356A TW100105622A TW100105622A TW201236356A TW 201236356 A TW201236356 A TW 201236356A TW 100105622 A TW100105622 A TW 100105622A TW 100105622 A TW100105622 A TW 100105622A TW 201236356 A TW201236356 A TW 201236356A
Authority
TW
Taiwan
Prior art keywords
current
axis
command
zero
module
Prior art date
Application number
TW100105622A
Other languages
Chinese (zh)
Other versions
TWI426699B (en
Inventor
Jonq-Chin Hwang
Chien-Tsun Liu
Original Assignee
Jonq-Chin Hwang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jonq-Chin Hwang filed Critical Jonq-Chin Hwang
Priority to TW100105622A priority Critical patent/TWI426699B/en
Publication of TW201236356A publication Critical patent/TW201236356A/en
Application granted granted Critical
Publication of TWI426699B publication Critical patent/TWI426699B/en

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

A driving controller for a synchronous motor is disclosed. The driving controller includes a q-d axis transformation matrix, a speed control module, a current control module and a q-d inverse transformation matrix. The q-d axis transformation matrix transfers a set of armature current of the synchronous motor to a set of q-d axis current and a zero axis current according to the rotor position estimation of the synchronous motor. The speed control module outputs a set of q-d axis current command according to a speed feedback signal and a speed command signal. The current control module outputs a set of q-d axis voltage command according to the q-d axis current and the q-d axis current command and outputs a zero axis voltage command according to the zero axis current and a zero axis current command. The q-d inverse transformation matrix transfers the q-d voltage command and the zero voltage command to a set of voltage commands and outputs to the voltage commands to the motor driving module for controlling the armature voltage of the synchronous motor.

Description

201236356 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種同步電動機的驅動控制器,特別是 指可以維持同步電動機的中性點電流為零的驅動控制器。 【先前技術】 一般行動載具必須考量操控性、穩定性、安全性與經 濟等各層面,而穩定安全之需求為其設計考量之第一要務 。電動車輛針對個別輪内電動機獨立操作控制。於高速行 駿下’輪内電動機若是故障例如欠相’將直接衝擊使用者 與乘各之人身安全。因此’南穩定性之永磁式同步電動機 驅動系統為電動車輛研發設計重點。 一般三相變頻器架構以三臂三相變頻器為其電力架構 ’其電力電路如第一圖所示。三臂三相變頻器17多採電壓 空間向量調變控制技術(voltage space vector pulse-width modulation,VS VP WM) ’藉由複數功率電晶體開關7。+、、 h h Tc 相互切換產生所需之電壓向量來控制三相 同步電動機11的運轉。此控制技術成熟且發展已趨穩定, 唯其電塵使用率僅能達到直流鏈電塵之+倍,須藉由弱磁 技制或疋相位超前控制,方能提高電動機之轉速。 =早相繞組或一臂功率級電晶體故障,系統將無法構 運?。為此’國内、外學者提出數種電力架構, 運棘。、it早相繞ί或一臂功率級電晶體故障後仍能持續 ’、,有可容錯變頻器,如第二圖所示,其中三相 4/36 201236356 同步電動機611的中性點〇銜 六 、, 變頻器27於單相繞植或—辟 “谷丨、〔2,亚搭配三相 故障之雙臂盘中性點^—/ 電晶體故障之時,由未 構,使二開關型之三相變頻器27之竿 使Ί先仍可構成迴路而持續運轉:但 之术 使用率將會大幅降低,令系統轉速難以提昇。之電壓 亦有四臂三相變_,其電力電路 樣將三相同步電動機 二圖所示;同 45 3? 0-7 ”得出’輔以四臂二4 a U之複數個單臂雙功率級電晶體rr、r相受 饮Γ77、Γ:控制’提供不平衡負栽所造成之穴相Γ77 μη 或1功雜電晶魅料 =組或功率級電晶體與中性點形成迴路 =故f早 ,3丨能降載並持續運轉;惟此架 :7^步電 2脈波寬度調變一,控制技術,== Μ ’大幅增加軟體編撰之複雜與演算時間。Μ方式 流將輯式同步電動機於三相平衡運轉下,三相+ 、s —穩定且固定方向之旋轉磁場,提供 ' 毛 滑運轉之韩祐,^ 怔1,、兒動機平 將運作在^ 4相繞組故障時,永磁式同步電動機 影變而^平衡之情形,其旋轉磁場受到零相序與負相序 曰:、 週期性之畸變,使電動機有固定頻率之晃動。 力带2此,有人提出變頻器架構採用可容錯變頻器為其带 故:時制策略&良自直接轉矩控制法;當單相繞^ 以構成^ = ί障繞組之開關,並銜接上中性點之開關 較盥 再错由回授之估測轉矩與直流鏈電流相互比 一二=:用以決定各臂輸出之開關切換信號。 障後控皆有控制複雜之缺點’因此,電動機故 》為亟待解決的問題。 5/36 201236356 【發明内容】 器,提供,步電動機的-動控制 以控制同步電動二;=電流侧 減少,損之損耗,達到維持二:==電流為零’以 此外,驅動控制器藉由偵:效率的效果; 據不同的故障種類摔作在不π樞電“雜障種類並根 之電挺電流維持故障^ ㈣略,以維持故障後 機的壤轉速度穩定。 電* H維持同步電動 為了達成上述目的,太 動控制器,應用於同步電:明的一技術手段為-種驅 流回棱電路及-轉速回’’同步電動機耦接於-電 轴矩障轉換模組、-轉驅動控制器包括-交直 -交复轴矩陣反轉換模,且。:二古-電流調節模組及 接於電流回授電路及轉速回授槿:直=陣轉換模_ 模組及轉速調節模組轉換 流調同步電動機之電動機==於電 上述的父直軸矩陣轉換 賴組 的-組電樞電流’並根據同 步電動機 測將所述的電樞電流以—的轉子角位置估 組交直轴電流及-零輛電流,其中轉換為-述的電樞電流的總和成正比。 a的今軸電流與所 節模接於轉速回授模組,轉” —以將_速回授模組輪出的一轉速回= 201236356 與一轉速命令訊號的差值轉換為一組交直轴電流命令。 上述的電流調節模組搞接於交直軸矩陣轉換模組 及轉速调卽核組,電流调卽模組用以將父直轴電流回授 訊號與交直轴電流命令訊號的差值轉換為一組交直轴 電壓命令訊號,並將零軸電流回授訊號與一零軸電流命 令的差值轉換為一零軸電壓命令訊號,其中零軸電流命 令為零。 上述的交直軸矩陣反轉換模組用以將所述的交直 軸電壓命令及零軸電壓命令以一第二矩陣作座標軸轉 換為一組第一電壓命令,並輸出第一電壓命令至一電動 機驅動模組,以控制同步電動的電樞電壓,使所述的電 樞電流的總和維持零,其中所述的第二矩陣與第一矩陣 互為反矩陣。 為了達成上述目的,本發明的另一技術手段為一種 同步電動機之驅動控制方法,此方法的步驟包括:接收 同步電動機的一組電樞電流;根據同步電動機的一轉子 角位置估測將電樞電流經第一矩陣作座標軸轉換為一 組交直軸電流及一零軸電流;根據同步電動機的一轉速 回授與一轉速命令的比較結果產生一組交直軸電流命 令;根據所述的交直軸電流與交直軸電流命令的比較結 果產生一組交直軸電壓命令,並根據所述的零軸電流與 一零軸電流命令的比較結果產生一零軸電壓命令;最後 ,將交直軸電壓命令及零軸電壓命令以第二矩陣作座標 軸轉換為一組第一電壓命令,並輸出至一電動機驅動模 組,電動機驅動模組根據第一電壓命令控制同步電動機 的電枢電壓 '使電彳區電流的總和維持零。 7/36 201236356 卜關於本發明之技術手段的詳細說明,請參閱以下 施方式,並配合所附圖式一併參照。 勺實 【實施方式】 為了清楚地說明本發明的操作原理以及其所能 功效,以下將舉一較佳的實施例作為說明。 勺 =考第四圖,為本發明所提供的—賴步電 f糸統的—實施例之方塊圖,如第四_所示,同步電^ 控制糸統4GG包括-驅動控制器41()、 動機 、-電流回授電路450 &—輸·4速口广,43〇 门〜 笔動械艇動模組470。其中魅、主 回綠組及電流回授電路450分別输於同步^連 61,驅動控制器410耦接 、電動機 踗糊η“ 轉速回授模組430 '電流回授蕾 。”、m麵接關係形成—閉迴路控制系统 轉速回授模組430用以伯、、 根據_結果輸出-轉逮回電動機61的轉速’並 中轉子位置估測訊號與轉子^及一轉子位置估測訊號,其 路彻用以偵測同步電角位置估測對應;電流回授電 果輪出一組電樞電流。 的電樞電流,並根據偵測結 驅動控制器410包括 2調節模組411,組413、—轉 換模組419,其令交直軸矩 2415、一父直轴矩陣反轉 電路450,轉速調節 7換模組413麵接於電流回授 流調節模組415耦接於 接於轉速回授模組430,電 換模組仙交直轴矩陣反=節模組411及交直軸矩陣轉 車反轉換於電流調節模s 201236356 組415及電動機驅動模組470。 ,、交^軸矩陣轉換模組413用以根據轉子角位置估測將 Ϊ述流回授作座標轉換後,產生一組交直軸電流及一 令軸电'瓜,轉迷調節模組411用以根據所述的轉速回授訊 號與^設的轉速命令訊號產生—組交直軸電流命令。 、電,调節模組415用以根據所述的交直軸電流回授與 =勺乂直車由屯流命令產生一組交直軸電壓命令;驅動控201236356 VI. Description of the Invention: [Technical Field] The present invention relates to a drive controller for a synchronous motor, and more particularly to a drive controller capable of maintaining a neutral current of a synchronous motor at zero. [Prior Art] General mobile vehicles must consider all aspects of handling, stability, safety and economy, and the need for stability and safety is the first priority of design considerations. Electric vehicles are independently operated for individual in-wheel motors. In the case of a high-speed line, if the motor in the wheel is faulty, such as a phase failure, it will directly impact the user and take care of each person. Therefore, the South Stability Permanent Magnet Synchronous Motor Drive System is the focus of research and development for electric vehicles. The general three-phase inverter architecture uses a three-arm three-phase inverter for its power architecture. The power circuit is shown in the first figure. Three-arm three-phase inverter 17 voltage space vector pulse-width modulation (VS VP WM) ' by a complex power transistor switch 7. +, h h Tc are switched to each other to generate a required voltage vector to control the operation of the three-phase synchronous motor 11. This control technology is mature and its development has become stable. Only the use rate of electric dust can only be doubled that of DC link electric dust. It must be controlled by weak magnetic technology or advanced phase control to increase the speed of the motor. = Early phase winding or one arm power stage transistor failure, the system will not be able to construct? . To this end, domestic and foreign scholars have proposed several power architectures. , it can be circumvented early or after a power-level transistor failure, and there is a fault-tolerant inverter, as shown in the second figure, where the neutral point of the three-phase 4/36 201236356 synchronous motor 611 Sixth, the inverter 27 is in a single-phase or planting--"谷谷,[2, sub-group with three-phase faults, the neutral point of the two-phase disk ^-/ transistor failure, by the unstructured, the two switch type The three-phase inverter 27 allows the Ί to still form a loop and continue to operate: but the operating rate will be greatly reduced, making the system speed difficult to increase. The voltage also has four-arm three-phase _, its power circuit The three-phase synchronous motor is shown in the figure 2; the same as 45 3? 0-7 ” is obtained with a plurality of single-arm dual-power-class transistors rr, r-phase-drinking 77, Γ: controlled by four arms and two 4 a U 'Providing an unbalanced load caused by the hole phase 77 μη or 1 power hybrid crystal magic material = group or power level transistor and neutral point forming loop = so f early, 3 丨 can load and continue to run; Frame: 7^ step power 2 pulse width modulation one, control technology, == Μ 'largely increase the complexity and calculation time of software compilation. Μ mode flow will synchronize the synchronous motor under three-phase balanced operation, three-phase +, s - stable and fixed direction of the rotating magnetic field, providing 'Korean of the hairy running, ^ 怔 1,, the child's motive will work at ^ When the 4-phase winding fails, the permanent-magnet synchronous motor is changed and balanced. The rotating magnetic field is subjected to zero-phase sequence and negative phase sequence 、: periodic distortion, so that the motor has a fixed frequency sway. Force belt 2, it is proposed that the inverter architecture adopts fault-tolerant inverter for its fault: time strategy & good self-direct torque control method; when single-phase winding ^ constitutes ^ ^ ί barrier winding switch, and connected The switch of the neutral point is more error-prone. The estimated torque and the DC link current of the feedback are compared with each other. One: two is used to determine the switching signal of each arm output. Post-blocking control has the disadvantage of controlling complexity. Therefore, the motor is an urgent problem to be solved. 5/36 201236356 [Invention] The device provides the step-motor control to control the synchronous electric two; = the current side is reduced, the loss is lost, and the maintenance is two: == the current is zero'. In addition, the drive controller borrows By the detection: the effect of efficiency; according to different types of failures, not in the π pivot "the type of the obstacles and the roots of the electric current to maintain the fault ^ (four) slightly, in order to maintain the stability of the machine after the speed of the rotation is stable. Synchronous electric motor In order to achieve the above purpose, the telecontrol controller is applied to synchronous electric power: a technical means of driving is a kind of driving back edge circuit and a rotating speed back ''synchronous motor is coupled to the electric axis barrier conversion module, - The drive controller includes - AC-AC-vertical matrix inverse conversion mode, and: Ergu-current adjustment module and current feedback circuit and speed feedback 槿: straight = array conversion mode _ module and speed The adjustment module converts the motor of the synchronous motor to the synchronous motor==the above-mentioned parent straight-axis matrix converts the group-armature current of the group to the above-mentioned group and calculates the armature current of the armature current according to the synchronous motor Straight shaft current and - zero electric The flow, which is converted to the sum of the armature currents, is proportional to. The current of the current axis of the a and the mode of the current is connected to the speed feedback module, and the rotation is returned to the speed of the _speed feedback module. = 201236356 The difference from a speed command signal is converted to a set of cross-axis current commands. The current adjustment module is connected to the cross-axis matrix conversion module and the speed adjustment core group, and the current adjustment module is used to convert the difference between the parent straight-axis current feedback signal and the cross-axis current command signal into a group. The straight-axis voltage command signal is input, and the difference between the zero-axis current feedback signal and the zero-axis current command is converted into a zero-axis voltage command signal, wherein the zero-axis current command is zero. The cross-axis matrix inverse conversion module is configured to convert the cross-axis voltage command and the zero-axis voltage command into a set of first voltage commands by using a second matrix as a coordinate axis, and output a first voltage command to a motor drive. And a module for controlling the synchronous electric armature voltage such that the sum of the armature currents is maintained at zero, wherein the second matrix and the first matrix are opposite to each other. In order to achieve the above object, another technical means of the present invention is a driving control method for a synchronous motor, the method comprising the steps of: receiving a set of armature currents of the synchronous motor; estimating the armature according to a rotor angular position of the synchronous motor The current is converted into a set of straight-axis current and a zero-axis current through the first matrix as a coordinate axis; a set of cross-axis current commands are generated according to a comparison between a rotational speed feedback of the synchronous motor and a rotational speed command; The comparison with the cross-axis current command produces a set of cross-axis voltage commands and generates a zero-axis voltage command based on the comparison of the zero-axis current with a zero-axis current command; finally, the straight-axis voltage command and the zero-axis The voltage command is converted into a set of first voltage commands by using the second matrix as a coordinate axis, and is output to a motor drive module, and the motor drive module controls the armature voltage of the synchronous motor according to the first voltage command to make the sum of the currents of the electric field. Maintain zero. 7/36 201236356 For a detailed description of the technical means of the present invention, refer to the following embodiments, and refer to the accompanying drawings. [Embodiment] In order to clearly explain the principle of operation of the present invention and its efficiencies, a preferred embodiment will be described below. Spoon = test fourth figure, which is a block diagram of an embodiment of the present invention, as shown in the fourth, the synchronous control system 4GG includes a drive controller 41 () , Motivation, - Current feedback circuit 450 & - Transmission · 4 speed mouth wide, 43 door ~ Pen motorized boat module 470. The charm, the main return green group and the current feedback circuit 450 are respectively input to the synchronous connection 61, the drive controller 410 is coupled, the motor is η ” “the speed feedback module 430 'current feedback bud.”, m-face connection The relationship is formed—the closed loop control system rotational speed feedback module 430 is used to calculate the rotational speed of the motor 61 according to the _ result output, and the rotor position estimation signal and the rotor and a rotor position estimation signal are Lu Che is used to detect the position of the synchroelectric angle estimate; the current feedback feeds a set of armature currents. The armature current, and according to the detection junction drive controller 410, includes 2 adjustment modules 411, a group 413, a conversion module 419, which makes the orthogonal shaft moment 2415, a parent straight-axis matrix inversion circuit 450, and the rotational speed adjustment 7 The replacement module 413 is connected to the current feedback regulation module 415 and coupled to the rotation feedback module 430. The electrical conversion module is directly connected to the vertical matrix and the reverse module 411 and the orthogonal axis matrix are reversely converted to current. Adjust the die s 201236356 group 415 and the motor drive module 470. The cross-axis matrix conversion module 413 is configured to generate a set of cross-axis currents and a shaft-electricity melon according to the rotor angular position estimation, and generate a set of cross-axis currents and melons. And generating a set-straight-axis current command according to the speed feedback signal and the set speed command signal. And electricity, the adjustment module 415 is configured to generate a set of cross-axis voltage commands by the turbulence command according to the cross-axis current feedback and the scooping direct-drive command;

制=410用以根據零轴電流回授與一預設的零轴電流命令 汛唬輸出1軸電壓命令訊號。 壓命二車二轉換模組4丨9用蘭所述的交直軸電 生-:第零轴電壓命令訊號作座標轉換後,產 毛a °ρ々讯號,並輸出所述的第〜雷屏合a至 :—機驅動模組47〇 ;電動機驅動模組47〇 :;二 [叩令控制同步電動機6〗的電彳 ^ 零,藉此減少銅損之糾,以秘電流總和為 率。 貝之^毛以維持同步電動機6】的運轉效 的·一種電動 圖顯示了電 的運算函數 531及一轉 組570包括 接著,請參考第五A圖,為本發明所提供 機控制系統的-實施例之控制方塊圖。第五A 動機控制系統·所包括的各模組以及其利用 、’其中轉速回授模組53〇包括—轉速回授電略 逮估測及雜位置偵測電路533;電動機驅動模 —脈寬調變控制單元573及一變頻單元571。 同步電動機61可為—三相或六相永磁式同步電動機 在本貫施财舉六相永磁制步電械為例, g 所示,為同步電動機61之丫接線電路圖 : 相繞組’分別為abc相繞組611及xyz相繞組,其各^ 9/36 201236356 =一中性點W且兩組三相、繞組彼此相差30度之電機 ,:兩組繞組中的每一相電流相差120度之相位。 =頻單元57】與同步電動機61的電路連接關係可如第 H所心變頻單元57】具有二十四個功率開關,利用 鮮=早極雙臂式連铜步機61,同步電動機61 Z、='、早元571可視為六個單相全橋式變頻器。其中,及及 D別為同步電動機6!的等效定子側電阻及電感,n ^ S、ev、e.分別為反電動勢電壓。 由於本發_選用的電動_動触,採獨立控制 ^電動機61中的每—相繞組,兩組三相繞組的中性點^ 二’使同步電動機61故障後1流及諧波成分無法麵 二明亦即中性點電流L、Ή為零。以下 二本發明如何平衡中性點電流以提高同步電 動機61的運轉性能。 舉例來說,同步電動機61甲的a相繞組6ia及連接立 ,臂的變頻單元571a之等效電路圖如第五D圖所示。變頻 單元5 71 a的左臂開關訊號&與右臂開關訊號心使得&相繞 組61a的電壓'可以產生ί、Q,使用這三種電壓組合 產生電壓命令v*。 。月芩考第五E圖,為本發明所提供的一種同步電動機 控制系統的脈寬調變控制單元的一實施例之方塊圖。脈寬 調變控制單元573a用以控制左臂開關訊號心與右臂開關訊 號乂2的責任週期。脈寬調變控制單元573a可為一單極性正 弦脈寬調變控制單元,包括一數位訊號處理單元(digital signal processor, DSP)5731及一複合型可程式邏輯元件 (complex programmable logic device, CPLD)5733,數位訊號 10/36 201236356 處理單元5731根據電壓命令v:輸出脈寬調變訊號PWM卜 PWM2及通用輸出入埠訊號GPIO至複合型可程式邏輯元 件5731,以控制複合型可程式邏輯元件5733的輸出電壓的 責任週期及高低。在一實施例中,複合型可程式邏輯元件 5 7 3 3所包含的邏輯閘之方塊圖如第五F圖所示,舉例來說 ,當電壓命令v:大於零時,藉由通用輸出入埠訊號GPIO控 制複合型可程式邏輯元件5733的路徑將右臂開關訊號& 低電位。 請再次參考第五A圖,轉速回授電路531偵測同步電 動機61的轉子轉速,並根據偵測結果產生反電動勢電壓 、9,轉速估測及磁極位置偵測電路533根據反電動 勢電壓e。,、、、\產生一轉速回授及一轉子角位置估測是 〇 驅動控制器5丨0將轉速回授訊號w„,與預設之轉速命令 <作比較運算得到轉速誤差值Aw,轉速調節模組511根據 轉速誤差值Aw輸出一組交直轴電流命令匕、匕、ζ.、/丄.。 其中C、ζ分別為a相及χ相的交軸電流命令’ 分別 為a相及X相的直軸電流命令。為了簡化圖示與計算,令 直軸電流命令(=0。 在本實施例中,轉速調節模組511包括一轉速運算單 元5111及一第一轉矩運算單元5113,轉速運算單元5111 以一轉速調節函數q將轉速誤差值轉換為一轉矩命令 訊號:C。第一轉矩運算單元5113以一轉矩運算函數-1-將System = 410 is used to output a 1-axis voltage command signal according to the zero-axis current feedback and a preset zero-axis current command. The pressure-changing two-car two-conversion module 4丨9 uses the straight-lined electric motor described by the blue--: the zero-axis voltage command signal is used as a coordinate conversion, and the hair is a °ρ々 signal, and the said Screen a to: - machine drive module 47 〇; motor drive module 47 〇:; 2 [叩 command control synchronous motor 6〗 彳 ^ zero, thereby reducing the copper loss correction, the ratio of the secret current . The electric figure of the electric motor is used to maintain the operation of the synchronous motor 6]. An electric diagram shows the electric operation function 531 and a transfer group 570. Next, please refer to the fifth A figure, which is the machine control system provided by the present invention - A control block diagram of an embodiment. The fifth A motivation control system, the modules included therein, and the utilization thereof, wherein the rotational speed feedback module 53 includes a rotational speed feedback power estimation and miscellaneous position detecting circuit 533; the motor driving mode-pulse width The modulation control unit 573 and a frequency conversion unit 571. The synchronous motor 61 can be a three-phase or six-phase permanent magnet synchronous motor as an example of a six-phase permanent magnet stepping electrical machine, as shown in g, which is a circuit diagram of the synchronous motor 61: phase windings are respectively abc Phase winding 611 and xyz phase winding, each of which is 9/36 201236356 = a neutral point W and two sets of three-phase motors with a difference of 30 degrees from each other: the phase current of each of the two sets of windings is 120 degrees out of phase . The frequency unit 57 has a circuit connection relationship with the synchronous motor 61. For example, the H-th power conversion unit 57 has twenty-four power switches, and the fresh-early-ear-arm dual-connected copper stepper 61, the synchronous motor 61 Z, = ', early yuan 571 can be regarded as six single-phase full-bridge inverter. Among them, and D is the equivalent stator side resistance and inductance of the synchronous motor 6!, and n ^ S, ev, and e. are the back electromotive voltages, respectively. Due to the electric_dynamic touch selected by the present invention, each phase-phase winding in the motor 61 is independently controlled, and the neutral point of the two sets of three-phase windings makes the current and harmonic components of the synchronous motor 61 fail. The second and the neutral point currents L and Ή are zero. The following two inventions balance the neutral point current to improve the performance of the synchronous motor 61. For example, the equivalent circuit diagram of the a-phase winding 6ia of the synchronous motor 61A and the inverter unit 571a connected to the arm is as shown in FIG. 5D. The left arm switching signal & and the right arm switching signal heart of the frequency conversion unit 5 71 a causes the voltage of the & phase winding group 61a to generate ί, Q, and uses these three voltage combinations to generate a voltage command v*. . The fifth E diagram is a block diagram of an embodiment of a pulse width modulation control unit of a synchronous motor control system provided by the present invention. The pulse width modulation control unit 573a is for controlling the duty cycle of the left arm switching signal heart and the right arm switching signal 乂2. The pulse width modulation control unit 573a can be a unipolar sinusoidal pulse width modulation control unit, including a digital signal processor (DSP) 5731 and a complex programmable logic device (CPLD). 5733, digital signal 10/36 201236356 processing unit 5731 according to the voltage command v: output pulse width modulation signal PWM Bu PWM2 and general-purpose input signal GPIO to composite programmable logic element 5731 to control the composite programmable logic element 5733 The duty cycle of the output voltage is high and low. In an embodiment, the block diagram of the logic gate included in the composite programmable logic element 5 7 3 3 is as shown in the fifth F diagram. For example, when the voltage command v: is greater than zero, the general output is The signal GPIO controls the path of the composite programmable logic element 5733 to turn the right arm switch signal & low. Referring again to FIG. 5A, the rotational feedback circuit 531 detects the rotational speed of the synchronous motor 61, and generates a back electromotive voltage, 9, a rotational speed estimation, and a magnetic pole position detecting circuit 533 according to the counter electromotive voltage e. , , , , \ generate a speed feedback and a rotor angular position estimate is that the drive controller 5 丨 0 will feedback the speed signal w „, and the preset speed command < comparison operation to obtain the speed error value Aw, The speed adjustment module 511 outputs a set of AC direct current commands 匕, 匕, ζ., /丄 according to the rotational speed error value Aw. wherein C and ζ are the a-phase and the 交 phase of the cross-axis current commands respectively, respectively, a phase and The direct-axis current command of the X-phase. In order to simplify the illustration and calculation, the direct-axis current command (=0. In the present embodiment, the rotational speed adjustment module 511 includes a rotational speed computing unit 5111 and a first torque computing unit 5113. The rotational speed computing unit 5111 converts the rotational speed error value into a torque command signal by a rotational speed adjustment function q: C. The first torque computing unit 5113 uses a torque calculation function -1-

2KT 轉矩命令轉換為一組交直軸電流命令C、ζ、。其 11/36 201236356 中火r為轉矩常數,如式(1)所示。 Κτ =The 2KT torque command is converted to a set of cross-axis current commands C, ζ, . Its 11/36 201236356 medium fire r is the torque constant, as shown in equation (1). Κτ =

其中為同步電動機61的極數,;L、為等效至定子側 的轉子磁通量。 電流回授電路5 5 0用以偵測同步電動機61的電框電流 ,並根據偵測結果輸出一組電樞電流(、(、(、(、/λ.、(。 在本貫施例中’電流回授電路5 5 0可包括一電流偵測電路 及類比轉數位轉換單元。 籲 由於,同步電動機61的六相座標系統之數學模式具有 時變性,為了簡化分析,將六相時變物理量投影至同步旋 轉座標系統,座標系統如第五G圖所示,同步旋轉座標系 統700包括交轴q-axis與直軸d-axis,交軸q-axis與直軸 d-axis相差90度,$為同步電動機61的轉子角位置。 由於abc相繞組及xyz相繞組相差30度電機角,交直 軸矩陣轉換模組513以一 abc相轉換矩陣函數及一 xyz 相轉換矩陣函數7_.分別對電枢電流回授訊號(、&、(、(、 · L、(作座標軸轉換,abc相轉換矩陣函數7_位移30度即 可得到xyz相轉換矩陣函數。abc相轉換矩陣函數7:_如 式(2)所示。 . cos^ r sin^ rWhere is the number of poles of the synchronous motor 61; L is the rotor flux equivalent to the stator side. The current feedback circuit 505 is configured to detect the frame current of the synchronous motor 61, and output a set of armature currents according to the detection result (, (, (, / λ., (. in the present embodiment) The current feedback circuit 550 may include a current detecting circuit and an analog-to-digital conversion unit. The mathematical mode of the six-phase coordinate system of the synchronous motor 61 is time-varying, and the six-phase time-varying physical quantity is simplified for the purpose of simplifying the analysis. Projected to the synchronous rotary coordinate system, as shown in the fifth G diagram, the synchronous rotary coordinate system 700 includes a cross-axis q-axis and a straight-axis d-axis, and the cross-axis q-axis and the straight-axis d-axis are 90 degrees apart. $ is the rotor angular position of the synchronous motor 61. Since the abc phase winding and the xyz phase winding are different by a motor angle of 30 degrees, the orthogonal axis matrix conversion module 513 is respectively operated by an abc phase conversion matrix function and an xyz phase conversion matrix function 7_. The pivot current feedback signal (, &, (, (, L, (the coordinate axis conversion, abc phase conversion matrix function 7_ displacement 30 degrees can get the xyz phase conversion matrix function. abc phase conversion matrix function 7: _ Equation (2). . cos^ r sin^ r

cos(<9r-120°) cos(6>r + 120°) sin(必-120°) sin((9r+ 120°)Cos(<9r-120°) cos(6>r + 120°) sin (must-120°) sin((9r+ 120°)

1 I 2 2 12/36 (2) 2012363561 I 2 2 12/36 (2) 201236356

2直軸矩陣轉換模組513根據轉子角位置估測《將電 流L、7’‘、(、(、,·:以轉換矩陣函數τ 、Γ 山山丄 叫‘1'' Φ,α Tf - 為-組父直軸電流/、z_、/ ”及一組零軸電流 樞電 其關係如式C5)、⑷所示^其中分別為 父軸電//il,L、/ "分別為a相及χ相的直軸電济, 別為a相及X相的零轴電流。 a相及X相的 0« 、Ζ〇Λ 分 i qa la L =TqdiSa h jOa 一 jc_ Iqx V Ζώ- =Tgd0x Z:v jQx _ u (3) (4) 驅動控制器510將所述的交直軸電流ζ·、 .2 The linear axis matrix conversion module 513 estimates "the current L, 7'', (, (,, ·: with the transformation matrix function τ, Γ山山丄'1'' Φ, α Tf - according to the rotor angular position estimation For the group-parent direct-axis current /, z_, / "and a set of zero-axis currents, the relationship is as shown in equation C5), (4) ^ where the parent axis is / / il, L, / " respectively a The direct-axis electrical phase of the phase and the χ phase is the zero-axis current of the a-phase and the X-phase. 0« of the a-phase and the X-phase, Ζ〇Λ sub-i qa la L = TqdiSa h jOa - jc_ Iqx V Ζώ- = Tgd0x Z:v jQx _ u (3) (4) The drive controller 510 sets the current of the orthogonal axis ζ·, .

所述的交直軸電流命令/. : 、、1‘丨' 與 誤差值、Λ·、:· ' ^作比車父運算得到電流 為零 一組預設之零軸電流命令C、(作比較運與 差值氕、<。纟中,預設之零軸電流命令/•付z.电疏决 即~為零。其關係可表示如式(5)至式(1〇)。 ° 1 Δ/ ι 一 — ι Δζ = i 一 i V'· (P tjx Ai = / ~ / dx dx ljx Δ/ ~ l — I 〇« l〇〇 lo〇The straight-line current command /. : , , 1'丨' and the error value, Λ·, :· ' ^ are the currents obtained by the parent-child operation, a set of preset zero-axis current commands C, (for comparison And the difference 氕, <. 纟, the preset zero-axis current command / / pay z. The power is reduced to ~ zero. The relationship can be expressed as equation (5) to (1〇). Δ/ ι 一— ι Δζ = i 一i V'· (P tjx Ai = / ~ / dx dx ljx Δ/ ~ l — I 〇« l〇〇lo〇

Ai O.v li), ~ l O.v (5) (6) ⑺ (8)(9) (10) 13/36 201236356 電流調節模組515包括交直軸電流調節單元5〗5a、515x 及零軸電流調節單元515a〇、515x〇。其中,交直軸電流調節 單元515a將電流誤差值Δ(/α、分別以交軸電流調節函數 及直軸電流調節函數G&,運算後得到交直軸調節電壓命 令<、。交直軸電流調節單元515x將電流誤差值Δζ:/α.、Δζώ 分別以交軸電流調節函數\及一直軸電流調節函數¢^.運 算後得到交直軸調節電壓命令 <、<.。零軸電流調節單元 515 aQ將電流誤差值A t經過零軸電流調節函數G。。運算後得 到零軸調節電壓命令<。零轴電流調節單元515x〇將電流 誤差值A k經過零軸電流調節函數β (運算後得到零軸調節 電壓命令 <。在本實施例中,電流調節函數、 ^可採用比例-積分控制函數,函數表示如式(11) 至式(16)。 G, - =k k. | itja (11) s Gda ~ ^pdc k ida (12) s G : -k k. + /tpr (13) Gj, 二 kpdx K (14) s G0a = ~~kP0a . k | ιΟα s (15) G0x = -k . k 1 /Ojc (16) 14/36 201236356 運算函數。 ' 電壓補償模組517包括一 abc相電壓補償單元517a及 一 xyz相電壓補償單元517x,其中,abc相電壓補償單元 517 a將交直軸調節電壓命令 經過運算後得到交直轴Ai Ov li), ~ l Ov (5) (6) (7) (8) (9) (10) 13/36 201236356 Current regulation module 515 includes AC vertical current adjustment unit 5 5a, 515x and zero-axis current adjustment unit 515a〇, 515x〇. The cross-axis current adjustment unit 515a sets the current error value Δ(/α, the cross-axis current adjustment function and the direct-axis current adjustment function G& respectively, and obtains the cross-axis adjustment voltage command <, the cross-axis current adjustment unit. 515x, the current error values Δζ: /α., Δζώ are respectively calculated by the cross-axis current adjustment function and the constant-axis current adjustment function 得到^. The cross-axis adjustment voltage command <, <. zero-axis current adjustment unit 515 aQ passes the current error value A t through the zero-axis current adjustment function G. The zero-axis adjustment voltage command is obtained after the operation. The zero-axis current adjustment unit 515x〇 passes the current error value A k through the zero-axis current adjustment function β (after the operation) The zero-axis adjustment voltage command < is obtained. In the present embodiment, the current adjustment function, ^ can be a proportional-integral control function, and the function is expressed as equations (11) through (16). G, - = k k. | itja (11) s Gda ~ ^pdc k ida (12) s G : -k k. + /tpr (13) Gj, two kpdx K (14) s G0a = ~~kP0a . k | ιΟα s (15) G0x = -k . k 1 /Ojc (16) 14/36 201236356 Operation function. 'Voltage compensation Group 517 includes a phase voltage compensating unit 517a abc and xyz with a voltage compensating unit 517x, which, abc phase voltage compensating unit 517 will cross the straight axis A regulated voltage command obtained after calculating the direct axis AC

V 電壓命令v:;f,、vl,xyz相電壓補償單元517x將交直軸調節 電壓命令經過運算後得到交直軸電壓命令< 其關係表示如式(17)至式(20)所示。 (17) (18) (19) (20)The V voltage command v:;f, vl, xyz phase voltage compensating unit 517x calculates the cross-axis adjustment voltage command to obtain the cross-axis voltage command <the relationship is expressed as shown in equations (17) to (20). (17) (18) (19) (20)

a/ = z/ + w /' + w A cio (ia r daa da r m ϋ - w,.A乂 v* = u + L, i, + w ?i c/.\ (μ r uxx ax r n, v* = u, - w L i 其中,w,.為同步電動機61的同步角速度,、 ,.為同步旋轉座標系統下的交直軸互感。零軸調節電 壓命令<、等於零軸電壓命令,即< =VL,<. = νό,。 交直軸矩陣反轉換模組519根據轉子角位置估測爻以 一 abc相反轉換矩陣函數及一 xyz相反轉換矩陣函數 .C.將交直軸電壓命令< (轉換為電壓命令< 、v:,、v:.及零軸電壓命令< V*、V*、ν·、V*。豆中;Γ Γ'1 = (. .V r : /、 1 ^ qcJoa qdoa Τ, Γ;a/ = z/ + w /' + w A cio (ia r daa da rm ϋ - w,.A乂v* = u + L, i, + w ?ic/.\ (μ r uxx ax rn, v * = u, - w L i where w, is the synchronous angular velocity of the synchronous motor 61, , , is the cross-axis mutual inductance under the synchronous rotary coordinate system. The zero-axis adjustment voltage command <, is equal to the zero-axis voltage command, ie, <; = VL, <. = ν ό,. The orthogonal axis matrix inverse conversion module 519 estimates 爻 according to the rotor angular position 一 with an abc inverse transformation matrix function and an xyz inverse transformation matrix function. C. will cross the straight axis voltage command < (Convert to voltage command <, v:, v:. and zero-axis voltage command < V*, V*, ν·, V*. Bean; Γ 1 '1 = (. .V r : /, 1 ^ qcJoa qdoa Τ, Γ;

iJlIOX 驅動控制器510將電壓命令ν:、ν:、ν:、ν:、ν:、ν:輸 出至脈寬調變控制單元573,脈寬調變控制單元573根據電 壓命令v:、v:、v:、V:、V:、v:控制變頻單元571中開關電 晶體的開關週期。藉此,控制同步電動機61的電樞電壓, 以維持同步電動機61的零軸電流為零,即中性點q、/七的 電流L、/,7:2為零。 15/36 201236356 接著,考慮同步電動機61的故障判斷與故障後控制策 略。請參考第六A圖,為本發明的一種故障控制模組之一 實施例之方塊圖。如第五A圖所示,故障控制模組660包 括一電流偵測單元661及一故障判斷單元663。其中電流偵 測單元661將同步電動機61的一組電枢電流(、/Λ、(.、t、 /v作取樣計算,也就是在一偵測時間Γ下,偵測η次電 樞電流^t、^、^.、(_,並將每次所偵測到的電樞電 流L、/,、t積分後得到一組偵測電流/广1、/广 r detect /广1、/_、/zd_,其關係表示如式(21)至式(26)。 (21)The iJlIOX drive controller 510 outputs the voltage commands ν:, ν:, ν:, ν:, ν:, ν: to the pulse width modulation control unit 573, and the pulse width modulation control unit 573 according to the voltage command v:, v: , v:, V:, V:, v: control the switching period of the switching transistor in the frequency conversion unit 571. Thereby, the armature voltage of the synchronous motor 61 is controlled to maintain the zero-axis current of the synchronous motor 61 to zero, i.e., the currents L, /, 7:2 of the neutral point q, / seven are zero. 15/36 201236356 Next, the failure judgment and the post-fault control strategy of the synchronous motor 61 are considered. Please refer to FIG. 6A, which is a block diagram of an embodiment of a fault control module of the present invention. As shown in FIG. 5A, the fault control module 660 includes a current detecting unit 661 and a fault determining unit 663. The current detecting unit 661 sets a set of armature currents of the synchronous motor 61 (, /Λ, (., t, /v for sampling calculation, that is, detects the n-th armature current under a detection time ^^ t, ^, ^., (_, and each time the detected armature currents L, /, and t are integrated to obtain a set of detection current / wide 1, / wide r detect / wide 1, / _ , /zd_, the relationship is expressed as equations (21) to (26). (21)

r detect nTs i\dt detect c r detect j detect 1 ί 2i2dt nl's [J i, c」 1 nTs U:細ί 1 ηί\ (22) (26) (24) (25)r detect nTs i\dt detect c r detect j detect 1 ί 2i2dt nl's [J i, c" 1 nTs U: fine ί 1 ηί\ (22) (26) (24) (25)

(26) 其中,=«1;,故障判斷單元663根據所述的偵測 電流/广eet、/bdeleet、/广、/xdeteet、f、/广'來判斷同步電動機 61是否正常運轉。當所述的偵測電流/ad_、/bd_、/丨_、/Γ" 、//_、/广1'的值皆不為零時,同步電動機61操作在正常 狀態。當所述的電流偵測訊號/广、/厂、/—、/—、/广 、的其中一個為零時,則表示同步電動機61或變頻單 元151發生斷線,故障判斷單元663以一故障判斷因子^來 5 16/36 201236356 判斷abc相繞組及xyz相繞組的故障狀態,故障判斷因子 可表示如式(27)。(26) Where, = «1;, the failure judging unit 663 judges whether or not the synchronous motor 61 is normally operated based on the detected current/wide eet, /bdeleet, /wide, /xdeteet, f, /wide'. When the values of the detected currents /ad_, /bd_, /丨_, /Γ", //_, / wide 1' are not zero, the synchronous motor 61 operates in a normal state. When one of the current detecting signals/wide, /factory, /-, /-, /wide, is zero, it indicates that the synchronous motor 61 or the frequency converting unit 151 is disconnected, and the fault determining unit 663 is faulty. Judging factor ^ to 5 16/36 201236356 Judging the fault state of the abc phase winding and the xyz phase winding, the fault judgment factor can be expressed as equation (27).

(27) 其中,/ = 少,ζ。故障判斷單元663根據故障判 斷因子A,.的值來判斷abc相繞組及xyz相繞組的故障狀態, 如表1所示。 表1雙繞組故障判斷 相繞組故障判斷 K K K 繞組運作狀況 0 0 0 相繞組正常運作 0 0 1 C相繞組故障 0 1 0 b相繞組故障 1 0 0 a相繞組故障 1 1 0 α、6相繞組故障,相繞組停止運作 0 1 1 6、c相繞組故障,ok相繞組停止運作 1 0 1 i?、e相繞組故障,相繞組停止運作 1 1 1 相繞組停止運作 x_yz相繞組故障判斷 K ky k: 繞組運作狀況 0 0 0 x_yz相繞組正常運作 0 0 1 z相繞組故障 0 1 0 少相繞組故障 1 0 0 X相繞組故障 1 1 0 X、少相繞組故障,相繞組停止運作 0 1 1 少、2才目& 且古t P章,x_yz才目:¾多且4亭ih 1¾ fF 1 0 1 λ:、z相繞組故障,x_yz相繞組停止運作 1 1 1 x_yz相繞組停止運作(27) where / = less, ζ. The failure judging unit 663 judges the failure states of the abc phase winding and the xyz phase winding based on the value of the failure judging factor A, . Table 1 Double winding fault judgment phase winding fault judgment KKK winding operation status 0 0 0 phase winding normal operation 0 0 1 C phase winding fault 0 1 0 b phase winding fault 1 0 0 a phase winding fault 1 1 0 α, 6 phase winding Fault, phase winding stops operation 0 1 1 6、c phase winding fault, ok phase winding stops operation 1 0 1 i?, e phase winding fault, phase winding stops operation 1 1 1 phase winding stops operation x_yz phase winding fault judgment K ky k: Winding operation 0 0 0 x_yz phase winding normal operation 0 0 1 z phase winding fault 0 1 0 phaseless winding fault 1 0 0 X phase winding fault 1 1 0 X, less phase winding fault, phase winding stop operation 0 1 1 less, 2 only & and ancient t P chapter, x_yz only: 3⁄4 more and 4 pavilion ih 13⁄4 fF 1 0 1 λ:, z phase winding fault, x_yz phase winding stops operation 1 1 1 x_yz phase winding stops working

故障判斷單元663並依故障判斷因子\的各種組合將 17/36 201236356 故障種類分為五大類,若在此五大類以外的故障種類,則 同步電動機61無法運轉。故障判斷單元663再依不同故障 義輸出運轉策略喊’運㈣略訊號與輯後的控制策 略有關,故障後的控制策略與故障種類的關係如表2所示The fault judging unit 663 classifies the fault types into five categories according to various combinations of the fault judging factors, and if the fault types other than the five categories, the synchronizing motor 61 cannot operate. The fault judging unit 663 further outputs the operation strategy according to different fault senses. The (four) skip signal is related to the post-series control strategy, and the relationship between the fault control strategy and the fault type is as shown in Table 2.

相繞組β «相 _組使用y相故障後抟制_ 相繞組使用^相故障後控制,^2相 組使用Z相故障後控制 相故障Phase winding β «phase _ group is controlled after y phase fault _ phase winding uses ^ phase fault control, ^2 phase group uses Z phase fault control phase fault

18/36 201236356 z相故障 相繞組使用6相故障後控制,x_yz相繞丨 組使用z相故障後控制 C相故障 X相故障 a6c相繞組使用c相故障後控制,x_yz相繞組 使用y相故障後控制 少' 相故障 相繞組使用c相故障後控制,xyz相繞 組使用y相故障後控制 z相故障 β6c相繞組使用C相故障後控制,xyz相繞組 使用Z相故障後控制 第四類(單組繞組發生二相斷線故障,單繞組運轉) 才目矣堯& xyz相繞組 運轉狀況 正常 X才目& y才目 故障 Me相繞組正常,X_V2相繞組發生二相斷線故 障,使用相繞組三相模式獨立運轉 J相及z相 故障 Me相繞組正常,xyz相繞組發生二相斷線故 障,使用相繞組三相模式獨立運轉 2相及X相 故障 a6c相繞組正常,xjz相繞組發生二相斷線故 障,使用相繞組三相模式獨立運轉 相繞組 才目且 運轉狀況 正常 a相及b相 故障 X_>,2相繞組正常,(30C相繞組發生二相斷線故 障,使用Λ>·2相繞組三相模式獨立運轉 b相及c相 故障 xyz相繞組正常,相繞組發生二相斷線故 障,使用X少’Z相繞組三相模式獨立運轉 c相及α相 故障 x_yz相繞組正常,相繞組發生二相斷線故 障,使用砂·Ζ相繞組三相模式獨立運轉 第五類(單組繞組無法運作,單組繞組發生單相斷線故障,二相獨立運 轉) 才目@多且 xyz相繞組 運轉狀況 α相故障 無法運作 相繞組使用α相故障後控制 6相故障 無法運作 ak相繞組使用6相故障後控制 c相故障 無法運作 相繞組使用c相故障後控制 相繞組 C70C才目|且 運轉狀況 X相故障 無法運作 xyz相繞組使用X相故障後控制 _y相故障 無法運作 x_yz相繞組使用γ相故障後控制 19/36 201236356 I 2相故 組使用2相故障後控制 明的同步電動機故障後與故 電樞電流的-貫:例之向量關係圖。如第 二,來說’當a相繞組叫或&相的 電動機61為了使 I各相電樞_控制,使得未故障的兩相電樞 :>二,_機角’則故障後的電樞電流〜細 電樞電,,或落後30度電機角:且 峰值會㈣㈣,Μ持 ,電罐r,,將會超出額定電丄倍,‘ 曰使未故障的b、e相繞組燒毁。因此,f要鑛電流命令 訊號使故障後的電樞電流d"維持故障前的電枢電流 7 > / 〇 1考第六C圖,為本發_同步電動機故障後的驅 動控制器的—實施例之方塊圖。如第六C圖所示,當咖 相繞組發生單相斷線故紅xyz相繞組正f運轉時,例如& 相、、:/〇、’且61a叙生故P早時,則驅動控制器將未故障的b 相繞組及c相繞組切換成由轉速調節模組6ιι及電流調節 模組615控制’以調整故障後的電流命令,而未故障的xyz 相繞組能由前述驅動控制器51〇控制。 在本實施例中,轉速調節模組611及電流調節模組615 僅在固障後執行控制,實際實施時,轉速調節模組611可 與轉速5周喊杈組511整合在同一模組裡。電流調節模組615 可與電流調節模組515整合在同一模組裡。18/36 201236356 z-phase fault phase winding using 6-phase fault control, x_yz phase winding group using z-phase fault control C-phase fault X-phase fault a6c phase winding using c-phase fault control, x_yz phase winding using y-phase fault After the control is less 'phase fault phase winding using c-phase fault control, xyz phase winding using y-phase fault control z-phase fault β6c phase winding using C-phase fault control, xyz phase winding using Z-phase fault control fourth category ( A single-phase winding has a two-phase disconnection fault, and the single-winding operation is only visible. The xyz phase winding is in normal condition. The X-phase & y-only fault Me-phase winding is normal, and the X_V2 phase winding has a two-phase disconnection fault. The phase-winding three-phase mode is used to independently operate the J-phase and z-phase faults. The Me-phase winding is normal, the xyz phase winding has a two-phase disconnection fault, and the phase winding three-phase mode is used to independently operate the two-phase and the X-phase fault. The a6c phase winding is normal, xjz phase The two-phase disconnection fault occurs in the winding, and the phase winding is used to independently operate the phase winding. The operating condition is normal, the a-phase and the b-phase fault X_>, the 2-phase winding is normal, (the 30C phase winding occurs two) Disconnection fault, use Λ>·2 phase winding three-phase mode independent operation b phase and c phase fault xyz phase winding normal, phase winding two-phase disconnection fault, use X less 'Z phase winding three-phase mode independent operation c phase And the α phase fault x_yz phase winding is normal, the phase winding has a two-phase disconnection fault, and the sand-phase phase winding three-phase mode is used to independently operate the fifth category (single group winding can not operate, single-phase winding has single-phase disconnection fault, two Independent operation) Only @ multi and xyz phase winding operation status α phase failure can not operate phase winding use α phase fault control 6 phase fault can not operate ak phase winding use 6 phase fault control c phase fault can not operate phase winding use c After the phase failure, the phase winding C70C is controlled and the operating phase X phase fault cannot be operated. The xyz phase winding uses the X phase fault and the control _y phase fault cannot be operated. The x_yz phase winding uses the γ phase fault control 19/36 201236356 I 2 The group uses a 2-phase fault to control the synchronous motor fault after the fault and the current armature current: a vector diagram of the example. As the second, 'when the phase a winding is called or & In order to make the I phase armatures_control, the two-phase armatures that are not faulted: >2,_machine angle' then the armature current after the fault~ fine armature, or 30 degrees behind the motor angle : and the peak will be (4) (four), hold, the electric tank r, will exceed the rated power , times, ' 曰 make the unbroken b, e phase windings burned. Therefore, f wants the mine current command signal to make the armature after the fault Current d" Armature current before maintenance failure 7 > / 〇1 Test Figure 6 is a block diagram of an embodiment of a drive controller after a synchronous motor failure. As shown in the sixth C diagram, when the single-phase disconnection occurs in the coffee phase winding, and the red xyz phase winding is operating f, for example, & phase, , :/〇, ' and 61a is said to be early, then the drive control The un-faulted b-phase winding and the c-phase winding are switched to be controlled by the speed regulation module 6 and the current regulation module 615 to adjust the current command after the fault, and the unfaulted xyz phase winding can be driven by the aforementioned drive controller 51. 〇 control. In the present embodiment, the speed adjustment module 611 and the current adjustment module 615 perform control only after the barrier is disabled. In actual implementation, the speed adjustment module 611 can be integrated in the same module as the 5th rotation group 511. The current regulation module 615 can be integrated in the same module as the current regulation module 515.

轉速調節模、组611包括轉速運算單元6ηι及第二轉矩S 20/36 201236356 運算單元6113,其中,第一轉矩運算單元5113與第二轉矩 運算單元6113皆耦接於轉速運算單元6111。轉速運算單元 6111以轉速調節函數將轉速誤差值Aw轉換為一故障後 轉矩命令訊號Γ:,故障後轉矩命令訊號Γ:如式(28)所示。 乂 ί (28)The rotational speed adjusting module, the group 611 includes a rotational speed computing unit 6ηι and a second torque S 20/36 201236356 computing unit 6113, wherein the first torque computing unit 5113 and the second torque computing unit 6113 are both coupled to the rotational speed computing unit 6111. . The rotational speed computing unit 6111 converts the rotational speed error value Aw into a faulty torque command signal 以 by the rotational speed adjustment function: the post-fault torque command signal Γ: as shown in equation (28).乂 ί (28)

e 2 ) "7 w v Je 2 ) "7 w v J

其中,為同步電動機61的極數,為同步電動機 61的轉子磁通鏈,/=為電流峰值命令。而未故障之xyz相 繞組的轉矩命令:C如式(29)所示。Here, the number of poles of the synchronous motor 61 is the rotor flux linkage of the synchronous motor 61, and /= is the current peak command. The torque command of the unbroken xyz phase winding: C is as shown in equation (29).

TeTe

(29) 實際實施時,轉速調節模組611根據故障後的控制策 略將故障後轉矩命令Γ:切換輸出至第二轉矩運算單元6113 ,而將未故障的轉矩命令<輸出至第一轉矩運算單元5113 。其中,第二轉矩運算單元6113以一轉矩運算函數將一^ 2K' 丁 故障後轉矩命令訊號Γ:轉換為一電流峰值命令/〗,轉矩常 數夂V、心如式(30)、(31)所示。 = (30)(29) In actual implementation, the speed adjustment module 611 switches the post-fault torque command Γ according to the control strategy after the failure to the second torque operation unit 6113, and outputs the un-faulted torque command < A torque computing unit 5113. The second torque computing unit 6113 converts a torque signal Γ: into a current peak command / 〗 by a torque operation function, a torque constant 夂V, and a heart (30) (31). = (30)

KT τ 2 2 1,1 (31) 驅動控制器610更包括一 b相電流命令控制單元612b 及c相電流命令控制單元612c,b相電流命令控制單元612b 及c相電流命令控制早元612c分別以運鼻函數 cos(<9r -150°)及cos⑼+150°)將電流峰值命令/;;7運算後,得 21/36 201236356 到故障後電流命令z·'〗、γ。KT τ 2 2 1,1 (31) The drive controller 610 further includes a b-phase current command control unit 612b and a c-phase current command control unit 612c, a b-phase current command control unit 612b and a c-phase current command control early element 612c respectively. After the nose function cos (<9r -150°) and cos(9)+150°), the current peak command /;;7 is calculated to obtain 21/36 201236356 to the fault current command z·', γ.

C 電流調節模組615白紅, 匕栝—b相電流調節單 c相電流調節單元615c 兀615b及一C current regulation module 615 white red, 匕栝-b phase current regulation single c phase current adjustment unit 615c 兀 615b and one

令/W肩故障後的電4區電、ζ· 麦电W 故障後電流誤差值c 奴運异後得到 及一 c相電lc ,b相電流調節單元615b 及d…周即早疋6l5c分別以電流 電流誤差值<"、△, 、數6弋將 心 胬換梅後調節電壓命令<及 電流調節函數&、Ge分別為b相雷 電流調節函數,電产铜μ * ^IL。周即函數及c向 函數,其錢表示如如)所示。“_叫積分控制 sAfter the /W shoulder fault, the electric 4 zone electric, the ζ· Mai electric W fault current error value c is obtained after the slave transport and a c phase electric lc, b phase current regulating unit 615b and d... weeks ago 疋 6l5c respectively The current and current error values <", △, , and number 6弋 are used to adjust the voltage command < and the current adjustment function & and the current are respectively the b-phase lightning current adjustment function, and the electric copper is generated. IL. The week is the function and the c-direction function, whose money is shown as shown in the figure. "_ is called integral control s

Gb^Gc= kpk + xb L (32) 兴隹積分別為abc相繞組的電流調節比例控蝴 凰木積刀控制增益,s為積分運算函數。 驅動控制器610還包括電動勢估 電動勢估測 軸賴㈣—:。其中故障後1 _;==:障後調節電壓命令訊咏心Gb^Gc= kpk + xb L (32) The enthalpy is the current regulation proportional control of the abc phase winding. The phoenix wood knife controls the gain, and s is the integral operation function. The drive controller 610 also includes an electromotive force estimation electromotive force estimation axis (4) -:. After the fault 1 _; ==: adjust the voltage command after the obstacle

•t »· 丨 * A (33) (34) v b-u b+eb•t »· 丨 * A (33) (34) v b-u b+eb

% «· /V% «· /V

Vc=w'c+ec 22/36 201236356 八別為應電勢估測值, 元 義、㈣话測同度電動機2的反電轉、f力勢估測單 電勢估測值K可經由轉速回授估測值二〜得到,應 機61的轉子磁通鏈疋;計算得到。 '及為同步電動 b ' 令V a、V'bVc=w'c+ec 22/36 201236356 Eight is the estimated value of the potential, Yuanyi, (4) the opposite polarity of the motor 2, and the estimated potential of the force potential K can be fed back via the speed Estimate the value of the second ~ get, the machine 61 of the rotor flux linkage 疋; calculated. 'And for synchronous electric b ' to make V a, V'b

上述僅舉a相繞組6】a故障來說明,孰 域者應可以推得其他故障狀態的控制。經由藝領 ,到=同的故障狀態下的故障後電流命令/,:、: 可 ^、,二,以及不同故障狀態下的故障後電壓命/ <、A、<、<。其關係整理如表3所示。 電流命令訊號與故障後電壓命令訊號 —___ 相錶 Μ 23/36 201236356 若令abc相繞組輸出功率為,XyZ相繞組輸出功率 為/^,則abc相繞組和xyZ相繞組整體輸出功率^。,,如式 (35)所示。 在正¥運轉下’ abc相繞組輸出功率及XyZ相繞組輪出 功率平均分擔整體輸出功率,及户取可分別表示如式(36) 及(37)。The above description only shows the failure of the a-phase winding 6]a, and the domain should be able to push the control of other fault states. Through the art collar, the current command after the fault in the same fault state /, :, : can be ^, , 2, and the voltage after the fault in different fault states /, A, <, <. The relationship is organized as shown in Table 3. Current command signal and voltage command signal after fault -___ phase table Μ 23/36 201236356 If the output power of the abc phase winding is /, the output power of the XyZ phase winding is /^, then the overall output power of the abc phase winding and the xyZ phase winding ^. , as shown in equation (35). Under the positive operation, the abc phase winding output power and the XyZ phase winding wheel power share the overall output power equally, and the households can be expressed as equations (36) and (37), respectively.

(36) (37) 當abc相繞組發生單相斷線故障後,xyz相繞組正常, 若要使故障後電流維持故障前之電樞電流大小,需使abc 相繞組輸出功率户咖變為原來之&倍,如式(38)及(39)所示 P〇bc=:U3P,ota! (38) (39) 此時故障後之二相對三相運轉整體輸出功率,如 (40)所示。(36) (37) When the single-phase disconnection fault occurs in the abc phase winding, the xyz phase winding is normal. To make the current after the fault maintain the armature current before the fault, the output power of the abc phase winding needs to be changed. & times, as shown in equations (38) and (39) P〇bc=: U3P, ota! (38) (39) At this time, the second two-phase operation of the overall output power, such as (40) Show.

Plial -Pabc + P^. =2(1 + ^)^ = 〇.7887^〇/ (40) 由式(4〇)可知,發生abc相繞組發生單相斷線故障或 xyz相繞組發生單相斷線故障後之整體輪出功率^^下降 24/36 201236356 ,變為未故障時之整體輸出功率/^“的0.7887倍。當abc 相繞組發生單相斷線故障後及xyz相繞組發生單相斷線, 若要使故障後的電樞電流/广"、/广〃、、/fw〃、/f""、/产 維持故障前之電彳區電流L ' /Λ、4、/χ、z、.、/丨大小’則需使 abc相繞組和xyz相繞組輸出功率^及/變為原來之^ λ/3 倍,如式(41)及式(42)所示。 • PabcZ -^ ρ iS 10,01 (41) Ρ'γ:: -1尸 2λ/3,〇,al (42) 故障後之二相對二相運轉整體輸出功率2如式(4 3) 所示。Plial -Pabc + P^. =2(1 + ^)^ = 〇.7887^〇/ (40) From equation (4〇), a single-phase disconnection fault occurs in the abc phase winding or a single phase occurs in the xyz phase winding. After the disconnection fault, the overall wheel power ^^ drops 24/36 201236356, which becomes 0.7887 times of the overall output power /^" when the fault occurs. When the abc phase winding has a single-phase disconnection fault and the xyz phase winding occurs The disconnection line, to make the armature current after the fault / wide, ", / 〃,, / fw 〃, / f "", / production maintenance power before the fault zone L ' / Λ, 4, /χ, z, ., /丨 size' needs to make the output power of the abc phase winding and the xyz phase winding ^ and / become the original ^ λ / 3 times, as shown in equations (41) and (42). PabcZ -^ ρ iS 10,01 (41) Ρ'γ:: -1 corpse 2λ/3, 〇, al (42) The total output power 2 of the two-phase operation after the fault is as shown in equation (4 3).

=Pabc +=Pabc +

0.57735尸 (43) loial0.57735 corpse (43) loial

由式(43)可知,發生abc相繞組發生單相斷線故障及 xyz相繞組發生單相斷線故障後之整體輸出功率變為 未故障的整體輸出功率/^&的0.57735倍。 综合上述,已說明了本發明所提供的同步電動機控制 系統所使用的驅動控制器的技術手段,採用零軸電流調節 單元控制零轴電流為零,以減少銅損。並利用驅動控制器 判斷故障種類以及依據不同故障種類執行不同的故障後控 制,達到穩定轉速及安全運轉的效果。 25/36 201236356 以上所述者,僅為本發明之較佳實施例而已,當不能 以此限定本發明實施之範圍,即大凡依本發明申請專利範 圍及發明說明内容所作之簡單的等效變化與修飾,皆仍屬 本發明專利涵蓋之範圍内。 【圖式簡單說明】 第一圖:習知三相變頻器的一實施例之電路圖; 第二圖:習知三相變頻器的一實施例之電路圖; 第三圖:習知三相變頻器的一實施利之電路圖; 第四圖:本發明的同步電動機控制系統的一實施例之 方塊圖; 第五A圖:本發明的同步電動機控制系統的一實施例 之控制方塊圖; 第五B圖:本發明的同步電動機控制系統的同步電動 機的一實施例之等效電路圖; 第五C圖:本發明的同步電動機控制系統的變頻單元 之一實施例之電路圖; 第五D圖:本發明的同步電動機的a相繞組及其變頻 單元之一實施例之等效電路圖; 第五E圖:本發明的同步電動機控制系統的脈寬調變 控制單元的一實施例之方塊圖; 第五F圖:本發明的同步電動機控制系統的複合型可 程式邏輯元件的方塊圖; 第五G圖:本發明的同步電動機控制系統的同步旋轉 座標糸統之· ~~貫施例之座標圖, 第六A圖:本發明的同步電動機控制系統的故障控制 201236356 模組之一實施例之方塊圖; 第六B圖:本發明的同步電動機故障後與故障前的操 作電流的向量關係圖;及 第六C圖:本發明的同步電動機故障後的驅動控制器 的一實施例之方塊圖。 【主要元件符號說明】 11、21、31 :三相同步電動機 φ Π、27、37 :三臂三相變頻器 400、500 :同步電動機控制系統 410、510、610 :驅動控制器 411、511、611 :轉速調節模組 5111、6111 :轉速運算單元 5113 :第一轉矩運算單元 6113 :第二轉矩運算單元 612b : b相電流命令控制單元 φ 612c : c相電流命令控制單元 413、513 :交直軸矩陣轉換模組 415、515、615 :電流調節模組 515a、515x :交直轴電流調節單元 515a〇、515x〇 :零軸電流調節單元 615b : b相電流調節單元 615c : c相電流調節單元 517 :電壓補償模組 517a : abc相電壓補償單元 517x : xyz相電壓補償單元 •27/36 201236356 419、519 :交直轴矩陣反轉換模組 430、530 :轉速回授模組 531 :轉速回授電路 533 :轉速估測及磁極位置偵測電路 450、550 :電流回授電路 470、570 :電動機驅動模組 571、571a :變頻單元 573、573a :脈寬調變控制單元 5731 ··數位訊號處理單元 5733 :複合型可程式邏輯元件 660 :故障控制模組 661 :電流偵測單元 663 :故障判斷單元 618b、618c :電動勢估測單元 61 :同步電動機 611 : abc相繞組 613 : xyz相繞組 a相繞組:61a 700 :同步旋轉座標系統 C、CCCC7 :功率電晶體開關 η、q:中性點 c,、c2 :電容 尺:等效定子側電阻 I:等效定子側電感 28/36 201236356 A、A、A、、A、A、e„,.、e,,,、\ :反電動勢電壓 t :左臂開關訊號 X: _·右臂開關訊號 PWM1、PWM2 :脈寬調變訊號 GPIO :通用輸出入埠訊號 KL、- νΛ.:電壓 V:、V:、V:、V:、V:、V::電壓命令It can be seen from equation (43) that the overall output power after the occurrence of a single-phase disconnection fault in the abc phase winding and the single-phase disconnection fault of the xyz phase winding becomes 0.57735 times the overall output power of the un-fault/^& In summary, the technical means of the drive controller used in the synchronous motor control system provided by the present invention has been described, and the zero-axis current adjustment unit is used to control the zero-axis current to zero to reduce copper loss. The drive controller is used to judge the type of fault and perform different post-fault control according to different fault types to achieve stable speed and safe operation. 25/36 201236356 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent change made by the scope of the invention and the description of the invention. And modifications are still within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of an embodiment of a conventional three-phase inverter; FIG. 2 is a circuit diagram of an embodiment of a conventional three-phase inverter; FIG. 4 is a block diagram of an embodiment of a synchronous motor control system of the present invention; FIG. 5A is a control block diagram of an embodiment of a synchronous motor control system of the present invention; An equivalent circuit diagram of an embodiment of a synchronous motor of the synchronous motor control system of the present invention; FIG. 5C is a circuit diagram of an embodiment of a frequency conversion unit of the synchronous motor control system of the present invention; An equivalent circuit diagram of an embodiment of a phase winding of a synchronous motor and its frequency conversion unit; FIG. 5E is a block diagram of an embodiment of a pulse width modulation control unit of the synchronous motor control system of the present invention; Block diagram of a composite programmable logic component of the synchronous motor control system of the present invention; fifth G diagram: synchronous rotary coordinate system of the synchronous motor control system of the present invention · ~ ~ Figure of the coordinates of the embodiment, Figure 6A: Block diagram of one of the modules of the fault control of the synchronous motor control system of the present invention 201236356 module; Figure 6B: the fault and failure of the synchronous motor of the present invention A vector diagram of the previous operational current; and a sixth C diagram: a block diagram of an embodiment of the drive controller after the failure of the synchronous motor of the present invention. [Description of main component symbols] 11, 21, 31: Three-phase synchronous motor φ Π, 27, 37: three-arm three-phase inverter 400, 500: synchronous motor control system 410, 510, 610: drive controllers 411, 511, 611: rotational speed adjustment module 5111, 6111: rotational speed computing unit 5113: first torque computing unit 6113: second torque computing unit 612b: b-phase current command control unit φ 612c: c-phase current command control unit 413, 513: Cross-axis matrix conversion module 415, 515, 615: current regulation module 515a, 515x: cross-axis current adjustment unit 515a, 515x: zero-axis current adjustment unit 615b: b-phase current adjustment unit 615c: c-phase current adjustment unit 517: voltage compensation module 517a: abc phase voltage compensation unit 517x: xyz phase voltage compensation unit • 27/36 201236356 419, 519: orthogonal axis matrix inverse conversion module 430, 530: speed feedback module 531: speed feedback Circuit 533: rotational speed estimation and magnetic pole position detecting circuit 450, 550: current feedback circuit 470, 570: motor drive module 571, 571a: frequency conversion unit 573, 573a: pulse width modulation control unit 5731 · digital signal Unit 5733: composite programmable logic element 660: fault control module 661: current detecting unit 663: fault judging unit 618b, 618c: electromotive force estimating unit 61: synchronous motor 611: abc phase winding 613: xyz phase winding a Phase winding: 61a 700: synchronous rotary coordinate system C, CCCC7: power transistor switch η, q: neutral point c, c2: capacitance: equivalent stator side resistance I: equivalent stator side inductance 28/36 201236356 A , A, A, A, A, e„,., e,,,,\: Back EMF voltage t: Left arm switching signal X: _· Right arm switching signal PWM1, PWM2: Pulse width modulation signal GPIO: General-purpose input and output signals KL, - νΛ.: Voltage V:, V:, V:, V:, V:, V:: Voltage command

w„, ··轉速回授 是:轉子角位置估測 Θ,.:轉子肖位置 CC、ζ.、C.:交直軸電流命令 (:直軸電流命令 G,:轉速調節函數 <:轉矩命令w„, ··Speed feedback is: rotor angular position estimation Θ,: rotor position CC, ζ., C.: cross-axis current command (: straight-axis current command G,: speed adjustment function <: turn Moment command

2ΚΤ 2Κ'Τ 轉矩運算函數 q-axis :交軸 d-axis :直車由 : abc相轉換矩陣函數 : xyz相轉換矩陣函數 CL、(,v、L :交直軸電流回授訊號 29/36 201236356 tC:零軸電流回授訊號 △ς、Δ/^、:電流誤差值 、ζ,、ζο :零轴電流命令 :交軸電流調節函數 :直軸電流調節函數 GQ;I、G。,:零軸電流調節函數 心、4、<、< :交直軸調節電壓命令訊號 <、:零軸調節電壓命令訊號 <、<、4、<:交直轴電壓命令訊號 %:同步電動機之同步角速度 <,:零軸電壓命令訊號 : abc相反轉換矩陣函數2ΚΤ 2Κ'Τ Torque calculation function q-axis: axis d-axis: direct car by: abc phase conversion matrix function: xyz phase conversion matrix function CL, (, v, L: cross-axis current feedback signal 29/36 201236356 tC: Zero-axis current feedback signal △ς, Δ/^,: current error value, ζ, ζο: zero-axis current command: cross-axis current adjustment function: straight-axis current adjustment function GQ; I, G.,: Zero-axis current adjustment function heart, 4, <, <: cross-axis adjustment voltage command signal <,: zero-axis adjustment voltage command signal <, <, 4, <: cross-axis voltage command signal %: synchronization Synchronous angular velocity of the motor <,: zero-axis voltage command signal: abc reverse conversion matrix function

^ delect :xyz相反轉換矩陣函數 :、v:、V:、V:、v::電壓命令訊號 •電流彳貞測訊號 「detect r detect r detect r detect t、心、心、屹、夂,、欠:故障判斷因子 /广"、/fw":故障後的操作電流 Γ::故障後轉矩命令訊號 <、< :故障後電流命令訊號 cos(6»r —150°)、cos(乂 +150°):運算函數 :故障後調節電壓命令訊號 G0、Ge :電流調節函數 30/36 201236356 v'$、V::故障後電壓命令訊號 、弋:同步電動機的應電勢估測值^ delect : xyz reverse conversion matrix function:, v:, V:, V:, v:: voltage command signal • current measurement signal "detect r detect r detect r detect t, heart, heart, 屹, 夂,, Under: fault judgment factor / wide ", /fw": operating current after fault Γ:: torque command signal after fault <, < : current command signal after fault cos (6»r -150 °), cos (乂+150°): Operation function: Adjust voltage command signal after fault G0, Ge: Current adjustment function 30/36 201236356 v'$, V:: Voltage command signal after fault, 弋: Estimated value of synchronous motor

31/3631/36

Claims (1)

201236356 七、申請專利範圍: 1. 一種驅動控制器,應用於一同步電動機,該同步電動機 為單極雙臂式之同步電動機,該驅動控制器耦接於一電 流回授電路及一轉速回授模組,該電流回授電路及該轉 速回授模組分別耦接於該同步電動機,該驅動控制器包 括: 一交直軸矩陣轉換模組,用以根據該轉速回授模組輸 出的一轉子角位置估測將電流回授電路輸出的一 組電樞電流以一第一矩陣作座標軸轉換為一組交 直軸電流及一零軸電流,其中該零軸電流與該組 電框電流的總和成正比, 一轉速調節模組,耦接於該轉速回授模組,該轉速調 節模組用以將該轉速回授模組輸出的一轉速回授 與一轉速命令的差值轉換為一組交直軸電流命令 一電流調節模組,耦接於該交直軸矩陣轉換模組及該 轉速調節模組,該電流調節模組用以將該組交直 軸電流與該組交直軸電流命令的差值轉換為一組 交直軸電壓命令,並將該零軸電流與一零軸電流 命令的差值轉換為一零軸電壓命令,其中該零轴 電流命令為零; 一交直軸矩陣反轉換模組,耦接於該電流調節模組, 該交直軸矩陣反轉換模組用以將該組交直軸電壓 命令及該零軸電壓命令以一第二矩陣作座標軸轉 換為一組第一電壓命令,並輸出該組第一電壓命 令至一電動機驅動模組,該電動機驅動模組根據 該組第一電壓命令控制該同步電動機的一組電椹 電壓,使該組電枢電流的總和維持零,其中該第 二矩陣與該第一矩陣互為反矩陣。 32/36 201236356 2. 如申請專利範圍第1項所述之驅動控制器,其中,該電 流調節模組包括一交直軸電流調節單元及一零軸電流 調節單元,其中該交直轴電流調節單元以一交直軸電流 調節函數將該組交直軸電流與該組交直軸電流命令的 差值轉換為該組交直軸電壓命令,該零軸電流調節單元 以一零軸電流調節函數將該零軸電流與該零軸電流命 令的差值轉換為該零軸電壓命。 3. 如申請專利範圍第1項所述之驅動控制器,其中,該轉 速調節模組包括一轉速運算單元及一第一轉矩運算單 元,該第一轉矩運算單元耦接於該轉速運算單元,該轉 速運算單元以一轉速轉矩轉換函數將該該轉速回授與 該轉速命令的差值轉換為一轉矩命令,該第一轉矩運算 單元以一轉矩轉電流轉換函數該轉矩命令轉換為一交 直軸電流命令。 4. 如申請專利範圍第3項所述之驅動控制器,更包括一故 障控制模組,該故障控制模組包括一電流偵測單元及一 故障判斷單元,該電流調節單元耦接於該故障判斷單元 ,該電流偵測單元用以將該組電枢電流作取樣計算後輸 出一偵測電流,該故障判斷單元根據該偵測電流判斷該 同步電動機的故障種類,並根據故障種類輸出一運轉策 略訊號。 5. 如申請專利範圍第4項所述之驅動控制器,其中,該轉 速調節模組更包括一第二轉矩運算單元與該轉速運算 單元耦接,該轉速調節模組根據該運轉策略訊號控制該 轉速運算單元輸出該轉矩命令至該第一轉矩運算單元 或該第二轉矩運算單元。 6. 如申請專利範圍第5項所述之驅動控制器,其中,當該 運轉策略訊號為故障後控制訊號時,該轉速運算單元輸 出該轉矩命令至該第二轉矩運算單元,該第二轉矩運算 33/36 201236356 單元將該轉矩命令轉換為一故障後電流命令。 7. 如申請專利範圍第6項所述之驅動控制器,其中,該電 流調節模組將該故障後電流命令與故障後的電樞電流 的差值轉換為一組第二電壓命令,並輸出至該電動機驅 動模組,該電動機驅動模組根據該組第二電壓命令控制 該同步電動機的電樞電壓,使該同步電動機故障後未截 止的電樞電流維持故障前的電樞電流。 8. —種同步電動機之驅動控制方法,包括: 接收該'同步電動機的一組電樞電流; 根據該同步電動機的一轉子角位置估測將該組電植 電流以一第一矩陣作座標軸轉換為一組交直轴電 流及一零軸電流,其中,該零軸電流與該組電樞 電流的總和乘正比; 根據該同步電動機的一轉速回授與一轉速命令的比 較結果產生一組交直軸電流命令; 將該組交軸電流與該交直軸電流命令的比較結果以 一交直軸電流調節函數轉換為一組交直轴電壓命 令,並將該零軸電流與一零軸電流命令的比較結 果以一零軸電流調節函數轉換為一零軸電壓命令 ,其中,該零軸電流命令為零;及 將該組交直軸電壓命令及該零軸電壓命令以一第二 矩陣作座標轴轉換為一組第一電壓命令,並輸出 至一電動機驅動模組,該電動機驅動模組根據該 組第一電壓命令控制該同步電動機的電樞電壓, 使該電枢電流的總和維持零。 9. 如申請專利範圍第8項所述之驅動控制方法,其中,根 據該轉速回授與該轉速命令的比較結果產生該組交直 軸電流命令的步驟包括: 根據該轉速回授與該轉速命令的比較結果產生一轉 34/36 201236356 矩命令;及 I〇.!!口:ί轉換為該組交直輪電流命令。 : 專利第9項所述之_控制料,更包括 根據;ίΐ作,樣計算後輪出—偵測電流;及 略訊號、。U情輯動1,並據以產生-運轉策 u制ί:請圍第10項所述之同步電動機之驅動控 策Γ號將該轉矩命令轉換為一故障後 將。玄故卩早後電流命令盘故 12. 果轉換為—组第_ ς ϋ的電柩電流的比較結 驅動模組。 ^命令’並輸出至該電動機 同步電動機,二:控制-單極雙臂式之 模組用以伯射同步電動機,該轉速回授 子位置,以許屮—二電動機的一轉子轉速及一轉 ; 轉逮回授及一轉子角位置估測 一電流回授電路,耦技 電路用以偵測二於電=動機’該電流回授 輸出該組電樞電流;動械的一組電樞電流,並 ―驅動控制器’耦接^該 電路,該驅動控制^專^回賴組及該電流回授 令取得一組交軸命據該轉速回授及一轉速命 轉換模組將該組=H二並藉由一交直軸矩陣 直軸電流及一跫軸雷=机作座標軸轉換為一組交 流調節模組將i組,該驅動控制器藉由〆電 父直軸電流命令與該組交直軸 201236356 電流的差值轉換為一組交直轴電壓命令,並將該 零軸電流與一零軸電流命令的差轉換為一零軸電 壓命令,其中該零軸電流命令為零,該驅動控制 器藉由一交直軸反矩陣轉換模組將該組交直軸電 壓命令及該零轴電壓命令轉換為一組第一電壓命 令; 一電動機驅動模組,耦接於該驅動控制器,該電動機 驅動模組包括一脈寬調節控制單元及一變頻單元 ,該脈寬調節控制單元耦接於該變頻單元,該蔓 寬調節控制單元根據該第一電壓命令調節該變頻 單元的開關責任週期,以控制該同步電動機的電 極電壓’使該同步電動機的電極電流總和為零。 36/36201236356 VII. Patent application scope: 1. A drive controller is applied to a synchronous motor, which is a single-pole dual-synchronous motor. The drive controller is coupled to a current feedback circuit and a speed feedback The module, the current feedback circuit and the speed feedback module are respectively coupled to the synchronous motor, and the driving controller comprises: a cross-axis matrix conversion module for feeding back a rotor of the module output according to the rotation speed The angular position estimation converts a set of armature currents outputted by the current feedback circuit into a set of orthogonal axis currents and a zero axis current by using a first matrix as a coordinate axis, wherein the sum of the zero axis currents and the set of frame currents is In proportion, a speed adjustment module is coupled to the speed feedback module, and the speed adjustment module is configured to convert the difference between a speed feedback and a speed command outputted by the speed feedback module into a set of straight lines. The current adjustment module is coupled to the orthogonal axis matrix conversion module and the rotation speed adjustment module, and the current adjustment module is configured to cross the straight axis current with the set of straight axes The difference of the current command is converted into a set of cross-axis voltage commands, and the difference between the zero-axis current and the zero-axis current command is converted into a zero-axis voltage command, wherein the zero-axis current command is zero; The anti-conversion module is coupled to the current adjustment module, and the cross-axis matrix inverse conversion module is configured to convert the set of cross-axis voltage commands and the zero-axis voltage command into a set of first a voltage command, and outputting the set of first voltage commands to a motor drive module, wherein the motor drive module controls a set of electrical voltages of the synchronous motor according to the set of first voltage commands to maintain a sum of the armature currents of the set Zero, wherein the second matrix and the first matrix are opposite to each other. The drive controller of claim 1, wherein the current regulation module comprises a cross-axis current adjustment unit and a zero-axis current adjustment unit, wherein the cross-axis current adjustment unit An AC-DC current adjustment function converts the difference between the set of cross-axis currents and the set of cross-axis current commands into the set of cross-axis voltage commands, the zero-axis current adjustment unit uses a zero-axis current adjustment function to The difference of the zero-axis current command is converted to the zero-axis voltage. 3. The drive controller of claim 1, wherein the speed adjustment module comprises a rotational speed computing unit and a first torque computing unit, the first torque computing unit coupled to the rotational speed computing a unit, the rotational speed computing unit converts the difference between the rotational speed feedback and the rotational speed command into a torque command by a rotational speed torque conversion function, and the first torque computing unit rotates with a torque to current conversion function The moment command is converted to a straight-axis current command. 4. The drive controller of claim 3, further comprising a fault control module, the fault control module comprising a current detecting unit and a fault determining unit, wherein the current adjusting unit is coupled to the fault a determining unit, the current detecting unit is configured to perform sampling calculation on the set of armature currents, and output a detecting current, the fault determining unit determines a fault type of the synchronous motor according to the detected current, and outputs an operation according to the fault type Strategy signal. 5. The driving controller of claim 4, wherein the speed adjustment module further comprises a second torque computing unit coupled to the rotational speed computing unit, the rotational speed adjusting module according to the operational strategy signal The rotational speed computing unit is controlled to output the torque command to the first torque computing unit or the second torque computing unit. 6. The drive controller of claim 5, wherein when the operation strategy signal is a fault control signal, the rotation speed calculation unit outputs the torque command to the second torque calculation unit, the Two Torque Operation 33/36 201236356 The unit converts this torque command into a post-fault current command. 7. The drive controller of claim 6, wherein the current adjustment module converts the difference between the current command after the fault and the armature current after the fault into a set of second voltage commands, and outputs To the motor drive module, the motor drive module controls the armature voltage of the synchronous motor according to the set of second voltage commands, so that the armature current that is not turned off after the synchronous motor fails maintains the armature current before the fault. 8. A driving control method for a synchronous motor, comprising: receiving a set of armature currents of the 'synchronous motor; estimating a set of electroforming currents by using a first matrix as a coordinate axis according to a rotor angular position of the synchronous motor a set of straight-axis current and a zero-axis current, wherein the zero-axis current is proportional to the sum of the set of armature currents; and a set of intersecting axes is generated according to a comparison between a rotational speed feedback of the synchronous motor and a rotational speed command a current command; a comparison result of the set of intersecting axis currents and the cross-axis current command is converted into a set of cross-axis voltage commands by an AC-axis current adjustment function, and the comparison result of the zero-axis current and the zero-axis current command is a zero-axis current adjustment function is converted to a zero-axis voltage command, wherein the zero-axis current command is zero; and the set of cross-axis voltage commands and the zero-axis voltage command are converted into a set of coordinates by a second matrix The first voltage command is output to a motor drive module, and the motor drive module controls the power of the synchronous motor according to the set of first voltage commands Voltage, so that the sum of the armature current remains at zero. 9. The driving control method according to claim 8, wherein the step of generating the set of orthogonal axis current commands according to the comparison result of the rotational speed and the rotational speed command comprises: feeding back the rotational speed command according to the rotational speed The result of the comparison produces a 34/36 201236356 moment command; and I〇.!! port: ί is converted to the set of straight-wheel current commands. : The control material mentioned in the 9th item of the patent includes: according to the method; the sample is calculated after the wheel-detection current; and the signal is slightly. U emotions are set to 1, and according to the production-operation strategy u: Please turn the torque command into a fault after the drive control nickname of the synchronous motor described in item 10. Xuan 卩 卩 电流 电流 电流 电流 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12. 果 果^Command 'and output to the motor synchronous motor, two: control - single-pole dual-arm module for the primary-synchronous motor, the speed feedback sub-position, to a rotor-two motor of a rotor speed and a turn The transfer feedback and a rotor angular position estimate a current feedback circuit, the coupling circuit is used to detect the second power = the motivation 'the current feedback output the armature current; the set of armature currents And the "drive controller" is coupled to the circuit, the drive control ^ special ^ return group and the current feedback command to obtain a set of axis command data, the speed feedback and a speed conversion module to the group = H2 is converted into a set of AC regulation modules by a straight-axis current of a straight-axis matrix and a coordinate axis of the machine as a coordinate axis, and the drive controller is connected to the group by the current command of the straight-axis current. The difference of the current 201236356 is converted into a set of straight-axis voltage commands, and the difference between the zero-axis current and the zero-axis current command is converted into a zero-axis voltage command, wherein the zero-axis current command is zero, the drive controller Inverted matrix conversion mode Converting the set of direct axis voltage commands and the zero axis voltage command into a set of first voltage commands; a motor drive module coupled to the drive controller, the motor drive module including a pulse width adjustment control unit and a The frequency conversion unit is coupled to the frequency conversion unit, and the vine width adjustment control unit adjusts a switching duty cycle of the frequency conversion unit according to the first voltage command to control an electrode voltage of the synchronous motor to make the synchronous motor The sum of the electrode currents is zero. 36/36
TW100105622A 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof TWI426699B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105622A TWI426699B (en) 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105622A TWI426699B (en) 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof

Publications (2)

Publication Number Publication Date
TW201236356A true TW201236356A (en) 2012-09-01
TWI426699B TWI426699B (en) 2014-02-11

Family

ID=47222812

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105622A TWI426699B (en) 2011-02-21 2011-02-21 Driving controller of synchronous motor and the driving control method thereof

Country Status (1)

Country Link
TW (1) TWI426699B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578687B (en) * 2015-10-13 2017-04-11 國立清華大學 Three-phase inverting apparatus and control method and paralleled power conversion system thereof
CN112398398A (en) * 2020-12-03 2021-02-23 湖南大学 Method and device for controlling weak magnetism of double three-phase permanent magnet synchronous motor
CN112953318A (en) * 2021-02-01 2021-06-11 哈尔滨工业大学 Nonlinear compensation method for permanent magnet synchronous motor driving system inverter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418446A (en) * 1993-05-10 1995-05-23 Hallidy; William M. Variable speed constant frequency synchronous electric power generating system and method of using same
JP3680016B2 (en) * 2001-09-03 2005-08-10 三菱電機株式会社 Synchronous motor step-out detection device
JP2004180363A (en) * 2002-11-25 2004-06-24 Tm T & D Kk Reversed phase voltage compensation system for power grid system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578687B (en) * 2015-10-13 2017-04-11 國立清華大學 Three-phase inverting apparatus and control method and paralleled power conversion system thereof
US9680397B2 (en) 2015-10-13 2017-06-13 National Tsing Hua University Three-phase inverting apparatus and control method and paralleled power conversion system thereof
CN112398398A (en) * 2020-12-03 2021-02-23 湖南大学 Method and device for controlling weak magnetism of double three-phase permanent magnet synchronous motor
CN112953318A (en) * 2021-02-01 2021-06-11 哈尔滨工业大学 Nonlinear compensation method for permanent magnet synchronous motor driving system inverter

Also Published As

Publication number Publication date
TWI426699B (en) 2014-02-11

Similar Documents

Publication Publication Date Title
Sui et al. Open-circuit fault-tolerant control of five-phase PM machine based on reconfiguring maximum round magnetomotive force
Zhao et al. Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernier permanent-magnet motor using improved SVPWM
CN101204003B (en) Power conversion control device, power conversion control method
CN102868350B (en) The accurate closed loop starting method of brushless DC motor without position sensor
Fan et al. Torque ripple minimization for inter-turn short-circuit fault based on open-winding five phase FTFSCW-IPM motor for electric vehicle application
CN106712601B (en) Axial magnetic field magnetic flux based on copper loss minimum switches fault-tolerant motor fault tolerant control method
CN110504889B (en) Fault-tolerant direct torque control method for five-phase permanent magnet synchronous motor
Zhang et al. Fault-tolerant control of hybrid excitation axial field flux-switching permanent magnet machines
CN105048910A (en) Sensorless high-voltage cascaded frequency converter vector control system and control method thereof
CN104184380A (en) One-phase-failure fault-tolerant torque control method of 60-degree offset six-phase permanent magnet synchronous motor
CN108574439B (en) Space vector control method for fault-tolerant system of permanent magnet synchronous motor
CN112117941A (en) Fault-tolerant control method of open-winding permanent magnet synchronous motor based on model prediction current control
CN106533310B (en) A kind of direct current biasing sinusoidal current electric machine controller
CN113872482B (en) Axial magnetic field flux switching permanent magnet motor single-phase fault-tolerant control method
JP6687228B1 (en) AC rotating electric machine control device
Tian et al. Freewheeling current-based sensorless field-oriented control of five-phase permanent magnet synchronous motors under insulated gate bipolar transistor failures of a single phase
CN108667379B (en) Direct torque control method for fault-tolerant system of two-phase permanent magnet synchronous motor
CN108429491B (en) Fault-tolerant control system and method for double permanent magnet synchronous motors
CN108258945B (en) Nine-switch inverter of double-permanent-magnet synchronous motor and control method thereof
TW201236356A (en) Driving controller of synchronous motor and the driving control method thereof
Jiang et al. Fault tolerant control of dual-winding fault-tolerant permanent magnet motor drive with three-phase four-leg inverter
Villani et al. Fault-tolerant PM brushless DC drive for aerospace application
Fabri et al. Observer-based sensorless control of a five-phase brushless DC motor
CN109981017B (en) Fault-tolerant control system and method for two-unit same-phase permanent magnet synchronous motor under open-circuit fault
CN109600095A (en) A kind of disconnected phase fault-tolerant control system and method for the permanent magnet synchronous motor based on four-leg inverter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees