TWI426627B - Light-emitting diode - Google Patents

Light-emitting diode Download PDF

Info

Publication number
TWI426627B
TWI426627B TW99119362A TW99119362A TWI426627B TW I426627 B TWI426627 B TW I426627B TW 99119362 A TW99119362 A TW 99119362A TW 99119362 A TW99119362 A TW 99119362A TW I426627 B TWI426627 B TW I426627B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
light
emitting diode
circular table
substrate
Prior art date
Application number
TW99119362A
Other languages
Chinese (zh)
Other versions
TW201145578A (en
Inventor
Zheng-Dong Zhu
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99119362A priority Critical patent/TWI426627B/en
Publication of TW201145578A publication Critical patent/TW201145578A/en
Application granted granted Critical
Publication of TWI426627B publication Critical patent/TWI426627B/en

Links

Landscapes

  • Led Devices (AREA)

Description

發光二極體 Light-emitting diode

本發明涉及一發光二極體,尤其涉及一具有三維奈米結構陣列之發光二極體。 The invention relates to a light-emitting diode, in particular to a light-emitting diode having a three-dimensional nanostructure array.

由氮化鎵半導體材料製成之高效藍光、綠光及白光發光二極體具有壽命長、節能、綠色環保等顯著特點,已被廣泛應用於大螢幕彩色顯示、汽車照明、交通信號、複數媒體顯示及光通訊等領域,特別是在照明領域具有廣闊之發展潛力。 High-efficiency blue, green and white light-emitting diodes made of GaN semiconductor materials have longevity, energy saving, green environmental protection, etc., and have been widely used in large-screen color display, automotive lighting, traffic signals, and plural media. In the fields of display and optical communication, especially in the field of lighting, it has broad potential for development.

傳統發光二極體通常包括N型半導體層、P型半導體層、設置於N型半導體層與P型半導體層之間之活性層、設置於P型半導體層上之P型電極(通常為透明電極)及設置於N型半導體層上之N型電極。發光二極體處於工作狀態時,在P型半導體層與N型半導體層上分別施加正、負電壓,這樣,存在於P型半導體層中之空穴與存在於N型半導體層中之電子在活性層中發生複合而產生光子,且光子從發光二極體中射出。 A conventional light-emitting diode generally includes an N-type semiconductor layer, a P-type semiconductor layer, an active layer disposed between the N-type semiconductor layer and the P-type semiconductor layer, and a P-type electrode (usually a transparent electrode) disposed on the P-type semiconductor layer. And an N-type electrode disposed on the N-type semiconductor layer. When the light-emitting diode is in an active state, positive and negative voltages are respectively applied to the P-type semiconductor layer and the N-type semiconductor layer, so that holes existing in the P-type semiconductor layer and electrons existing in the N-type semiconductor layer are Photons are generated by recombination in the active layer, and photons are emitted from the light-emitting diodes.

然而,先前技術之發光二極體的光取出效率(光取出效率通常指活性層中所產生之光從發光二極體內部釋放出之效率)較低,其主要原因是由於半導體(通常為氮化鎵)之折射率大於空氣之折射率,來自活性層之大角度光在半導體與空氣之介面處發生全反射,從而大部份大角度光被限制在發光二極體之內部,直至以熱 等方式耗散。這對發光二極體而言非常不利。 However, the light extraction efficiency of the prior art light-emitting diodes (the light extraction efficiency generally means that the light generated in the active layer is released from the inside of the light-emitting diode) is low, mainly due to the semiconductor (usually nitrogen). The refractive index of gallium is greater than the refractive index of air, and the large angle light from the active layer is totally reflected at the interface between the semiconductor and the air, so that most of the large-angle light is confined inside the light-emitting diode until it is heated. Dissipate in other ways. This is very disadvantageous for the light-emitting diode.

為了解決上述問題,先前技術中通過控制氮化鎵生長方式提高發光二極體之出光率。然該方法工藝複雜,成本較高。先前技術中也有採用表面粗糙化或表面圖形化發光二極體之出光面等方法改變光線之入射角度從而提高發光二極體之出光率的報導。然這種方法只能在較小程度上改變光線之入射角,對於入射角較大之大角度光仍無法有效地提取,影響了發光二極體之出光率。 In order to solve the above problems, the prior art improves the light-emitting rate of the light-emitting diode by controlling the growth mode of the gallium nitride. However, the method is complicated in process and high in cost. In the prior art, there is also a method of changing the incident angle of light by using a surface roughening or a surface patterning light emitting surface of the light emitting diode to improve the light extraction rate of the light emitting diode. However, this method can only change the incident angle of the light to a small extent, and the large-angle light with a large incident angle cannot be effectively extracted, which affects the light-emitting rate of the light-emitting diode.

有鑒於此,提供一光取出效率較高之發光二極體實為必要。 In view of this, it is necessary to provide a light-emitting diode having a high light extraction efficiency.

一發光二極體,其包括:一基底;一第一半導體層、一活性層及一第二半導體層依次層疊設置於所述基底之一側,且所述第一半導體層靠近基底設置;一第一電極與所述第一半導體層電連接;一第二電極與所述第二半導體層電連接;其中,進一步包括複數三維奈米結構以陣列形式設置於第二半導體層之遠離基底的表面,且所述三維奈米結構為階梯狀結構,每一階梯狀結構包括至少兩層台狀結構。 a light emitting diode comprising: a substrate; a first semiconductor layer, an active layer and a second semiconductor layer are sequentially stacked on one side of the substrate, and the first semiconductor layer is disposed adjacent to the substrate; The first electrode is electrically connected to the first semiconductor layer; a second electrode is electrically connected to the second semiconductor layer; and further comprising a plurality of three-dimensional nanostructures disposed in an array on the surface of the second semiconductor layer away from the substrate And the three-dimensional nanostructure is a stepped structure, and each of the stepped structures includes at least two layers of a mesa structure.

一發光二極體,其包括:一基底;一第一半導體層、一活性層及一第二半導體層依次層疊設置於所述基底之一側,且所述第一半導體層靠近基底設置;一第一電極與所述第一半導體層電連接;一第二電極與所述第二半導體層電連接;其中,進一步包括複數三維奈米結構以陣列形式設置於第一半導體層與基底接觸之表面,且所述三維奈米結構為階梯狀結構,每一階梯狀結構包括至少兩層台狀結構。 a light emitting diode comprising: a substrate; a first semiconductor layer, an active layer and a second semiconductor layer are sequentially stacked on one side of the substrate, and the first semiconductor layer is disposed adjacent to the substrate; The first electrode is electrically connected to the first semiconductor layer; a second electrode is electrically connected to the second semiconductor layer; and further comprising a plurality of three-dimensional nanostructures disposed in an array on the surface of the first semiconductor layer in contact with the substrate And the three-dimensional nanostructure is a stepped structure, and each of the stepped structures includes at least two layers of a mesa structure.

與先前技術相比較,本發明之發光二極體中,複數三維奈米結構以陣列形式設置形成三維奈米結構陣列。由於本發明之三維奈米結構為階梯狀結構,相當於包括至少二層三維奈米結構或二層光子晶體結構,故可以更加有效提高發光二極體之大角度光的取出效率。或者,當大角度光向基底傳播過程中遇到三維奈米結構陣列,會經三維奈米結構陣列反射而變成小角度光。一方面,大角度光變成小角度光可以提高發光二極體之出光效率,另一方面,大角度光變成小角度光可以減小光線在發光二極體內部之傳播路徑,從而減小光線在傳播過程中之損耗。 In comparison with the prior art, in the light-emitting diode of the present invention, a plurality of three-dimensional nanostructures are arranged in an array to form a three-dimensional nanostructure array. Since the three-dimensional nanostructure of the present invention has a stepped structure, which corresponds to at least two layers of a three-dimensional nanostructure or a two-layer photonic crystal structure, the extraction efficiency of the large-angle light of the light-emitting diode can be more effectively improved. Alternatively, when a large-angle light encounters a three-dimensional nanostructure array during propagation to the substrate, it is reflected by the three-dimensional nanostructure array to become a small angle light. On the one hand, the large angle light becomes a small angle light to improve the light extraction efficiency of the light emitting diode. On the other hand, the large angle light becomes a small angle light, which can reduce the propagation path of the light inside the light emitting diode, thereby reducing the light in the light. Loss during the propagation process.

10,20,30,40‧‧‧發光二極體 10,20,30,40‧‧‧Lighting diodes

11,21,31,41‧‧‧第二電極 11,21,31,41‧‧‧second electrode

12,22,32,42‧‧‧基底 12,22,32,42‧‧‧Base

13,23,33,43‧‧‧第一電極 13,23,33,43‧‧‧first electrode

14,24,34,44‧‧‧第一半導體層 14,24,34,44‧‧‧First semiconductor layer

15,45‧‧‧三維奈米結構 15,45‧‧‧Three-dimensional nanostructure

152‧‧‧第一圓台 152‧‧‧First round table

154‧‧‧第二圓台 154‧‧‧Second round table

16,26,36,46‧‧‧活性層 16,26,36,46‧‧‧active layer

17,27,37,47‧‧‧三維奈米結構陣列 17,27,37,47‧‧‧Three-dimensional nanostructure array

18,28,38,48‧‧‧第二半導體層 18,28,38,48‧‧‧second semiconductor layer

452‧‧‧第一圓台狀空間 452‧‧‧First round table space

454‧‧‧第二圓台狀空間 454‧‧‧Second round table space

圖1為本發明第一實施例提供之發光二極體的結構示意圖。 FIG. 1 is a schematic structural view of a light emitting diode according to a first embodiment of the present invention.

圖2為圖1之發光二極體沿II-II線的剖視圖。 2 is a cross-sectional view of the light-emitting diode of FIG. 1 taken along line II-II.

圖3為本發明第一實施例提供之發光二極體的三維奈米結構陣列之掃描電鏡照片。 3 is a scanning electron micrograph of a three-dimensional nanostructure array of a light-emitting diode according to a first embodiment of the present invention.

圖4為本發明第一實施例提供之發光二極體的光取出效率測試結果。 4 is a test result of light extraction efficiency of a light-emitting diode according to a first embodiment of the present invention.

圖5為本發明第二實施例提供之發光二極體的結構示意圖。 FIG. 5 is a schematic structural diagram of a light emitting diode according to a second embodiment of the present invention.

圖6為本發明第三實施例提供之發光二極體的結構示意圖。 FIG. 6 is a schematic structural diagram of a light emitting diode according to a third embodiment of the present invention.

圖7為本發明第四實施例提供之發光二極體的結構示意圖。 FIG. 7 is a schematic structural diagram of a light emitting diode according to a fourth embodiment of the present invention.

圖8為圖7之發光二極體沿VIII-VIII線的剖視圖。 Figure 8 is a cross-sectional view of the light-emitting diode of Figure 7 taken along line VIII-VIII.

為了對本發明作更進一步之說明,舉以下具體實施例並配合附圖 詳細描述如下。 In order to further illustrate the present invention, the following specific embodiments are taken in conjunction with the accompanying drawings. The detailed description is as follows.

請參閱圖1,本發明第一實施例提供一發光二極體10,其包括:一基底12、一第一半導體層14、一活性層16、一第二半導體層18、一第一電極13、一第二電極11及一三維奈米結構陣列17。 Referring to FIG. 1 , a first embodiment of the present invention provides a light emitting diode 10 including a substrate 12 , a first semiconductor layer 14 , an active layer 16 , a second semiconductor layer 18 , and a first electrode 13 . a second electrode 11 and a three-dimensional nanostructure array 17.

所述第一半導體層14、活性層16及第二半導體層18依次層疊設置於基底12之一側。所述第一電極13與所述第一半導體層14電連接。所述第二電極11與所述第二半導體層18電連接。所述三維奈米結構陣列17可以設置於第二半導體層18之遠離基底12之表面,或/及第一半導體層14與基底12接觸之表面,或/及基底12與第一半導體層14接觸之表面。本實施例中,所述三維奈米結構陣列17設置於所述第二半導體層18之遠離基底12之表面。 The first semiconductor layer 14 , the active layer 16 , and the second semiconductor layer 18 are sequentially stacked on one side of the substrate 12 . The first electrode 13 is electrically connected to the first semiconductor layer 14. The second electrode 11 is electrically connected to the second semiconductor layer 18. The three-dimensional nanostructure array 17 may be disposed on a surface of the second semiconductor layer 18 away from the substrate 12, or/and a surface of the first semiconductor layer 14 in contact with the substrate 12, or/and the substrate 12 is in contact with the first semiconductor layer 14. The surface. In this embodiment, the three-dimensional nanostructure array 17 is disposed on a surface of the second semiconductor layer 18 away from the substrate 12.

所述基底12具有支撐之作用。所述基底12之厚度為300至500微米,其材料為藍寶石、砷化鎵、磷化銦、偏鋁酸鋰、鎵酸鋰、氮化鋁、矽、碳化矽及氮化矽等材料中之一或其混合物。本實施例中,所述基底12之厚度為400微米,其材料為藍寶石。 The substrate 12 has a supporting role. The substrate 12 has a thickness of 300 to 500 micrometers and is made of sapphire, gallium arsenide, indium phosphide, lithium metaaluminate, lithium gallate, aluminum nitride, tantalum, tantalum carbide and tantalum nitride. One or a mixture thereof. In this embodiment, the substrate 12 has a thickness of 400 microns and the material is sapphire.

可選擇地,一緩衝層(圖未示)可以設置於基底12及第一半導體層14之間,並與基底12及第一半導體層14分別接觸,此時第一半導體層14靠近基底12之表面與緩衝層接觸。所述緩衝層有利於提高材料之外延生長品質,減少晶格失配。所述緩衝層之厚度為10奈米至300奈米,其材料可以為氮化鎵或氮化鋁等。 Alternatively, a buffer layer (not shown) may be disposed between the substrate 12 and the first semiconductor layer 14 and in contact with the substrate 12 and the first semiconductor layer 14, respectively, when the first semiconductor layer 14 is adjacent to the substrate 12. The surface is in contact with the buffer layer. The buffer layer is advantageous for improving the growth quality of the material and reducing the lattice mismatch. The buffer layer has a thickness of 10 nm to 300 nm, and the material thereof may be gallium nitride or aluminum nitride.

所述第一半導體層14為一台階結構。所述第一半導體層14包括一第一表面、一第二表面及一第三表面。該三個表面相互平行。第二表面及第三表面均與第一表面相對設置。該第一半導體層14之 第二表面與第三表面具有不同之高度,從而使第一半導體層14具有一台階。第二表面是該台階之高度較低的表面,第三表面是該台階之高度較高的表面。相比於第三表面,第二表面與第一表面之距離較小。將第一半導體層14設置於基底12之一側時,第一半導體層14之第一表面靠近基底12設置。活性層16及第二半導體層18依次設置於第一半導體層14之第三表面。優選地,活性層16及第一半導體層14之第三表面之接觸面積與第一半導體層14之第三表面之面積相等。第二半導體層18完全覆蓋活性層16之遠離基底12的表面。可選擇地,所述第一半導體層14之第三表面與第二表面可位於一平面即第二表面及第三表面高度相同,此時,所述活性層16與第二半導體層18依次層疊設置於所述第一半導體層14之部份表面,從而形成台階結構。所述第一電極13設置於第一半導體層14之第二表面。 The first semiconductor layer 14 is a stepped structure. The first semiconductor layer 14 includes a first surface, a second surface, and a third surface. The three surfaces are parallel to each other. The second surface and the third surface are both disposed opposite to the first surface. The first semiconductor layer 14 The second surface has a different height than the third surface such that the first semiconductor layer 14 has a step. The second surface is the lower height surface of the step, and the third surface is the higher height surface of the step. The distance between the second surface and the first surface is smaller than the third surface. When the first semiconductor layer 14 is disposed on one side of the substrate 12, the first surface of the first semiconductor layer 14 is disposed adjacent to the substrate 12. The active layer 16 and the second semiconductor layer 18 are sequentially disposed on the third surface of the first semiconductor layer 14. Preferably, the contact area of the active layer 16 and the third surface of the first semiconductor layer 14 is equal to the area of the third surface of the first semiconductor layer 14. The second semiconductor layer 18 completely covers the surface of the active layer 16 remote from the substrate 12. Optionally, the third surface and the second surface of the first semiconductor layer 14 may be located at a plane, that is, the second surface and the third surface are the same height. At this time, the active layer 16 and the second semiconductor layer 18 are sequentially stacked. A portion of the surface of the first semiconductor layer 14 is disposed to form a stepped structure. The first electrode 13 is disposed on the second surface of the first semiconductor layer 14 .

所述第一半導體層14、第二半導體層18分別為N型半導體層及P型半導體層二類型中之一。具體地,當該第一半導體層14為N型半導體層時,第二半導體層18為P型半導體層;當該第一半導體層14為P型半導體層時,第二半導體層18為N型半導體層。所述N型半導體層起到提供電子之作用,所述P型半導體層起到提供空穴之作用。N型半導體層之材料為N型氮化鎵、N型砷化鎵及N型磷化銅等材料中之一或其混合物。P型半導體層之材料為P型氮化鎵、P型砷化鎵及P型磷化銅等材料中之一或其混合物。所述第一半導體層14之厚度為1微米至5微米。所述第二半導體層18之厚度為0.1微米至3微米。本實施例中,所述第一半導體層14為N型半導體層,該第一半導體層14之第一表面及第三表面的距離為0.3微米,第一表面及第二表面之距離為0.1微米。第一半導體層14之 材料為N型氮化鎵。所述第二半導體層18為P型半導體層,該第二半導體層18之厚度為0.3微米,材料為P型氮化鎵。 The first semiconductor layer 14 and the second semiconductor layer 18 are respectively one of two types of an N-type semiconductor layer and a P-type semiconductor layer. Specifically, when the first semiconductor layer 14 is an N-type semiconductor layer, the second semiconductor layer 18 is a P-type semiconductor layer; when the first semiconductor layer 14 is a P-type semiconductor layer, the second semiconductor layer 18 is an N-type Semiconductor layer. The N-type semiconductor layer functions to provide electrons, and the P-type semiconductor layer functions to provide holes. The material of the N-type semiconductor layer is one of a material such as N-type gallium nitride, N-type gallium arsenide, and N-type copper phosphide or a mixture thereof. The material of the P-type semiconductor layer is one of a material such as P-type gallium nitride, P-type gallium arsenide, and P-type copper phosphide or a mixture thereof. The first semiconductor layer 14 has a thickness of 1 micrometer to 5 micrometers. The second semiconductor layer 18 has a thickness of 0.1 micrometer to 3 micrometers. In this embodiment, the first semiconductor layer 14 is an N-type semiconductor layer, and the distance between the first surface and the third surface of the first semiconductor layer 14 is 0.3 μm, and the distance between the first surface and the second surface is 0.1 μm. . First semiconductor layer 14 The material is N-type gallium nitride. The second semiconductor layer 18 is a P-type semiconductor layer, and the second semiconductor layer 18 has a thickness of 0.3 μm and the material is P-type gallium nitride.

活性層16設置於第一半導體層14之第三表面。所述活性層16為包含一層或複數層量子阱層之量子阱結構(Quantum Well)。所述活性層16用於提供光子。所述活性層16之材料為氮化鎵、氮化銦鎵、氮化銦鎵鋁、砷化稼、砷化鋁稼、磷化銦鎵、磷化銦砷或砷化銦鎵中之一或其混合物,其厚度為0.01微米至0.6微米。本實施例中,所述活性層16為二層結構,包括一氮化銦鎵層及一氮化鎵層,其厚度為0.03微米。所述第一半導體層14之第二表面與第二半導體層18遠離基底12之表面的距離是0.8微米。 The active layer 16 is disposed on the third surface of the first semiconductor layer 14. The active layer 16 is a quantum well structure comprising one or a plurality of quantum well layers. The active layer 16 is used to provide photons. The material of the active layer 16 is one of gallium nitride, indium gallium nitride, indium gallium aluminum nitride, arsenic oxide, aluminum arsenide, indium gallium phosphide, indium phosphide or indium gallium arsenide or The mixture has a thickness of from 0.01 micrometers to 0.6 micrometers. In this embodiment, the active layer 16 has a two-layer structure including an indium gallium nitride layer and a gallium nitride layer having a thickness of 0.03 μm. The distance between the second surface of the first semiconductor layer 14 and the surface of the second semiconductor layer 18 away from the substrate 12 is 0.8 micrometers.

所述第一電極13、第二電極11可以為N型電極或P型電極二類型中之一。所述第二電極11之類型與第二半導體層18之類型相同。第一電極13與第一半導體層14之類型相同。所述第二電極11、第一電極13至少為一層結構,其厚度為0.01微米至2微米。所述第一電極13、第二電極11之材料包括鈦、鋁、鎳及金中之一或其任意組合。優選地,所述第二電極11為N型電極,該第二電極11為二層結構,包括一厚度為150埃之鈦層及一厚度為2000埃之金層。所述第一電極13為P型電極,該第一電極13為二層結構,包括一厚度為150埃之鎳層及一厚度為1000埃之金層。本實施例中,第一電極13設置於所述第一半導體層14之第二表面,第二電極11設置於所述第二半導體層18之遠離基底12的部份表面。 The first electrode 13 and the second electrode 11 may be one of two types of an N-type electrode or a P-type electrode. The second electrode 11 is of the same type as the second semiconductor layer 18. The first electrode 13 is of the same type as the first semiconductor layer 14. The second electrode 11 and the first electrode 13 are at least one layer structure and have a thickness of 0.01 micrometer to 2 micrometers. The material of the first electrode 13 and the second electrode 11 includes one of titanium, aluminum, nickel and gold or any combination thereof. Preferably, the second electrode 11 is an N-type electrode, and the second electrode 11 has a two-layer structure including a titanium layer having a thickness of 150 angstroms and a gold layer having a thickness of 2000 angstroms. The first electrode 13 is a P-type electrode, and the first electrode 13 has a two-layer structure including a nickel layer having a thickness of 150 angstroms and a gold layer having a thickness of 1000 angstroms. In this embodiment, the first electrode 13 is disposed on the second surface of the first semiconductor layer 14, and the second electrode 11 is disposed on a portion of the surface of the second semiconductor layer 18 away from the substrate 12.

所述三維奈米結構陣列17包括複數三維奈米結構15。所述三維奈米結構15之材料或定義該三維奈米結構15之材料可以與第二半導體層18之材料相同以形成一體結構,或與第二半導體層18之材料 不同。所述複數三維奈米結構15在第二半導體層18表面以陣列形式設置。所述陣列形式設置指所述複數三維奈米結構15可以按照等間距行列式排布、同心圓環排布或六角形密堆排布等方式排列。而且,所述以陣列形式設置之複數三維奈米結構15可形成一單一圖案或複數圖案。所述單一圖案可以為三角形、平行四邊形、體形、菱形、方形、矩形或圓形等。所述複數圖案可以包括複數相同或不同上述單一圖案所形成之圖案化的陣列。所述相鄰之二個三維奈米結構15之間的距離相等,即相鄰之二第一圓台152之間的距離相等,為10奈米~1000奈米,優選為10奈米~30奈米。本實施例中,所述複數三維奈米結構15呈六角形密堆排布形成一單一正方形圖案,且相鄰二個三維奈米結構15之間之距離約為30奈米。 The three-dimensional nanostructure array 17 includes a plurality of three-dimensional nanostructures 15. The material of the three-dimensional nanostructure 15 or the material defining the three-dimensional nanostructure 15 may be the same as the material of the second semiconductor layer 18 to form a unitary structure, or a material of the second semiconductor layer 18. different. The plurality of three-dimensional nanostructures 15 are disposed in an array on the surface of the second semiconductor layer 18. The array form arrangement means that the plurality of three-dimensional nanostructures 15 can be arranged in an equidistant determinant arrangement, a concentric annular arrangement or a hexagonal dense arrangement. Moreover, the plurality of three-dimensional nanostructures 15 arranged in an array form a single pattern or a plurality of patterns. The single pattern may be a triangle, a parallelogram, a body, a diamond, a square, a rectangle, or a circle. The plurality of patterns may include a patterned array of a plurality of identical or different single patterns. The distance between the two adjacent three-dimensional nanostructures 15 is equal, that is, the distance between the adjacent two first circular tables 152 is equal, ranging from 10 nm to 1000 nm, preferably 10 nm to 30 Nano. In this embodiment, the plurality of three-dimensional nanostructures 15 are arranged in a hexagonal densely packed pattern to form a single square pattern, and the distance between two adjacent three-dimensional nanostructures 15 is about 30 nm.

所述三維奈米結構15為一階梯狀結構。所述三維奈米結構15可以為一階梯狀凸起結構或階梯狀凹陷結構。所述階梯狀凸起結構為從所述第二半導體層18表面向外延伸出之階梯狀突起之實體。所述階梯狀凹陷結構為從第二半導體層18表面向第二半導體層18內凹陷形成之階梯狀凹陷之空間。所述階梯狀凸起結構或階梯狀凹陷結構可以為一複數層台狀結構,如複數層三棱台、複數層四棱台、複數層六棱台或複數層圓台等。優選地,所述階梯狀凸起結構或階梯狀凹陷結構為複數層圓台結構。所謂階梯狀凹陷結構為複數層圓台結構是指所述階梯狀凹陷之空間為複數層圓台形狀。所述階梯狀凸起結構或階梯狀凹陷結構之最大尺度為小於等於1000奈米,即其長度、寬度及高度均小於等於1000奈米。優選地,所述階梯狀凸起結構或階梯狀凹陷結構長度、寬度及高度範圍為10奈米~500奈米。 The three-dimensional nanostructure 15 is a stepped structure. The three-dimensional nanostructure 15 may be a stepped convex structure or a stepped concave structure. The stepped protrusion structure is an entity of a stepped protrusion extending outward from the surface of the second semiconductor layer 18. The stepped recessed structure is a space in which a stepped recess formed in the second semiconductor layer 18 is recessed from the surface of the second semiconductor layer 18. The stepped protrusion structure or the stepped recess structure may be a plurality of layered structures, such as a plurality of layers of triangular prisms, a plurality of layers of quadrangular prisms, a plurality of layers of hexagonal prisms or a plurality of layers of circular tables. Preferably, the stepped protrusion structure or the stepped recess structure is a plurality of layered truncated cone structures. The fact that the stepped recessed structure is a plurality of layers of the truncated cone structure means that the space of the stepped recess is a plurality of truncated cone shapes. The maximum dimension of the stepped convex structure or the stepped concave structure is 1000 nm or less, that is, the length, the width and the height are less than or equal to 1000 nm. Preferably, the stepped protrusion structure or the stepped recess structure has a length, a width and a height ranging from 10 nm to 500 nm.

請參閱圖2及圖3,本實施例中,所述三維奈米結構15為一階梯狀凸起之雙層圓台結構。具體地,所述三維奈米結構15包括一第一圓台152及一設置於該第一圓台152表面之第二圓台154。所述第一圓台152靠近第二半導體層18設置。所述第一圓台152之側面垂直於第二半導體層18之表面。所述第二圓台154之側面垂直於第一圓台152之低面。所述第一圓台152與第二圓台154形成一階梯狀凸起結構,所述第二圓台154設置在所述第一圓台152之範圍內。優選地,所述第一圓台152與第二圓台154同軸設置。所述第一圓台152與第二圓台154為一體結構,即所述第二圓台154為第一圓台152之頂面延伸出之圓台狀結構。 Referring to FIG. 2 and FIG. 3, in the embodiment, the three-dimensional nanostructure 15 is a double-layered truncated cone structure with a stepped protrusion. Specifically, the three-dimensional nanostructure 15 includes a first circular table 152 and a second circular table 154 disposed on the surface of the first circular table 152. The first circular stage 152 is disposed adjacent to the second semiconductor layer 18. The side of the first circular stage 152 is perpendicular to the surface of the second semiconductor layer 18. The side of the second circular table 154 is perpendicular to the lower face of the first circular table 152. The first circular table 152 and the second circular table 154 form a stepped convex structure, and the second circular table 154 is disposed within the range of the first circular table 152. Preferably, the first circular table 152 is disposed coaxially with the second circular table 154. The first circular table 152 and the second circular table 154 are integrally formed, that is, the second circular table 154 is a truncated cone structure extending from the top surface of the first circular table 152.

所述第一圓台152之底面直徑大於第二圓台154之底面直徑。所述第一圓台152之底面直徑為30奈米~1000奈米,高度為50奈米~1000奈米。優選地,所述第一圓台152之底面直徑為50奈米~200奈米,高度為100奈米~500奈米。所述第二圓台154之底面直徑為10奈米~500奈米,高度為20奈米~500奈米。優選地,所述第二圓台154之底面直徑為20奈米~200奈米,高度為100奈米~300奈米。本實施例中,所述第一圓台152與第二圓台154同軸設置。所述第一圓台152之底面直徑為380奈米,高度為105奈米。所述第二圓台154之底面直徑為280奈米,高度為55奈米。 The diameter of the bottom surface of the first circular table 152 is larger than the diameter of the bottom surface of the second circular table 154. The bottom surface of the first truncated cone 152 has a diameter of 30 nm to 1000 nm and a height of 50 nm to 1000 nm. Preferably, the first circular table 152 has a bottom surface diameter of 50 nm to 200 nm and a height of 100 nm to 500 nm. The bottom surface of the second circular table 154 has a diameter of 10 nm to 500 nm and a height of 20 nm to 500 nm. Preferably, the second circular table 154 has a bottom surface diameter of 20 nm to 200 nm and a height of 100 nm to 300 nm. In this embodiment, the first circular table 152 is disposed coaxially with the second circular table 154. The bottom surface of the first truncated cone 152 has a diameter of 380 nm and a height of 105 nm. The bottom surface of the second truncated cone 154 has a diameter of 280 nm and a height of 55 nm.

可以理解,所述三維奈米結構15還可以包括一設置於該第二圓台154表面之第三圓台(圖未示)。優選地,所述第三圓台與第一圓台152,第二圓台154同軸設置。 It can be understood that the three-dimensional nanostructure 15 can further include a third circular table (not shown) disposed on the surface of the second circular table 154. Preferably, the third circular table is disposed coaxially with the first circular table 152 and the second circular table 154.

當由第二半導體層18發出之大角度光在出射過程中遇到三維奈米結構陣列17,會經三維奈米結構陣列17繞射而改變光子之出射方 向,從而實現了發光二極體10之大角度光的取出,提高了發光二極體10之光取出效率。由於本發明之三維奈米結構陣列17之三維奈米結構15為階梯狀結構,相當於包括至少二層三維奈米結構或二層光子晶體結構,可以更加有效之提高發光二極體10之光取出效率。請參閱圖4,本發明提供之發光二極體10之光取出效率為先前技術中沒有設置三維奈米結構陣列之發光二極體的光取出效率的5倍。 When the large-angle light emitted by the second semiconductor layer 18 encounters the three-dimensional nanostructure array 17 during the exit, the three-dimensional nanostructure array 17 is diffracted to change the exit angle of the photon. Thereby, the extraction of the large-angle light of the light-emitting diode 10 is realized, and the light extraction efficiency of the light-emitting diode 10 is improved. Since the three-dimensional nanostructure 15 of the three-dimensional nanostructure array 17 of the present invention has a stepped structure, which is equivalent to including at least two layers of a three-dimensional nanostructure or a two-layer photonic crystal structure, the light of the light-emitting diode 10 can be more effectively improved. Take out the efficiency. Referring to FIG. 4, the light extraction efficiency of the light-emitting diode 10 provided by the present invention is five times that of the light-emitting diode of the prior art in which the three-dimensional nanostructure array is not disposed.

請參閱圖5,本發明第二實施例提供一發光二極體20,其包括:一基底22、一第一半導體層24、一活性層26、一第二半導體層28、一第一電極23、一第二電極21及一三維奈米結構陣列27。本發明第二實施例中之發光二極體20的結構同第一實施例中之發光二極體10的結構相似,其區別在於,所述三維奈米結構陣列27設置於第一半導體層24與基底22接觸之表面。 Referring to FIG. 5 , a second embodiment of the present invention provides a light emitting diode 20 including a substrate 22 , a first semiconductor layer 24 , an active layer 26 , a second semiconductor layer 28 , and a first electrode 23 . a second electrode 21 and a three-dimensional nanostructure array 27. The structure of the light-emitting diode 20 in the second embodiment of the present invention is similar to that of the light-emitting diode 10 in the first embodiment, except that the three-dimensional nanostructure array 27 is disposed on the first semiconductor layer 24. The surface in contact with the substrate 22.

請參閱圖6,本發明第三實施例提供一發光二極體30,其包括:一基底32、一第一半導體層34、一活性層36、一第二半導體層38、一第一電極33、一第二電極31及一三維奈米結構陣列37。本發明第三實施例中之發光二極體30之結構同第一實施例中之發光二極體10的結構相似,其區別在於,所述三維奈米結構陣列37設置於基底32與第一半導體層34接觸之表面。 Referring to FIG. 6 , a third embodiment of the present invention provides a light emitting diode 30 including a substrate 32 , a first semiconductor layer 34 , an active layer 36 , a second semiconductor layer 38 , and a first electrode 33 . a second electrode 31 and a three-dimensional nanostructure array 37. The structure of the light-emitting diode 30 in the third embodiment of the present invention is similar to that of the light-emitting diode 10 in the first embodiment, except that the three-dimensional nanostructure array 37 is disposed on the substrate 32 and the first The surface of the semiconductor layer 34 contacts.

可以理解,由於本發明第二實施例與第三實施例中分別將三維奈米結構陣列37,47設置於第一半導體層24與基底22接觸之表面或基底32與第一半導體層34接觸之表面,所以當大角度光向基底22,32傳播過程中遇到三維奈米結構陣列37,47,會經三維奈米結構陣列37,47反射而變成小角度光。一方面,大角度光變成小角 度光可以提高發光二極體20,30之出光效率,另一方面,大角度光變成小角度光可以減小光線在發光二極體20,30內部之傳播路徑,從而減小光線在傳播過程中之損耗。當緩衝層設置於第一半導體層24,34與基底22,32之間時,本發明第二實施例與第三實施例中可以分別將三維奈米結構陣列37,47設置於第一半導體層24與緩衝層接觸之表面或基底32與緩衝層接觸之表面。 It can be understood that, in the second embodiment and the third embodiment of the present invention, the three-dimensional nanostructure arrays 37, 47 are respectively disposed on the surface of the first semiconductor layer 24 in contact with the substrate 22 or the substrate 32 is in contact with the first semiconductor layer 34. The surface, so when the large angle light encounters the three-dimensional nanostructure arrays 37, 47 during propagation to the substrates 22, 32, it will be reflected by the three-dimensional nanostructure arrays 37, 47 into small angle light. On the one hand, large angle light becomes a small angle The light can improve the light-emitting efficiency of the light-emitting diodes 20, 30. On the other hand, the large-angle light becomes a small-angle light to reduce the propagation path of the light inside the light-emitting diodes 20, 30, thereby reducing the light propagation process. Loss in the middle. When the buffer layer is disposed between the first semiconductor layers 24, 34 and the substrates 22, 32, the three-dimensional nanostructure arrays 37, 47 can be respectively disposed on the first semiconductor layer in the second embodiment and the third embodiment of the present invention. 24 a surface in contact with the buffer layer or a surface in contact with the buffer layer.

請參閱圖7及圖8,本發明第四實施例提供一發光二極體40,其包括:一基底42、一第一半導體層44、一活性層46、一第二半導體層48、一第一電極43、一第二電極41及一三維奈米結構陣列47。本發明第四實施例中之發光二極體40的結構同第一實施例中之發光二極體10的結構相似,其區別在於,所述三維奈米結構陣列47包括複數三維奈米結構45,且該三維奈米結構45為一階梯狀凹陷結構,即由第二半導體層48定義之凹陷空間。所述三維奈米結構45之形狀為一雙層圓台狀空間,具體包括一第一圓台狀空間452,及一與第一圓台狀空間452連通之第二圓台狀空間454。所述第一圓台狀空間452與第二圓台狀空間454同軸設置。所述第一圓台狀空間452與第二圓台狀空間454同軸設置。所述第二圓台狀空間454靠近第二半導體層48表面設置。所述第二圓台狀空間454之直徑大於第一圓台狀空間452的直徑。 Referring to FIG. 7 and FIG. 8 , a fourth embodiment of the present invention provides a light emitting diode 40 including a substrate 42 , a first semiconductor layer 44 , an active layer 46 , a second semiconductor layer 48 , and a first An electrode 43, a second electrode 41 and a three-dimensional nanostructure array 47. The structure of the light-emitting diode 40 in the fourth embodiment of the present invention is similar to that of the light-emitting diode 10 in the first embodiment, except that the three-dimensional nanostructure array 47 includes a plurality of three-dimensional nanostructures 45. And the three-dimensional nanostructure 45 is a stepped recess structure, that is, a recessed space defined by the second semiconductor layer 48. The shape of the three-dimensional nanostructure 45 is a double-decked space, specifically including a first circular-shaped space 452, and a second circular-shaped space 454 communicating with the first circular-shaped space 452. The first truncated cone shaped space 452 is disposed coaxially with the second truncated cone shaped space 454. The first truncated cone shaped space 452 is disposed coaxially with the second truncated cone shaped space 454. The second frustum-shaped space 454 is disposed adjacent to the surface of the second semiconductor layer 48. The diameter of the second truncated space 454 is larger than the diameter of the first truncated space 452.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧發光二極體 10‧‧‧Lighting diode

11‧‧‧第二電極 11‧‧‧second electrode

12‧‧‧基底 12‧‧‧Base

13‧‧‧第一電極 13‧‧‧First electrode

14‧‧‧第一半導體層 14‧‧‧First semiconductor layer

15‧‧‧三維奈米結構 15‧‧‧Three-dimensional nanostructure

152‧‧‧第一圓台 152‧‧‧First round table

154‧‧‧第二圓台 154‧‧‧Second round table

16‧‧‧活性層 16‧‧‧Active layer

17‧‧‧三維奈米結構陣列 17‧‧‧Three-dimensional nanostructure array

18‧‧‧第二半導體層 18‧‧‧Second semiconductor layer

Claims (14)

一發光二極體,其包括:一基底;一第一半導體層、一活性層及一第二半導體層依次層疊設置於所述基底之一側,且所述第一半導體層靠近基底設置;一第一電極與所述第一半導體層電連接;一第二電極與所述第二半導體層電連接:其中,進一步包括複數三維奈米結構以陣列形式設置於第二半導體層之遠離基底之表面,且所述三維奈米結構為階梯狀結構,每一階梯狀結構包括一第一圓台及一設置於該第一圓台表面之第二圓台,所述第一圓台之側面垂直於第二半導體層之表面,所述第二圓台之側面垂直於第一圓台之底面。 a light emitting diode comprising: a substrate; a first semiconductor layer, an active layer and a second semiconductor layer are sequentially stacked on one side of the substrate, and the first semiconductor layer is disposed adjacent to the substrate; The first electrode is electrically connected to the first semiconductor layer; a second electrode is electrically connected to the second semiconductor layer: wherein the plurality of three-dimensional nanostructures are further arranged in an array on the surface of the second semiconductor layer away from the substrate And the three-dimensional nanostructure is a stepped structure, each of the stepped structures includes a first circular table and a second circular table disposed on the surface of the first circular table, the side of the first circular table being perpendicular to a surface of the second semiconductor layer, a side of the second truncated cone being perpendicular to a bottom surface of the first truncated cone. 如請求項第1項所述之發光二極體,其中,所述三維奈米結構為設置在所述第二半導體層表面之階梯狀凸起結構或階梯狀凹陷結構。 The light-emitting diode according to claim 1, wherein the three-dimensional nanostructure is a stepped convex structure or a stepped concave structure provided on a surface of the second semiconductor layer. 如請求項第2項所述之發光二極體,其中,所述階梯狀凸起結構或階梯狀凹陷結構之尺度小於等於1000奈米。 The light-emitting diode of claim 2, wherein the stepped protrusion structure or the stepped recess structure has a dimension of less than or equal to 1000 nm. 如請求項第1項所述之發光二極體,其中,所述三維奈米結構為一複數層階梯狀圓台結構。 The light-emitting diode of claim 1, wherein the three-dimensional nanostructure is a plurality of stepped truncated cone structures. 如請求項第4項所述之發光二極體,其中,所述第一圓台靠近第二半導體層設置,所述第一圓台之底面直徑大於第二圓台之底面直徑。 The light-emitting diode of claim 4, wherein the first circular table is disposed adjacent to the second semiconductor layer, and a diameter of a bottom surface of the first circular table is larger than a diameter of a bottom surface of the second circular table. 如請求項第5項所述之發光二極體,其中,所述第一圓台與第二圓台同軸設置且形成一體結構。 The light-emitting diode of claim 5, wherein the first circular table and the second circular table are coaxially disposed and form an integral structure. 如請求項第5項所述之發光二極體,其中,所述三維奈米結構進一步包括 一設置於第二圓台表面之第三圓台。 The light-emitting diode of claim 5, wherein the three-dimensional nanostructure further comprises a third truncated cone disposed on the surface of the second truncated cone. 如請求項第1項所述之發光二極體,其中,所述複數三維奈米結構按照等間距行列式排布、同心圓環排布或六角形密堆排布之方式設置在第二半導體層表面。 The illuminating diode of claim 1, wherein the plurality of three-dimensional nanostructures are disposed in the second semiconductor in an equidistant determinant arrangement, a concentric annular arrangement or a hexagonal dense arrangement. Layer surface. 如請求項第1項所述之發光二極體,其中,所述三維奈米結構與第二半導體層形成一體結構。 The light-emitting diode of claim 1, wherein the three-dimensional nanostructure forms a unitary structure with the second semiconductor layer. 如請求項第1項所述之發光二極體,其中,所述相鄰之二個三維奈米結構之間的距離為10奈米~1000奈米。 The light-emitting diode according to Item 1, wherein the distance between the adjacent two-dimensional three-dimensional nanostructures is from 10 nm to 1000 nm. 如請求項第1項所述之發光二極體,其中,進一步包括複數三維奈米結構以陣列形式設置於第一半導體層與基底接觸之表面。 The light-emitting diode of claim 1, further comprising a plurality of three-dimensional nanostructures disposed in an array on a surface of the first semiconductor layer in contact with the substrate. 如請求項第1項所述之發光二極體,其中,進一步包括複數三維奈米結構以陣列形式設置於基底與第一半導體層接觸之表面。 The light-emitting diode of claim 1, further comprising a plurality of three-dimensional nanostructures disposed in an array on a surface of the substrate in contact with the first semiconductor layer. 如請求項第1項所述之發光二極體,其中,所述以陣列形式設置之複數三維奈米結構形成一單一圖案或複數圖案。 The light-emitting diode of claim 1, wherein the plurality of three-dimensional nanostructures arranged in an array form a single pattern or a plurality of patterns. 一發光二極體,其包括:一基底;一第一半導體層、一活性層及一第二半導體層依次層疊設置於所述基底之一側,且所述第一半導體層靠近基底設置;一第一電極與所述第一半導體層電連接;一第二電極與所述第二半導體層電連接;其中,進一步包括複數三維奈米結構以陣列形式設置於第一半導體層與基底接觸之表面,且所述三維奈米結構為階梯狀結構,每一階梯狀結構包括一第一圓台及一設置於該第一圓台表面之第二圓台,所述第一圓台之側面垂直於第二半導體層之表面,所述第二圓台之側面垂直於第一圓台之底面。 a light emitting diode comprising: a substrate; a first semiconductor layer, an active layer and a second semiconductor layer are sequentially stacked on one side of the substrate, and the first semiconductor layer is disposed adjacent to the substrate; The first electrode is electrically connected to the first semiconductor layer; a second electrode is electrically connected to the second semiconductor layer; and further comprising a plurality of three-dimensional nanostructures disposed in an array on the surface of the first semiconductor layer in contact with the substrate And the three-dimensional nanostructure is a stepped structure, each of the stepped structures includes a first circular table and a second circular table disposed on the surface of the first circular table, the side of the first circular table being perpendicular to a surface of the second semiconductor layer, a side of the second truncated cone being perpendicular to a bottom surface of the first truncated cone.
TW99119362A 2010-06-15 2010-06-15 Light-emitting diode TWI426627B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99119362A TWI426627B (en) 2010-06-15 2010-06-15 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99119362A TWI426627B (en) 2010-06-15 2010-06-15 Light-emitting diode

Publications (2)

Publication Number Publication Date
TW201145578A TW201145578A (en) 2011-12-16
TWI426627B true TWI426627B (en) 2014-02-11

Family

ID=46765966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99119362A TWI426627B (en) 2010-06-15 2010-06-15 Light-emitting diode

Country Status (1)

Country Link
TW (1) TWI426627B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474545B (en) * 2012-06-07 2016-06-08 清华大学 Light emitting diode
CN103474522B (en) * 2012-06-07 2016-04-13 清华大学 The preparation method of light-emitting diode
CN103474533B (en) * 2012-06-07 2016-10-19 清华大学 Light emitting diode
CN103474543B (en) * 2012-06-07 2016-06-08 清华大学 Photodiode
CN111312877B (en) * 2020-03-25 2022-02-22 苏州紫灿科技有限公司 Inverted deep ultraviolet LED with double-layer photonic crystal structure and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200625676A (en) * 2005-01-14 2006-07-16 Au Optronics Corp Method of producing a white-light emitting source, white-light emitting device and manufacturing method thereof
US20060204865A1 (en) * 2005-03-08 2006-09-14 Luminus Devices, Inc. Patterned light-emitting devices
TW200822392A (en) * 2006-11-08 2008-05-16 Epistar Corp Solid-state lighting device and applications thereof
TW200826158A (en) * 2006-12-15 2008-06-16 Genesis Photonics Inc Epitaxy method and continuous epitaxial substrate formed with islands thereon
US20080142824A1 (en) * 2006-12-18 2008-06-19 Shih-Peng Chen Electroluminescent device and fabrication method thereof
TW200832746A (en) * 2007-01-26 2008-08-01 Delta Electronics Inc Light-emitting diode device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200625676A (en) * 2005-01-14 2006-07-16 Au Optronics Corp Method of producing a white-light emitting source, white-light emitting device and manufacturing method thereof
US20060204865A1 (en) * 2005-03-08 2006-09-14 Luminus Devices, Inc. Patterned light-emitting devices
TW200822392A (en) * 2006-11-08 2008-05-16 Epistar Corp Solid-state lighting device and applications thereof
TW200826158A (en) * 2006-12-15 2008-06-16 Genesis Photonics Inc Epitaxy method and continuous epitaxial substrate formed with islands thereon
US20080142824A1 (en) * 2006-12-18 2008-06-19 Shih-Peng Chen Electroluminescent device and fabrication method thereof
TW200832746A (en) * 2007-01-26 2008-08-01 Delta Electronics Inc Light-emitting diode device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201145578A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
US9553233B2 (en) Light emitting diode
TWI450419B (en) Light emitting diode
US10050181B2 (en) Light emitting diode and fabrication method thereof
TWI478379B (en) Light emitting diode
US9166105B2 (en) Light emitting device
US8633042B2 (en) Light emitting diode
TWI426627B (en) Light-emitting diode
JP2006339627A (en) Vertical-structure nitride-based semiconductor light emitting diode
TWI774759B (en) Light-emitting device and manufacturing method thereof
TWI483422B (en) Light emitting diode
TWI488335B (en) Light emitting diode
CN217405451U (en) Composite patterned substrate and epitaxial structure with air gap
KR100558134B1 (en) AlGaInN LIGHT EMITTING DIODE
CN216250771U (en) Composite pattern substrate and LED epitaxial structure comprising same
TWI447963B (en) Light-emitting diode
TWI478386B (en) White light emitting diode
KR101221075B1 (en) Method of manufacturing gallium nitride based light emitting diodes using nano imprinting and light emitting diode element using the same
CN102420281B (en) Photoelectric element and manufacturing method thereof
CN102544287B (en) Photoelectric cell and manufacture method thereof
CN220306274U (en) Graphical composite substrate and LED epitaxial structure thereof
KR102192428B1 (en) High efficiency light emitting diode
CN217405452U (en) Composite patterned substrate and epitaxial structure with air gap
TW201340391A (en) Light-emitting diode comprising stacked-type scattering layer and manufacturing method thereof
CN221239643U (en) Graphical composite substrate and epitaxial structure thereof
TWI411133B (en) High light extraction rate of light emitting diodes and their production methods