TWI426551B - Three-dimensional metal oxide electrodes and fabrication method thereof - Google Patents

Three-dimensional metal oxide electrodes and fabrication method thereof Download PDF

Info

Publication number
TWI426551B
TWI426551B TW98109692A TW98109692A TWI426551B TW I426551 B TWI426551 B TW I426551B TW 98109692 A TW98109692 A TW 98109692A TW 98109692 A TW98109692 A TW 98109692A TW I426551 B TWI426551 B TW I426551B
Authority
TW
Taiwan
Prior art keywords
metal oxide
electrode according
template
oxide
dimensional
Prior art date
Application number
TW98109692A
Other languages
Chinese (zh)
Other versions
TW201036041A (en
Inventor
Chin Ching Lin
Mei Ching Chiang
Yu Wei Chen
Chia Hsin Lin
San Yuan Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98109692A priority Critical patent/TWI426551B/en
Publication of TW201036041A publication Critical patent/TW201036041A/en
Application granted granted Critical
Publication of TWI426551B publication Critical patent/TWI426551B/en

Links

Landscapes

  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

立體金屬氧化物電極及其製造方法Stereo metal oxide electrode and method of manufacturing same

本發明係有關於一種電極結構,特別是有關於一種立體金屬氧化物電極及其製造方法。The present invention relates to an electrode structure, and more particularly to a three-dimensional metal oxide electrode and a method of manufacturing the same.

目前,使用之元件電極結構大多為平面式,對於現今的能源相關元件而言,平面電極的整體表面積不足可能造成元件電流收集的速度降低進而影響整體效率。發展具有立體結構的三維導電電極則可以降低電子傳輸到電極的時間,以提升效率。At present, most of the element electrode structures used are planar. For today's energy-related components, the insufficient surface area of the planar electrode may cause the speed of component current collection to decrease and affect the overall efficiency. The development of a three-dimensional conductive electrode having a three-dimensional structure can reduce the time for electrons to be transmitted to the electrodes to improve efficiency.

然而,在目前研究上並無法以簡易的方式製作出此種電極結構,其主要原因是無法製作出具有高電性與高穩定性的奈米結構用以做成元件電極。依一般常用的金屬導線為例,當金屬奈米導線的線徑小於500nm以下時,其化學穩定性與電子特性都變得很不穩定,並且金屬導線的結構熱穩定性不佳,很容易在元件後處理製程時崩解使整組元件失效,故以金屬材料做為立體導電電極的研究遭遇到很大的瓶頸。However, in the current research, such an electrode structure cannot be produced in a simple manner, and the main reason is that a nanostructure having high electric properties and high stability cannot be produced for forming an element electrode. According to the commonly used metal wire, when the wire diameter of the metal nanowire is less than 500 nm, the chemical stability and electronic properties become very unstable, and the structural thermal stability of the metal wire is not good, and it is easy to The disintegration of the component post-processing process causes the entire group of components to fail, so the study of using metal materials as stereoscopic conductive electrodes has encountered a large bottleneck.

近年來,隨著導電金屬氧化物材料的研究進展日新月異,使得目前金屬氧化物材料的電阻率已經相當接近金屬材料的等級,而氧化物材料無論在化學穩定性或經奈米化後的物理特性均不會有大幅的變異,並且具有可見光區透明的特性,使得越來越多電子產品採用高導電金屬氧化物來做為元件的電極材料。但因為金屬氧化物材料除了使用圖案化化學蝕刻技術外,很難將平面化薄膜轉換成立體結構,所以,在立體電極的應用上一直沒有相關文獻探討。In recent years, with the rapid development of research on conductive metal oxide materials, the current electrical resistivity of metal oxide materials has been quite close to that of metal materials, and the physical properties of oxide materials, whether in chemical stability or after nanocrystallization, There is no significant variation, and the transparent region of the visible light, so that more and more electronic products use highly conductive metal oxides as the electrode material of the components. However, in addition to the use of patterned chemical etching techniques, it is difficult to convert a planarized film into a bulk structure. Therefore, there has been no literature discussion on the application of a three-dimensional electrode.

本發明之一實施例,提供一種立體金屬氧化物電極,包括:一金屬氧化物模板;以及一摻雜鹵素之金屬氧化物薄膜,披覆於該金屬氧化物模板上。One embodiment of the present invention provides a three-dimensional metal oxide electrode comprising: a metal oxide template; and a halogen-doped metal oxide film coated on the metal oxide template.

本發明之一實施例,提供一種立體金屬氧化物電極之製造方法,包括:提供一金屬氧化物模板;霧化一含金屬離子與鹵素摻質之水溶液,以形成一氣懸膠;混合該氣懸膠與一氣體,以形成一氣懸膠氣流;以及導入該氣懸膠氣流至該金屬氧化物模板,以於該金屬氧化物模板上形成一摻雜鹵素之金屬氧化物薄膜。An embodiment of the present invention provides a method for manufacturing a three-dimensional metal oxide electrode, comprising: providing a metal oxide template; atomizing an aqueous solution containing a metal ion and a halogen dopant to form an aerosol; mixing the gas suspension And a gas to form a gas suspension gas stream; and introducing the gas suspension gas stream to the metal oxide template to form a halogen-doped metal oxide film on the metal oxide template.

本發明以例如氧化鋅的奈米結構做為模板,利用低溫簡易化學法製作出大面積例如氧化鋅的奈米結構(線、柱、管、螺旋片等),再以化學噴霧法將高導電金屬氧化物(例如氟摻雜氧化錫)薄膜材料噴鍍上去,利用此兩段式製程方式製作出高度可調式且具有高導電的立體電極結構,可以廣泛應用在能源相關的電子元件上,以提升元件效能。In the present invention, a nanostructure such as zinc oxide is used as a template, and a nanostructure (line, column, tube, spiral, etc.) having a large area such as zinc oxide is produced by a simple chemical method at a low temperature, and then highly conductive by a chemical spray method. Metal oxide (such as fluorine-doped tin oxide) film material is sprayed on, and the two-stage process is used to produce a highly adjustable and highly conductive three-dimensional electrode structure, which can be widely applied to energy-related electronic components. Improve component performance.

本發明利用低溫水溶液製程方式製作例如氧化鋅的奈米結構做為立體結構電極的模板,並藉由控制其溶液的濃度、製程溫度與成長時間來製作具有不同表面形貌例如氧化鋅的奈米結構(柱、管),將此多樣性例如氧化鋅的奈米結構噴鍍上高導電的金屬氧化物材料,使其表面電阻值由500MΩ降低至100Ω的數量級。而此種噴鍍方式可以藉由調整金屬氧化物中的摻質摻雜量與製程溫度來達到提高導電性與增加披覆面積的效果。將此種立體電極結構應用於目前常用的太陽電池結構上將可以縮短電子傳遞的時間,並且因為此立體電極材料的外層亦是金屬氧化物,故可以依照元件需求將其半導體能隙做一微調的動作,使元件設計上能有較低的接面損失,對於能源相關元件將有極大之幫助。The invention utilizes a low-temperature aqueous solution process to prepare a nanostructure such as zinc oxide as a template for a three-dimensional structure electrode, and to prepare a nanometer having different surface topography such as zinc oxide by controlling the concentration of the solution, the process temperature and the growth time. The structure (column, tube) is sprayed with a highly conductive metal oxide material such as a zinc oxide nanostructure to reduce the surface resistance value from 500 MΩ to the order of 100 Ω. The sputtering method can improve the conductivity and increase the coverage area by adjusting the doping amount of the dopant in the metal oxide and the process temperature. Applying such a three-dimensional electrode structure to the currently used solar cell structure can shorten the time of electron transfer, and since the outer layer of the three-dimensional electrode material is also a metal oxide, the semiconductor energy gap can be fine-tuned according to the component requirements. The action makes the component design have a lower junction loss, which will greatly help the energy related components.

本發明利用易操控的奈米結構作為模板,利用大氣沈積導電氧化物材料於模板之上,可以簡單有效率的大量製作多維度導電電極,並且可以利用鍍膜參數精準調控多維度電極之導電性,可以提升應用元件效能並同時保有高穩定性之表現。The invention utilizes an easy-to-manage nano structure as a template, and deposits a conductive oxide material on the template by using the atmosphere, and can directly and efficiently produce a multi-dimensional conductive electrode in a large amount, and can accurately control the conductivity of the multi-dimensional electrode by using the coating parameter. It can improve the performance of the application components while maintaining high stability performance.

為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下:The above described objects, features and advantages of the present invention will become more apparent and understood.

本發明之一實施例,提供一種立體金屬氧化物電極,包括一金屬氧化物模板,以及一摻雜鹵素的金屬氧化物薄膜,披覆於金屬氧化物模板上。One embodiment of the present invention provides a ternary metal oxide electrode comprising a metal oxide template and a halogen-doped metal oxide film overlying the metal oxide template.

上述金屬氧化物模板可由氧化鋅、氧化鋁、氧化矽或二氧化鈦所構成。金屬氧化物模板可為顆粒狀、線狀、柱狀、管狀、針狀、球狀、片狀或多面體狀。金屬氧化物模板的尺寸大體介於5~50,000nm,較佳為10~5,000nm。The above metal oxide template may be composed of zinc oxide, aluminum oxide, cerium oxide or titanium dioxide. The metal oxide template may be in the form of particles, wires, columns, tubes, needles, spheres, sheets or polyhedrons. The size of the metal oxide template is generally between 5 and 50,000 nm, preferably between 10 and 5,000 nm.

上述金屬氧化物薄膜可由氧化鋅、氧化錫、氧化銅、氧化鎵或氧化銦所構成。金屬氧化物薄膜的厚度大體介於5~500nm。本發明立體金屬氧化物電極可應用於太陽能電池。The metal oxide thin film may be composed of zinc oxide, tin oxide, copper oxide, gallium oxide or indium oxide. The thickness of the metal oxide film is generally between 5 and 500 nm. The three-dimensional metal oxide electrode of the present invention can be applied to a solar cell.

本發明之一實施例,提供一種立體金屬氧化物電極之製造方法,包括下列步驟。首先,提供一金屬氧化物模板。接著,霧化一含金屬離子與鹵素摻質的水溶液,以形成一氣懸膠。之後,混合氣懸膠與一氣體,以形成一氣懸膠氣流。接著,導入氣懸膠氣流至金屬氧化物模板,以於金屬氧化物模板上形成一摻雜鹵素的金屬氧化物薄膜。One embodiment of the present invention provides a method of fabricating a three-dimensional metal oxide electrode, comprising the following steps. First, a metal oxide template is provided. Next, an aqueous solution containing a metal ion and a halogen dopant is atomized to form an aerosol. Thereafter, the gas suspension is suspended with a gas to form a gas suspension gas stream. Next, a gas suspension gas stream is introduced to the metal oxide template to form a halogen-doped metal oxide film on the metal oxide template.

上述金屬氧化物模板的製造方法揭露如下。首先,混合特定比例的金屬鹽類及相對應的化學試劑,以製備一水溶液。上述金屬鹽類可包括硝酸鋅、鋁醇鹽、四已基矽酸鹽或四氯化鈦。當使用的金屬鹽類為硝酸鋅時,其對應的化學試劑可為六亞甲基四胺(hexamethyltetramine)。當使用的金屬鹽類為鋁醇鹽(aluminum tri-sec-butoxide(ASB))時,其對應的化學試劑可為乙醇或甲苯。當使用的金屬鹽類為四已基矽酸鹽時,其對應的化學試劑可為水或硫酸。當使用的金屬鹽類為四氯化鈦時,其對應的化學試劑可為鹽酸或硝酸。接著,提供一其上覆蓋有例如氧化鋅緩衝層的試片,以作為一後續成長例如氧化鋅的種子層(seeding layer)。之後,於例如低於100℃的環境下進行反應,即可製作出具有特定形態例如氧化鋅的奈米結構。The method for producing the above metal oxide template is disclosed below. First, a specific ratio of metal salts and corresponding chemical reagents are mixed to prepare an aqueous solution. The above metal salts may include zinc nitrate, aluminum alkoxide, tetrahexyl phthalate or titanium tetrachloride. When the metal salt used is zinc nitrate, the corresponding chemical reagent may be hexamethyltetramine. When the metal salt used is aluminum tri-sec-butoxide (ASB), the corresponding chemical reagent may be ethanol or toluene. When the metal salt used is tetrahexylidene, the corresponding chemical reagent may be water or sulfuric acid. When the metal salt used is titanium tetrachloride, the corresponding chemical reagent may be hydrochloric acid or nitric acid. Next, a test piece covered with, for example, a zinc oxide buffer layer is provided as a seeding layer for subsequent growth of, for example, zinc oxide. Thereafter, the reaction is carried out in an environment of, for example, less than 100 ° C to prepare a nanostructure having a specific form such as zinc oxide.

上述金屬氧化物模板可由氧化鋅、氧化鋁、氧化矽或二氧化鈦所構成。金屬氧化物模板可為顆粒狀、線狀、柱狀、管狀、針狀、球狀、片狀或多面體狀。金屬氧化物模板的尺寸大體介於5~50,000nm,較佳為10~5,000nm。The above metal oxide template may be composed of zinc oxide, aluminum oxide, cerium oxide or titanium dioxide. The metal oxide template may be in the form of particles, wires, columns, tubes, needles, spheres, sheets or polyhedrons. The size of the metal oxide template is generally between 5 and 50,000 nm, preferably between 10 and 5,000 nm.

上述例如氧化鋅的奈米結構做為模板,可利用例如化學噴鍍法沈積金屬氧化物薄膜於此結構之上。所使用的化學噴鍍法如下所述,將含例如錫離子的金屬離子及鹵素摻質之鹽類前驅物以一水溶液方式置於一容器內,另以載送氣體同時通入微型液滴霧化器,藉由霧化器將鹽類前驅物與載送氣體做一均勻混合後,調整霧化器噴出之流量、流速得到一含有均勻尺寸之氣懸膠氣流,直接導入於被加熱之金屬氧化物模板做化學氣相沈積,以形成例如氧化錫主成份的透明導電膜,可同時於氣懸膠通過至沈積基板的四周佈置輔助加熱器來進一步調控氣懸膠之尺寸,以得到不同薄膜表面性質。上述霧化器之震盪頻率可介於1.5KHz~2.6MHz,亦可以精密噴嘴(<10μm)達到相同之效果。The above-described nanostructure such as zinc oxide is used as a template, and a metal oxide film can be deposited on the structure by, for example, chemical spraying. The chemical spraying method used is as follows. A metal precursor containing, for example, tin ions and a halogen-doped salt precursor are placed in a container as an aqueous solution, and a carrier gas is simultaneously introduced into the micro-droplet mist. After the atomizer is used to uniformly mix the salt precursor with the carrier gas, the flow rate and flow rate of the atomizer are adjusted to obtain a gas suspension gas stream having a uniform size, which is directly introduced into the heated metal. The oxide template is subjected to chemical vapor deposition to form a transparent conductive film such as a main component of tin oxide, and the size of the suspension rubber can be further adjusted by providing an auxiliary heater to the periphery of the deposition substrate to obtain different films. Surface properties. The oscillating frequency of the above atomizer can be between 1.5KHz and 2.6MHz, and the same effect can be achieved by a precision nozzle (<10μm).

上述水溶液中,金屬離子可包括鋅離子、錫離子、銅離子、鎵離子或銦離子,鹵素摻質的莫耳百分比大體介於3~75%。In the above aqueous solution, the metal ions may include zinc ions, tin ions, copper ions, gallium ions or indium ions, and the molar percentage of the halogen dopant is generally between 3 and 75%.

上述氣懸膠的尺寸大體介於0.1~10微米。上述載送氣懸膠的氣體可包括空氣、氧氣、氮氣或氮氣與氧氣之混合氣體。The size of the above suspension rubber is generally between 0.1 and 10 microns. The gas carrying the aerogel may include air, oxygen, nitrogen or a mixed gas of nitrogen and oxygen.

上述氣懸膠氣流的流量大體介於1~30L/min。上述導入氣懸膠氣流至金屬氧化物模板的溫度大體介於300~500℃。The flow rate of the above air suspension gas flow is generally between 1 and 30 L/min. The temperature at which the gas suspension gas is introduced into the metal oxide template is generally between 300 and 500 °C.

上述金屬氧化物薄膜可由氧化鋅、氧化錫、氧化銅、氧化鎵或氧化銦所構成。金屬氧化物薄膜的厚度大體介於5~500nm。The metal oxide thin film may be composed of zinc oxide, tin oxide, copper oxide, gallium oxide or indium oxide. The thickness of the metal oxide film is generally between 5 and 500 nm.

本發明金屬氧化物模板可利用例如化學腐蝕、電漿侵蝕或高溫氣體蒸發等方式去除。The metal oxide template of the present invention can be removed by, for example, chemical etching, plasma etching, or high temperature gas evaporation.

本發明以例如氧化鋅的奈米結構做為模板,利用低溫簡易化學法製作出大面積例如氧化鋅的奈米結構(線、柱、管、螺旋片等),再以化學噴霧法將高導電金屬氧化物(例如氟摻雜氧化錫)薄膜材料噴鍍上去,利用此兩段式製程方式製作出高度可調式且具有高導電的立體電極結構,可以廣泛應用在能源相關的電子元件上,以提升元件效能。In the present invention, a nanostructure such as zinc oxide is used as a template, and a nanostructure (line, column, tube, spiral, etc.) having a large area such as zinc oxide is produced by a simple chemical method at a low temperature, and then highly conductive by a chemical spray method. Metal oxide (such as fluorine-doped tin oxide) film material is sprayed on, and the two-stage process is used to produce a highly adjustable and highly conductive three-dimensional electrode structure, which can be widely applied to energy-related electronic components. Improve component performance.

本發明利用低溫水溶液製程方式製作例如氧化鋅的奈米結構做為立體結構電極的模板,並藉由控制其溶液的濃度、製程溫度與成長時間來製作具有不同表面形貌例如氧化鋅的奈米結構(柱、管),將此多樣性例如氧化鋅的奈米結構噴鍍上高導電的金屬氧化物材料,使其表面電阻值由500MΩ降低至100Ω的數量級。而此種噴鍍方式可以藉由調整金屬氧化物中的摻質摻雜量與製程溫度來達到提高導電性與增加披覆面積的效果。將此種立體電極結構應用於目前常用的太陽電池結構上將可以縮短電子傳遞的時間,並且因為此立體電極材料的外層亦是金屬氧化物,故可以依照元件需求將其半導體能隙做一微調的動作,使元件設計上能有較低的接面損失,對於能源相關元件將有極大之幫助。The invention utilizes a low-temperature aqueous solution process to prepare a nanostructure such as zinc oxide as a template for a three-dimensional structure electrode, and to prepare a nanometer having different surface topography such as zinc oxide by controlling the concentration of the solution, the process temperature and the growth time. The structure (column, tube) is sprayed with a highly conductive metal oxide material such as a zinc oxide nanostructure to reduce the surface resistance value from 500 MΩ to the order of 100 Ω. The sputtering method can improve the conductivity and increase the coverage area by adjusting the doping amount of the dopant in the metal oxide and the process temperature. Applying such a three-dimensional electrode structure to the currently used solar cell structure can shorten the time of electron transfer, and since the outer layer of the three-dimensional electrode material is also a metal oxide, the semiconductor energy gap can be fine-tuned according to the component requirements. The action makes the component design have a lower junction loss, which will greatly help the energy related components.

本發明利用易操控的奈米結構作為模板,利用大氣沈積導電氧化物材料於模板之上,可以簡單有效率的大量製作多維度導電電極,並且可以利用鍍膜參數精準調控多維度電極之導電性,可以提升應用元件效能並同時保有高穩定性之表現。The invention utilizes an easy-to-manage nano structure as a template, and deposits a conductive oxide material on the template by using the atmosphere, and can directly and efficiently produce a multi-dimensional conductive electrode in a large amount, and can accurately control the conductivity of the multi-dimensional electrode by using the coating parameter. It can improve the performance of the application components while maintaining high stability performance.

【實施例】[Examples] 【實施例1】[Example 1] 金屬氧化物模板(線狀)製備(1)Metal oxide template (linear) preparation (1)

首先,混合0.005莫耳的硝酸鋅與0.005莫耳的六亞甲基四胺(hexamethyltetramine),以製備一水溶液。接著,提供一其上覆蓋有氧化鋅緩衝層的試片。之後,於溫度95℃的環境下進行反應,即可製作出線狀的氧化鋅奈米結構。氧化鋅模板的尺寸大於3,000nm,如第1圖所示。第1圖為線狀氧化鋅模板的電子顯微鏡分析。First, 0.005 mol of zinc nitrate and 0.005 mol of hexamethyltetramine were mixed to prepare an aqueous solution. Next, a test piece covered with a zinc oxide buffer layer was provided. Thereafter, the reaction was carried out in an environment of a temperature of 95 ° C to prepare a linear zinc oxide nanostructure. The size of the zinc oxide template is greater than 3,000 nm, as shown in Figure 1. Figure 1 is an electron microscopic analysis of a linear zinc oxide template.

【實施例2】[Example 2] 金屬氧化物模板(柱狀)製備(2)Metal oxide template (columnar) preparation (2)

首先,混合0.01莫耳的硝酸鋅與0.01莫耳的六亞甲基四胺(hexamethyltetramine),以製備一水溶液。接著,提供一其上覆蓋有氧化鋅緩衝層的試片。之後,於溫度75℃的環境下進行反應,即可製作出柱狀的氧化鋅奈米結構。氧化鋅模板的尺寸大於500nm,如第2圖所示。第2圖為柱狀氧化鋅模板的電子顯微鏡分析。First, 0.01 mol of zinc nitrate and 0.01 mol of hexamethyltetramine were mixed to prepare an aqueous solution. Next, a test piece covered with a zinc oxide buffer layer was provided. Thereafter, the reaction was carried out in an environment of a temperature of 75 ° C to prepare a columnar zinc oxide nanostructure. The size of the zinc oxide template is greater than 500 nm, as shown in Figure 2. Figure 2 is an electron microscopic analysis of a columnar zinc oxide template.

【比較實施例1】[Comparative Example 1] 金屬氧化物薄膜材料製備(0%氟摻雜)Preparation of metal oxide film material (0% fluorine doping)

首先,製備一含0.5莫耳SnCl2 ‧5H2 O的水溶液,並將水溶液置於一容器內。另以空氣同時通入微型液滴霧化器,藉由霧化器將SnCl2 ‧5H2 O與空氣做一均勻混合後,調整霧化器噴出之流量為20L/min,以得到一尺寸介於5~8微米之氣懸膠氣流。First, an aqueous solution containing 0.5 mol of SnCl 2 ‧5H 2 O was prepared, and the aqueous solution was placed in a container. In addition, the air is simultaneously introduced into the micro-droplet atomizer, and the SnCl 2 ‧5H 2 O is uniformly mixed with the air by the atomizer, and the flow rate of the atomizer is adjusted to be 20 L/min to obtain a size. Hanging gas flow in 5~8 microns.

【實施例3】[Example 3] 金屬氧化物薄膜材料製備(1)(10%氟摻雜)Preparation of metal oxide thin film materials (1) (10% fluorine doping)

首先,混合0.5莫耳的SnCl2 ‧5H2 O與0.05莫耳的NH4 F摻質,以製備一含Sn(OH)4 的水溶液,並將水溶液置於一容器內。另以空氣同時通入微型液滴霧化器,藉由霧化器將Sn(OH)4 與空氣做一均勻混合後,調整霧化器噴出之流量為20L/min,以得到一尺寸介於5~8微米之氣懸膠氣流。First, 0.5 mol of SnCl 2 ‧5H 2 O and 0.05 mol of NH 4 F dopant were mixed to prepare an aqueous solution containing Sn(OH) 4 , and the aqueous solution was placed in a container. In addition, the air is simultaneously introduced into the micro-droplet atomizer, and the Sn(OH) 4 is uniformly mixed with the air by the atomizer, and the flow rate of the atomizer is adjusted to be 20 L/min to obtain a size between 5~8 micron gas suspension gas flow.

【實施例4】[Embodiment 4] 金屬氧化物薄膜材料製備(2)(25%氟摻雜)Preparation of metal oxide thin film materials (2) (25% fluorine doping)

首先,混合0.5莫耳的SnCl2 ‧5H2 O與0.125莫耳的NH4 F摻質,以製備一含Sn(OH)4 的水溶液,並將水溶液置於一容器內。另以空氣同時通入微型液滴霧化器,藉由霧化器將Sn(OH)4 與空氣做一均勻混合後,調整霧化器噴出之流量為20L/min,以得到一尺寸介於5~8微米之氣懸膠氣流。First, 0.5 mol of SnCl 2 ‧5H 2 O and 0.125 mol of NH 4 F dopant were mixed to prepare an aqueous solution containing Sn(OH) 4 , and the aqueous solution was placed in a container. In addition, the air is simultaneously introduced into the micro-droplet atomizer, and the Sn(OH) 4 is uniformly mixed with the air by the atomizer, and the flow rate of the atomizer is adjusted to be 20 L/min to obtain a size between 5~8 micron gas suspension gas flow.

【實施例5】[Embodiment 5] 金屬氧化物薄膜材料製備(3)(35%氟摻雜)Preparation of metal oxide thin film material (3) (35% fluorine doping)

首先,混合0.5莫耳的SnCl2 ‧5H2 O與0.175莫耳的NH4 F摻質,以製備一含Sn(OH)4 的水溶液,並將水溶液置於一容器內。另以空氣同時通入微型液滴霧化器,藉由霧化器將Sn(OH)4 與空氣做一均勻混合後,調整霧化器噴出之流量為20L/min,以得到一尺寸介於5~8微米之氣懸膠氣流。First, 0.5 mol of SnCl 2 ‧5H 2 O and 0.175 mol of NH 4 F dopant were mixed to prepare an aqueous solution containing Sn(OH) 4 , and the aqueous solution was placed in a container. In addition, the air is simultaneously introduced into the micro-droplet atomizer, and the Sn(OH) 4 is uniformly mixed with the air by the atomizer, and the flow rate of the atomizer is adjusted to be 20 L/min to obtain a size between 5~8 micron gas suspension gas flow.

【實施例6】[Embodiment 6] 金屬氧化物薄膜材料製備(4)(50%氟摻雜)Preparation of metal oxide thin film materials (4) (50% fluorine doping)

首先,混合0.5莫耳的SnCl2 ‧5H2 O與0.25莫耳的NH4 F摻質,以製備一含Sn(OH)4 的水溶液,並將水溶液置於一容器內。另以空氣同時通入微型液滴霧化器,藉由霧化器將Sn(OH)4 與空氣做一均勻混合後,調整霧化器噴出之流量為20L/min,以得到一尺寸介於5~8微米之氣懸膠氣流。First, 0.5 mol of SnCl 2 ‧5H 2 O and 0.25 mol of NH 4 F dopant were mixed to prepare an aqueous solution containing Sn(OH) 4 , and the aqueous solution was placed in a container. In addition, the air is simultaneously introduced into the micro-droplet atomizer, and the Sn(OH) 4 is uniformly mixed with the air by the atomizer, and the flow rate of the atomizer is adjusted to be 20 L/min to obtain a size between 5~8 micron gas suspension gas flow.

【實施例7】[Embodiment 7] 金屬氧化物薄膜材料製備(5)(75%氟摻雜)Preparation of metal oxide film material (5) (75% fluorine doping)

首先,混合0.5莫耳的SnCl2 ‧5H2 O與0.375莫耳的NH4 F摻質,以製備一含Sn(OH)4 的水溶液,並將水溶液置於一容器內。另以空氣同時通入微型液滴霧化器,藉由霧化器將Sn(OH)4 與空氣做一均勻混合後,調整霧化器噴出之流量為20L/min,以得到一尺寸介於5~8微米之氣懸膠氣流。First, 0.5 mol of SnCl 2 ‧5H 2 O and 0.375 mol of NH 4 F dopant were mixed to prepare an aqueous solution containing Sn(OH) 4 , and the aqueous solution was placed in a container. In addition, the air is simultaneously introduced into the micro-droplet atomizer, and the Sn(OH) 4 is uniformly mixed with the air by the atomizer, and the flow rate of the atomizer is adjusted to be 20 L/min to obtain a size between 5~8 micron gas suspension gas flow.

【實施例8】[Embodiment 8] 金屬氧化物電極製備Metal oxide electrode preparation

將比較實施例1及實施例3~7製備的氣懸膠氣流直接導入於被加熱之金屬氧化物模板做化學氣相沈積,以形成氧化錫主成份的透明導電膜。上述霧化器之震盪頻率為1,000KHz。上述導入氣懸膠氣流於被加熱之結構化試片之溫度為400℃。將上述氧化錫透明導電膜進行電阻率測試,結果如第3圖所示。由圖3可看出,薄膜的導電特性會隨著氟離子的摻雜濃度增加而變好,當氟離子濃度到達10%時,其導電特性達到飽和,其最佳電阻率值約為6.2x10-4 Ω-cm。The gas suspension gas streams prepared in Comparative Example 1 and Examples 3 to 7 were directly introduced into a heated metal oxide template for chemical vapor deposition to form a transparent conductive film having a main component of tin oxide. The above-mentioned atomizer has an oscillation frequency of 1,000 kHz. The temperature of the introduced air suspension gas stream to the heated structured test piece was 400 °C. The above-described tin oxide transparent conductive film was subjected to a resistivity test, and the results are shown in Fig. 3. It can be seen from Fig. 3 that the conductivity of the film becomes better as the doping concentration of the fluoride ion increases. When the concentration of the fluoride ion reaches 10%, the conductivity of the film reaches saturation, and the optimum resistivity value is about 6.2×10. -4 Ω-cm.

【實施例9】[Embodiment 9] 金屬氧化物電極之披覆性Coating of metal oxide electrodes

將實施例3~7製作的氟摻雜氧化錫(FTO)薄膜材料以噴鍍的方式沈積在實施例1~2製作的氧化鋅奈米結構上,在表面形貌上氟摻雜氧化錫(FTO)材料可以很好的披覆在氧化鋅上,如第4~5圖所示。披覆厚度分別為20nm(第4圖)與50nm(第5圖)。在穿透式電子顯微鏡的分析下,可以清楚的看到氟摻雜氧化錫(FTO)材料成功地噴鍍在氧化鋅奈米線(第4圖)及奈米柱(第5圖)之上。The fluorine-doped tin oxide (FTO) thin film materials prepared in Examples 3 to 7 were deposited on the zinc oxide nanostructures prepared in Examples 1 and 2 by sputtering, and the fluorine-doped tin oxide was formed on the surface morphology. FTO) materials can be well coated on zinc oxide, as shown in Figures 4-5. The thickness of the coating is 20 nm (Fig. 4) and 50 nm (Fig. 5). Under the analysis of the transmission electron microscope, it can be clearly seen that the fluorine-doped tin oxide (FTO) material was successfully sprayed on the zinc oxide nanowire (Fig. 4) and the nanocolumn (Fig. 5). .

【實施例9】[Embodiment 9] 金屬氧化物電極之電性測試Electrical test of metal oxide electrodes

第6圖顯示氧化鋅奈米結構的電阻值為100MΩ。第7圖顯示高導電立體電極結構所測得的電阻值約為10KΩ~1KΩ(分別披覆氟摻雜氧化錫(FTO)20nm與40nm)。由此可知,本發明披覆氟摻雜氧化錫(FTO)的立體電極結構可提升導電率達106 倍。若披覆100nm之氟摻雜氧化錫(FTO)薄膜於氧化鋅奈米結構上,則可將電阻值降低至100Ω。所以,利用氧化鋅奈米結構做為立體電極的模板,配合高導電氧化物材料的噴鍍,可以成功的製作出具有高導電性的三維高表面積電極結構。同時,因為氧化物材料間的晶體結構組成較易調整,所以能提升薄膜的披覆效率以達到高薄膜密度低電阻的要求。由電性量測數據顯示,披覆導電氧化物奈米線的電阻值約為100Ω,此種電極結構將能改善半導體元件的電流收集效能。Fig. 6 shows that the resistance value of the zinc oxide nanostructure is 100 M?. Figure 7 shows that the measured resistance of the highly conductive three-dimensional electrode structure is about 10KΩ~1KΩ (coated with fluorine-doped tin oxide (FTO) 20nm and 40nm, respectively). It can be seen, the present invention is coated a fluorine-doped tin oxide (FTO) perspective conductive electrode structure can improve rate of 106 times. If a 100 nm fluorine-doped tin oxide (FTO) film is coated on the zinc oxide nanostructure, the resistance can be reduced to 100 Ω. Therefore, the zinc oxide nanostructure can be used as a template for the three-dimensional electrode, and the high-conductive oxide material can be sprayed to successfully produce a three-dimensional high-surface electrode structure with high conductivity. At the same time, since the crystal structure between the oxide materials is easily adjusted, the coating efficiency of the film can be improved to achieve a high film density and low resistance. From the electrical measurement data, the resistance value of the coated conductive oxide nanowire is about 100 Ω, and the electrode structure can improve the current collecting performance of the semiconductor device.

本發明利用大氣噴塗法沈積導電氧化物,配合低溫製作之多元性金屬氧化物奈米結構,可製作出多維性的導電電極,經由透明導電薄膜厚度的調控,可提高此多維度電極的導電度,其電阻變化率可達106 倍,規格可達100Ω。可應用於能源相關產品,為一新的高效率、高表面積傳導電極結構。The invention utilizes the atmospheric spraying method to deposit the conductive oxide, and the polycrystalline metal oxide nanostructure prepared by the low temperature can be used to fabricate a multi-dimensional conductive electrode, and the conductivity of the multi-dimensional electrode can be improved by controlling the thickness of the transparent conductive film. The resistance change rate can reach 10 6 times and the specification can reach 100Ω. It can be applied to energy-related products and is a new high-efficiency, high-surface-conducting electrode structure.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the invention may be modified and retouched without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

第1圖為本發明線狀氧化鋅模板的電子顯微鏡分析。Figure 1 is an electron microscopic analysis of a linear zinc oxide template of the present invention.

第2圖為本發明柱狀氧化鋅模板的電子顯微鏡分析。Figure 2 is an electron microscopic analysis of a columnar zinc oxide template of the present invention.

第3圖為本發明摻雜氟離子氧化錫薄膜之電阻率。Figure 3 is a graph showing the resistivity of a fluorine ion doped tin oxide film of the present invention.

第4圖為本發明披覆氟摻雜氧化錫(FTO)薄膜線狀氧化鋅模板的電子顯微鏡分析。Figure 4 is an electron microscopic analysis of a linear zinc oxide template coated with a fluorine-doped tin oxide (FTO) film of the present invention.

第5圖為本發明披覆氟摻雜氧化錫(FTO)薄膜柱狀氧化鋅模板的電子顯微鏡分析。Fig. 5 is an electron microscopic analysis of a columnar zinc oxide template coated with a fluorine-doped tin oxide (FTO) film according to the present invention.

第6圖為本發明氧化鋅奈米結構的電性測試。Figure 6 is an electrical test of the zinc oxide nanostructure of the present invention.

第7圖為本發明高導電立體電極結構的電性測試。Figure 7 is an electrical test of the highly conductive three-dimensional electrode structure of the present invention.

Claims (20)

一種立體金屬氧化物電極,包括:一金屬氧化物模板,其中該金屬氧化物模板為顆粒狀、線狀、柱狀、管狀、針狀、球狀、片狀或多面體狀;以及一摻雜鹵素之金屬氧化物薄膜,披覆於該金屬氧化物模板上。 A three-dimensional metal oxide electrode comprising: a metal oxide template, wherein the metal oxide template is granular, linear, columnar, tubular, needle-shaped, spherical, flake or polyhedral; and a doped halogen A metal oxide film is coated on the metal oxide template. 如申請專利範圍第1項所述之立體金屬氧化物電極,其中該金屬氧化物模板係由氧化鋅、氧化鋁、氧化矽或二氧化鈦所構成。 The three-dimensional metal oxide electrode according to claim 1, wherein the metal oxide template is composed of zinc oxide, aluminum oxide, cerium oxide or titanium dioxide. 如申請專利範圍第1項所述之立體金屬氧化物電極,其中該金屬氧化物模板之尺寸介於5~50,000nm。 The three-dimensional metal oxide electrode according to claim 1, wherein the metal oxide template has a size of 5 to 50,000 nm. 如申請專利範圍第1項所述之立體金屬氧化物電極,其中該金屬氧化物模板之尺寸介於10~5,000nm。 The three-dimensional metal oxide electrode according to claim 1, wherein the metal oxide template has a size of 10 to 5,000 nm. 如申請專利範圍第1項所述之立體金屬氧化物電極,其中該金屬氧化物薄膜係由氧化鋅、氧化錫、氧化銅、氧化鎵或氧化銦所構成。 The three-dimensional metal oxide electrode according to claim 1, wherein the metal oxide film is composed of zinc oxide, tin oxide, copper oxide, gallium oxide or indium oxide. 如申請專利範圍第1項所述之立體金屬氧化物電極,其中該金屬氧化物薄膜之厚度介於5~500nm。 The three-dimensional metal oxide electrode according to claim 1, wherein the metal oxide film has a thickness of 5 to 500 nm. 如申請專利範圍第1項所述之立體金屬氧化物電極,其中該立體金屬氧化物電極應用於太陽能電池。 The three-dimensional metal oxide electrode according to claim 1, wherein the three-dimensional metal oxide electrode is applied to a solar cell. 一種立體金屬氧化物電極之製造方法,包括:提供一金屬氧化物模板;霧化一含金屬離子與鹵素摻質之水溶液,以形成一氣懸膠; 混合該氣懸膠與一氣體,以形成一氣懸膠氣流;以及導入該氣懸膠氣流至該金屬氧化物模板,以於該金屬氧化物模板上形成一摻雜鹵素之金屬氧化物薄膜。 A method for manufacturing a three-dimensional metal oxide electrode, comprising: providing a metal oxide template; atomizing an aqueous solution containing a metal ion and a halogen dopant to form an aerosol; Mixing the aerosol with a gas to form a gas suspension gas stream; and introducing the aerosol gas stream to the metal oxide template to form a halogen-doped metal oxide film on the metal oxide template. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該金屬氧化物模板係由氧化鋅、氧化鋁、氧化矽或二氧化鈦所構成。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the metal oxide template is composed of zinc oxide, aluminum oxide, cerium oxide or titanium oxide. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該金屬氧化物模板為顆粒狀、線狀、柱狀、管狀、針狀、球狀、片狀或多面體狀。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the metal oxide template is in the form of a pellet, a wire, a column, a tube, a needle, a sphere, a sheet or a polyhedron. 如申請專利範圍第10項所述之立體金屬氧化物電極之製造方法,其中該金屬氧化物模板之尺寸介於5~50,000nm。 The method for producing a three-dimensional metal oxide electrode according to claim 10, wherein the metal oxide template has a size of 5 to 50,000 nm. 如申請專利範圍第10項所述之立體金屬氧化物電極之製造方法,其中該金屬氧化物模板之尺寸介於10~5,000nm。 The method for producing a three-dimensional metal oxide electrode according to claim 10, wherein the metal oxide template has a size of 10 to 5,000 nm. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該金屬離子包括鋅離子、錫離子、銅離子、鎵離子或銦離子。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the metal ion comprises zinc ion, tin ion, copper ion, gallium ion or indium ion. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該鹵素摻質之莫耳百分比介於3~75%。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the halogen dopant has a molar percentage of from 3 to 75%. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該氣懸膠之尺寸介於0.1~10微米。 The method for manufacturing a three-dimensional metal oxide electrode according to claim 8, wherein the size of the aerosol is between 0.1 and 10 μm. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該氣體包括空氣、氧氣、氮氣或氮氣與氧氣之混合氣體。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the gas comprises air, oxygen, nitrogen or a mixed gas of nitrogen and oxygen. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該氣懸膠氣流之流量介於1~30L/min。 The method for manufacturing a three-dimensional metal oxide electrode according to claim 8, wherein the flow rate of the air suspension gas is between 1 and 30 L/min. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中導入該氣懸膠氣流之溫度介於300~500℃。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the temperature of the gas stream introduced into the aerosol is between 300 and 500 °C. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該金屬氧化物薄膜係由氧化鋅、氧化錫、氧化銅、氧化鎵或氧化銦所構成。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the metal oxide film is made of zinc oxide, tin oxide, copper oxide, gallium oxide or indium oxide. 如申請專利範圍第8項所述之立體金屬氧化物電極之製造方法,其中該金屬氧化物薄膜之厚度介於5~500nm。 The method for producing a three-dimensional metal oxide electrode according to claim 8, wherein the metal oxide film has a thickness of 5 to 500 nm.
TW98109692A 2009-03-25 2009-03-25 Three-dimensional metal oxide electrodes and fabrication method thereof TWI426551B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98109692A TWI426551B (en) 2009-03-25 2009-03-25 Three-dimensional metal oxide electrodes and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98109692A TWI426551B (en) 2009-03-25 2009-03-25 Three-dimensional metal oxide electrodes and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201036041A TW201036041A (en) 2010-10-01
TWI426551B true TWI426551B (en) 2014-02-11

Family

ID=44856104

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98109692A TWI426551B (en) 2009-03-25 2009-03-25 Three-dimensional metal oxide electrodes and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI426551B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708929B2 (en) * 2010-12-13 2015-04-30 ソニー株式会社 Storage element, manufacturing method thereof, and storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200839041A (en) * 2007-01-19 2008-10-01 Univ Bath Production of single-crystal semiconductor material using a nanostructure template
TW200845147A (en) * 2007-03-15 2008-11-16 Applied Materials Inc Improved gap-fill depositions in the formation of silicon containing dielectric materials
TW200908364A (en) * 2007-08-06 2009-02-16 Jusung Eng Co Ltd Method for manufacturing thin film type solar cell, and thin film type solar cell made by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200839041A (en) * 2007-01-19 2008-10-01 Univ Bath Production of single-crystal semiconductor material using a nanostructure template
TW200845147A (en) * 2007-03-15 2008-11-16 Applied Materials Inc Improved gap-fill depositions in the formation of silicon containing dielectric materials
TW200908364A (en) * 2007-08-06 2009-02-16 Jusung Eng Co Ltd Method for manufacturing thin film type solar cell, and thin film type solar cell made by the method

Also Published As

Publication number Publication date
TW201036041A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
Ardekani et al. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter
Ukoba et al. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique
Jung et al. Design of particles by spray pyrolysis and recent progress in its application
CN101203948B (en) Method of preparing zinc oxide nanorods on a substrate by chemical spray pyrolysis
Guild et al. Perspectives of spray pyrolysis for facile synthesis of catalysts and thin films: An introduction and summary of recent directions
CN100494308C (en) Preparing process of nano ZnO line array coated with nano TiO2 particles
Bi et al. Synthesis of NiO-In2O3 heterojunction nanospheres for highly selective and sensitive detection of ppb-level NO2
JP2013509352A (en) Conductive metal oxide film and photovoltaic device
CN101823759A (en) Continuous large-area zinc oxide nano-sheet and preparation method thereof
CN105776317A (en) Transparent super-hydrophobic nano-array and preparation method thereof
CN102728289B (en) Preparation method of stannic oxide-titanium dioxide core-shell nano-structure
Abed et al. Efficient SnO2/CuO/porous silicon nanocomposites structure for NH3 gas sensing by incorporating CuO nanoparticles
WO2011008778A2 (en) Metal and metal oxide structures and preparation thereof
CN109411730A (en) A kind of lithium ion battery silicon substrate composite negative pole material and preparation method thereof
TW201034991A (en) Conductive film formation on glass
Oluwabi et al. Effect of Zr doping on the structural and electrical properties of spray deposited TiO2 thin films
TWI426551B (en) Three-dimensional metal oxide electrodes and fabrication method thereof
Boppella et al. Advances in synthesis of nanostructured metal oxides for chemical sensors
CN104773756B (en) A kind of titanium dioxide microballoon sphere with hierarchical porous structure and its preparation method and application
KR101066016B1 (en) Fto transparent conductive coating comprising nanorod layer
Mbulanga et al. Effect of surface properties of ZnO rods on the formation of anatase-phase TiO 2 tubes prepared by liquid deposition method
KR101135792B1 (en) Producing Method of Double-Layered FTO Film
US8337943B2 (en) Nano-whisker growth and films
Al-Jumaili NO2 gas sensor properties of In2O3-CuO Nanocomposite thin films prepared by chemical spray pyrolysis
CN103159252A (en) Aluminum-doped zinc oxide electric conduction powder and preparation method thereof