TWI426242B - Diagnosing device and an associated method for a motor device - Google Patents

Diagnosing device and an associated method for a motor device Download PDF

Info

Publication number
TWI426242B
TWI426242B TW99137868A TW99137868A TWI426242B TW I426242 B TWI426242 B TW I426242B TW 99137868 A TW99137868 A TW 99137868A TW 99137868 A TW99137868 A TW 99137868A TW I426242 B TWI426242 B TW I426242B
Authority
TW
Taiwan
Prior art keywords
power device
signal
abnormality detecting
operating state
feature values
Prior art date
Application number
TW99137868A
Other languages
Chinese (zh)
Other versions
TW201219756A (en
Inventor
Hsin Yi Chung
Hsin Lan Chung
Yi Lung Chu
Shih Min Tzeng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99137868A priority Critical patent/TWI426242B/en
Priority to CN201110003851.8A priority patent/CN102466566B/en
Publication of TW201219756A publication Critical patent/TW201219756A/en
Application granted granted Critical
Publication of TWI426242B publication Critical patent/TWI426242B/en

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

動力設備異常檢測裝置及其檢測方法Power equipment abnormality detecting device and detecting method thereof

本發明係關於一種針對動力設備運作的監測與診斷,特別係指一種動力設備異常檢測裝置及其檢測方法。The invention relates to a monitoring and diagnosis for the operation of a power device, in particular to a power device abnormality detecting device and a detecting method thereof.

一般來說,動力設備在故障發生前,常常會出現性能的衰退與耗能的增加,但這些現象並不會立即影響到設備的運轉,因此時常不會被使用者所發現,此結果除了會增加故障發生機率與縮短設備壽命外,動力設備效能降低與耗能的增加,對於產業競爭力與環境保護都有著負面的影響。In general, power equipment often experiences performance degradation and energy consumption before failures occur, but these phenomena do not immediately affect the operation of the equipment, so they are often not discovered by users. In addition to increasing the probability of failure and shortening the life of equipment, the reduction of power equipment efficiency and energy consumption have a negative impact on industrial competitiveness and environmental protection.

動力設備(例如馬達)的診斷模式大多是利用一感測器來感測動力設備運作的狀態,再透過有線或無線傳輸方式將所感測到的資料傳送到後端系統做進一步的分析。但此種模式需要透過大量的資料傳輸頻寬,主要原因在於為了確保分析診斷的有效性及穩定性,盡可能地將所有感測器所接收到運作狀態資料完整的發送至後端系統中。Most of the diagnostic modes of power equipment (such as motors) use a sensor to sense the state of operation of the power equipment, and then transmit the sensed data to the back-end system for further analysis through wired or wireless transmission. However, this mode requires a large amount of data transmission bandwidth. The main reason is that in order to ensure the validity and stability of the analysis and diagnosis, the operational status data received by all the sensors is transmitted to the back-end system as much as possible.

因此,如何能夠透過一種方法或手段,除了保有一樣精確的分析診斷能力,先將感測的運作狀態資料進行處理,以減少需要傳送至後端系統的資料量,進而達到有效降低資料傳輸頻寬大小、提昇資料傳輸穩定性、縮短診斷更新時間與降低建置成本等功效,長久以來一直是相關廠商努力的目標。Therefore, how can a method or means, in addition to maintaining the same accurate analytical diagnostic capabilities, first process the sensed operational status data to reduce the amount of data that needs to be transmitted to the back-end system, thereby effectively reducing the data transmission bandwidth. The effects of size, improved data transmission stability, shortened diagnostic update time, and reduced construction costs have long been the goal of related vendors.

鑒於以上的問題,本發明提供一種動力設備異常檢測裝置及其檢測方法。藉由將感測的運作狀態資料預先進行處理,以達到有效降低資料傳輸頻寬大小、提昇資料傳輸穩定性、縮短診斷更新時間與降低建置成本。In view of the above problems, the present invention provides a power plant abnormality detecting device and a detecting method thereof. By pre-processing the sensed operational status data, the data transmission bandwidth is effectively reduced, the data transmission stability is improved, the diagnostic update time is shortened, and the construction cost is reduced.

根據本發明所揭露之動力設備異常檢測裝置,係包括一感測模組、一處理模組、一最佳化處理模組及一分類診斷模組。感測模組係用以感測一動力設備以取得多個運轉訊號。處理模組係連接於該感測模組,以接收該些運轉訊號,並依序自各該運轉訊號取得多個特徵值。The power device abnormality detecting device disclosed in the present invention comprises a sensing module, a processing module, an optimization processing module and a classification diagnostic module. The sensing module is configured to sense a power device to obtain a plurality of operating signals. The processing module is connected to the sensing module to receive the operation signals, and sequentially obtain a plurality of feature values from the operation signals.

最佳化處理模組係連接該處理模組,以接收該些特徵值,並分類該些特徵值來建立多個因素群組。其中,最佳化處理模組可利用因素分析方法,將特徵值依關聯性分類出多個因素群組。各該因素群組具有一代表該因素群組之變異特徵值,該些變異特徵值之數量係少於該些特徵值之數量。The optimization processing module is connected to the processing module to receive the feature values and classify the feature values to establish a plurality of factor groups. The optimization processing module can use the factor analysis method to classify the feature values into a plurality of factor groups according to the relevance. Each of the factor groups has a variation characteristic value representing the factor group, and the number of the variation feature values is less than the number of the feature values.

分類診斷模組係連接該最佳化處理模組用以接收該些因素群組,並依據一預設規則與該些因素群組發送一狀態訊號。此預設規則可為一分類列表,分類列表包括一正常項目及一異常項目。正常項目為動力設備運轉時的正常情況,異常項目則為表示運轉時異常的情況,例如,異常項目可包括但不限於不平衡情況、不對心情況、潤滑情況、共振情況、軸承損壞情況、軸彎曲情況、鬆動情況、相位不平衡情況、電位不平衡情況、諧波倍頻情況及短路情況。The classification diagnostic module is connected to the optimization processing module for receiving the group of factors, and sends a status signal to the group of factors according to a preset rule. The preset rule can be a category list, and the category list includes a normal item and an abnormal item. The normal item is the normal condition when the power equipment is running, and the abnormal item is the abnormal condition indicating the operation. For example, the abnormal item may include but is not limited to the imbalance condition, the misalignment condition, the lubrication condition, the resonance condition, the bearing damage condition, the shaft Bending, looseness, phase imbalance, potential imbalance, harmonic doubling, and short circuit conditions.

因此,藉由上述之動力設備異常檢測裝置,檢測裝置可設置於一動力設備上,透過最佳化處理模組利用因素分析方法將動力設備上所感測之運轉訊號簡化,直接透過分類診斷模組來進行動力設備運作情況的判斷,無須將所感測的運轉訊號發送至後端系統來進行直接且即時的處理,以達到縮短診斷更新時間與降低建置成本。再者,即便未來仍需要後端系統來進行處理(例如:透過一遠端伺服器匯整多個動力設備的運作狀態),經因素分析方法所歸納出的變異特徵值的數量低於自各該運轉訊號所取得之特徵值的數量,故可達到降低資料傳輸頻寬大小和提昇資料傳輸穩定性的功效。Therefore, the above-mentioned power device abnormality detecting device can be installed on a power device, and the operating signal sensed on the power device is simplified by the optimization processing module through the optimization processing module, and directly passed through the classification diagnostic module. To judge the operation of the power equipment, it is not necessary to send the sensed operation signal to the back-end system for direct and immediate processing, so as to shorten the diagnostic update time and reduce the construction cost. Furthermore, even if the back-end system is still needed for processing in the future (for example, the operation state of multiple power devices is integrated through a remote server), the number of eigenvalues summarized by the factor analysis method is lower than that of each. The number of characteristic values obtained by the operation signal can reduce the bandwidth of the data transmission and improve the stability of data transmission.

根據本發明所揭露之動力設備異常檢測方法,透過偵測動力設備運轉的資訊來進行異常參數的檢測與診斷。動力設備異常檢測方法,首先利用一訊號處理方法自該動力設備取得多個運轉訊號,並自運轉訊號中擷取多個特徵值。接著,再將特徵值依關聯性進行分類以建立多個因素群組,而各該因素群組具有一變異特徵值。最後再將所取得變異特徵值大於1之因素群組,利用類神經網路和經驗法則得到此動力設備的運作狀態,並依一預設規則判斷動力設備之運作狀態是否異常。According to the power device abnormality detecting method disclosed in the present invention, the abnormal parameter detection and diagnosis are performed by detecting information on the operation of the power device. The power equipment abnormality detecting method firstly uses a signal processing method to obtain a plurality of running signals from the power device, and extracts a plurality of characteristic values from the running signal. Then, the feature values are further classified according to the relevance to establish a plurality of factor groups, and each of the factor groups has a variation feature value. Finally, the group of factors with the mutated feature value greater than 1 is obtained, and the operating state of the power device is obtained by using the neural network and the rule of thumb, and whether the operating state of the power device is abnormal according to a preset rule.

其中,當類神經網路和經驗法則所判斷的運作狀態不一致時,根據該些因素群組修正類神經網路之模型,直到兩者判斷出來的運作狀態結果一致。Wherein, when the operational state determined by the neural network and the rule of thumb are inconsistent, the model of the neural network is modified according to the group of factors until the operational state results judged by the two are consistent.

運轉訊號可為動力設備之振動訊號、溫度訊號、磁通訊 號、電流訊號或電壓訊號。處理模組係將所感測之運轉訊號透過一時域轉換處理或一多尺度熵(Multiscale Entropy,MSE)運算以取得特徵值,特徵值可為振動訊號之倍頻峰值或特徵頻率值。時域轉換處理可採用一離散傅立葉轉換處理(Discrete Fourier Transform,DFT)、一快速傅立葉轉換處理(Fast Fourier Transform,FFT)、一離散餘弦轉換處理(Discrete Cosine Transformation,DCT)、一離散哈特利轉換處理(Discrete Hartley Transform,DHT)、一小波轉換處理(Wavelet Transform,WT)或一功率頻率處理(Power Spectrum)。The running signal can be the vibration signal, temperature signal and magnetic communication of the power equipment. Number, current signal or voltage signal. The processing module transmits the sensed operation signal through a time domain conversion process or a multiscale entropy (MSE) operation to obtain a feature value, and the feature value may be a frequency doubling peak or a characteristic frequency value of the vibration signal. The time domain conversion process may employ a Discrete Fourier Transform (DFT), a Fast Fourier Transform (FFT), a Discrete Cosine Transformation (DCT), and a Discrete Cotley Transformation (DCT). Discrete Hartley Transform (DHT), Wavelet Transform (WT) or Power Spectrum.

用以判斷動力設備之運作狀態是否異常之預設規則可為一分類列表,分類列表包括一正常項目及一異常項目。正常項目為動力設備運轉時的正常情況,異常項目則為表示運轉時異常的情況,例如,異常項目可包括但不限於不平衡情況、不對心情況、潤滑情況、共振情況、軸承損壞情況、軸彎曲情況、鬆動情況、相位不平衡情況、電位不平衡情況、諧波倍頻情況及短路情況。The preset rule for determining whether the operating state of the power device is abnormal may be a category list, and the category list includes a normal item and an abnormal item. The normal item is the normal condition when the power equipment is running, and the abnormal item is the abnormal condition indicating the operation. For example, the abnormal item may include but is not limited to the imbalance condition, the misalignment condition, the lubrication condition, the resonance condition, the bearing damage condition, the shaft Bending, looseness, phase imbalance, potential imbalance, harmonic doubling, and short circuit conditions.

於此,當透過類神經網路取得動力設備之運作狀態後,可根據上述之預設規則判斷此動力設備可能是哪一部份發生異常情況。類神經網路則可採用一倒傳遞類神經網路(Back Propagation Network,BPN)、一霍普菲爾網路(Hopfield Neural Network,HNN)、一徑向基底類神經網路(Radial Basis Function Network,RBFN)、一模糊類神經網路(Fuzzy Neural Network, FNN)或一函數鏈路類神經網路(Functional Link Neural Network,FLNN)。經驗法則為一特徵頻譜、一臨界門檻、一軌跡圖、一包絡線、一諧波分析或其組合。In this case, after obtaining the operating state of the power device through the neural network, it may be determined according to the preset rule that the power device may be abnormal. The neural network can use a Back Propagation Network (BPN), a Hopfield Neural Network (HNN), and a Radial Basis Function Network. , RBFN), a fuzzy neural network (Fuzzy Neural Network, FNN) or a functional Link Neural Network (FLNN). The rule of thumb is a characteristic spectrum, a critical threshold, a trajectory map, an envelope, a harmonic analysis, or a combination thereof.

因此,透過本發明之動力設備異常檢測方法,可透過感測一動力設備之運轉訊號,並透過因素分析方法簡化自運轉訊號所取得之特徵值的數量和大小,可適用於資源消耗較小的微處理器中,直接進行運算處理來判斷動力設備的運作狀態,無須將所感測到的運轉訊號傳送至後端系統,後端系統僅需要接收判斷結果,可達到降低資料傳輸頻寬大小、提昇資料傳輸穩定性、縮短診斷更新時間與降低建置成本的功效。Therefore, the power device abnormality detecting method of the present invention can improve the operation signal of a power device and simplify the number and size of the feature values obtained by the self-running signal through the factor analysis method, and can be applied to the resource consumption. In the microprocessor, the operation process is directly performed to determine the operating state of the power device, and the sensed operation signal is not transmitted to the back-end system, and the back-end system only needs to receive the judgment result, thereby reducing the data transmission bandwidth and the lifting. Data transmission stability, shortened diagnostic update time and reduced implementation costs.

有關本發明的特徵、實作與功效,茲配合圖式作實施例詳細說明如下。The features, implementations, and effects of the present invention are described in detail below with reference to the drawings.

請參考『第1圖』所示,『第1圖』係本發明之動力設備異常檢測裝置的示意圖。動力設備異常檢測裝置100可為一嵌入式系統晶片或一個人數位助理裝置(Personal Digital Assistant,PDA)等資料處理裝置,動力設備異常檢測裝置100係設置於一動力設備200並包括一感測模組110、一處理模組120、一最佳化處理模組130及一分類診斷模組140。Please refer to FIG. 1 and FIG. 1 is a schematic diagram of the power plant abnormality detecting device of the present invention. The power device abnormality detecting device 100 can be an embedded system chip or a data processing device such as a personal digital assistant (PDA). The power device abnormality detecting device 100 is disposed on a power device 200 and includes a sensing module. 110. A processing module 120, an optimization processing module 130, and a classification diagnostic module 140.

感測模組110係用以感測動力設備100以取得多個運轉訊號,以馬達為例,感測模組110除透過振動程度感測動力設備100之振動訊號資料外,亦取得溫度、磁通、電流、轉速、電 壓等馬達運作時的運轉訊號。The sensing module 110 is configured to sense the power device 100 to obtain a plurality of operating signals. Taking the motor as an example, the sensing module 110 senses the vibration signal data of the power device 100 through the degree of vibration, and also obtains temperature and magnetic. Pass, current, speed, electricity The operation signal when the motor is operating.

處理模組120根據感測模組110所感測到的運轉訊號,利用一訊號處理方法自運轉訊號中擷取多個特徵值。以振動訊號來說,處理模組120利用快速傅立葉轉換處理方法將運轉訊號自時域轉換成頻域,並透過轉速換算出振動訊號的基頻,再依序自頻域之振動訊號擷取出0.5倍頻、1倍頻至12倍頻,所擷取之倍頻訊號即為對應振動訊號之特徵值。The processing module 120 uses the signal processing method to extract a plurality of feature values from the operation signal according to the operation signal sensed by the sensing module 110. In the case of the vibration signal, the processing module 120 converts the operation signal from the time domain to the frequency domain by using the fast Fourier transform processing method, and converts the fundamental frequency of the vibration signal by the rotation speed, and then sequentially extracts the vibration signal from the frequency domain. Multiplier, 1x to 12x, the multiplied signal is the characteristic value of the corresponding vibration signal.

最佳化處理模組130係連接該處理模組120,以接收該些特徵值,並分類該些特徵值來建立多個因素群組。其中,最佳化處理模組130可利用因素分析方法,將特徵值依關聯性分類出多個因素群組。各該因素群組具有一代表該因素群組之變異特徵值,該些變異特徵值之數量係少於該些特徵值之數量。The optimization processing module 130 is connected to the processing module 120 to receive the feature values and classify the feature values to establish a plurality of factor groups. The optimization processing module 130 may use a factor analysis method to classify feature values into a plurality of factor groups according to relevance. Each of the factor groups has a variation characteristic value representing the factor group, and the number of the variation feature values is less than the number of the feature values.

分類診斷模組140係連接該最佳化處理模組130用以接收該些因素群組,並依據一預設規則與該些因素群組發送一狀態訊號,以判斷動力設備的運作情況。此預設規則可為一分類列表,分類列表包括一正常項目及一異常項目。正常項目為動力設備運轉時的正常情況,異常項目則為表示運轉時異常的情況,例如,異常項目可包括但不限於不平衡情況、不對心情況、潤滑情況、共振情況、軸承損壞情況、軸彎曲情況、鬆動情況、相位不平衡情況、電位不平衡情況、諧波倍頻情況及短路情況。The classification diagnostic module 140 is connected to the optimization processing module 130 for receiving the group of factors, and sends a status signal to the group of factors according to a preset rule to determine the operation of the power device. The preset rule can be a category list, and the category list includes a normal item and an abnormal item. The normal item is the normal condition when the power equipment is running, and the abnormal item is the abnormal condition indicating the operation. For example, the abnormal item may include but is not limited to the imbalance condition, the misalignment condition, the lubrication condition, the resonance condition, the bearing damage condition, the shaft Bending, looseness, phase imbalance, potential imbalance, harmonic doubling, and short circuit conditions.

請參考『第2A圖』所示,『第2A圖』係本發明之動力設備異常檢測裝置一實施例的示意圖。動力設備異常檢測裝置更 包括一警示裝置150,該警示裝置150係用以接收該狀態訊號,並當該狀態訊號為該異常時,用以通知使用者。警示裝置150可為但不限於一振動模組、一發光模組、一顯示模組、一聲響模組或其組合,以透過振動警示、燈光警示、訊息警示或聲音警示等方式來通知使用者動力設備200的運作發生異常。Please refer to FIG. 2A, and FIG. 2A is a schematic view showing an embodiment of the power plant abnormality detecting device of the present invention. Power equipment anomaly detection device The device includes a warning device 150 for receiving the status signal, and is used to notify the user when the status signal is the abnormality. The warning device 150 can be, but is not limited to, a vibration module, a light module, a display module, an audio module, or a combination thereof, for notifying the use of a vibration warning, a light warning, a message warning, or an audible alarm. The operation of the power device 200 is abnormal.

請參考『第2B圖』所示,『第2B圖』係本發明之動力設備異常檢測裝置另一實施例的示意圖。動力設備異常檢測裝置更包括一傳輸模組160,傳輸模組160係連接該分類診斷模組140,用以接收該狀態訊號,並透過有線或無線的傳輸方式將該狀態訊號發送至警示裝置150。Please refer to FIG. 2B, and FIG. 2B is a schematic view showing another embodiment of the power plant abnormality detecting device of the present invention. The power device abnormality detecting device further includes a transmission module 160. The transmission module 160 is connected to the classification diagnostic module 140 for receiving the status signal, and transmitting the status signal to the warning device 150 through a wired or wireless transmission manner. .

請參考『第2C圖』所示,『第2C圖』係本發明之動力設備異常檢測裝置又一實施例的示意圖。動力設備異常檢測裝置更包括一記憶模組170,記憶模組170用以儲存該動力設備200之該些運轉訊號,當使用者有需要讀取動力設備之運轉訊號來進行進一步的分析,再透過存取記憶模組170來取得所需的運轉訊號。記憶模組170可供設置記憶卡以儲存感測之運轉訊號,記憶卡可為一小型快閃(Compact Flash,CF)記憶卡、一微型硬碟(Micro Drive,MD)記憶卡、一安全數位(Secure Digital,SD)記憶卡、一微型安全數位(Micro SD)記憶卡、一多媒體(Multi Media Card,MMC)記憶卡、一長條(Memory Stick,MS)記憶卡或一微型長條(Micro MS)記憶卡。Referring to FIG. 2C, FIG. 2C is a schematic view showing still another embodiment of the power plant abnormality detecting device of the present invention. The power device abnormality detecting device further includes a memory module 170 for storing the operation signals of the power device 200. When the user needs to read the operation signal of the power device for further analysis, The memory module 170 is accessed to obtain the desired operation signal. The memory module 170 can be used to set a memory card to store the sensing operation signal. The memory card can be a compact flash (CF) memory card, a micro hard disk (MD) memory card, and a secure digital position. (Secure Digital, SD) memory card, a micro SD digital memory card, a multimedia (Multi Media Card, MMC) memory card, a long (Memory Stick, MS) memory card or a micro strip (Micro MS) Memory card.

因此,藉由上述之動力設備異常檢測裝置,檢測裝置可設 置於一動力設備上,透過最佳化處理模組利用因素分析方法將自動力設備上所感測之運轉訊號簡化,直接透過分類診斷模組來進行動力設備運作情況的判斷,無須將所感測的運轉訊號發送至後端系統來進行直接且即時的處理,以達到縮短診斷更新時間與降低建置成本。再者,即便未來仍需要後端系統來進行處理(例如:透過一遠端伺服器匯整多個動力設備的運作狀態),經因素分析方法所歸納出的變異特徵值的數量低於自各該運轉訊號所取得之特徵值的數量,故可達到降低資料傳輸頻寬大小和提昇資料傳輸穩定性的功效。Therefore, with the power device abnormality detecting device described above, the detecting device can be set It is placed on a power equipment, and the operation signal sensed by the automatic force equipment is simplified by the factorization analysis method through the optimization processing module, and the operation condition of the power equipment is directly judged through the classification diagnosis module, without sensing the sensed The operation signal is sent to the back-end system for direct and immediate processing to reduce diagnostic update time and reduce construction costs. Furthermore, even if the back-end system is still needed for processing in the future (for example, the operation state of multiple power devices is integrated through a remote server), the number of eigenvalues summarized by the factor analysis method is lower than that of each. The number of characteristic values obtained by the operation signal can reduce the bandwidth of the data transmission and improve the stability of data transmission.

請參考『第3圖』所示,『第3圖』係本發明之動力設備異常檢測方法的步驟流程圖。動力設備異常檢測方法係應用於一動力設備,包括:步驟S300:利用一訊號處理方法自該動力設備取得多個運轉訊號;步驟S310:自該些運轉訊號取得對應於各該運轉訊號之多個特徵值;步驟S320:將該些特徵值進行分組,以建立多個因素群組,各該因素群組具有一變異特徵值;步驟S330:根據該些因素群組,利用一類神經網路判斷該動力設備運轉之一第一運作狀態;步驟S340:根據該些特徵值,利用一經驗法則判斷該動力裝置運轉之一第二運作狀態; 步驟S350:比較該第一運作狀態與該第二運作狀態是否相同;步驟S360:當該第一運作狀態與該第二運作狀態不相同時,根據該些因素群組修正該類神經網路,直到該第一運作狀態與該第二運作狀態相同;步驟S370:當該第一運作狀態與該第二運作狀態相同時,根據一預設規則判斷該第一運作狀態是否異常;步驟S380:若判斷該第一運作狀態為異常,則發送一異常訊號;以及步驟S390:若判斷該第一運作狀態為正常,則發送一正常訊號。Please refer to FIG. 3, and FIG. 3 is a flow chart showing the steps of the power plant abnormality detecting method of the present invention. The power device abnormality detecting method is applied to a power device, comprising: step S300: obtaining a plurality of operation signals from the power device by using a signal processing method; and step S310: obtaining a plurality of operation signals corresponding to the operation signals from the operation signals Feature value; Step S320: grouping the feature values to establish a plurality of factor groups, each of the factor groups having a variation feature value; Step S330: determining, according to the factor groups, using a neural network a first operational state of the power device operation; step S340: determining, according to the characteristic values, a second operational state of the power device operation by using a rule of thumb; Step S350: comparing whether the first operating state and the second operating state are the same; step S360: when the first operating state is different from the second operating state, correcting the neural network according to the factor group, Until the first operational state is the same as the second operational state; step S370: when the first operational state is the same as the second operational state, determining whether the first operational state is abnormal according to a preset rule; step S380: If it is determined that the first operating state is abnormal, an abnormal signal is sent; and step S390: if it is determined that the first operating state is normal, a normal signal is sent.

請參考『第4A圖』所示,『第4A圖』係第3圖中步驟S310之一實施例流程圖。步驟S310所述之自該些運轉訊號取得對應於各該運轉訊號之多個特徵值,運轉訊號包括振動訊號、溫度訊號、磁通訊號、電流訊號或電壓訊號。步驟S310包括:步驟S311:感測該動力設備,以取得該些運轉訊號;步驟S312:利用一時域轉換處理,將該運轉訊號之一時域資料轉換為一頻域資料;以及步驟S313:自該頻域資料擷取多個特徵值。Please refer to FIG. 4A, and FIG. 4A is a flowchart of an embodiment of step S310 in FIG. The plurality of characteristic values corresponding to the operation signals are obtained from the operation signals, and the operation signals include vibration signals, temperature signals, magnetic communication numbers, current signals or voltage signals. Step S310 includes: step S311: sensing the power device to obtain the operation signals; and step S312: converting a time domain data of the operation signal into a frequency domain data by using a time domain conversion process; and step S313: The frequency domain data captures multiple feature values.

其中,時域轉換處理可為一離散傅立葉轉換處理、一快速傅立葉轉換處理、一離散餘弦轉換處理、一離散哈特利轉換處理、一小波轉換處理或一功率頻率處理。The time domain conversion process may be a discrete Fourier transform process, a fast Fourier transform process, a discrete cosine transform process, a discrete Hartley conversion process, a wavelet transform process, or a power frequency process.

以馬達的振動訊號來說,當振動訊號經過快速傅立葉轉換處理,基頻(諧波)可透過以下公式計算:第一基頻位置=((1*轉速*運轉訊號之資料長度)/(60*頻譜擷取頻率));第二基頻位置=((2*轉速*運轉訊號之資料長度)/(60*頻譜擷取頻率));以此類推。In the vibration signal of the motor, when the vibration signal is subjected to fast Fourier transform processing, the fundamental frequency (harmonic) can be calculated by the following formula: the first fundamental frequency position = ((1 * speed * data length of the operation signal) / (60) * Spectrum acquisition frequency)); Second fundamental frequency position = ((2 * speed * data length of the operation signal) / (60 * spectrum acquisition frequency)); and so on.

舉例:假設感測一每分鐘1800轉的馬達,來取得一16千位元組的運轉訊號,取頻率為12千赫茲的頻域,則第一基頻的位置可為40。For example, suppose that a motor with a frequency of 1800 rpm is sensed to obtain a 16-kilobit operation signal, and the frequency of the frequency is 12 kHz, and the first fundamental frequency can be 40.

據此,當步驟S311取得一代表馬達振動訊號之運轉訊號時,透過步驟S312將運轉訊號自時域資料轉換為頻域資料,再依序自頻域之運轉訊號擷取出0.5倍頻、1倍頻至12倍頻位置的值,所擷取之倍頻訊號即為對應振動訊號之特徵值,這些特徵值的數量為24個,並根據倍頻的大小分別定義為0.5x、1x、1.5x、2x、2.5x、3x、3.5x、4x、4.5x、5x、5.5x、6x、6.5x、7x、7.5x、8x、8.5x、9x、9.5x、10x、10.5x、11x、11.5x及12x。According to this, when step S311 obtains an operation signal representing the motor vibration signal, the operation signal is converted from the time domain data to the frequency domain data through the step S312, and then the frequency signal is extracted from the frequency domain, and the frequency is extracted by 0.5 times and 1 time. The frequency multiplied signal is the characteristic value of the corresponding vibration signal. The number of these characteristic values is 24, and is defined as 0.5x, 1x, 1.5x according to the size of the multiplication frequency. , 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x, 8x, 8.5x, 9x, 9.5x, 10x, 10.5x, 11x, 11.5x And 12x.

請參考『第4B圖』所示,『第4B圖』係第3圖中步驟S310之另一實施例流程圖。相較第4A圖所示之步驟S310的實施例,第4B圖所示之步驟S310實施例係透過多尺度熵(Multiscale Entropy,MSE)運算來取得運轉訊號之特徵值,此實施例包括:步驟S314:感測該動力設備,以取得該些運轉訊號;以及步驟S315:將去除雜訊後之該些運轉訊號透過一多尺度熵 (Multiscale Entropy,MSE)運算,以取得對應該運轉訊號之該些特徵值。Please refer to FIG. 4B, and FIG. 4B is a flow chart of another embodiment of step S310 in FIG. Compared with the embodiment of step S310 shown in FIG. 4A, the embodiment of step S310 shown in FIG. 4B obtains the feature value of the operation signal through multi-scale entropy (MSE) operation. This embodiment includes: S314: sensing the power device to obtain the operation signals; and step S315: transmitting the operation signals after removing the noise through a multi-scale entropy (Multiscale Entropy, MSE) operation to obtain the characteristic values corresponding to the operation signal.

步驟S314和S315之間更可包括一步驟S316,步驟S316:利用小波轉換對該些運轉訊號進行雜訊處理。主要原因在於經過感測所取得之運轉訊號可能具有雜訊,透過小波轉換處理可以達到抑制雜訊的功效。Step S316 and S315 may further include a step S316, and step S316: performing noise processing on the operation signals by using wavelet transform. The main reason is that the operation signal obtained through sensing may have noise, and the effect of suppressing noise can be achieved by wavelet conversion processing.

請參考『第3圖』及『第4C圖』所示,『第4C圖』係第3圖中步驟S320之步驟流程圖。待取得該些對應於運轉訊號之多個特徵值(步驟S310),動力設備異常檢測方法再透過因素分析方法簡化這些特徵值,如步驟S320所述之將該些特徵值進行分組,以建立多個因素群組,各該因素群組具有一變異特徵值,步驟S320包括:步驟S321:利用因素分析方法對該些特徵值分群,以建立該些因素群組;步驟S322:依序計算各該因素群組中該些特徵值,以取得一變異特徵值;以及步驟S323:保留該些變異特徵值大於1的變異特徵值。Please refer to the "Fig. 3" and "4C" diagrams, and the "4C diagram" is a flow chart of the steps of step S320 in Fig. 3. To obtain the plurality of feature values corresponding to the operation signal (step S310), the power device abnormality detecting method simplifies the feature values by the factor analysis method, and group the feature values according to step S320 to establish multiple Each of the factor groups has a variability feature value, and step S320 includes: step S321: grouping the feature values by a factor analysis method to establish the factor groups; and step S322: calculating each of the factors The feature values in the factor group to obtain a variation feature value; and step S323: retaining the variation feature values having the variation feature value greater than 1.

藉由上述之步驟S321至步驟S323,並撘配上述步驟S310所取得之對應振動訊號的特徵值為變數,可得到下列表一之結果。By the above steps S321 to S323, and matching the characteristic value of the corresponding vibration signal obtained in the above step S310, the result of the following list 1 can be obtained.

表一Table I

以表一為例子來說明步驟S322是如何取得各因素群組之變異特徵值。首先,係將24個倍頻特徵值(0.5x、1x、1.5x、2x、2.5x、3x、3.5x、4x、4.5x、5x、5.5x、6x、6.5x、7x、7.5x、8x、8.5x、9x、9.5x、10x、10.5x、11x、11.5x及12x)算出樣本共變數矩陣S,共變數矩陣表示如下:Table 1 is taken as an example to illustrate how step S322 obtains the variation characteristic values of each factor group. First, 24 octave eigenvalues (0.5x, 1x, 1.5x, 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x, 8x) , 8.5x, 9x, 9.5x, 10x, 10.5x, 11x, 11.5x, and 12x) calculate the sample covariate matrix S, and the covariate matrix is expressed as follows:

其中var表示變異數,cov表示共變異數。Where var represents the number of variances and cov represents the number of variances.

接著,再從共變數矩陣中算出24個變異特徵值λ1 ,...,λ24 ,分別為方程式Then, 24 eigenvalues λ 1 ,..., λ 24 are calculated from the common variable matrix, respectively.

的解。所以即可解出λ1 =7.431,λ2 =3.257,λ3 =1.258,λ4 =1.206,λ5 =1.124,…,λ24 =0.029,再依照計算結果,將變異特徵值大於1作為選取因素群組個數之原則,以表一為例,共計挑出五個因素群組作為類神經網路之輸入變數。Solution. Therefore, λ 1 = 7.431, λ 2 = 3.257, λ 3 = 1.258, λ 4 = 1.206, λ 5 = 1.124, ..., λ 24 = 0.029 can be solved, and the variation eigenvalue is greater than 1 according to the calculation result. The principle of the number of factor groups, taking Table 1 as an example, a total of five factor groups are selected as input variables of the neural network.

而透過因素分析來對特徵值分群(步驟S321),由於每一個倍頻特徵值在五個因素群組之下都有其負荷值,透過選擇在其某一因素群組下最大之負荷值,來表示特徵值所屬之因素群組。以1X的倍頻特徵值為例,在因素一之負荷為-0.260,在因素二之負荷為0.899,在因素三之負荷為-0.038,在因素四之負荷為-0.092,在因素五之負荷為-0.015,其中又以1X在因素二下之負荷值是五個因素群組當中最大的,亦即1X隸屬於因素二的因素群組中。因此,透過相同的方式,可把其餘的23個特徵值依照最大負荷值分別歸類在五個因素群組當中,如表一所列,故因素一下包含了1.5X、4X、4.5X、5X、5.5X、6X、6.5X、7X、8.5X、12X;因素二包括1X、2X、2.5X、3X、3.5X、7.5X、8X、9X;因素三包含10X、10.5X;因素四包括11X、11.5X;因素五包含0.5X、9.5X。And eigenvalue grouping is performed by factor analysis (step S321), since each octave eigenvalue has its load value under five factor groups, by selecting the maximum load value under a certain factor group, To indicate the factor group to which the feature value belongs. Taking the 1X octave characteristic value as an example, the load of factor 1 is -0.260, the load of factor 2 is 0.899, the load of factor 3 is -0.038, the load of factor 4 is -0.092, and the load of factor 5 is The value of -1015, in which the load value of 1X under factor 2 is the largest among the five factor groups, that is, 1X belongs to the factor group of factor two. Therefore, in the same way, the remaining 23 feature values can be classified into five factor groups according to the maximum load value, as listed in Table 1, so the factors include 1.5X, 4X, 4.5X, 5X. , 5.5X, 6X, 6.5X, 7X, 8.5X, 12X; factor two includes 1X, 2X, 2.5X, 3X, 3.5X, 7.5X, 8X, 9X; factor three includes 10X, 10.5X; factor four includes 11X , 11.5X; factor five contains 0.5X, 9.5X.

如步驟S330所述,分別將利用五個因素組合帶入類神經網路來取得第一運作狀態。關於類神經網路之建立此為本領域之技藝人士知悉,於此不加以累述。類神經網路則可採用一倒傳遞類神經網路(Back Propagation Network,BPN)、一霍普菲爾網路(Hopfield Neural Network,HNN)、一徑向基底類神經網路(Radial Basis Function Network,RBFN)、一模糊類神經網路(Fuzzy Neural Network,FNN)或一函數鏈路類神經網路(Functional Link Neural Network,FLNN)。經驗法則為一特徵頻譜、一臨界門檻、一軌跡圖、一包絡線、一諧波分析或其組合。As described in step S330, a combination of five factors is used to bring into the neural network to obtain the first operational state. The establishment of a neural network is known to those skilled in the art and will not be described herein. The neural network can use a Back Propagation Network (BPN), a Hopfield Neural Network (HNN), and a Radial Basis Function Network. , RBFN), a fuzzy neural network (FNN) or a functional Link Neural Network (FLNN). The rule of thumb is a characteristic spectrum, a critical threshold, a trajectory map, an envelope, a harmonic analysis, or a combination thereof.

同理,步驟S340所述,將特徵值利用經驗法則判斷動力裝置之第二運作狀態。經驗法則乃是依據基礎理論所推導之規則,以振動訊號為例,經驗法則為機械振動基礎所推導之振動特性規則,最常見的是對頻譜中各變異特徵值(亦即特徵頻譜)搭配臨界門檻的組合加以計算,亦可使用軌跡圖、包絡線等方法進一步將變異特徵值進行解耦與成分分析,常見的諧波分析亦可協助取得邊頻資料。Similarly, in step S340, the feature value is used to determine the second operational state of the power device using the rule of thumb. The rule of thumb is based on the rules derived from the basic theory. The vibration signal is taken as an example. The rule of thumb is the vibration characteristic rule derived from the basis of mechanical vibration. The most common is the matching of the eigenvalues (ie, the characteristic spectrum) of the spectrum. The combination of thresholds can be calculated, and the eigenvalues can be further decoupled and analyzed using trajectory maps and envelopes. Common harmonic analysis can also assist in obtaining sideband data.

於此,步驟S340所採用之經驗法則係利用特徵值與門檻設定的方法,當特徵值超過門檻設定值即可判斷動力設備的運作發生異常。Here, the rule of thumb adopted in step S340 is a method of setting the feature value and the threshold, and when the feature value exceeds the threshold setting value, it can be judged that the operation of the power device is abnormal.

舉例來說,假設1X之倍頻特徵值與2X之倍頻特徵值的峰值以5每秒毫米(millimeter/second,mm/s)為門檻設定值,3X之特徵值的峰值則以2每秒毫米為門檻設定值,如『第5圖』所示,『第5圖』為第3圖中步驟S340利用經驗法則判斷動力裝置之第二運作狀態之一實施例的邏輯流程圖。若1X之倍頻特徵值小於5則判斷動力設備正常,反之,在1X之倍頻特徵值大於5,且2X和3X之倍頻特徵值同時小於5和2,則判斷此動力設備之運作狀態發生不平衡的情況。For example, suppose the peak value of the 1X multiplication characteristic value and the 2X multiplication characteristic value are set at a threshold of 5 millimeters per millimeter (millimeter/second, mm/s), and the peak value of the 3X characteristic value is 2 per second. The millimeter is the threshold setting value, as shown in Fig. 5, and Fig. 5 is a logic flow diagram of an embodiment in which the second operational state of the power unit is judged by the rule of thumb in step S340 in Fig. 3. If the 1X multiplier characteristic value is less than 5, the power device is judged to be normal. Otherwise, if the 1X multiplier characteristic value is greater than 5, and the 2X and 3X multiplier characteristic values are less than 5 and 2 at the same time, the operating state of the power device is judged. An imbalance has occurred.

假設透過類神經網路所取得之第一運作狀態和經驗法則所取得之第二運作狀態相同時(步驟S340),預設規則可為一分類列表,分類列表包括一正常項目及一異常項目。正常項目為動力設備運轉時的正常情況,異常項目則為表示運轉時異常的情況,例如,異常項目可包括但不限於不平衡情況、不對心情況、潤滑情況、共振情況、軸承損壞情況、軸彎曲情況、鬆動情況、相位不平衡情況、電位不平衡情況、諧波倍頻情況及短路情況。Assuming that the first operational state obtained by the neural network is the same as the second operational state obtained by the rule of thumb (step S340), the preset rule may be a classification list including a normal item and an abnormal item. The normal item is the normal condition when the power equipment is running, and the abnormal item is the abnormal condition indicating the operation. For example, the abnormal item may include but is not limited to the imbalance condition, the misalignment condition, the lubrication condition, the resonance condition, the bearing damage condition, the shaft Bending, looseness, phase imbalance, potential imbalance, harmonic doubling, and short circuit conditions.

步驟S380則根據此預設規則判斷第一運作狀態是否為異常項目中所紀錄之運作情況,藉以判斷動力設備是否發生異常的狀態。反之,若第一運作狀態為正常項目中所紀錄之運作情況,則判斷此動力設備之運作狀態正常。Step S380 determines whether the first operating state is an operation recorded in the abnormal item according to the preset rule, so as to determine whether the power device has an abnormal state. On the other hand, if the first operational status is the operation recorded in the normal project, it is judged that the operation state of the power device is normal.

因此,透過本發明之動力設備異常檢測方法,可透過感測一動力設備之運轉訊號,並透過因素分析方法簡化自運轉訊號所取得之特徵值的數量和大小,可適用於資源消耗較小的微處理器中,直接進行運算處理來判斷動力設備的運作狀態,無須將所感測到的運轉訊號傳送至後端系統,後端系統僅需要接收判斷結果,可達到降低資料傳輸頻寬大小、提昇資料傳輸穩定性、縮短診斷更新時間與降低建置成本的功效。Therefore, the power device abnormality detecting method of the present invention can improve the operation signal of a power device and simplify the number and size of the feature values obtained by the self-running signal through the factor analysis method, and can be applied to the resource consumption. In the microprocessor, the operation process is directly performed to determine the operating state of the power device, and the sensed operation signal is not transmitted to the back-end system, and the back-end system only needs to receive the judgment result, thereby reducing the data transmission bandwidth and the lifting. Data transmission stability, shortened diagnostic update time and reduced implementation costs.

雖然本發明之實施例揭露如上所述,然並非用以限定本提案,任何熟習相關技藝者,在不脫離本發明之精神和範圍內,舉凡依申請範圍所述之形狀、構造、特徵及精神當可做些許之變更,因此本發明之專利保護範圍須視本發明說明書所附之申請專利範圍所界定者為準。Although the embodiments of the present invention are disclosed above, it is not intended to limit the present invention, and those skilled in the art, regardless of the spirit and scope of the present invention, the shapes, structures, features, and spirits as described in the application scope. The scope of the invention is to be determined by the scope of the appended claims.

100‧‧‧動力設備異常檢測裝置100‧‧‧Power equipment anomaly detection device

110‧‧‧感測模組110‧‧‧Sensing module

120‧‧‧處理模組120‧‧‧Processing module

130‧‧‧最佳化處理模組130‧‧‧Optimized processing module

140‧‧‧分類診斷模組140‧‧‧Classification Diagnostic Module

150‧‧‧警示裝置150‧‧‧Warning device

160‧‧‧傳輸模組160‧‧‧Transmission module

170‧‧‧記憶模組170‧‧‧Memory Module

200‧‧‧動力設備200‧‧‧Power equipment

第1圖係本發明之動力設備異常檢測裝置的示意圖。Fig. 1 is a schematic view showing a power plant abnormality detecting device of the present invention.

第2A圖係本發明之動力設備異常檢測裝置一實施例的示意圖。Fig. 2A is a schematic view showing an embodiment of the power plant abnormality detecting device of the present invention.

第2B圖係本發明之動力設備異常檢測裝置另一實施例的示意圖。Fig. 2B is a schematic view showing another embodiment of the power plant abnormality detecting device of the present invention.

第2C圖係本發明之動力設備異常檢測裝置又一實施例的示意圖。Fig. 2C is a schematic view showing still another embodiment of the power plant abnormality detecting device of the present invention.

第3圖係本發明之動力設備異常檢測方法的步驟流程圖。Fig. 3 is a flow chart showing the steps of the power plant abnormality detecting method of the present invention.

第4A圖係第3圖中步驟S310之一實施例流程圖。Figure 4A is a flow chart of an embodiment of step S310 in Figure 3.

第4B圖係第3圖中步驟S310之另一實施例流程圖。Figure 4B is a flow chart of another embodiment of step S310 in Figure 3.

第4C圖係第3圖中步驟S320之步驟流程圖。Fig. 4C is a flow chart showing the steps of step S320 in Fig. 3.

第5圖係第3圖中步驟S340之一實施例的流程圖。Figure 5 is a flow chart of an embodiment of step S340 in Figure 3.

Claims (19)

一種動力設備異常檢測裝置,其包含有:一感測模組,係感測一動力設備以取得多個運轉訊號;一處理模組,係連接該感測模組,用以接收該些運轉訊號並依序自各該運轉訊號擷取多個特徵值;一最佳化處理模組,係連接該處理模組,藉以接收該些特徵值,並分類該些特徵值以建立多個因素群組,其中,各該因素群組具有一代表該因素群組之變異特徵值,該些變異特徵值之數量係少於該些特徵值的數量;以及一分類診斷模組,係連接該最佳化處理模組,用以接收該些變異特徵值下之該因素群組,並依據一預設規則與該些因素群組發送一狀態訊號。 A power device abnormality detecting device includes: a sensing module that senses a power device to obtain a plurality of operating signals; and a processing module that is connected to the sensing module to receive the operating signals And sequentially extracting a plurality of feature values from each of the operation signals; an optimization processing module is connected to the processing module to receive the feature values, and classify the feature values to establish a plurality of factor groups, Each of the factor groups has a variation characteristic value representing the factor group, the number of the variation feature values is less than the number of the feature values; and a classification diagnosis module is connected to the optimization process The module is configured to receive the group of factors under the mutated feature values, and send a status signal to the group of factors according to a preset rule. 如申請專利範圍第1項所述之動力設備異常檢測裝置,更包含有一警示裝置,係用以接收該狀態訊號,並當該狀態訊號為異常時,通知該動力設備運作發生異常。 The power device abnormality detecting device according to claim 1 further includes a warning device for receiving the status signal, and when the status signal is abnormal, notifying the power device that an abnormality occurs. 如申請專利範圍第2項所述之動力設備異常檢測裝置,更包含有一傳輸模組,該傳輸模組連接該分類診斷模組,用以接收該狀態訊號並透過有線或無線的傳輸方式將該狀態訊號發送至該警示裝置。 The power device abnormality detecting device according to claim 2, further comprising a transmission module connected to the classification diagnostic module for receiving the status signal and transmitting the status signal by wire or wireless transmission A status signal is sent to the alert device. 如申請專利範圍第1項所述之動力設備異常檢測裝置,更包含有一記憶模組,該記憶模組儲存該動力設備之該些運轉訊號。 The power device abnormality detecting device according to claim 1, further comprising a memory module, wherein the memory module stores the operation signals of the power device. 一種動力設備異常檢測方法,其包含有下列步驟: 利用一訊號處理方法自該動力設備取得多個運轉訊號;藉由該些運轉訊號取得對應於各該運轉訊號之多個特徵值;將該些特徵值進行分組,藉以建立多個因素群組,各該因素群組具有一變異特徵值,且該些變異特徵值之數量係少於該些特徵值的數量;根據該些因素群組,利用一類神經網路判斷該動力設備運轉之一第一運作狀態;根據該些特徵值,利用一經驗法則判斷該動力裝置運轉之一第二運作狀態;比較該第一運作狀態與該第二運作狀態是否相同;當該第一運作狀態與該第二運作狀態不相同時,根據該些因素群組修正該類神經網路,直到該第一運作狀態與該第二運作狀態相同;當該第一運作狀態與該第二運作狀態相同時,根據一預設規則判斷該第一運作狀態是否異常;若判斷該第一運作狀態為異常,則發送一異常訊號;以及若判斷該第一運作狀態為正常,則發送一正常訊號。 A power device abnormality detecting method includes the following steps: Acquiring a plurality of operation signals from the power device by using a signal processing method; obtaining, by the operation signals, a plurality of feature values corresponding to the operation signals; grouping the feature values to establish a plurality of factor groups, Each of the factor groups has a variability eigenvalue, and the number of the eigenvalues is less than the number of the eigenvalues; according to the group of factors, one of the neural networks is used to judge that the power device operates one of the first An operating state; determining, according to the characteristic values, a second operating state of the power device operation by using a rule of thumb; comparing whether the first operating state and the second operating state are the same; when the first operating state and the second operating state When the operating states are different, the neural network is modified according to the group of factors until the first operating state is the same as the second operating state; when the first operating state is the same as the second operating state, according to one The preset rule determines whether the first operating state is abnormal; if it is determined that the first operating state is abnormal, sending an abnormal signal; and if determining the first operational state As normal, a normal signal is sent. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該運轉訊號為一振動訊號。 The power device abnormality detecting method according to claim 5, wherein the operation signal is a vibration signal. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該運轉訊號為一溫度訊號。 The power device abnormality detecting method according to claim 5, wherein the operation signal is a temperature signal. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該運轉訊號為一磁通訊號。 The power device abnormality detecting method according to claim 5, wherein the operation signal is a magnetic communication number. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該運轉訊號為一電流訊號。 The power device abnormality detecting method according to claim 5, wherein the operation signal is a current signal. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該運轉訊號為一電壓訊號。 The power device abnormality detecting method according to claim 5, wherein the operation signal is a voltage signal. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該運轉訊號為一轉速訊號。 The power device abnormality detecting method according to claim 5, wherein the operation signal is a rotation speed signal. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該利用該訊號處理方法自該動力設備取得該些運轉訊號的步驟,更包含有:感測該動力設備,以取得該些運轉訊號;利用一時域轉換處理,將該運轉訊號之一時域資料轉換為一頻域資料;以及自該頻域資料擷取該些特徵值。 The method for detecting an abnormality of a power device according to the fifth aspect of the invention, wherein the step of obtaining the operation signal from the power device by using the signal processing method further comprises: sensing the power device to obtain the a running signal; converting a time domain data of the operational signal into a frequency domain data by using a time domain conversion process; and extracting the characteristic values from the frequency domain data. 如申請專利範圍第12項所述之動力設備異常檢測方法,其中,該時域轉換處理為一離散傅立葉轉換處理、一快速傅立葉轉換處理、一離散餘弦轉換處理、一離散哈特利轉換處理、一小波轉換處理或一功率頻率處理。 The power device abnormality detecting method according to claim 12, wherein the time domain conversion processing is a discrete Fourier transform processing, a fast Fourier transform processing, a discrete cosine transform processing, a discrete Hartley conversion processing, A wavelet conversion process or a power frequency process. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該利用該訊號處理方法自該動力設備取得該些運轉訊號的步驟,更包含有: 感測該動力設備,以取得該些運轉訊號;以及將去除雜訊後之該些運轉訊號透過一多尺度熵(Multiscale Entropy,MSE)運算,以取得對應該些運轉訊號之該些特徵值。 The power device abnormality detecting method according to claim 5, wherein the step of obtaining the operation signals from the power device by using the signal processing method further includes: The power device is sensed to obtain the operation signals; and the operation signals after the noise removal are transmitted through a multiscale entropy (MSE) operation to obtain the characteristic values corresponding to the operation signals. 如申請專利範圍第14項所述之動力設備異常檢測方法,其中,該於該感測該動力設備,以取得該些運轉訊號的步驟及該將去除雜訊後之該運轉訊號透過該多尺度熵運算,以取得對應該運轉訊號之該些特徵值的步驟之間,更包含有:利用小波轉換對該些運轉訊號進行雜訊處理。 The power device abnormality detecting method according to claim 14, wherein the step of sensing the power device to obtain the operation signals and the operation signal after removing the noise are transmitted through the multi-scale The entropy operation is performed between the steps of obtaining the characteristic values corresponding to the operation signals, and further includes: performing noise processing on the operation signals by using wavelet transform. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該將該些特徵值進行分組,以建立該些因素群組的步驟包含有:利用因素分析方法對該些特徵值分群,以建立該些因素群組;依序計算各該因素群組中該些特徵值,以取得該變異特徵值;以及保留該些變異特徵值大於1的變異特徵值。 The power device abnormality detecting method according to claim 5, wherein the step of grouping the feature values to establish the factor groups comprises: grouping the feature values by using a factor analysis method, To establish the group of factors; sequentially calculating the feature values in each of the factor groups to obtain the variation feature value; and retaining the variation feature values having the variation feature value greater than 1. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該類神經網路為一倒傳遞類神經網路(Back Propagation Network,BPN)、一霍普菲爾網路(Hopfield Neural Network,HNN)、一徑向基底類神經網路(Radial Basis Function Network,RBFN)、一模糊類神經網路(Fuzzy Neural Network,FNN)或一函數鏈路類神經網路(Functional Link Neural Network,FLNN)。 The power device abnormality detecting method described in claim 5, wherein the neural network is a Back Propagation Network (BPN) and a Hopfield Neural Network (Hopfield Neural Network). , HNN), a Radial Basis Function Network (RBFN), a Fuzzy Neural Network (FNN) or a functional Link Neural Network (FLNN) ). 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該預設規則為一分類列表,該分類列表包括一正常項目及一異常項目,該異常項目包括不平衡情況、不對心情況、潤滑情況、共振情況、軸承損壞情況、軸彎曲情況、鬆動情況、相位不平衡情況、電位不平衡情況、諧波倍頻情況及短路情況。 The power device abnormality detecting method according to claim 5, wherein the preset rule is a category list, the category list includes a normal item and an abnormal item, and the abnormal item includes an imbalance condition and an unbalanced condition. Lubrication, resonance, bearing damage, shaft bending, looseness, phase imbalance, potential imbalance, harmonic doubling and short circuit. 如申請專利範圍第5項所述之動力設備異常檢測方法,其中,該經驗法則為一特徵頻譜、一門檻設定值、一軌跡圖、一包絡線或一諧波分析。 The power device abnormality detecting method according to claim 5, wherein the rule of thumb is a characteristic spectrum, a threshold setting value, a trajectory map, an envelope or a harmonic analysis.
TW99137868A 2010-11-03 2010-11-03 Diagnosing device and an associated method for a motor device TWI426242B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99137868A TWI426242B (en) 2010-11-03 2010-11-03 Diagnosing device and an associated method for a motor device
CN201110003851.8A CN102466566B (en) 2010-11-03 2011-01-04 Power equipment abnormality detection device and detection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99137868A TWI426242B (en) 2010-11-03 2010-11-03 Diagnosing device and an associated method for a motor device

Publications (2)

Publication Number Publication Date
TW201219756A TW201219756A (en) 2012-05-16
TWI426242B true TWI426242B (en) 2014-02-11

Family

ID=46070470

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99137868A TWI426242B (en) 2010-11-03 2010-11-03 Diagnosing device and an associated method for a motor device

Country Status (2)

Country Link
CN (1) CN102466566B (en)
TW (1) TWI426242B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707232B (en) * 2012-06-01 2015-10-07 深圳市海亿达能源科技股份有限公司 Motor apparatus state on_line monitoring device and monitoring method thereof
CN102768318A (en) * 2012-08-03 2012-11-07 深圳市海亿达能源科技股份有限公司 Online energy consumption management device for energy using equipment and management control method thereof
TWI443356B (en) * 2012-09-14 2014-07-01 Chunghwa Telecom Co Ltd Detection system and method of abnormal operating states in an electrical appliance
TWI467138B (en) * 2012-10-26 2015-01-01 Ancad Inc A vibration wave analysing device and method, the application thereof and the system using the same
CN104008294B (en) * 2014-05-30 2017-05-03 东南大学 System and method for detecting abnormality of bearing
US10336472B2 (en) * 2014-10-15 2019-07-02 The Boeing Company Motor health management apparatus and method
CN105974859A (en) * 2015-03-13 2016-09-28 青岛孚迪尔电气自动化有限公司 Wireless monitoring system based on vibration sensor
CN104833884A (en) * 2015-05-18 2015-08-12 国家电网公司 Fault detection method of voltage class equipment
CN106646205A (en) * 2015-10-30 2017-05-10 国网山西省电力公司电力科学研究院 Random big-disturbance signal removing algorithm for analyzing circuit breaker fault through sound and vibration combination
CN107121268A (en) * 2016-02-24 2017-09-01 王智中 Smart machine detection method
CN107991097A (en) * 2017-11-16 2018-05-04 西北工业大学 A kind of Method for Bearing Fault Diagnosis based on multiple dimensioned symbolic dynamics entropy
CN108871438A (en) * 2018-06-22 2018-11-23 武汉众犇慧通科技有限公司 A kind of motor monitoring, diagnosing method based on three shaft vibrations
CN108983097B (en) * 2018-07-27 2021-01-22 北京天诚同创电气有限公司 Motor resonance detection system and detection method
CN111340250A (en) 2018-12-19 2020-06-26 富泰华工业(深圳)有限公司 Equipment maintenance device, method and computer readable storage medium
US11100221B2 (en) 2019-10-08 2021-08-24 Nanotronics Imaging, Inc. Dynamic monitoring and securing of factory processes, equipment and automated systems
CN112903001A (en) * 2019-12-03 2021-06-04 财团法人纺织产业综合研究所 Operation method of fabric setting machine
TWI736079B (en) * 2019-12-23 2021-08-11 瑞昱半導體股份有限公司 Integrated circuit and abnormality handling method thereof
US11086988B1 (en) 2020-02-28 2021-08-10 Nanotronics Imaging, Inc. Method, systems and apparatus for intelligently emulating factory control systems and simulating response data
TWI768606B (en) * 2020-12-18 2022-06-21 日月光半導體製造股份有限公司 System and method for monitoring sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201020558A (en) * 2008-11-28 2010-06-01 Ind Tech Res Inst Method for diagnosing energy consumption of a power plant
CN101799359A (en) * 2010-01-27 2010-08-11 北京信息科技大学 Failure monitoring and predicting method and system of power equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219755A (en) * 1985-07-19 1987-01-28 Hitachi Ltd Ae type diagnosing system for abnormality of rotary machine
DK0652426T3 (en) * 1993-11-09 1998-10-26 Wortsilo Nsd Schweiz Ag Procedure for identifying diffraction disturbances in diesel engines
CN1758042A (en) * 2005-02-02 2006-04-12 沈阳黎明航空发动机(集团)有限责任公司 Engine bearing failure testing and diagnosing method and failure detecting instrument
CN100491954C (en) * 2007-02-02 2009-05-27 浙江大学 Device for detecting engine condition based on pure vibration signal and method thereof
CN101135601A (en) * 2007-10-18 2008-03-05 北京英华达电力电子工程科技有限公司 Rotating machinery vibrating failure diagnosis device and method
CN101354315A (en) * 2008-09-05 2009-01-28 爱立迈科(宁波)计测仪器有限公司 Device and method for tracking and detecting engine state based on vibration signal
CN100595548C (en) * 2008-09-05 2010-03-24 华南理工大学 Automotive engine fault diagnosis system and method based on sparse expression
KR20100112734A (en) * 2009-04-10 2010-10-20 한국전기연구원 On-site complex abnormal diagnosis method of induction motor
CN101858778A (en) * 2010-05-28 2010-10-13 浙江大学 Vibration monitoring-based wind generator set automatic fault diagnosis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201020558A (en) * 2008-11-28 2010-06-01 Ind Tech Res Inst Method for diagnosing energy consumption of a power plant
CN101799359A (en) * 2010-01-27 2010-08-11 北京信息科技大学 Failure monitoring and predicting method and system of power equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林志麟、李志文、蔡禮豐、鍾欣蘭,結合小波轉換與多尺度熵偵測馬達不對心現象,2009資訊管理技術與實務應用發展暨資訊人才培育研討會論文集,2009年6月3日 *

Also Published As

Publication number Publication date
CN102466566B (en) 2014-08-13
CN102466566A (en) 2012-05-23
TW201219756A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TWI426242B (en) Diagnosing device and an associated method for a motor device
Cui et al. Quantitative trend fault diagnosis of a rolling bearing based on Sparsogram and Lempel-Ziv
Rai et al. Bearing performance degradation assessment based on a combination of empirical mode decomposition and k-medoids clustering
US20210270778A1 (en) Automatic mechanical systems diagnosis
Safizadeh et al. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
YanPing et al. Continuous wavelet grey moment approach for vibration analysis of rotating machinery
Lu et al. Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery
US8793103B2 (en) Method and system for detection of machine operation state for monitoring purposes
Qian et al. A novel class imbalance-robust network for bearing fault diagnosis utilizing raw vibration signals
Shifat et al. EEMD assisted supervised learning for the fault diagnosis of BLDC motor using vibration signal
CN106441896A (en) Characteristic vector extraction method for rolling bearing fault mode identification and state monitoring
CN107909156B (en) Equipment state detection method and computing equipment
Almounajjed et al. Fault diagnosis and investigation techniques for induction motor
CN116434372A (en) Intelligent data acquisition system and working condition identification system for variable working condition equipment
CN111062100A (en) Method and device for establishing residual life prediction model of bearing
Gangsar et al. Multiclass fault taxonomy in rolling bearings at interpolated and extrapolated speeds based on time domain vibration data by SVM algorithms
Zhao et al. A novelty detection scheme for rolling bearing based on multiscale fuzzy distribution entropy and hybrid kernel convex hull approximation
Xu et al. Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain
US20140163918A1 (en) Fan module test system
US8930166B1 (en) Method and apparatus for efficient extraction of information from signals
Wu et al. Bearing fault diagnosis via kernel matrix construction based support vector machine
CN117036732B (en) Electromechanical equipment detection system, method and equipment based on fusion model
Lei et al. A Combination of WK NN to Fault Diagnosis of Rolling Element Bearings
Islam et al. A hybrid feature selection scheme based on local compactness and global separability for improving roller bearing diagnostic performance
CN110749443A (en) Rolling bearing fault diagnosis method and system based on high-order origin moment