TWI424565B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI424565B
TWI424565B TW100131371A TW100131371A TWI424565B TW I424565 B TWI424565 B TW I424565B TW 100131371 A TW100131371 A TW 100131371A TW 100131371 A TW100131371 A TW 100131371A TW I424565 B TWI424565 B TW I424565B
Authority
TW
Taiwan
Prior art keywords
layer
indium
germanium
arsenide
semiconductor device
Prior art date
Application number
TW100131371A
Other languages
Chinese (zh)
Other versions
TW201310637A (en
Inventor
Ching Sung Lee
Wei Chou Hsu
Long Yi Tseng
Yu Hao Liao
Original Assignee
Univ Feng Chia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Feng Chia filed Critical Univ Feng Chia
Priority to TW100131371A priority Critical patent/TWI424565B/en
Publication of TW201310637A publication Critical patent/TW201310637A/en
Application granted granted Critical
Publication of TWI424565B publication Critical patent/TWI424565B/en

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

半導體元件Semiconductor component

本發明是有關於一種半導體元件,且特別是有關於一種以砷化鎵為基礎的高速元件。This invention relates to a semiconductor component, and more particularly to a high speed component based on gallium arsenide.

單晶體微波積體電路(Monolithic Microwave Integrated Circuit,MMIC)一般係由以化合物半導體為基礎的高速電子移動率電晶體(High Electron Mobility Transistor,HEMT)所構成,且主要係以砷化銦鎵作為主要通道材質。而砷化銦鎵通道量子井之載子束縛能力(confinement以及電子束縛能(electron refinement capacity)攸關元件線性操作與崩潰電壓等重要的效能特性,因此尋求具備高速傳導與高載子束縛能力之通道結構,為業界所面臨的一大課題。Monolithic Microwave Integrated Circuit (MMIC) is generally composed of a compound semiconductor-based high-electron Mobility Transistor (HEMT), and mainly uses indium gallium arsenide as the main channel. Material. The indium gallium arsenide quantum wells have a carrier-binding ability (confinement and electron refinement capacity), which are important performance characteristics such as linear operation and breakdown voltage. Therefore, they seek high-speed conduction and high carrier binding ability. The channel structure is a major issue facing the industry.

目前,習知技術已提出,以微量氮摻雜之氮砷化銦鎵(InGaAsN)四元化合物結構來作為通道材質。藉由氮砷化銦鎵與砷化鎵的異質結構接面具有高的傳導帶不連續能階的特性,可在接面上形成較深的量子井,增加導電載子的侷限能力,使載子在高溫操作下不易跳脫出量子井形成漏電流,進而改善元件特性。At present, conventional techniques have been proposed to use a nitrogen-doped indium gallium arsenide (InGaAsN) quaternary compound structure as a channel material. The heterostructure junction of indium gallium arsenide and gallium arsenide has a high discontinuous energy level of the conduction band, which can form a deep quantum well on the junction surface and increase the limitation of the conductive carrier. Under high temperature operation, the sub-pole does not easily jump out of the quantum well to form leakage current, thereby improving component characteristics.

然而,因為氮砷化銦鎵的成長,僅侷限於某些特定低溫條件,且導致磊晶品質不佳,嚴重降低載子傳導性。因此,有需要提供一種具備高速傳導與高載子束縛能力之通道結構的高速電子移動電晶體,以有效改善元件線性度與元件漏電流等操作特性。However, because of the growth of indium gallium arsenide, it is limited to certain specific low temperature conditions, and leads to poor epitaxial quality and severely reduces carrier conductivity. Therefore, there is a need to provide a high-speed electron-moving transistor having a channel structure with high-speed conduction and high carrier-binding capability to effectively improve operational characteristics such as element linearity and component leakage current.

有鑑於此,本發明的目的之一,就是在提供一種半導體元件,其結構包括:半導體基板、銻砷化銦鋁(InAlAsSb)緩衝層、銻砷化銦鋁(InAlAsSb)緩衝層、具有銻摻雜之銻砷化銦鎵通道層、第一隔絕層,第一δ-摻雜載子供應層、銻砷化銦鋁閘極蕭特基接觸層以及汲/源極歐姆接觸層。銻砷化銦鋁緩衝層,位於半導體基板上。銻砷化銦鎵通道層,位於銻砷化銦鋁緩衝層上;其中銻摻雜比例實質小於5%之,且銻砷化銦鎵通道層具有一個雙組成成分呈對稱式線性變化(InxGa1-xAs1-ySby)的摻雜設計。第一隔絕層位於通道層上。第一δ-摻雜載子供應層,位於隔絕層上。銻砷化銦鋁閘極蕭特基接觸層位於δ-摻雜載子供應層上。汲/源極歐姆接觸層,位於銻砷化銦鋁閘極蕭特基接觸層上。In view of the above, one of the objects of the present invention is to provide a semiconductor device comprising: a semiconductor substrate, an indium aluminum arsenide (InAlAsSb) buffer layer, an indium aluminum arsenide (InAlAsSb) buffer layer, and a germanium doped layer. a hetero-indium gallium arsenide channel layer, a first insulating layer, a first delta-doped carrier supply layer, a germanium indium arsenide gate Schottky contact layer, and a germanium/source ohmic contact layer. A germanium indium arsenide buffer layer is disposed on the semiconductor substrate. The indium gallium arsenide channel layer is located on the buffer layer of indium arsenide aluminum; wherein the germanium doping ratio is substantially less than 5%, and the indium gallium arsenide channel layer has a bicomponent composition that exhibits a symmetric linear change (InxGa1- Doping design of xAs1-ySby). The first insulation layer is on the channel layer. The first delta-doped carrier supply layer is on the isolation layer. The indium arsenide aluminum gate Schottky contact layer is on the delta-doped carrier supply layer. The 汲/source ohmic contact layer is on the germanium indium arsenide gate Schottky contact layer.

在本發明之一實施例中,半導體基板與銻砷化銦鋁緩衝層之間,包含一個變晶式緩衝層。In an embodiment of the invention, the semiconductor substrate and the indium aluminum arsenide buffer layer comprise a crystal-transparent buffer layer.

在本發明之一實施例中,銻砷化銦鋁閘極蕭特基接觸層與該汲/源極歐姆接觸層之間,包含一個選擇性蝕刻終止層。In one embodiment of the invention, a germanium arsenide aluminum gate Schottky contact layer and the germanium/source ohmic contact layer comprise a selective etch stop layer.

在本發明之一實施例中,汲/源極歐姆接觸層包含一個覆蓋層。In one embodiment of the invention, the germanium/source ohmic contact layer comprises a cap layer.

在本發明之一實施例中,構成汲/源極歐姆接觸層的材料,可選自於由高摻雜之砷化鎵、磷化銦、砷化銦鎵、砷化鋁鎵及上述任意組合所組成之一族群。In an embodiment of the invention, the material constituting the 汲/source ohmic contact layer may be selected from the group consisting of highly doped gallium arsenide, indium phosphide, indium gallium arsenide, aluminum gallium arsenide, and any combination thereof. One of the groups that make up.

在本發明之一實施例中,半導體元件更包括一個汲/源極極板,位於汲/源極歐姆接觸層上,且汲/源極極板係由鍺化金/鎳/金/銀的多層合金所組成。In an embodiment of the invention, the semiconductor device further comprises a germanium/source plate on the germanium/source ohmic contact layer, and the germanium/source plate is a multilayer alloy of gold/nickel/gold/silver Composed of.

在本發明之一實施例中,半導體元件更包括一個閘極板,位於銻砷化銦鋁閘極蕭特基接觸層上,且閘極板係由鎳、金、白或上述之任意組合所組成。In an embodiment of the invention, the semiconductor device further includes a gate plate on the germanium indium arsenide gate Schottky contact layer, and the gate plate is made of nickel, gold, white or any combination thereof. composition.

在本發明之一實施例中,銻砷化銦鋁緩衝層與銻砷化銦鎵通道層之間,包含一個第二δ-摻雜載子供應層及一個第二隔絕層。In one embodiment of the invention, between the indium antimonide arsenide buffer layer and the indium gallium arsenide channel layer, a second delta-doped carrier supply layer and a second isolation layer are included.

在本發明之一實施例中,第一δ-摻雜載子供應層及第二δ-摻雜載子供應層,分別具有實質介於1×1012 cm-2 到5×1012 cm-2 之間的矽(Si)摻雜量。In an embodiment of the invention, the first δ-doped carrier supply layer and the second δ-doped carrier supply layer respectively have a substantial thickness of between 1×10 12 cm −2 and 5×10 12 cm − The amount of bismuth (Si) doping between 2 .

在本發明之一實施例中,半導體元件係一種異質結構場效電晶體,具有由金屬有機化學氣相沉積(Metal-organic Chemical Vapor Deposition,MOCVD)或分子束磊晶成長法(Molecular Beam Epitaxy,MBE)成長而成的半導體磊晶結構。In one embodiment of the invention, the semiconductor component is a heterostructure field effect transistor having a Metal-Organic Chemical Vapor Deposition (MOCVD) or a Molecular Beam Epitaxy (Molecular Beam Epitaxy). MBE) The grown semiconductor epitaxial structure.

根據上述實施例,本發明係提出一種具有高蕭特基能障及銦與銻雙組成成分對稱式線性變化之稀釋型通道(InxGa1-xAs1-ySby)的高電子移動率電晶體。藉由加入微量成份的銻摻雜,來做為層膜介面活性劑(surfactant),以有效增加導電帶不連續能障高度。並結合銻與銦之雙組成成份呈現V型變化的設計,獲致改善通道中載子束縛力、傳導特性、高線性增益等優點,可有效降低閘極/基板漏電流、提升閘-汲極間之崩潰電壓、改善功率附加效率(Power Added Efficiency,P.A.E.)、增進載子傳輸能力。並且有效降低鈕結效應(kink effects),進而降低閘極漏電流,改善閘極崩潰特性,達到上述發明目的。According to the above embodiment, the present invention provides a high electron mobility transistor having a high Schottky barrier and a dilute channel (InxGa1-xAs1-ySby) in which the indium and bismuth compositions are symmetrically linearly changed. By adding a trace amount of cerium doping, it acts as a layer surfactant to effectively increase the discontinuous barrier height of the conductive strip. Combined with the design of the V-type change of the two components of bismuth and indium, it has the advantages of improving the carrier binding force, conduction characteristics, high linear gain, etc., which can effectively reduce the gate/substrate leakage current and improve the gate-drainage The breakdown voltage, the Power Added Efficiency (PAE), and the improved carrier transmission capability. Moreover, the kink effects are effectively reduced, thereby reducing the gate leakage current and improving the gate collapse characteristics, thereby achieving the above object.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;

本發明的目的就是在提供一種具有高蕭特基能障及雙組成成分呈對稱式線性變化之稀釋型通道(InxGa1-xAs1-ySby)的高電子移動率電晶體,以有效改善元件線性度與元件漏電流等操作特性。SUMMARY OF THE INVENTION It is an object of the present invention to provide a high electron mobility transistor having a high Schottky barrier and a symmetrical linear change of dual composition components (InxGa1-xAs1-ySby) to effectively improve component linearity and Operating characteristics such as component leakage current.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉數種高電子移動率電晶體及其製作方法做較佳實施例,並配合所附圖式,作詳細說明如下。其中相似或相同的元件符號,僅係代表相似或相同的元件,並非用以限制不同實施例之間,相似或相同的元件的結構對應關係。The above and other objects, features and advantages of the present invention will become more apparent and understood. as follows. The use of similar or identical component symbols is merely representative of similar or identical components and is not intended to limit the structural correspondence between the different embodiments.

然後,再分別對這些高電子移動率電晶體進行多項電性分析。以證實採用高蕭特基能障及雙組成成分呈對稱式線性變化之稀釋型通道(InxGa1-xAs1-ySby)的高電子移動率電晶體,確實可達到有效降低閘極/基板漏電流、提升閘-汲極間之崩潰電壓、改善功率附加效率、增進載子傳輸能力並且有效降低鈕結效應。Then, multiple electrical analysis of these high electron mobility transistors is performed separately. It is confirmed that high-electron mobility transistor with high Schottky barrier and dilute channel (InxGa1-xAs1-ySby) with symmetrical linear changes in dual composition can effectively reduce gate/substrate leakage current and improve The breakdown voltage between the gate and the drain, improves the power added efficiency, enhances the carrier transmission capability, and effectively reduces the knot effect.

請參照圖1A至圖1C,圖1A至圖1C係根據本發明的一較佳實施例,所繪示的一系列製作高電子移動率電晶體100的製程剖面圖。製作高電子移動率電晶體100包括下述步驟:首先採用金屬有機化學氣相沉積法或分子束磊晶成法,在砷化鎵基板101上依序成長包含有砷化銦鋁(InzAl1-zAs)變晶緩衝層102、砷化銦鋁緩衝層103、銻砷化銦鋁緩衝層104、砷化銦鋁緩衝層105、δ-摻雜載子供應層106、砷化銦鋁隔離層107、具有銻摻雜之銻砷化銦鎵通道層108、砷化銦鋁隔離層109、δ-摻雜載子供應層110、銻砷化銦鋁閘極蕭特基接觸層111及砷化銦鎵覆蓋層112的半導體磊晶結構(如圖1A所繪示)。Referring to FIG. 1A to FIG. 1C, FIG. 1A to FIG. 1C are cross-sectional views showing a process of fabricating a high electron mobility transistor 100 according to a preferred embodiment of the present invention. The high electron mobility transistor 100 is prepared by the following steps: firstly, indium aluminide arsenide (InzAl1-zAs) is grown on the gallium arsenide substrate 101 by metal organic chemical vapor deposition or molecular beam epitaxy. a crystal buffer layer 102, an indium aluminum arsenide buffer layer 103, an indium aluminum arsenide buffer layer 104, an indium arsenide buffer layer 105, a δ-doped carrier supply layer 106, an indium arsenide isolation layer 107,锑-doped yttrium-indium gallium arsenide channel layer 108, indium arsenide isolation layer 109, δ-doped carrier supply layer 110, indium arsenide aluminum gate Schottky contact layer 111, and indium gallium arsenide The semiconductor epitaxial structure of the cap layer 112 (as shown in FIG. 1A).

在本發明的一些實施例中,砷化鎵基板101係一種晶格方向為{100}的半絕緣砷化鎵磊晶層。砷化銦鋁(InzAl1-zAs)變晶緩衝層102的厚度,較佳約為500nm,銦的元素比例z值,實質介於0至0.52之間,並且隨著厚度增加呈線性變化。砷化銦鋁(In0.52Al0.48As)緩衝層103,厚度較佳約為100 nm,且砷、銦和鋁的的元素比例較佳為1:0.52:0.48。銻砷化銦鋁(In0.34Al0.66As0.85Sb0.15)緩衝層104,厚度較佳約為50 nm,且銻、砷、銦和鋁的元素比例較佳為0.15:0.85:0.34:0.66。砷化銦鋁(In0.52Al0.48As)緩衝層105和砷化銦鋁緩衝層103的材質相同,但厚度較佳為5 nm。δ-摻雜載子供應層106是一種通入矽(Si)摻雜源的砷化鎵層。例如較佳是在矽甲烷(SiH4)氣氛中,磊晶成長而成的砷化鎵層。其厚度較佳為5 nm,矽的摻雜濃度實質介於1×1012 cm-2 到5×1012 cm-2 之間,較佳為1×1012 cm-2 。砷化銦鋁隔離層107和砷化銦鋁緩衝層103的材質相同,厚度較佳也為5 nm。In some embodiments of the invention, the gallium arsenide substrate 101 is a semi-insulating gallium arsenide epitaxial layer having a lattice orientation of {100}. The thickness of the indium aluminide (InzAl1-zAs) crystal buffer layer 102 is preferably about 500 nm, and the z ratio of indium element ratio is substantially between 0 and 0.52, and varies linearly with increasing thickness. The indium arsenide (In0.52Al0.48As) buffer layer 103 preferably has a thickness of about 100 nm, and the element ratio of arsenic, indium, and aluminum is preferably 1:0.52:0.48. The indium aluminide (In0.34Al0.66As0.85Sb0.15) buffer layer 104 preferably has a thickness of about 50 nm, and the element ratio of bismuth, arsenic, indium and aluminum is preferably 0.15:0.85:0.34:0.66. The indium arsenide (In0.52Al0.48As) buffer layer 105 and the indium arsenide buffer layer 103 are made of the same material, but have a thickness of preferably 5 nm. The delta-doped carrier supply layer 106 is a gallium arsenide layer that is passed through a cerium (Si) dopant source. For example, a gallium arsenide layer which is epitaxially grown in a methane (SiH4) atmosphere is preferred. The thickness thereof is preferably 5 nm, and the doping concentration of cerium is substantially between 1 × 10 12 cm -2 and 5 × 10 12 cm -2 , preferably 1 × 10 12 cm -2 . The indium arsenide isolation layer 107 and the indium aluminide buffer layer 103 are made of the same material, and the thickness is preferably 5 nm.

銻砷化銦鎵通道層108的厚度,較佳為20 nm,且銻的元素比例,較佳介於0.01到0.02之間;銦的元素比例,較佳介於0.53到0.63之間。而砷和鎵的元素比例,則分別與銻和銦的元素比例互補(兩兩相加為1)。砷化銦鋁隔離層109和砷化銦鋁緩衝層103和砷化銦鋁隔離層107的材質相同,厚度較佳也為5 nm。δ-摻雜載子供應層110與δ-摻雜載子供應層106一樣,也是採用平面摻雜法,所形成的矽摻雜的砷化鎵層,較佳厚度為5 nm。矽的摻雜濃度實質介於1×1012 cm-2 到5×1012 cm-2 之間,較佳為4×1012 cm-2 。銻砷化銦鋁閘極蕭特基接觸層111為銻砷化銦鋁層,厚度較佳約為25 nm,且銻、砷、銦和鋁的元素比例較佳亦為0.15:0.85:0.34:0.66。砷化銦鎵覆蓋層112,厚度較佳約為30 nm,砷、銦和鎵的的元素比例較佳為1:0.53:0.47,且具有濃度實值為1 1019 cm-3 的n+摻雜。The thickness of the germanium indium arsenide channel layer 108 is preferably 20 nm, and the element ratio of germanium is preferably between 0.01 and 0.02; and the element ratio of indium is preferably between 0.53 and 0.63. The elemental ratios of arsenic and gallium are complementary to the elemental ratios of bismuth and indium, respectively (the two are added together to one). The indium arsenide isolation layer 109 and the indium arsenide buffer layer 103 and the indium arsenide isolation layer 107 are made of the same material, and preferably have a thickness of 5 nm. The delta-doped carrier supply layer 110, like the delta-doped carrier supply layer 106, is also formed by a planar doping method, and the germanium-doped gallium arsenide layer is formed to have a thickness of 5 nm. The doping concentration of cerium is substantially between 1 × 10 12 cm -2 and 5 × 10 12 cm -2 , preferably 4 × 10 12 cm -2 . The indium arsenide aluminum gate Schottky contact layer 111 is an indium aluminum arsenide layer, preferably having a thickness of about 25 nm, and the element ratio of germanium, arsenic, indium and aluminum is preferably 0.15:0.85:0.34: 0.66. The indium gallium arsenide cap layer 112 has a thickness of preferably about 30 nm, and an element ratio of arsenic, indium, and gallium is preferably 1:0.53:0.47, and has an n+ doping concentration of 1 10 19 cm -3 . .

其中較值得注意的是,銻砷化銦鎵通道層108,具有銦與銻兩種掺雜的雙組成成分摻雜設計。其中銻的摻雜比例,實質小於5%;且使銦的摻雜比例(以x表示)與銻的摻雜比例(以y表示),由銻砷化銦鎵通道層108的中心,沿著向上下兩側的厚度,呈V字型對稱式的線性變化(InxGa1-xAs1-ySby)。在本實施例中,銦的摻雜比例x,隨著厚度增加,呈現性變化由0.53轉變為0.63,再轉變為0.53;銻的摻雜比例y,隨著厚度增加,呈現性變化由0.01轉變為0.02,再轉變為0.01。More notably, the indium gallium arsenide channel layer 108 has a dual composition doping design of indium and germanium doping. Wherein the doping ratio of germanium is substantially less than 5%; and the doping ratio of indium (expressed in x) and the doping ratio of germanium (indicated by y) are determined by the center of the germanium indium gallium arsenide channel layer 108 along The thickness of the upper and lower sides is a V-shaped symmetrical linear change (InxGa1-xAs1-ySby). In the present embodiment, the doping ratio x of indium changes with the thickness from 0.53 to 0.63, and then to 0.53; the doping ratio y of ytterbium changes with thickness, and the change of presentation changes from 0.01 to 0.01. It is 0.02 and then converted to 0.01.

接著,對砷化銦鎵覆蓋層112進行微影製程,使用磷酸(H3PO4)、雙氧水(H2O2)及水(H2O)三者比例為1:1:30的溶液作為蝕刻劑,來移除一部份的砷化銦鎵覆蓋層112,以形成至少一個汲/源極歐姆接觸層113,並將一部分的銻砷化銦鋁閘極蕭特基接觸層111暴露出來(如圖1B所繪示)。Next, the indium gallium arsenide cap layer 112 is subjected to a lithography process, and a solution of phosphoric acid (H3PO4), hydrogen peroxide (H2O2), and water (H2O) in a ratio of 1:1:30 is used as an etchant to remove a portion. The indium gallium arsenide cap layer 112 is formed to form at least one germanium/source ohmic contact layer 113, and a portion of the indium antimonide arsenide gate Schottky contact layer 111 is exposed (as shown in FIG. 1B) .

然後再於汲/源極歐姆接觸層113上進行金屬沉積以及快速熱退火(Rapid Thermal Annealing,RTA),以形成至少一組汲/源極極板114。汲/源極極板114的材質,較佳為金鍺鎳/金(AuGeNi/Au)。並於,暴露在外的蕭特基接觸層111上,進行金屬沉積剝離(lift-off)製程,形成至少一個閘極板115,完成如圖1C所繪示的高電子移動率電晶體100。Metal deposition and Rapid Thermal Annealing (RTA) are then performed on the germanium/source ohmic contact layer 113 to form at least one set of germanium/source plates 114. The material of the crucible/source electrode plate 114 is preferably gold-nickel nickel/gold (AuGeNi/Au). And on the exposed Schottky contact layer 111, a metal deposition lift-off process is performed to form at least one gate plate 115, and the high electron mobility transistor 100 as shown in FIG. 1C is completed.

其中,閘極板115係一種雙層金屬堆疊層,較佳為金/鎳(Au/Ni)所構成的堆疊層,藉以與銻砷化銦鋁閘極蕭特基接觸層111形成Ni/InAlAsSb蕭特基接觸。The gate plate 115 is a two-layer metal stack layer, preferably a stacked layer of gold/nickel (Au/Ni), thereby forming Ni/InAlAsSb with the indium arsenide aluminum gate Schottky contact layer 111. Schottky contact.

另外請參照圖2,圖2係根據本發明的另一較佳實施例所繪示的高電子移動率電晶體200的結構剖面圖。其中,高電子移動率電晶體200和高電子移動率電晶體100的結構相似,差別僅在於:在尚未形成砷化銦鎵覆蓋層112之前,還包括在銻砷化銦鋁閘極蕭特基接觸層111上形成一個選擇性蝕刻終止層216。之後再於蝕刻終止層216上形成砷化銦鎵覆蓋層112(汲/源極歐姆接觸層113)和汲/源極極板114,另外,閘極板115也形成於蝕刻終止層216之上。亦即,蝕刻終止層216形成於銻砷化銦鋁閘極蕭特基接觸層111與汲/源極歐姆接觸層113以及閘極板115之間。在本實施例之中,蝕刻終止層216的材質較佳為磷化銦(InP)。Please refer to FIG. 2. FIG. 2 is a cross-sectional view showing the structure of a high electron mobility transistor 200 according to another preferred embodiment of the present invention. The structure of the high electron mobility transistor 200 and the high electron mobility transistor 100 are similar, except that the indium arsenide arsenide cap layer 112 is not included before the germanium indium arsenide gate Schottky A selective etch stop layer 216 is formed on the contact layer 111. An indium gallium arsenide cap layer 112 (germanium/source ohmic contact layer 113) and a drain/source pad 114 are then formed on the etch stop layer 216. Further, a gate plate 115 is also formed over the etch stop layer 216. That is, the etch stop layer 216 is formed between the germanium indium arsenide gate Schottky contact layer 111 and the germanium/source ohmic contact layer 113 and the gate plate 115. In the present embodiment, the material of the etch stop layer 216 is preferably indium phosphide (InP).

另外請參照圖3,圖3係根據本發明的又一較佳實施例所繪示的高電子移動率電晶體300的結構剖面圖。高電子移動率電晶體300和高電子移動率電晶體200的結構相似,差別僅在於:高電子移動率電晶體300的閘極板315,係一種/鉑(Au/Pt)雙層金屬所構成的堆疊層,而且穿過蝕刻終止層216,與銻砷化銦鋁閘極蕭特基接觸層111形成Pt/InAlAsSb蕭特基接觸(如圖3所繪示之)。Please refer to FIG. 3. FIG. 3 is a cross-sectional view showing the structure of a high electron mobility transistor 300 according to another preferred embodiment of the present invention. The structure of the high electron mobility transistor 300 and the high electron mobility transistor 200 are similar except that the gate plate 315 of the high electron mobility transistor 300 is composed of a platinum/aluminum (Au/Pt) double layer metal. The stacked layers, and through the etch stop layer 216, form a Pt/InAlAsSb Schottky contact with the germanium indium arsenide gate Schottky contact layer 111 (as shown in FIG. 3).

之後,分別對上述這些高電子移動率電晶體100、200和300進行電性分析。請參照圖4,圖4係繪示高電子移動率電晶體100、200和300,在溫度300 K操作條件下,的閘-汲極兩端電流-電壓(IGD-VGD)特性曲線圖。Thereafter, the high electron mobility transistors 100, 200, and 300 described above were electrically analyzed. Please refer to FIG. 4. FIG. 4 is a graph showing the gate-drain current-voltage (IGD-VGD) characteristic curves of the high electron mobility transistors 100, 200, and 300 under the operating conditions of 300 K.

其中,圖4的橫軸代表閘-汲極的電壓值(VGD),縱軸代表閘-汲極的電流量(IGD)。內插圖則為閘-汲極順向偏壓之特性曲線放大圖。方形曲線代表高電子移動率電晶體100;三角形曲線則代表高電子移動率電晶體200;而圓形曲線代表高電子移動率電晶體300。4, the horizontal axis represents the gate-drain voltage value (VGD), and the vertical axis represents the gate-drain current amount (IGD). The inside illustration is an enlarged view of the characteristic curve of the gate-bungee forward bias. The square curve represents the high electron mobility transistor 100; the triangular curve represents the high electron mobility transistor 200; and the circular curve represents the high electron mobility transistor 300.

從圖4可清楚發現,高電子移動率電晶體100、200和300,在閘-汲極電流量(IGD)皆等於1 mA/mm時,閘-汲極兩端崩潰電壓(Breakdown Voltage,BVGD)與閘-汲極的開路(turn-on)電壓值(VGD)比(BVGD/Von),分別為-9.7V/0.87V、-5.3V/0.71V以及-15V/1.08V。比值明顯高過習知的高電子移動率電晶體。It can be clearly seen from Fig. 4 that the high-electron mobility transistors 100, 200, and 300 have a breakdown voltage across the gate-drain when the gate-throwth current (IGD) is equal to 1 mA/mm (Breakdown Voltage, BVGD). The turn-on voltage value (VGD) ratio (BVGD/Von) to the gate-drain is -9.7V/0.87V, -5.3V/0.71V, and -15V/1.08V, respectively. The ratio is significantly higher than the well-known high electron mobility transistor.

另外,又將本發明實施例所提出的三種高電子移動率電晶體100、200和300進行比較,更可發現:電晶體300的BVGD/Von相較於電晶體100和200,又可分別獲致55/24%及183/52%的大幅提升。顯示電晶體100和200所採用的Ni/InAlAsSb及Pt/InAlAsSb蕭特基接觸,具有提高能障高度,減少閘極元件漏電流的發生,改善元件的截止(pinch off)特性。In addition, comparing the three high electron mobility transistors 100, 200, and 300 proposed by the embodiments of the present invention, it can be found that the BVGD/Von of the transistor 300 is obtained separately from the transistors 100 and 200, respectively. 55/24% and 183/52% have increased significantly. The Ni/InAlAsSb and Pt/InAlAsSb Schottky contacts used in the transistors 100 and 200 are shown to improve the barrier height, reduce the occurrence of leakage current of the gate device, and improve the pinch off characteristics of the device.

請參照圖5,圖5係繪示高電子移動率電晶體100、200和300在溫度300 K,汲-源極的電壓值(VDS)為3V的操作條件下,所獲得的外質轉導增益(gm)及閘-源極電壓值(VGS)特性曲線圖。橫軸代表閘-源極的電壓值(VGS),縱軸代表元件的外質轉導增益(gm)。方形曲線代表高電子移動率電晶體100;三角形曲線則代表高電子移動率電晶體200;而圓形曲線代表高電子移動率電晶體300。Please refer to FIG. 5. FIG. 5 is a diagram showing the external mass transduction obtained by the high electron mobility transistors 100, 200, and 300 under the operating conditions of a temperature of 300 K and a 汲-source voltage value (VDS) of 3V. Gain (gm) and gate-source voltage (VGS) characteristics. The horizontal axis represents the gate-source voltage value (VGS), and the vertical axis represents the element's external mass transfer gain (gm). The square curve represents the high electron mobility transistor 100; the triangular curve represents the high electron mobility transistor 200; and the circular curve represents the high electron mobility transistor 300.

從圖5的特性曲線圖可觀察到,上述實施例所提供的高電子移動率電晶體100、200和300,都具有相當程度的本質轉導增益值。不過值得注意的是,相較於電晶體200之外質轉導增益值(gm,max實值為281 mS/mm),電晶體200具有較大之外質轉導增益(實值為304 mS/mm),電晶體300具有最大值外質轉導增益值(gm,max實值為349 mS/mm)。究其主要原因為電子移動率電晶體200和100係藉由雙層金屬閘極板115直接與銻砷化銦鋁閘極蕭特基接觸層111接觸的方式,減少閘極與通道間的距離,提高閘極的調製功能,進而提升二維電子雲的濃度。It can be observed from the characteristic diagram of Fig. 5 that the high electron mobility transistors 100, 200 and 300 provided by the above embodiments all have a considerable degree of intrinsic transduction gain. However, it is worth noting that the transistor 200 has a large external mass transfer gain (real value is 304 mS) compared to the external transduction gain value of the transistor 200 (gm, max real value is 281 mS/mm). /mm), the transistor 300 has a maximum external mass transfer gain value (gm, max real value is 349 mS/mm). The main reason is that the electron mobility transistors 200 and 100 are directly contacted with the indium aluminum arsenide gate Schottky contact layer 111 by the double metal gate plate 115, thereby reducing the distance between the gate and the channel. Improve the modulation function of the gate, thereby increasing the concentration of the two-dimensional electron cloud.

請參照圖6,圖6係繪示高電子移動率電晶體100、200和300在溫度300 K的操作條件下,所獲得的本質電壓增益(AV)、外質轉導增益(gm)及輸出電導(gd)的特性曲線圖。橫軸代表汲-源極的電壓值(VDS),縱軸分別代表元件的外質轉導增益(gm)、輸出電導(gd)和本質電壓增益(AV)。方形曲線代表高電子移動率電晶體100;三角形曲線則代表高電子移動率電晶體200;而圓形曲線代表高電子移動率電晶體300。其中,出電導(gd)係輸出電阻r0的倒數,本質電壓增益(AV)可由外質轉導增益(gm)和輸出電導(gd)加以導出,如下式:Please refer to FIG. 6. FIG. 6 is a diagram showing the essential voltage gain (AV), the external mass transfer gain (gm), and the output of the high electron mobility transistors 100, 200, and 300 under the operating conditions of 300 K. Characteristic curve of conductance (gd). The horizontal axis represents the 汲-source voltage value (VDS), and the vertical axis represents the element's external mass transfer gain (gm), output conductance (gd), and essential voltage gain (AV), respectively. The square curve represents the high electron mobility transistor 100; the triangular curve represents the high electron mobility transistor 200; and the circular curve represents the high electron mobility transistor 300. Wherein, the conductance (gd) is the reciprocal of the output resistance r0, and the essential voltage gain (AV) can be derived from the external mass transfer gain (gm) and the output conductance (gd), as follows:

由圖6可觀察到,在高壓操作之下,輸出電導(gd)並未因通道載子高速傳導而逐步上升降,造成本質電壓增益(AV)無預期的下降。因此可證明本發明所提供的銦與銻雙組成成分對稱式線性變化之稀釋型通道設計,可減緩通道載子因高速傳導時引發碰撞游離之扭結效應(kink effects)。在本實施例之中,當閘-源極的電壓值(VGS)偏壓分別為-1.4 V、-1.7 V、以及-1.6 V時,高電子移動率電晶體100、200和300的本質電壓增益(AV)可達18.2(304/16.7 mS/mm)、9.14(281/30.74 mS/mm)以及59.25(349/5.89 mS/mm)。It can be observed from Fig. 6 that under high voltage operation, the output conductance (gd) is not stepped up and down due to the high speed conduction of the channel carriers, resulting in an unexpected drop in the essential voltage gain (AV). Therefore, it can be proved that the dilute channel design of the symmetrical linear change of the indium and bismuth components provided by the present invention can alleviate the kink effects of the channel carriers causing collision freeness due to high-speed conduction. In the present embodiment, the essential voltages of the high electron mobility transistors 100, 200, and 300 when the gate-source voltage value (VGS) bias voltage is -1.4 V, -1.7 V, and -1.6 V, respectively. The gain (AV) is up to 18.2 (304/16.7 mS/mm), 9.14 (281/30.74 mS/mm) and 59.25 (349/5.89 mS/mm).

請參照圖7,圖7係繪示高電子移動率電晶體100、200和300在溫度300 K和2.4 GHz的操作條件下,所獲得的輸出功率(Pout)、功率增益(GS)以及功率附加效應(P.A.E.)之特性曲線圖。橫軸代表輸入功率(in),縱軸分別代表在AB類(class-AB)偏壓條件下,所獲得的輸出功率(Pout)、功率增益(GS)以及功率附加效應(P.A.E.)。方形曲線代表高電子移動率電晶體100;三角形曲線則代表高電子移動率電晶體200;而圓形曲線代表高電子移動率電晶體300。Please refer to FIG. 7. FIG. 7 is a diagram showing output power (Pout), power gain (GS), and power addition obtained by the high electron mobility transistors 100, 200, and 300 under operating conditions of 300 K and 2.4 GHz. Characteristic curve of effect (PAE). The horizontal axis represents the input power (in), and the vertical axis represents the output power (Pout), power gain (GS), and power added effect (P.A.E.) obtained under class AB conditions. The square curve represents the high electron mobility transistor 100; the triangular curve represents the high electron mobility transistor 200; and the circular curve represents the high electron mobility transistor 300.

根據圖7,高電子移動率電晶體100、200和300的輸出功率/功率增益值(Pout/GS)分別為17.3/19.92 dBm/dB、16.9/19.07 dBm/dB以及16.4/17.8 dBm/dB;且功率附加效應(P.A.E.)值分別為36.7%、29.6%以及46.5%。顯見,上述實施例所提供之高電子移動率電晶體100、200和300擁有較高的外質轉導增益值(gm,max)、輸出功率與功率附加效應(P.A.E.)等特性。According to Figure 7, the output power/power gain values (Pout/GS) of the high electron mobility transistors 100, 200, and 300 are 17.3/19.92 dBm/dB, 16.9/19.07 dBm/dB, and 16.4/17.8 dBm/dB, respectively; The power added effect (PAE) values were 36.7%, 29.6%, and 46.5%, respectively. It is apparent that the high electron mobility transistors 100, 200, and 300 provided by the above embodiments have high external mass transfer gain values (gm, max), output power, and power added effects (P.A.E.).

根據上述實施例,本發明係提出一種具有高蕭特基能障及銦與銻雙組成成分對稱式線性變化之稀釋型通道(InxGa1-xAs1-ySby)的高電子移動率電晶體。藉由加入微量成份的銻摻雜,來做為層膜介面活性劑(surfactant),以有效增加導電帶不連續能障高度。並且結合銻與銦之雙組成成份呈現V型變化的設計,獲致改善通道中載子束縛力、傳導特性、高線性增益等優點。可有效降低閘極/基板漏電流、提升閘-汲極間之崩潰電壓、改善功率附加效率(P.A.E.)、增進載子傳輸能力並且有效降低鈕結效應,進而降低閘極漏電流、改善閘極崩潰特性,達到上述發明目的。According to the above embodiment, the present invention provides a high electron mobility transistor having a high Schottky barrier and a dilute channel (InxGa1-xAs1-ySby) in which the indium and bismuth compositions are symmetrically linearly changed. By adding a trace amount of cerium doping, it acts as a layer surfactant to effectively increase the discontinuous barrier height of the conductive strip. In addition, the combination of the composition of bismuth and indium exhibits a V-shaped change, which improves the carrier binding force, conduction characteristics, and high linear gain in the channel. It can effectively reduce the gate/substrate leakage current, improve the breakdown voltage between the gate and the drain, improve the power added efficiency (PAE), enhance the carrier transmission capacity and effectively reduce the button junction effect, thereby reducing the gate leakage current and improving the gate. The crash feature achieves the above object.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

100...高電子移動率電晶體100. . . High electron mobility transistor

101...砷化鎵基板101. . . Gallium arsenide substrate

102...砷化銦鋁變晶緩衝層102. . . Indium arsenide crystal buffer layer

103...砷化銦鋁緩衝層103. . . Indium arsenide buffer layer

104...銻砷化銦鋁緩衝層104. . .锑Indium arsenide aluminum buffer layer

105...砷化銦鋁緩衝層105. . . Indium arsenide buffer layer

106...δ-摻雜載子供應層106. . . Δ-doped carrier supply layer

107...砷化銦鋁隔離層107. . . Indium arsenide isolation layer

108...銻砷化銦鎵通道層108. . . Indium gallium arsenide channel layer

109...砷化銦鋁隔離層109. . . Indium arsenide isolation layer

110...δ-摻雜載子供應層110. . . Δ-doped carrier supply layer

111...銻砷化銦鋁閘極蕭特基接觸層111. . . Indium arsenide aluminum gate Schottky contact layer

112...砷化銦鎵覆蓋層112. . . Indium gallium arsenide coating

113...汲/源極歐姆接觸層113. . .汲/source ohmic contact layer

114...汲/源極極板114. . .汲/source plate

115...閘極板115. . . Gate plate

200...高電子移動率電晶體200. . . High electron mobility transistor

216...蝕刻終止層216. . . Etch stop layer

300...高電子移動率電晶體300. . . High electron mobility transistor

315...閘極板315. . . Gate plate

圖1A至圖1C係根據本發明的一較佳實施例,所繪示的一系列製作高電子移動率電晶體的製程剖面圖。1A-1C are cross-sectional views showing a process for fabricating a high electron mobility transistor in accordance with a preferred embodiment of the present invention.

圖2係根據本發明的另一較佳實施例所繪示的高電子移動率電晶體的結構剖面圖。2 is a cross-sectional view showing the structure of a high electron mobility transistor according to another preferred embodiment of the present invention.

圖3係根據本發明的又一較佳實施例所繪示的高電子移動率電晶體的結構剖面圖。3 is a cross-sectional view showing the structure of a high electron mobility transistor according to still another preferred embodiment of the present invention.

圖4係繪示本發明所提供之高電子移動率電晶體,在溫度300 K的操作條件下,閘-汲極兩端電流-電壓(IGD-VGD)特性曲線圖。4 is a graph showing the current-voltage (IGD-VGD) characteristics of the gate-drain electrodes at a temperature of 300 K under the operating conditions of the high electron mobility transistor provided by the present invention.

圖5係繪示本發明所提供之高電子移動率電晶體,在溫度300 K的操作條件下,所獲得的外質轉導增益(gm)及閘-源極電壓值(VGS)特性曲線圖。FIG. 5 is a graph showing the external mass transfer gain (gm) and the gate-source voltage value (VGS) characteristic of the high electron mobility transistor provided by the present invention under operating conditions of 300 K. .

圖6係繪示本發明所提供之高電子移動率電晶體,在溫度300 K的操作條件下,所獲得的本質電壓增益(AV)、外質轉導增益(gm)及輸出電導(gd)的特性曲線圖。6 is a graph showing the essential voltage gain (AV), the external mass transfer gain (gm), and the output conductance (gd) of a high electron mobility transistor provided by the present invention under operating conditions of 300 K. Characteristic chart.

圖7係繪示本發明所提供之高電子移動率電晶體,在溫度300 K和2.4 GHz的操作條件下,所獲得的輸出功率(Pout)、功率增益(GS)以及功率附加效應(P.A.E.)之特性曲線圖。7 is a graph showing the output power (Pout), power gain (GS), and power added effect (PAE) obtained by the high electron mobility transistor of the present invention under operating conditions of 300 K and 2.4 GHz. Characteristic curve.

101...砷化鎵基板101. . . Gallium arsenide substrate

102...砷化銦鋁變晶緩衝層102. . . Indium arsenide crystal buffer layer

103...砷化銦鋁緩衝層103. . . Indium arsenide buffer layer

104...銻砷化銦鋁緩衝層104. . .锑Indium arsenide aluminum buffer layer

105...砷化銦鋁緩衝層105. . . Indium arsenide buffer layer

106...δ-摻雜載子供應層106. . . Δ-doped carrier supply layer

107...砷化銦鋁隔離層107. . . Indium arsenide isolation layer

108...銻砷化銦鎵通道層108. . . Indium gallium arsenide channel layer

109...砷化銦鋁隔離層109. . . Indium arsenide isolation layer

110...δ-摻雜載子供應層110. . . Δ-doped carrier supply layer

111...銻砷化銦鋁閘極蕭特基接觸層111. . . Indium arsenide aluminum gate Schottky contact layer

113...汲/源極歐姆接觸層113. . .汲/source ohmic contact layer

114...汲/源極極板114. . .汲/source plate

216...蝕刻終止層216. . . Etch stop layer

300...高電子移動率電晶體300. . . High electron mobility transistor

315...閘極板315. . . Gate plate

Claims (10)

一種半導體元件,其結構包括:一半導體基板;一銻砷化銦鋁(InAlAsSb)緩衝層,位於該半導體基板上;一具有銻摻雜之銻砷化銦鎵通道層,位於該緩衝層上,具有實質小於5%之一銻摻雜比例,且該銻砷化銦鎵通道層之銦與銻,具有一雙組成成分呈對稱式線性變化(InxGa1-xAs1-ySby)的摻雜設計;一第一隔絕層,位於該通道層上;一第一δ-摻雜載子供應層,位於該隔絕層上;一銻砷化銦鋁閘極蕭特基接觸層,位於該δ-摻雜載子供應層上;以及一汲/源極歐姆接觸層,位於該銻砷化銦鋁閘極蕭特基接觸層上。A semiconductor device having a structure comprising: a semiconductor substrate; a buffer layer of indium aluminum arsenide (InAlAsSb) on the semiconductor substrate; and a germanium-doped indium gallium arsenide channel layer on the buffer layer Indium and bismuth having substantially less than 5% of bismuth doping ratio, and the indium bismuth arsenide channel layer has a doping design with a symmetrical linear change (InxGa1-xAs1-ySby); An isolation layer is disposed on the channel layer; a first δ-doped carrier supply layer is disposed on the isolation layer; and a germanium arsenide aluminum gate Schottky contact layer is disposed on the δ-doped carrier And a germanium/source ohmic contact layer on the germanium indium arsenide gate Schottky contact layer. 如申請專利範圍第1項所述之該半導體元件,其中該半導體基板與該銻砷化銦鋁緩衝層之間,包含一變晶式緩衝層。The semiconductor device of claim 1, wherein the semiconductor substrate and the indium aluminum arsenide buffer layer comprise a crystal buffer layer. 如申請專利範圍第1項所述之該半導體元件,其中該銻砷化銦鋁閘極蕭特基接觸層與該汲/源極歐姆接觸層之間,包含一選擇性蝕刻終止層。The semiconductor device of claim 1, wherein the germanium indium arsenide gate Schottky contact layer and the germanium/source ohmic contact layer comprise a selective etch stop layer. 如申請專利範圍第1項所述之該半導體元件,其中該汲/源極歐姆接觸層包含一覆蓋層。The semiconductor device of claim 1, wherein the germanium/source ohmic contact layer comprises a cap layer. 如申請專利範圍第1項所述之該半導體元件,其中構成該汲/源極歐姆接觸層的材料,可選自於由高摻雜之砷化鎵、磷化銦、砷化銦鎵、砷化鋁鎵及上述任意組合所組成之一族群。The semiconductor device of claim 1, wherein the material constituting the germanium/source ohmic contact layer is selected from the group consisting of highly doped gallium arsenide, indium phosphide, indium gallium arsenide, and arsenic. A group of aluminum gallium and any combination of the above. 如申請專利範圍第1項所述之該半導體元件,更包括一汲/源極極板,位於該汲/源極歐姆接觸層上,且該汲/源極極板係由鍺化金/鎳/金/銀之多層合金所組成。The semiconductor device of claim 1, further comprising a germanium/source plate disposed on the germanium/source ohmic contact layer, and the germanium/source plate is made of gold/nickel/gold / Silver multi-layer alloy. 如申請專利範圍第1項所述之該半導體元件,更包括一閘極板,位於該銻砷化銦鋁閘極蕭特基接觸層上,且該閘極板係由鎳、金、白或上述之任意組合所組成。The semiconductor device of claim 1, further comprising a gate plate on the germanium indium arsenide gate Schottky contact layer, and the gate plate is made of nickel, gold, white or Any combination of the above. 如申請專利範圍第1項所述之該半導體元件,其中該銻砷化銦鋁緩衝層與該具有銻摻雜之銻砷化銦鎵通道層之間,包含一第二δ-摻雜載子供應層及一第二隔絕層。The semiconductor device of claim 1, wherein the indium antimonide aluminum arsenide buffer layer and the germanium-doped germanium indium gallium arsenide channel layer comprise a second delta-doped carrier for The layer should be a second insulation layer. 如申請專利範圍第8項所述之該半導體元件,其中該第一δ-摻雜載子供應層及該第二δ-摻雜載子供應層,分別具有實質介於1×1012 cm-2 到5×1012 cm-2 之間的一矽(Si)摻雜量。The semiconductor device according to claim 8, wherein the first δ-doped carrier supply layer and the second δ-doped carrier supply layer have a substantial difference of 1×10 12 cm A 矽 (Si) doping amount between 2 and 5 × 10 12 cm -2 . 如申請專利範圍第1項所述之該半導體元件,係一異質結構場效電晶體,具有由一金屬有機化學氣相沉積(MOCVD)法或一分子束磊晶成長(MBE)法成長而成的一半導體磊晶結構。The semiconductor device according to claim 1 is a heterostructure field effect transistor which is grown by a metal organic chemical vapor deposition (MOCVD) method or a molecular beam epitaxy (MBE) method. A semiconductor epitaxial structure.
TW100131371A 2011-08-31 2011-08-31 Semiconductor device TWI424565B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100131371A TWI424565B (en) 2011-08-31 2011-08-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100131371A TWI424565B (en) 2011-08-31 2011-08-31 Semiconductor device

Publications (2)

Publication Number Publication Date
TW201310637A TW201310637A (en) 2013-03-01
TWI424565B true TWI424565B (en) 2014-01-21

Family

ID=48482076

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131371A TWI424565B (en) 2011-08-31 2011-08-31 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI424565B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528769A (en) * 1991-11-18 1996-06-18 Trw Inc. High electron mobility transistor monolithic integrated circuit receiver
US5710439A (en) * 1996-02-01 1998-01-20 The Furukawa Electric Co., Ltd. Optoelectronic integrated device having optical elements and electronic elements grown in a monolithic form on a GaAs ssubstrate
US20040077115A1 (en) * 2002-10-11 2004-04-22 Yong-Hang Zhang Performance of electronic and optoelectronic devices using a surfactant during epitaxial growth
US6727531B1 (en) * 2000-08-07 2004-04-27 Advanced Technology Materials, Inc. Indium gallium nitride channel high electron mobility transistors, and method of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528769A (en) * 1991-11-18 1996-06-18 Trw Inc. High electron mobility transistor monolithic integrated circuit receiver
US5710439A (en) * 1996-02-01 1998-01-20 The Furukawa Electric Co., Ltd. Optoelectronic integrated device having optical elements and electronic elements grown in a monolithic form on a GaAs ssubstrate
US6727531B1 (en) * 2000-08-07 2004-04-27 Advanced Technology Materials, Inc. Indium gallium nitride channel high electron mobility transistors, and method of making the same
US20040077115A1 (en) * 2002-10-11 2004-04-22 Yong-Hang Zhang Performance of electronic and optoelectronic devices using a surfactant during epitaxial growth

Also Published As

Publication number Publication date
TW201310637A (en) 2013-03-01

Similar Documents

Publication Publication Date Title
JP6371986B2 (en) Nitride semiconductor structure
US8933461B2 (en) III-nitride enhancement mode transistors with tunable and high gate-source voltage rating
KR102174546B1 (en) Semiconductor devices and methods of designing semiconductor devices
US9190506B2 (en) Field-effect transistor
US20130032860A1 (en) HFET with low access resistance
JP6330148B2 (en) Semiconductor device
US10147809B2 (en) Semiconductor device
US20070200142A1 (en) High linear enhancement-mode heterostructure field-effect transistor
JP2007027594A (en) Field-effect transistor (fet)
JPWO2015008430A1 (en) Semiconductor device
US7301181B2 (en) Heterojunction bipolar transistor having an emitter layer made of a semiconductor material including aluminum
JP6126354B2 (en) Semiconductor device and manufacturing method thereof
JP2010056250A (en) Semiconductor device, and method of manufacturing semiconductor device
JP2010135590A (en) Field-effect transistor
JP2007335508A (en) Field effect transistor and its manufacturing method
JP2015159150A (en) semiconductor device
TWI222750B (en) Voltage adjustable multi-stage extrinsic transconductance amplification HEMT
JP2013179376A (en) Semiconductor device
TWI424565B (en) Semiconductor device
Mazumder et al. DC performance improvement of nanochannel AlGaN/AlN/GaN HEMTs with reduced OFF-state leakage current by post-gate annealing modulation
JP2015149360A (en) compound semiconductor FET
KR101435479B1 (en) Semiconductor device and methode of manufacturing thereof
JP6137621B2 (en) Compound semiconductor FET
CN112201689B (en) Field effect transistor based on III-nitride heterojunction and preparation method thereof
CN116344604A (en) Insulated gate bipolar transistor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees