TWI420808B - The Manufacturing Method of Bending Plate Wave Micro - sensor - Google Patents
The Manufacturing Method of Bending Plate Wave Micro - sensor Download PDFInfo
- Publication number
- TWI420808B TWI420808B TW99106381A TW99106381A TWI420808B TW I420808 B TWI420808 B TW I420808B TW 99106381 A TW99106381 A TW 99106381A TW 99106381 A TW99106381 A TW 99106381A TW I420808 B TWI420808 B TW I420808B
- Authority
- TW
- Taiwan
- Prior art keywords
- etching
- layer
- electrode
- type
- epitaxial layer
- Prior art date
Links
Landscapes
- Weting (AREA)
Description
本發明係關於一種感測器之製造方法,詳言之,係關於一種彎曲平板波微型感測器之製造方法。The present invention relates to a method of manufacturing a sensor, and more particularly to a method of manufacturing a curved flat wave microsensor.
在習知微機電系統技術中,等向或非等向性蝕刻矽晶圓是微感測器與致動器製程的關鍵技術。在習知蝕刻技術中,以乾式及溼式蝕刻最為普遍。乾式蝕刻需要高度的真空環境而使機台的價格高於溼式蝕刻;習知的溼式蝕刻機台常以時間作為評估深度之依據,但是當蝕刻液的溫度與濃度偏移時,易造成樣品產生不理想的蝕刻深度。In conventional MEMS technology, isotropic or anisotropic etch 矽 wafers are key technologies for micro-sensor and actuator processes. Dry and wet etching is most common in conventional etching techniques. Dry etching requires a high vacuum environment and the price of the machine is higher than that of wet etching. Conventional wet etching machines often use time as the basis for evaluating the depth, but when the temperature and concentration of the etching solution are shifted, it is easy to cause The sample produced an undesirable etch depth.
習知彎曲平板波(flexural plate wave,FPW)元件之矽薄膜厚度等於6μm時,習知FPW元件之質量靈敏度為17200cm2 g-1 ,中心頻率為22.675MHz,因此其感測能力不佳。另外,習知FPW元件係使用非電化學蝕刻技術蝕刻矽晶圓,故不易控制FPW元件之蝕刻深度。再者,習知蝕刻技術中係使用KOH溶液蝕刻矽晶圓,因此易造成蝕刻表面不均勻。When the thickness of the conventional flexural plate wave (FPW) element is equal to 6 μm, the conventional FPW element has a mass sensitivity of 17200 cm 2 g -1 and a center frequency of 22.675 MHz, so that its sensing capability is not good. In addition, the conventional FPW device uses a non-electrochemical etching technique to etch the germanium wafer, so that it is difficult to control the etching depth of the FPW device. Furthermore, in the conventional etching technique, the yttrium wafer is etched using a KOH solution, which tends to cause uneven etching surface.
因此,有必要提供一創新且富有進步性之彎曲平板波微型感測器之製造方法,以解決上述問題。Therefore, it is necessary to provide an innovative and progressive method of manufacturing a curved plate wave micro-sensor to solve the above problems.
本發明提供一種彎曲平板波微型感測器之製造方法,其包括以下步驟:(a)提供一表面聲波(surface acoustic wave,SAW)元件,該表面聲波元件之一側由外而內依序包含一阻絕層、一P型矽層及一N型磊晶矽層,該阻絕層包含一開口,該開口顯露部分該P型矽層;及(b)進行一電化學矽蝕刻停止製程,蝕穿該P型矽層後,控制蝕刻該N型磊晶矽層之一鈍化時間,蝕刻後之該N型磊晶矽層之厚度在3微米(μm)以內。The invention provides a method for manufacturing a curved flat wave micro sensor, which comprises the following steps: (a) providing a surface acoustic wave (SAW) element, one side of which is externally and sequentially included a barrier layer, a P-type germanium layer and an N-type epitaxial layer, the barrier layer comprising an opening, the opening revealing a portion of the P-type germanium layer; and (b) performing an electrochemical germanium etch stop process, etching through After the P-type germanium layer, one passivation time of etching the N-type epitaxial layer is controlled, and the thickness of the N-type epitaxial layer after etching is within 3 micrometers (μm).
本發明之製造方法係以電化學矽蝕刻停止製程,蝕刻表面聲波元件之N型磊晶矽層至3μm以內,以形成彎曲平板波微型感測器,藉此,可減少懸浮薄板(N型磊晶矽層)厚度以使彎曲平板波微型感測器之工作頻率降低及提昇彎曲平板波微型感測器之感測能力。並且,本發明採用電化學矽蝕刻停止製程,可使產品具有傑出之重覆製程能力,且可精確控制蝕刻深度,以提昇彎曲平板波微型感測器之製程良率。The manufacturing method of the invention adopts an electrochemical 矽 etch stop process to etch the N-type epitaxial layer of the surface acoustic wave device to within 3 μm to form a curved flat wave micro sensor, thereby reducing the suspended thin plate (N-type Lei The thickness of the wafer layer is such that the operating frequency of the curved plate wave microsensor is lowered and the sensing capability of the curved plate wave microsensor is improved. Moreover, the invention adopts the electrochemical 矽 etch stop process, which can make the product have excellent repetitive process capability, and can precisely control the etch depth to improve the process yield of the curved plate wave micro sensor.
圖1顯示本發明彎曲平板波(flexural plate wave,FPW)微型感測器之製造方法流程圖;圖2顯示一表面聲波(surface acoustic wave,SAW)元件之示意圖;圖3顯示本發明彎曲平板波微型感測器之示意圖。配合參考圖1及圖2,首先參考步驟S11,提供一表面聲波元件1,該表面聲波元件1之一側由外而內依序包含一阻絕層11、一P型矽層12及一N型磊晶矽層13,該阻絕層11包含一開口111,該開口111顯露部分該P型矽層12。1 is a flow chart showing a manufacturing method of a flexural plate wave (FPW) micro-sensor of the present invention; FIG. 2 is a schematic view showing a surface acoustic wave (SAW) element; and FIG. 3 is a curved plate wave of the present invention. A schematic of a miniature sensor. With reference to FIG. 1 and FIG. 2, first referring to step S11, a surface acoustic wave element 1 is provided. One side of the surface acoustic wave element 1 includes a resistive layer 11, a P-type germanium layer 12 and an N-type from the outside to the inside. The epitaxial layer 13 includes an opening 111, and the opening 111 exposes a portion of the P-type germanium layer 12.
在本實施例中,該阻絕層11係包含一層厚度5000之二氧化矽(SiO2 )薄膜112及一層厚度1500之低應力氮化矽(Si3 N4 )薄膜113,該二氧化矽薄膜112形成於該P型矽層12之表面。In this embodiment, the barrier layer 11 comprises a layer of thickness 5000. The cerium oxide (SiO 2 ) film 112 and a layer of thickness 1500 A low stress tantalum nitride (Si 3 N 4 ) film 113 is formed on the surface of the P type germanium layer 12.
配合參考圖1至圖3,參考步驟S12,進行一電化學矽蝕刻停止製程,蝕穿該P型矽層12後,控制蝕刻該N型磊晶矽層13之一鈍化時間,蝕刻後之該N型磊晶矽層13之厚度在3微米(μm)以內,以製作完成一彎曲平板波微型感測器2。Referring to FIG. 1 to FIG. 3, referring to step S12, an electrochemical etch stop process is performed. After the P-type germanium layer 12 is etched through, the passivation time of one of the N-type epitaxial layer 13 is controlled to be etched. The thickness of the N-type epitaxial layer 13 is within 3 micrometers (μm) to complete a curved plate wave microsensor 2.
參考圖4,其顯示本發明進行電化學矽蝕刻停止製程之系統配置圖。在圖4中,僅顯示出在電化學矽蝕刻停止製程中被蝕刻之該P型矽層12及該N型磊晶矽層13。Referring to Figure 4, there is shown a system configuration diagram of the electrochemical etch stop process of the present invention. In FIG. 4, only the P-type germanium layer 12 and the N-type epitaxial germanium layer 13 which are etched in the electrochemical germanium etch stop process are shown.
再配合參考圖1至圖4,在本實施例中,步驟S12包括以下步驟:步驟S121,以一治具3封裝該表面聲波元件1(配合參考圖2)並顯露該P型矽層12,且電性連接該N型磊晶層13至一恆電位儀4之負極,以使該P型矽層12及該N型磊晶矽層13作為一工作電極(Work Electrode,WE);步驟S122,將封裝後之該表面聲波元件1、一輔助電極(Counter Electrode,CE)及一參考電極(Reference Electrode,RE)置入一蝕刻液5中,該輔助電極CE電性連接該恆電位儀4之正極,該參考電極RE電性連接該恆電位儀4以提供該蝕刻液5一個穩定的電位;步驟S123,調控該工作電極WE與該參考電極RE之間距(以SWR表示)為1~5公分、該參考電極RE與該輔助電極CE之間距(以SRC表示)為1~5公分、蝕刻電位為-0.3~-1.5伏特(V)、蝕刻溫度為60~90℃、該蝕刻液5之濃度為30重量百分比(wt%);及步驟S124,當蝕穿該P型矽層12後出現一峰值電流(圖5中,時間=t處),控制蝕刻該N型磊晶矽層13之該鈍化時間ΔT在5~50分鐘,完成電化學矽蝕刻停止製程,以製作完成該彎曲平板波微型感測器2。With reference to FIG. 1 to FIG. 4, in the embodiment, step S12 includes the following steps: step S121, encapsulating the surface acoustic wave component 1 with a fixture 3 (with reference to FIG. 2) and revealing the P-type germanium layer 12, And electrically connecting the N-type epitaxial layer 13 to the negative electrode of the potentiostat 4 such that the P-type germanium layer 12 and the N-type epitaxial layer 13 serve as a working electrode (Work Electrode, WE); step S122 The surface acoustic wave device 1, a counter electrode (CE) and a reference electrode (RE) are packaged in an etching solution 5, and the auxiliary electrode CE is electrically connected to the potentiostat 4 The positive electrode, the reference electrode RE is electrically connected to the potentiostat 4 to provide a stable potential of the etching solution 5; in step S123, the distance between the working electrode WE and the reference electrode RE (indicated by SWR) is adjusted to 1~5 a centimeter, a distance between the reference electrode RE and the auxiliary electrode CE (indicated by SRC) of 1 to 5 cm, an etching potential of -0.3 to -1.5 volts (V), an etching temperature of 60 to 90 ° C, and an etching solution 5 The concentration is 30% by weight (wt%); and in step S124, a peak current appears after etching through the P-type germanium layer 12 (in FIG. 5, = T at room), to control the etching of the N-type epitaxial silicon layer 13 of the passivation time ΔT in 5 to 50 minutes, to complete an electrochemical etch stop silicon process, to complete the production of micro-wave sensor 2 is bent plate.
較佳地,在步驟S121中係以鐵弗龍治具封裝該表面聲波元件1;在步驟S122中係選用氫氧化鉀(KOH)為該蝕刻液5;在步驟S123中係調控該工作電極WE與該參考電極RE之間距為2公分、該參考電極RE與該輔助電極CE之間距為2公分、蝕刻電位為-0.75伏特、蝕刻溫度為80℃;在步驟S124中該鈍化時間ΔT係為37分鐘,該峰值電流為0.6mA,經過該鈍化時間ΔT之蝕刻後之鈍化電流為0.4mA。其中,該鈍化電流係為呈現穩定態之電流,其代表著已蝕穿該P型矽層12至該N型磊晶層13。Preferably, in step S121, the surface acoustic wave element 1 is encapsulated by a Teflon fixture; in step S122, potassium hydroxide (KOH) is selected as the etching liquid 5; in step S123, the working electrode WE is controlled. The distance between the reference electrodes RE is 2 cm, the distance between the reference electrode RE and the auxiliary electrode CE is 2 cm, the etching potential is -0.75 volts, and the etching temperature is 80 ° C. The passivation time ΔT is 37 minutes in step S124. The peak current is 0.6 mA, and the passivation current after etching through the passivation time ΔT is 0.4 mA. The passivation current is a current that exhibits a steady state, which represents that the P-type germanium layer 12 has been etched through the N-type epitaxial layer 13.
在本發明中可以恆電位儀4提供電化學矽蝕刻停止製程之電壓源,可理解的是,在其他應用中,電化學矽蝕刻停止製程之電壓源亦可為任何可提供穩定電壓之裝置。In the present invention, the potentiostat 4 can be provided with a voltage source for the electrochemical etch stop process. It is understood that in other applications, the voltage source of the electrochemical 矽 etch stop process can be any device that provides a stable voltage.
茲以下列實例予以詳細說明本發明,唯並不意謂本發明僅侷限於此實例所揭示之內容。The present invention is illustrated by the following examples, which are not intended to be limited to the details disclosed herein.
在本實例中係以三電極(工作電極WE、輔助電極CE及參考電極RE)電化學蝕刻系統進行電化學蝕刻停止之製程,其系統配置圖如圖4所示,其中該蝕刻液5係為氫氧化鉀(KOH)。在進行電化學蝕刻時,為了防止KOH蝕刻液侵蝕該表面聲波元件1(參考圖2)之定義圖形,故以鐵弗龍製具保護該表面聲波元件1,再以恆電位儀4提供電化學矽蝕刻停止製程之電壓源,將該電壓源之負極以歐姆接觸的方式連接到該N型磊晶層13,以使該P型矽層12及該N型磊晶矽層13作為工作電極WE,且將該電壓源之正極經由電流計連接至輔助電極CE,而參考電極RE則負責提供KOH蝕刻液一個穩定的電位。In this example, a three-electrode (working electrode WE, auxiliary electrode CE, and reference electrode RE) electrochemical etching system is used to perform an electrochemical etching stop process. The system configuration diagram is as shown in FIG. 4, wherein the etching liquid 5 is Potassium hydroxide (KOH). In the electrochemical etching, in order to prevent the KOH etching solution from eroding the definition pattern of the surface acoustic wave element 1 (refer to FIG. 2), the surface acoustic wave element 1 is protected by a Teflon tool, and the electrochemical device is provided by the potentiostat 4.矽 etching stops the voltage source of the process, and connects the negative electrode of the voltage source to the N-type epitaxial layer 13 in an ohmic contact manner, so that the P-type germanium layer 12 and the N-type epitaxial layer 13 serve as the working electrode WE And the positive electrode of the voltage source is connected to the auxiliary electrode CE via an ammeter, and the reference electrode RE is responsible for providing a stable potential of the KOH etching solution.
在整體蝕刻製程中,其控制參數包括:工作電極WE與參考電極RE之間距(SWR)、參考電極RE與輔助電極CE之間距(SRC)、蝕刻電位、蝕刻溫度與鈍化時間ΔT。整體蝕刻製程之較佳參數設定範圍以及較佳之參數設定值如表一所示。In the overall etching process, the control parameters include: the distance between the working electrode WE and the reference electrode RE (SWR), the distance between the reference electrode RE and the auxiliary electrode CE (SRC), the etching potential, the etching temperature, and the passivation time ΔT. The preferred parameter setting range of the overall etching process and the preferred parameter setting values are shown in Table 1.
在本實例中,較佳之各參數設值為:外加之電壓固定為-0.75V;KOH蝕刻液之濃度為30wt%;蝕刻溫度固定在80℃;間距SWR及間距SRC皆設定為2cm。In the present example, the preferred parameters are set such that the applied voltage is fixed at -0.75 V; the concentration of the KOH etching solution is 30 wt%; the etching temperature is fixed at 80 ° C; and the pitch SWR and the pitch SRC are both set to 2 cm.
在經過5小時之蝕刻後,由圖5所示之電流對時間關係可知已蝕刻至該P型矽層12與該N型磊晶層13之界面(P-N界面),此時將產生一明顯之陽極電流(電流峰值約為0.6mA,其後之鈍化電流維持在0.4mA)。再經過鈍化時間ΔT約37分鐘後,電流進入穩定態(約0.4mA),此時代表著已蝕穿該P型矽層12且蝕刻至部分該N型磊晶層13。After 5 hours of etching, the current versus time relationship shown in FIG. 5 is known to have been etched to the interface between the P-type germanium layer 12 and the N-type epitaxial layer 13 (PN interface), and an obvious result will be produced. The anode current (current peak is about 0.6 mA, followed by a passivation current of 0.4 mA). After a passivation time ΔT for about 37 minutes, the current enters a steady state (about 0.4 mA), which means that the P-type germanium layer 12 has been etched through and etched to a portion of the N-type epitaxial layer 13.
完成電化學蝕刻停止製程後,蝕刻後之該N型磊晶層13之厚度為3μm,其粗糙度小於±100nm。經實際量測結果顯示,本發明之製造方法所製造之彎曲平板波微型感測器2,其質量靈敏度為-8.52×107 cm2 g-1 ,且實際中心頻率為8.75MHz,故具有絕佳之質量靈敏度。After the electrochemical etching stop process is completed, the thickness of the N-type epitaxial layer 13 after etching is 3 μm, and the roughness thereof is less than ±100 nm. The actual measurement results show that the curved plate wave micro-sensor 2 manufactured by the manufacturing method of the present invention has a mass sensitivity of -8.52×10 7 cm 2 g -1 and an actual center frequency of 8.75 MHz, so Good quality sensitivity.
本發明之製造方法係以電化學矽蝕刻停止製程,蝕刻表面聲波元件之N型磊晶矽層至3μm以內,以形成彎曲平板波微型感測器,藉此,可減少懸浮薄板(N型磊晶矽層)厚度以使彎曲平板波微型感測器之工作頻率降低及提昇彎曲平板波微型感測器之感測能力。並且,本發明採用電化學矽蝕刻停止製程,可使產品具有傑出之重覆製程能力,且可精確控制蝕刻深度,以提昇彎曲平板波微型感測器之製程良率。The manufacturing method of the invention adopts an electrochemical 矽 etch stop process to etch the N-type epitaxial layer of the surface acoustic wave device to within 3 μm to form a curved flat wave micro sensor, thereby reducing the suspended thin plate (N-type Lei The thickness of the wafer layer is such that the operating frequency of the curved plate wave microsensor is lowered and the sensing capability of the curved plate wave microsensor is improved. Moreover, the invention adopts the electrochemical 矽 etch stop process, which can make the product have excellent repetitive process capability, and can precisely control the etch depth to improve the process yield of the curved plate wave micro sensor.
上述實施例僅為說明本發明之原理及其功效,並非限制本發明。因此習於此技術之人士對上述實施例進行修改及變化仍不脫本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。The above embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims.
1...表面聲波元件1. . . Surface acoustic wave component
2...本發明之彎曲平板波微型感測器2. . . Curved plate wave micro sensor of the invention
3...治具3. . . Fixture
4...恆電位儀4. . . Potentiostat
5...蝕刻液5. . . Etching solution
11...阻絕層11. . . Blocking layer
12...P型矽層12. . . P-type layer
13...N型磊晶矽層13. . . N-type epitaxial layer
111...開口111. . . Opening
112...二氧化矽薄膜112. . . Cerium oxide film
113...氮化矽薄膜113. . . Tantalum nitride film
CE...輔助電極CE. . . Auxiliary electrode
RE...參考電極RE. . . Reference electrode
WE...工作電極WE. . . Working electrode
圖1顯示本發明彎曲平板波(flexural plate wave,FPW)微型感測器之製造方法流程圖;1 is a flow chart showing a manufacturing method of a flexural plate wave (FPW) micro sensor of the present invention;
圖2顯示一表面聲波(surface acoustic wave,SAW)元件之示意圖;Figure 2 shows a schematic diagram of a surface acoustic wave (SAW) component;
圖3顯示本發明彎曲平板波微型感測器之示意圖;Figure 3 is a schematic view showing a curved flat wave microsensor of the present invention;
圖4顯示本發明進行電化學矽蝕刻停止製程之系統配置圖;及4 is a system configuration diagram showing an electrochemical etch stop process of the present invention; and
圖5顯示本發明之實例中電化學矽蝕刻停止製程之電流-時間關係圖。Figure 5 is a graph showing current versus time for an electrochemical ruthenium etch stop process in an example of the present invention.
(無元件符號說明)(no component symbol description)
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99106381A TWI420808B (en) | 2010-03-05 | 2010-03-05 | The Manufacturing Method of Bending Plate Wave Micro - sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99106381A TWI420808B (en) | 2010-03-05 | 2010-03-05 | The Manufacturing Method of Bending Plate Wave Micro - sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201131970A TW201131970A (en) | 2011-09-16 |
TWI420808B true TWI420808B (en) | 2013-12-21 |
Family
ID=50158263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99106381A TWI420808B (en) | 2010-03-05 | 2010-03-05 | The Manufacturing Method of Bending Plate Wave Micro - sensor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI420808B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI456198B (en) * | 2012-05-18 | 2014-10-11 | Univ Nat Sun Yat Sen | Portable detection system for allergic diseases |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200527458A (en) * | 2004-02-11 | 2005-08-16 | Infineon Technologies Ag | Method of fabricating bottle trench capacitors using an electrochemical etch with electrochemical etch stop |
-
2010
- 2010-03-05 TW TW99106381A patent/TWI420808B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200527458A (en) * | 2004-02-11 | 2005-08-16 | Infineon Technologies Ag | Method of fabricating bottle trench capacitors using an electrochemical etch with electrochemical etch stop |
Non-Patent Citations (1)
Title |
---|
黃義佑 等,"應用於免疫球蛋白 E 檢測之彎曲平板波生物感測器研發(II)研究成果報告",2009. * |
Also Published As
Publication number | Publication date |
---|---|
TW201131970A (en) | 2011-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8426235B2 (en) | Method for manufacturing capacitive electromechanical transducer | |
CN103378082A (en) | Graphene pressure sensors | |
CN105841852B (en) | A kind of MEMS piezoresistive pressure sensor and its manufacturing method based on doping silene | |
CN103604538A (en) | MEMS pressure sensor chip based on SOI technology and manufacturing method thereof | |
CN107473176A (en) | Micro electro mechanical device and the method for making micro electro mechanical device | |
CN104655261A (en) | Capacitive ultrasonic sensor and manufacturing method thereof | |
Mackowiak et al. | Piezoresistive 4H-silicon carbide (SiC) pressure sensor | |
TWI420808B (en) | The Manufacturing Method of Bending Plate Wave Micro - sensor | |
JP6445052B2 (en) | Membrane device and manufacturing method thereof | |
KR100904994B1 (en) | Method for fabricating pressure sensor and structure of the same | |
CN103926034B (en) | The design of Silicon pressure chip structure and technique | |
CN107957304A (en) | MEMS high-temp pressure sensors based on two-dimensional electron gas and preparation method thereof | |
JP2011254281A (en) | Manufacturing method of capacity type electromechanical conversion apparatus, and capacity type electromechanical conversion apparatus | |
CN109728123B (en) | Ultrathin silicon PIN radiation detector based on bonded substrate and preparation method | |
Adzhri et al. | Reactive Ion etching of TiO2 thin film: The impact of different gaseous | |
US10256138B2 (en) | Methods of fabricating silicon-on-insulator (SOI) semiconductor devices using blanket fusion bonding | |
Roy et al. | Embedded sacrificial layers for CMUT fabrication | |
CN106841396B (en) | Silicone base capacitance acoustic emission sensor and preparation method thereof | |
CN102336388B (en) | Preparation method of pressure-sensitive transducer | |
TWI269396B (en) | An evaluative method for the electrostatic damage to the silicon wafer causing by the cleaning process | |
TW201811660A (en) | Method for producing a micromechanical component with an exposed pressure sensor device and micromechanical component | |
TW201431774A (en) | Method for producing oscillator | |
CN105547125A (en) | Micro-mechanical displacement sensor and manufacturing method therefor | |
Bardhan Roy et al. | Embedded sacrificial layers for CMUT fabrication | |
CN112393838A (en) | Pressure sensor with wafer-level self-sealing vacuum cavity structure and preparation method thereof |