TWI420696B - Light-emitting device and the manufacturing method thereof - Google Patents

Light-emitting device and the manufacturing method thereof Download PDF

Info

Publication number
TWI420696B
TWI420696B TW98139436A TW98139436A TWI420696B TW I420696 B TWI420696 B TW I420696B TW 98139436 A TW98139436 A TW 98139436A TW 98139436 A TW98139436 A TW 98139436A TW I420696 B TWI420696 B TW I420696B
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting element
energy barrier
layers
Prior art date
Application number
TW98139436A
Other languages
Chinese (zh)
Other versions
TW201119076A (en
Inventor
Sheng Horng Yen
Meng Lun Tsai
Ching Fu Tsai
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW98139436A priority Critical patent/TWI420696B/en
Publication of TW201119076A publication Critical patent/TW201119076A/en
Application granted granted Critical
Publication of TWI420696B publication Critical patent/TWI420696B/en

Links

Landscapes

  • Led Devices (AREA)

Description

發光元件及其製造方法Light-emitting element and method of manufacturing same

本發明係關於一發光元件,尤其是一種具有多重量子井結構之發光二極體元件。The present invention relates to a light-emitting element, and more particularly to a light-emitting diode element having a multiple quantum well structure.

發光二極體(Light Emitting Diode,LED)由於具有體積小、壽命長、驅動電壓低、耗電量低、反應速度快、耐震性佳等優點,已被廣泛應用於如汽車、電腦、通訊與消費電子產品等領域中。Light Emitting Diode (LED) has been widely used in automobiles, computers, communications, etc. due to its small size, long life, low driving voltage, low power consumption, fast response, and good shock resistance. In areas such as consumer electronics.

一般而言,發光二極體具一活性層(active layer),置於兩種不同電性的束縛層(p-type & n-type cladding layers)之間。當於兩束縛層上方之電極施加一驅動電流時,兩束縛層之電子與電洞會注入活性層,於活性層中結合而放出光線,其光線具全向性,會於發光二極體元件的各個表面射出。通常,活性層可為單一量子井結構層(SQW)或多重量子井結構層(MQW)。與單一量子井結構層(SQW)相較,多重量子井結構層(MQW)具有較佳的光電轉換效率,即使在電流很小時,它仍可以透過許多能障層及井層堆疊而成的小能隙結構,將電流轉換為光線。In general, the light-emitting diode has an active layer placed between two p-type & n-type cladding layers. When a driving current is applied to the electrodes above the two tie layers, the electrons and holes of the two tie layers are injected into the active layer, and combined in the active layer to emit light, the light is omnidirectional and will be in the light emitting diode element. Each surface is shot. Typically, the active layer can be a single quantum well structure layer (SQW) or a multiple quantum well structure layer (MQW). Compared with a single quantum well structure layer (SQW), multiple quantum well structure layers (MQW) have better photoelectric conversion efficiency, and even when the current is small, it can still be stacked through many barrier layers and well layers. A gap structure that converts current into light.

然而,多重量子井結構層容易受到載子溢流與壓電場效應之影響,使電子、電洞難以有效地被侷限於多重量子井結構中進行結合,因而使發光二極體之發光效率難以提升。However, multiple quantum well structure layers are susceptible to carrier overflow and piezoelectric field effects, making it difficult for electrons and holes to be effectively confined to multiple quantum well structures for bonding, making it difficult to illuminate LEDs. Upgrade.

本發明提出一種發光元件,包含一n型束縛層;一p型束縛層;以及一活性層,位於n型束縛層與p型束縛層之間。活性層係由複數個能障層與複數個井層交錯堆疊而形成之一多重量子井結構。The present invention provides a light-emitting element comprising an n-type tie layer; a p-type tie layer; and an active layer between the n-type tie layer and the p-type tie layer. The active layer is formed by a plurality of energy barrier layers and a plurality of well layers alternately stacked to form a multiple quantum well structure.

本發明提出之發光元件包含一種多重量子井結構,於能障層摻雜p型雜質以增加電洞數目,其中越靠近n型束縛層的能障層摻雜濃度越低,越靠近p型束縛層的能障層摻雜濃度越高,以形成一具漸變式摻雜濃度之能障層結構。The light-emitting element proposed by the invention comprises a multiple quantum well structure, and the p-type impurity is doped in the energy barrier layer to increase the number of holes, wherein the closer the doping concentration of the energy barrier layer to the n-type tie layer is, the closer to the p-type bondage The higher the doping concentration of the energy barrier layer of the layer is to form an energy barrier structure with a graded doping concentration.

本發明提出一種多重量子井結構,其中於能障層摻雜之p型雜質可為鎂,摻雜濃度為1×1016 ~5×1017 /cm3The invention provides a multiple quantum well structure, wherein the p-type impurity doped in the energy barrier layer may be magnesium, and the doping concentration is 1×10 16 to 5×10 17 /cm 3 .

本發明提出一種多重量子井結構,其中能障層由氮化鎵(GaN)所組成,井層由氮化銦鎵(Inx Ga1-x N,0<x<1)所組成。The present invention proposes a multiple quantum well structure in which the energy barrier layer is composed of gallium nitride (GaN) and the well layer is composed of indium gallium nitride (In x Ga 1-x N, 0 < x < 1).

本發明提出一種多重量子井結構,其中每一層能障層包含至少一個次能障層,且每一層能障層由氮化銦鎵(InGaN)所組成,次能障層由氮化鎵(GaN)所組成。於次能障層摻雜p型雜質以增加電洞數目。其摻雜之p型雜質可為鎂,摻雜濃度為1×1016 ~5×1017 /cm3The present invention provides a multiple quantum well structure in which each of the energy barrier layers comprises at least one secondary energy barrier layer, and each of the energy barrier layers is composed of indium gallium nitride (InGaN), and the secondary energy barrier layer is made of gallium nitride (GaN). ) composed of. The p-type impurity is doped in the sub-barrier layer to increase the number of holes. The doped p-type impurity may be magnesium and has a doping concentration of 1×10 16 to 5×10 17 /cm 3 .

本發明第一實施例揭露關於一種包含活性層之發光元件。其活性層係由複數個能障層與複數個井層交錯堆疊而形成一多重量子井結構,其中於能障層摻雜p型雜質以增加電洞數目,且越靠近n型束縛層的能障層摻雜濃度越低,越靠近p型束縛層的能障層摻雜濃度越高,以形成一具漸變式摻雜濃度之能障層結構。為了使本實施例之敘述更加詳盡與完備,可配合第1圖之圖式,參照下列描述。A first embodiment of the present invention is directed to a light-emitting element comprising an active layer. The active layer is formed by stacking a plurality of energy barrier layers and a plurality of well layers to form a multiple quantum well structure, wherein the energy barrier layer is doped with p-type impurities to increase the number of holes, and the closer to the n-type tie layer The lower the doping concentration of the barrier layer, the higher the doping concentration of the barrier layer closer to the p-type tie layer, to form an energy barrier structure with a graded doping concentration. In order to make the description of the embodiment more detailed and complete, the following description can be referred to in conjunction with the drawings of Fig. 1.

第1圖揭示符合本發明發光元件之磊晶結構之第一實施例,磊晶結構1包括一成長基板10、一緩衝層20形成於成長基板10之上、一n型束縛層(cladding layer)30形成於緩衝層20之上、一活性層(active layer)40形成於n型束縛層30之上、以及一p型束縛層50形成於活性層40之上。形成磊晶結構1之方法包括提供一成長基板10;接著,於成長基板10上以有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition)於第一成長條件下磊晶成長一緩衝層20,於完成緩衝層20之成長後,於第二成長條件下成長n型束縛層30。於完成n型束縛層30成長,於第三成長條件下成長活性層40,並於第四成長條件下成長p型束縛層50以形成發光元件之磊晶結構。其中,緩衝層20之晶格常數介於n型束縛層30與成長基板10之間,可提高磊晶品質及降低晶格缺陷。於本發明之定義,“成長條件”一詞係為包括至少一製程參數設定值選自於溫度、壓力及氣體流量、及其他製程參數設定值所組成之群組。其中於第三之一成長條件下成長的活性層40係由複數個能障層40A1 、40A2 、、、40An (n>1)與複數個井層40B交錯堆疊而形成之一多重量子井結構。於本實施例中,其中能障層40A1 、40A2 、、、40An 由氮化鎵(GaN)所組成,井層40B由氮化銦鎵(Inx Ga1-x N,0<x<1)所組成。於能障層摻雜例如鎂(Mg)之p型雜質以增加電洞數目,且越靠近n型束縛層30的能障層摻雜濃度越低,越靠近p型束縛層50的能障層摻雜濃度較越高,以形成一具漸變式摻雜濃度之能障層結構,其摻雜濃度範圍介於為1×1016 ~5×1017 /cm3 之間。此種多重量子井結構至少可達到下列功效:1.越靠近p型束縛層的能障層摻雜濃度越高,可以增加電洞注入量子井的效率。2.越靠近n型束縛層的能障層摻雜濃度越低,對於電子可造成阻擋的效果,避免大量電子溢流至p側。1 shows a first embodiment of an epitaxial structure of a light-emitting device according to the present invention. The epitaxial structure 1 includes a growth substrate 10, a buffer layer 20 formed on the growth substrate 10, and an n-type cladding layer. 30 is formed over the buffer layer 20, an active layer 40 is formed over the n-type tie layer 30, and a p-type tie layer 50 is formed over the active layer 40. The method of forming the epitaxial structure 1 includes providing a growth substrate 10; then, epitaxially growing a buffer layer 20 on the growth substrate 10 by metal-metal chemical vapor deposition (Metal-Organic Chemical Vapor Deposition) under the first growth condition. After the growth of the buffer layer 20 is completed, the n-type tie layer 30 is grown under the second growth condition. After the n-type tie layer 30 is completed, the active layer 40 is grown under the third growth condition, and the p-type tie layer 50 is grown under the fourth growth condition to form an epitaxial structure of the light-emitting element. Wherein, the lattice constant of the buffer layer 20 is between the n-type binding layer 30 and the growth substrate 10, which can improve the epitaxial quality and reduce the lattice defects. In the definition of the invention, the term "growth condition" is a group consisting of at least one process parameter set value selected from the group consisting of temperature, pressure and gas flow, and other process parameter settings. The active layer 40 grown under the third growth condition is formed by stacking a plurality of energy barrier layers 40A 1 , 40A 2 , , 40A n (n>1) and a plurality of well layers 40B. Quantum well structure. In this embodiment, the energy barrier layers 40A 1 , 40A 2 , , 40A n are composed of gallium nitride (GaN), and the well layer 40B is made of indium gallium nitride (In x Ga 1-x N, 0<x <1) is composed. The energy barrier layer is doped with a p-type impurity such as magnesium (Mg) to increase the number of holes, and the closer to the n-type tie layer 30, the lower the doping concentration of the barrier layer, and the closer to the p-type tie layer 50. The doping concentration is higher to form an energy barrier layer structure having a graded doping concentration, and the doping concentration ranges from 1×10 16 to 5×10 17 /cm 3 . The multi-quantum well structure can achieve at least the following effects: 1. The higher the doping concentration of the barrier layer near the p-type tie layer, the more efficient the hole injection into the quantum well can be. 2. The lower the doping concentration of the barrier layer closer to the n-type tie layer, the more blocking effect on electrons, and the large amount of electrons overflowing to the p-side.

本發明第二實施例揭露關於一種包含活性層之發光元件。其活性層係由複數個能障層與複數個井層交錯堆疊而形成之一多重量子井結構,其中每一層能障層包含至少一個次能障層,以形成一具有次能障層之發光元件。為了使本實施例之敘述更加詳盡與完備,可配合第2圖之圖式,參照下列描述。第2圖揭示符合本發明發光元件之磊晶結構之第二實施例,磊晶結構2與磊晶結構1比較,除了活性層(active layer)40結構不同外,其餘各層結構與成長條件相同。其中於第三之二成長條件下成長的活性層40係由複數個能障層40A與複數個井層40B交錯堆疊而形成之一多重量子井結構,其中每一層能障層40A包含至少一個次能障層40a。於本實施例中,形成能障層40A的材料為氮化銦鎵(In GaN),形成次能障層40a的材料為氮化鎵(GaN),形成井層的材料為氮化銦鎵(Inx Ga1-x N,0<x<1)。設計此種多重量子井結構可降低能障層與井層之間極化電荷所造成的能帶彎曲現象,並可增加電子電洞在量子井的結合效率。A second embodiment of the present invention is directed to a light-emitting element comprising an active layer. The active layer is formed by a plurality of energy barrier layers and a plurality of well layers alternately stacked to form a multiple quantum well structure, wherein each of the energy barrier layers comprises at least one secondary energy barrier layer to form a secondary energy barrier layer. Light-emitting element. In order to make the description of the embodiment more detailed and complete, the following description can be referred to in conjunction with the drawings of FIG. Fig. 2 is a view showing a second embodiment of the epitaxial structure of the light-emitting element according to the present invention. The epitaxial structure 2 is compared with the epitaxial structure 1, except that the structure of the active layer 40 is different, and the structure of the other layers is the same as the growth condition. The active layer 40 grown under the third growth condition is formed by stacking a plurality of energy barrier layers 40A and a plurality of well layers 40B to form a multiple quantum well structure, wherein each of the energy barrier layers 40A includes at least one Secondary barrier layer 40a. In this embodiment, the material forming the energy barrier layer 40A is indium gallium nitride (In GaN), the material forming the secondary energy barrier layer 40a is gallium nitride (GaN), and the material forming the well layer is indium gallium nitride ( In x Ga 1-x N, 0 < x < 1). The design of such a multi-quantum well structure can reduce the energy band bending caused by the polarization charge between the energy barrier layer and the well layer, and can increase the bonding efficiency of the electron hole in the quantum well.

本發明第三實施例揭露關於一種包含活性層之發光元件。其活性層係由複數個能障層與複數個井層交錯堆疊而形成之一多重量子井結構,其中每一層能障層包含至少一個次能障層,且於次能障層摻雜例如鎂之p型雜質以增加電洞數目,形成一具有摻雜p型雜質次能障層之發光元件。為了使本實施例之敘述更加詳盡與完備,可配合第3圖之圖式,參照下列描述。第3圖揭示符合本發明發光元件之磊晶結構之第三實施例,磊晶結構3與磊晶結構2比較,除了活性層(active layer)40結構不同外,其餘各層結構與成長條件相同。其中於第三之三成長條件下成長的活性層40係由複數個能障層40A與複數個井層40B交錯堆疊而形成之一多重量子井結構,其中每一層能障層40A包含至少一個次能障層40a1 、40a2 、、、40an (n>1)。於本實施例中,形成能障層40A的材料為氮化銦鎵(InGaN),形成次能障層40a1 、40a2 、、、40an 的材料為氮化鎵(GaN),且摻雜例如鎂之p型雜質,其中摻雜濃度可以相同或越靠近n型束縛層30的次能障層摻雜濃度越低,越靠近p型束縛層50的次能障層摻雜濃度較越高,以形成一具漸變式摻雜濃度之次能障層結構,其摻雜濃度範圍介於為1×1016 ~5×1017 /cm3 之間。形成井層的材料為氮化銦鎵(Inx Ga1-x N,0<x<1)。設計此種多重量子井結構可降低能障層與井層之間極化電荷所造成的能帶彎曲現象,並可增加電子電洞在量子井的結合效率。A third embodiment of the present invention relates to a light-emitting element comprising an active layer. The active layer is formed by a plurality of energy barrier layers and a plurality of well layers alternately stacked to form a multiple quantum well structure, wherein each of the energy barrier layers comprises at least one secondary energy barrier layer, and the secondary energy barrier layer is doped, for example. The p-type impurity of magnesium increases the number of holes to form a light-emitting element having a p-type impurity secondary barrier layer. In order to make the description of the embodiment more detailed and complete, the following description can be referred to in conjunction with the drawings of FIG. Fig. 3 shows a third embodiment of the epitaxial structure of the light-emitting element according to the present invention. The epitaxial structure 3 is compared with the epitaxial structure 2, except that the structure of the active layer 40 is different, and the growth of the other layers is the same as the growth condition. The active layer 40 grown under the third third growth condition is formed by staggering a plurality of barrier layers 40A and a plurality of well layers 40B to form a multiple quantum well structure, wherein each of the barrier layers 40A includes at least one Secondary barrier layers 40a 1 , 40a 2 , , 40a n (n>1). In the present embodiment, the material forming the energy barrier layer 40A is indium gallium nitride (InGaN), and the material forming the secondary energy barrier layers 40a 1 , 40a 2 , and 40 a n is gallium nitride (GaN), and is doped. For example, a p-type impurity of magnesium, wherein the doping concentration may be the same or the doping concentration of the secondary barrier layer is closer to the n-type binding layer 30, and the doping concentration of the secondary barrier layer closer to the p-type binding layer 50 is higher. To form a gradual doping concentration secondary energy barrier layer structure having a doping concentration ranging from 1×10 16 to 5×10 17 /cm 3 . The material forming the well layer is indium gallium nitride (In x Ga 1-x N, 0 < x < 1). The design of such a multi-quantum well structure can reduce the energy band bending caused by the polarization charge between the energy barrier layer and the well layer, and can increase the bonding efficiency of the electron hole in the quantum well.

上述之諸實施例,其中,所述之緩衝層、n型束縛層、p型束縛層、以及活性層之材料係包含III-V族化合物,例如氮化鎵系列或磷化鎵系列之材料。所述之成長基板例如為包括至少一種材料選自於藍寶石、碳化矽、氮化鎵、以及氮化鋁所組成之群組。所述之緩衝層、n型束縛層、以及p型束縛層可為單層或多層結構,例如為超晶格結構。另外,本發明之所述之發光磊晶結構並不限於以成長方式成長所述之成長基板之上,其他形成方式,例如以接合方式直接接合或藉由一介質接合至一導熱或導電基板亦屬本發明之範圍。In the above embodiments, the buffer layer, the n-type tie layer, the p-type tie layer, and the material of the active layer comprise a group III-V compound, such as a material of a gallium nitride series or a gallium phosphide series. The growth substrate is, for example, a group comprising at least one material selected from the group consisting of sapphire, tantalum carbide, gallium nitride, and aluminum nitride. The buffer layer, the n-type tie layer, and the p-type tie layer may be a single layer or a multilayer structure, such as a superlattice structure. In addition, the luminescent epitaxial structure of the present invention is not limited to growing on the grown substrate in a grown manner, and other forms of formation, such as bonding directly by bonding or bonding to a thermally conductive or conductive substrate by a dielectric. It is within the scope of the invention.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and it is intended to be able to make various changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

1、2、3...磊晶結構1, 2, 3. . . Epitaxial structure

10...成長基板10. . . Growth substrate

20...緩衝層20. . . The buffer layer

30...n型束縛層30. . . N-type binding layer

40...活性層40. . . Active layer

40A...能障層40A. . . Energy barrier

40B...井層40B. . . Well layer

40a...次能障層40a. . . Secondary barrier

40a1 、40a2 、、、40an ...次能障層40a 1 , 40a 2 , , , 40a n . . . Secondary barrier

50...p型束縛層50. . . P-type binding layer

本發明的較佳實施例將於實施方式之說明文字中輔以下列圖形做更詳細的說明:The preferred embodiment of the present invention will be described in more detail in the description of the embodiments with the following figures:

第1圖描述本發明實施例一之磊晶結構1的示意圖。1 is a schematic view showing an epitaxial structure 1 of Embodiment 1 of the present invention.

第2圖描述本發明實施例二之磊晶結構2的示意圖。2 is a schematic view showing the epitaxial structure 2 of the second embodiment of the present invention.

第3圖描述本發明實施例三之磊晶結構3的示意圖。Fig. 3 is a view showing the epitaxial structure 3 of the third embodiment of the present invention.

1...磊晶結構1. . . Epitaxial structure

10...成長基板10. . . Growth substrate

20...緩衝層20. . . The buffer layer

30...n型束縛層30. . . N-type binding layer

40...活性層40. . . Active layer

40A1 、40A2 、、、40An ...能障層40A 1 , 40A 2 , , , 40A n . . . Energy barrier

40B...井層40B. . . Well layer

50...p型束縛層50. . . P-type binding layer

Claims (10)

一種發光元件,至少包含:一半導體層;以及一主動層,位於該半導體層之上,且包含與複數個井層彼此交錯堆疊之複數個能障層,其中各該複數個能障層皆包含至少一次能障層。 A light-emitting element comprising: at least a semiconductor layer; and an active layer over the semiconductor layer and comprising a plurality of barrier layers stacked in a plurality of well layers with each other, wherein each of the plurality of barrier layers comprises At least one energy barrier. 如申請專利範圍第1項所述之發光元件,其中該半導體層為n型束縛層或p型束縛層。 The light-emitting element according to claim 1, wherein the semiconductor layer is an n-type tie layer or a p-type tie layer. 如申請專利範圍第1項所述之發光元件,其中該次能障層由氮化鎵(GaN)所組成。 The light-emitting element of claim 1, wherein the sub-barrier layer is composed of gallium nitride (GaN). 如申請專利範圍第1項所述之發光元件,其中該能障層由氮化銦鎵(InGaN)所組成。 The light-emitting element of claim 1, wherein the barrier layer is composed of indium gallium nitride (InGaN). 如申請專利範圍第1項所述之發光元件,其中該井層由氮化銦鎵(Inx Ga1-x N,0<x<1)所組成。The light-emitting element according to claim 1, wherein the well layer is composed of indium gallium nitride (In x Ga 1-x N, 0 < x < 1). 如申請專利範圍第1項所述之發光元件,其中該次能障層包含p型掺雜雜質。 The light-emitting element of claim 1, wherein the sub-barrier layer comprises p-type dopant impurities. 如申請專利範圍第6項所述之發光元件,其中該p型掺雜雜質包含鎂。 The light-emitting element of claim 6, wherein the p-type dopant impurity comprises magnesium. 如申請專利範圍第1項所述之發光元件,其中各該複數個能障層中之該次能障層包含相同濃度之掺雜雜質。 The light-emitting element of claim 1, wherein the secondary barrier layer of each of the plurality of barrier layers comprises doping impurities of the same concentration. 如申請專利範圍第1項所述之發光元件,其中該次能障層之雜質濃度越靠近該半導體層越低。 The light-emitting element of claim 1, wherein the lower the impurity concentration of the sub-barrier layer is, the lower the semiconductor layer is. 一種發光元件之製造方法,其步驟包含:成長一第一電性半導體層;成長一主動層於該第一電性半導體層上;以及成長一第二電性半導體層於該主動層上;其中該主動層包含與複數個井層彼此交錯堆疊之複數個能障層,且各該複數個能障層皆包含至少一個次能障層。A method of manufacturing a light-emitting device, the method comprising: growing a first electrical semiconductor layer; growing an active layer on the first electrical semiconductor layer; and growing a second electrical semiconductor layer on the active layer; The active layer includes a plurality of energy barrier layers stacked in a plurality of well layers with each other, and each of the plurality of energy barrier layers includes at least one secondary energy barrier layer.
TW98139436A 2009-11-19 2009-11-19 Light-emitting device and the manufacturing method thereof TWI420696B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98139436A TWI420696B (en) 2009-11-19 2009-11-19 Light-emitting device and the manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98139436A TWI420696B (en) 2009-11-19 2009-11-19 Light-emitting device and the manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201119076A TW201119076A (en) 2011-06-01
TWI420696B true TWI420696B (en) 2013-12-21

Family

ID=44935960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98139436A TWI420696B (en) 2009-11-19 2009-11-19 Light-emitting device and the manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI420696B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200905931A (en) * 2007-06-15 2009-02-01 Rohm Co Ltd Nitride semiconductor device and method for manufacturing the same
TW200947767A (en) * 2008-03-14 2009-11-16 Sony Corp GaN-based semiconductor light-emitting element, light-emitting element assembly, light-emitting apparatus, method of manufacturing GaN-based semiconductor light-emitting element, method of driving GaN-based semiconductor light-emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200905931A (en) * 2007-06-15 2009-02-01 Rohm Co Ltd Nitride semiconductor device and method for manufacturing the same
TW200947767A (en) * 2008-03-14 2009-11-16 Sony Corp GaN-based semiconductor light-emitting element, light-emitting element assembly, light-emitting apparatus, method of manufacturing GaN-based semiconductor light-emitting element, method of driving GaN-based semiconductor light-emitting element

Also Published As

Publication number Publication date
TW201119076A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
CN102782883B (en) Light-emitting diode and manufacture method thereof
TWI436495B (en) Nitride-based light emitting device
US9257599B2 (en) Semiconductor light emitting device including hole injection layer
KR100604406B1 (en) Nitride semiconductor device
US10396240B2 (en) III-nitride semiconductor light emitting device having amber-to-red light emission (&gt;600 nm) and a method for making same
TWI425662B (en) Semiconductor light emitting device
TWI569467B (en) Semiconductor light-emitting device
JP6482573B2 (en) Nitride semiconductor light emitting device
JP6111250B2 (en) Optoelectronic parts
US7902562B2 (en) Light emitting diode device that includes a three dimensional cloud structure and manufacturing method thereof
CN103441196A (en) Luminous element and manufacturing method for same
US8759815B2 (en) Nitride based semiconductor light emitting device
CN108305922B (en) Nitride semiconductor structure and semiconductor light emitting element
TWI384657B (en) Nitirde semiconductor light emitting diode device
KR101507130B1 (en) Light emitting diode having superlattice layer
KR20140102422A (en) Nitride-based semiconductor light emitting device
US9087946B2 (en) Light emitting device
KR20110117963A (en) Nitride semiconductor light emitting device and manufacturing method of the same
KR102444467B1 (en) light emitting diode
TWI420696B (en) Light-emitting device and the manufacturing method thereof
JP6482388B2 (en) Nitride semiconductor light emitting device
CN111326616A (en) Semiconductor light-emitting element
US9525104B2 (en) Light-emitting diode
TWI610460B (en) Nitride semiconductor structure
KR101373804B1 (en) White light emitting diode and fabrication method thereof