TWI419903B - Dr5抗體及其用途 - Google Patents
Dr5抗體及其用途 Download PDFInfo
- Publication number
- TWI419903B TWI419903B TW95103829A TW95103829A TWI419903B TW I419903 B TWI419903 B TW I419903B TW 95103829 A TW95103829 A TW 95103829A TW 95103829 A TW95103829 A TW 95103829A TW I419903 B TWI419903 B TW I419903B
- Authority
- TW
- Taiwan
- Prior art keywords
- antibody
- cancer
- antigen
- antibodies
- binding fragment
- Prior art date
Links
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Description
本發明大體而言係關於包括拮抗劑抗體之DR5抗體及使用該等DR5抗體之方法。
此項技術中已識別出屬於腫瘤壞死因子(TNF)總科之各種配位體及受體。該等配位體包括腫瘤壞死因子-α("TNF-α")、壞死因子-β("TNF-β"或"淋巴毒素-α")、淋巴毒素-β("LT-β")、CD30配位體、CD27配位體、CD40配位體、OX-40配位體、4-1BB配位體、LIGHT、Apo-1配位體(亦稱為Fas配位體或CD95配位體)、Apo-2配位體(亦稱為Apo2L或TRAIL)、Apo-3配位體(亦稱為TWEAK)、APRIL、OPG配位體(亦稱為RANK配位體、ODF或TRANCE)及TALL-1(亦稱為BlyS、BAFF或THANK)(舉例而言,參看Ashkenazi,Nature Review,
2:420-430(2002);Ashkenazi及Dixit,Science,281
:1305-1308(1998);Ashkenazi及Dixit,Curr.Opin.Cell Biol.,11
:255-260(2000);Golstein,Curr.Biol.,
7:750-753(1997);Wallach,Cytokine Reference,
Academic Press,2000,第377-411頁;Locksley等人,Cell,
104:487-501(2001);Gruss及Dower,Blood,85:3378-3404(1995);Schmid等人,Proc.Natl.Acad.Sci.,83:1881(1986);Dealtry等人,Eur.J.Immunol.,17:689(1987);Pitti等人,J.Biol.Chem.,271:12687-12690(1996);Wiley等人,Immunity,3:673-682(1995);Browning等人,Cell,72:847-856(1993);Armitage等人,Nature,357:80-82(1992);公開於1997年1月16日之WO 97/01633;公開於1997年7月17日之WO 97/25428;Marsters等人,Curr.Biol.,8:525-528(1998);Chicheportiche等人,Biol.Chem.,272:32401-32410(1997);Hahne等人,J.Exp.Med.,188:1185-1190(1998);公開於1998年7月2日之WO 98/28426;公開於1998年10月22日之WO 98/46751;公開於1998年5月7日之WO98/18921;Moore等人,Science,285:260-263(1999);Shu等人,J.Leukocyte Biol.,65:680(1999);Schneider等人,J.Exp.Med.,189:1747-1756(1999);Mukhopadhyay等人,J.Biol.Chem.,274:15978-15981(1999))。
TNF家族配位體所調節的各種細胞反應之誘導通常藉由使該等配位體結合特異細胞受體而起始。一些(但非全部)TNF家族配位體結合於細胞表面"死亡受體",且該等配位體藉由該等"死亡受體"來誘導各種生物活性以活化卡斯蛋白酶或進行細胞死亡或細胞凋亡路徑之酶類(Salvesen等人,Cell
,91:443-446(1997))。迄今所識別的TNF受體總科之成員包括TNFR1、TNFR2、TACI、GITR、CD27、OX-40、CD30、CD40、HVEM、Fas(亦稱為Apo-1或CD95)、DR4(亦稱為TRAIL-R1)、DR5(亦稱為Apo-2或TRAIL-R2)、DcR1、DcR2、護骨素(OPG)、RANK及Apo-3(亦稱為DR3或TRAMP)(舉例而言,參看Ashkenazi,Nature Reviews
,2:420-430(2002);Ashkenazi及Dixit,Science
,281
:1305-1308(1998);Ashkenazi及Dixit,Curr.Opin.Cell Biol.
,11
:255-260(2000);Golstein,Curr.Biol.
,7:750-753(1997);Wallach,Cytokine Reference
,Academic Press,2000,第377-411頁;Locksley等人,Cell
,104:487-501(2001);Gruss及Dower,Blood,85:3378-3404(1995);Hohman等人,J.Biol.Chem.
,264
:14927-14934(1989);Brockhaus等人,Proc.Natl.Acad.sci.
,87
:3127-3131(1990);EP 417,563,1991年3月20日公開;Loetscher等人,Cell
,61
:351(1990);Schall等人,Cell
,61
:361(1990);Smith等人,Science
,248
:1019-1023(1990);Lewis等人,Proc.Natl.Acad.Sci.
,88
:2830-2834(1991);Goodwin等人,Mol.Cell.Biol.
,11
:3020-3026(1991);Stamenkovic等人,EMBO J.
,8:1403-1410(1989);Mallett等人,EMBO J.
,9:1063-1068(1990);Anderson等人,Nature
,390:175-179(1997);Chicheportiche等人,J.Biol.Chem.
,272:32401-32410(1997);Pan等人,Science
,276:111-113(1997);Pan等人,Science
,277:815-818(1997);Sheridan等人,Science
,277:818-821(1997);Degli-Esposti等人,J.Exp.Med.
,186:1165-1170(1997);Marsters等人,Curr.Biol.
,7:1003-1006(1997);Tsuda等人,BBRC
,234:137-142(1997);Nocentini等人,Proc.Natl.Acad.Sci.
,94:6216-6221(1997);vonBulow等人,Science
,278:138-141(1997))。
TNF受體家族成員大部分共享包括細胞外域、跨膜域及細胞內域之細胞表面受體典型結構,儘管已發現其它TNF受體家族成員為缺少跨膜域及細胞內域之天然可溶蛋白。典型TNFR之細胞外部分含有自NH2
-末端開始之多個富半胱胺酸域(CRD)的重複胺基酸序列模式。
多年前,已將稱作Apo-2L或TRAIL之配位體識別為細胞激素之TNF家族成員。(舉例而言,參看Wiley等人,Immunity,3:673-682(1995);Pitti等人,J.Biol.Chem.,271:12697-12690(1996);WO 97/01633;WO 97/25428;1998年6月9日頒與之美國專利第5,763,223號;2001年9月4日頒與之美國專利第6,284,236號)。全長天然序列人類Apo2L/TRAIL多肽為281胺基酸長、II型跨膜蛋白。一些細胞可藉由酶切多肽細胞外域而產生多肽之天然可溶形式(Mariani等人,J.Cell.Biol.,137:221-229(1997))。Apo2L/TRAIL之可溶形式的結晶研究揭示與TNF及其它相關蛋白之結構類似的同源三聚結構(Hymowitz等人,Molec.Cell,4:563-571(1999);Cha等人,Immunity,11:253-261(1999);Mongkolsapaya等人,Nature Structural Biology,6:1048(1999);Hymowitz等人,Biochemistry,39:633-644(2000))。然而,不同於其它TNF家族成員,發現Apo2L/TRAIL具有獨特結構特徵,該獨特結構特徵在於三個半胱胺酸殘基(位於同源三聚體內的每個次單位之位置230處)一起與鋅原子配位,且鋅結合對於三聚體之穩定性及生物活性而言係重要的。(Hymowitz等人,上文;Bodmer等人,J.Biol.Chem.,275:20632-20637(2000))。
文獻中已報導Apo2L/TRAIL可在免疫系統調節中起作用,包括自體免疫疾病,諸如類風濕性關節炎[舉例而言,參看Thomas等人,J.Immunol.,161:2195-2200(1998);Johnsen等人,Cytokine,11:664-672(1999);Griffith等人,J.Exp.Med.,189:1343-1353(1999);Song等人,J.Exp.Med.,191:1095-1103(2000)]。
亦已報導Apo2L/TRAIL之可溶形式誘導各種癌細胞中之細胞凋亡,包括結腸、肺、乳房、前列腺、膀胱、腎、卵巢及腦腫瘤以及黑素瘤、白血病及多發性骨髓瘤(舉例而言,參看Wiley等人,上文;Pitti等人,上文;2000年2月29日頒與之美國專利第6,030,945號;2004年6月8日頒與之美國專利第6,746,668號;Rieger等人,FEBS Letters,427:124-128(1998);Ashkenazi等人,J.Clin.Invest.,104:155-162(1999);Walczak等人,Nature Med.,5:157-163(1999);Keane等人,Cancer Research,59:734-741(1999);Mizutani等人,Clin.Cancer Res.,5:2605-2612(1999);Gazitt,Leukemia,13:1817-1824(1999);Yu等人,Cancer Res.,60:2384-2389(2000);Chinnaiyan等人,Proc.Natl.Acad.sci.,97:1754-1759(2000))。鼠科動物腫瘤模型之活體內研究進一步揭示單獨或組合化學療法或放射療法之Apo2L/TRAIL可大體上發揮抗腫瘤作用(舉例而言,參看Ashkenazi等人,上文;Walzcak等人,上文;Gliniak等人,Cancer Res.,59:6153-6158(1999);Chinnaiyan等人,上文;Roth等人,Biochem.Biophys.Res.Comm.,265:1999(1999);PCT申請案US/00/15512;PCT申請案US/01/23691)。與多種癌細胞類型相反,大部分正常人類細胞類型似乎藉由Apo2L/TRAIL之某些重組形式來對抗細胞凋亡誘導(Ashkenazi等人,上文;Walzcak等人,上文)。Jo等人已報導Apo2L/TRAIL之經聚組胺酸標籤之可溶形式於活體外誘導正常經分離人類(而不是非人類)肝細胞之細胞凋亡(Jo等人,Nature Med.,6:564-567(2000);亦參看Nagata,Nature Med.,6:502-503(2000))。據信某些重組Apo2L/TRAIL製劑可關於患病細胞對正常細胞之生物化學特性及生物活性而改變,例如,取決於標籤分子之存在或不存在、鋅含量及三聚體含量%(參看,Lawrence等人,Nature Med.,Letter to the Editor,7:383-385(2001);Qin等人,Nature Med.,Letter to the Editor,7:385-386(2001))。
已發現Apo2L/TRAIL結合至少五種不同受體。結合Apo2L/TRAIL之受體中的至少兩者含有功能性細胞質死亡域。一種此受體已稱作"DR4"(且或者稱為TR4或TRAIL-R1)(Pan等人,Science
,276
:111-113(1997);亦參看1998年7月30日公開之WO98/32856;1999年7月29日公開之WO99/37684;2000年12月7日公開之WO 00/73349;2002年8月13日頒與之US 6,433,147;2002年10月8日頒與之US 6,461,823;及2002年1月29日頒與之US 6,342,383)。
Apo2L/TRAIL之另一種此受體已稱為DR5(或者,其亦已稱為Apo-2、TRAIL-R或TRAIL-R2、TR6、Tango-63、hAPO8、TRICK2或KILLER)(舉例而言,參看Sheridan等人,Science
,277
:818-821(1997);Pan等人,Science
,277
:815-818(1997);1998年11月19日公開之WO98/51793;1998年9月24日公開之WO98/41629;Screaton等人,Curr.Biol.
,7
:693-696(1997);Walczak等人,EMBO J.
,16
:5386-5387(1997);Wu等人,Nature Genetics
,17
:141-143(1997);1998年8月20日公開之WO98/35986;1998年10月14日公開之EP870,827;1998年10月22日公開之WO98/46643;1999年1月21日公開之WO99/02653;1999年2月25日公開之WO99/09165;1999年3月11日公開之WO99/11791;2002年8月13日公開之US 2002/0072091;2001年12月7日公開之US2002/0098550;2001年12月6日頒與之US 6,313,269;2001年8月2日公開之US 2001/0010924;2003年7月3日公開之US 2003/01255540;2002年10月31日公開之US 2002/0160446;2002年4月25日公開之US 2002/0048785;2002年2月頒與之US 6,342,369;2003年5月27日頒與之US 6,569,642;2000年6月6日頒與之US 6,072,047;2003年11月4日頒與之US 6,642,358;2004年6月1日頒與之IS 6,743,625)。與DR4一樣,據報導DR5在其細胞外部分內含有三個富半胱胺酸域及一單一細胞質死亡域,且能夠在配位體結合之後隨即發出細胞凋亡訊號(或在結合諸如促效劑抗體之分子以後,該分子模擬配位體活性)。Hymowitz等人,Molecular Cell
,4
:563-571(1999)描述形成於Apo-2L/TRAIL與DR5之間之複合物的晶體結構。
在配位體結合之後,DR4與DR5隨即均可藉由稱為FADD/Mortl之含死亡域接頭恢復及活化細胞凋亡引發子卡斯蛋白酶-8而獨立地引發細胞凋亡[Kischkel等人,Immunity
,12
:611-620(2000);Sprick等人,Immunitv
,12
:599-609(2000);Bodmer等人,Nature Cell Biol.
,2
:241-243(2000)]。詳言之,DR5經由"細胞外在"路徑發出細胞凋亡訊號,該路徑獨立於p53腫瘤抑制基因(Ashkenazi及Dixit,Science
281:1305-8(1998);Ashkenazi,Nat Rec Cancer
2:420-30(2002))。此路徑之活化涉及所活化受體的細胞質死亡域之死亡誘導訊號發送複合物(DISC)的突然(raid)形成。首先,接頭分子FADD經由同嗜性死亡域交互作用而結合DR5(Kischkel等人,上文;Sprick等人,上文;Bodmer等人,上文)。接著,FADD恢復起始細胞凋亡之蛋白酶卡斯蛋白酶-8及卡斯蛋白酶-10,藉由經歷自身加工所誘導的鄰近卡斯蛋白酶-9及卡斯蛋白酶-10來調節其活化,向細胞質內釋放可溶活性卡斯蛋白酶次單位,此處其組裝並剪切諸如卡斯蛋白酶-3及卡斯蛋白酶-7之效應卡斯蛋白酶。剪切導致效應卡斯蛋白酶之活化,該活化執行apoprotix細胞程式(Thornberry及Lazebnik,Science
281:1312-6(1998))。
亦已報導Apo2L/TRAIL結合稱為DcR1、DcR2及OPG之受體,據信該等受體充當抑制劑,而非訊號發送轉導子(舉例而言,參看DCR1(亦稱為TRID、LIT或TRAIL-R3)[Pan等人,Science
,276
:111-113(1997);Sheridan等人,Science
,277
:818-821(1997);McFarlane等人,J.Biol.Chem.
,272
:25417-25420(1997);Schneider等人,FEBS Letters
,416
:329-334(1997);Degli-Esposti等人,J.Exp.Med.
,186
:1165-1170(1997);及Mongkolsapaya等人,J.Immunol.
,160
:3-6(1998)]、DCR2(亦稱為TRUNDD或TRAIL-R4)[Marsters等人,Curr.Biol.
,7
:1003-1006(1997);Pan等人,FEBS Letters
,424
:41-45(1998);Degli-Esposti等人,Immunity
,7
:813-820(1997)]及OPG[Simonet等人,上文])。與DR4及DR5相反,DcR1及DcR2受體並不發送細胞凋亡訊號。
文獻中已報導某些結合DR4及/或DR5受體之抗體。舉例而言,下列文獻中描述了針對DR4受體且在某些哺乳動物細胞中具有競爭或細胞凋亡活性之抗-DR4抗體:1999年7月29日公開之WO 99/37684;2000年7月12日公開之WO 00/73349;2003年8月14日公開之WO 03/066661。例如,亦參看Griffith等人,J.Immunol.
,162:2597-2605(1999);Chuntharapai等人,J.Immunol.
,166:4891-4898(2001);2002年12月2日公開之WO 02/097033;2003年5月22日公開之WO 03/042367;2003年5月8日公開之W0 03/038043;2003年5月8日公開之W0 03/037913。某些抗-DR5抗體同樣已得到描述,舉例而言,參看下列文獻:1998年11月8日公開之WO 98/51793;Griffith等人,J.Immunol.
,162:2597-2605(1999);Ichikawa等人,Nature Med.
,7:954-960(2001);Hylander等人,"An Antibody to DR5(TRAIL-Receptor 2)Suppresses the Growth of Patient Derived Gastrointestinal Tumors Grown in SCID mice",摘要,2d International Congress on Monoclonal Antibodies in Cancers,2002年8月29日-9月1日,Banff,Alberta,Canada;2003年5月8日公開之W0 03/038043;2003年5月8日公開之W0 03/037913。此外,亦已描述某些與DR4及DR5受體均具有交叉反應性之抗體(舉例而言,參看2001年6月26日頒與之美國專利第6,252,050號)。
本發明提供能夠特異結合人類DR5及/或能夠調節DR5及/或其配位體之相關生物活性(詳言之,細胞凋亡)且因此適於治療包括癌症或免疫相關疾病的各種疾病及病情之DR5抗體。
在一態樣中,本發明係關於包含全長抗體16E2(分別為SEQ ID NOS:11及13)之重鏈及/或輕鏈中的至少一突變之抗-DR5抗體或其片段,其中該抗體或抗體片段展示至少與DR5相同之親和力及/或展示至少與抗體16E2相同之生物活性及/或效能。在一具體實施例中,抗體或抗體片段應實質上結合與全長抗體16E2相同的抗原決定部位。在另一實施例中,抗-DR5抗體應展示較全長抗體16E2更高之DR5親和力,及/或展示相對於全長抗體16E2有所增加之生物活性及/或有所增加之效能。在另一實施例中,本發明之抗-DR5抗體及抗體片段與WO 98/51793中所述的單鏈Fc抗-DR5抗體16E2展示至少相同之DR5親和力,及/或展示至少相同的生物活性及/或效能。
在一實施例中,抗-DR5抗體包含具有表1至7及9-12中之任一者所列的至少一取代之重及/或輕鏈或其片段。
在另一實施例中,抗-DR5抗體包含16E2抗體重鏈可變域構架中之一或多個突變。
在另一實施例中,抗-DR5抗體包含選自由下列各物組成之群的構架突變:Q6E、V11L、E12V、R13Q及K105Q。
在又一實施例中,抗-DR5抗體包含構架突變Q6E、V11L、E12V、R13Q及K105Q中之全部。
在又一實施例中,抗-DR5抗體包含全長抗體16E2之重鏈(SEQ ID NO:11)內的至少一突變或其片段。
在一不同實施例中,抗-DR5抗體包含選自由下列各物組成之群的至少一突變或其片段:SEQ ID NO:11胺基酸序列中之T28A、G33A、M34L、M34A、M34I、M34S、N53Q、N53Y及L102Y。
在另一實施例中,抗-DR5抗體包含SEQ ID NO:11之胺基酸序列中的G99A及R100A突變中之至少一者或其片段。
在另一實施例中,抗-DR5抗體包含一組選自由下列各物組成之群的突變:SEQ ID NO:11之胺基酸序列中的(i)N53Q、L102Y;(ii)M34L、N53Q、L102Y;(iii)N53Y、L102Y;(iv)M34L、N53Y、L102Y;(v)G33A、N53Q、L102Y;(vi)M34L、N53Y、L102Y;(vii)G33A、N53Q、L102Y;(viii)G33A、N53Y、L102Y;(ix)T28A、N53Q、L102Y;及(x)T28A、N53Y、L102Y,或包含其片段。
在又一實施例中,抗-DR5抗體包含全長16E2抗體之輕鏈(SEQ ID NO:13)內的至少一突變或其片段。
在一具體實施例中,該輕鏈為λ鏈。
在另一具體實施例中,該輕鏈突變係在CDR L1內。
在又一實施例中,該輕鏈突變係選自由下列各物組成之群:SEQ ID NO:13之胺基酸序列中之Q24A、Q24S、G25A、D26E、S27A、L28A、R29A、S30A、Y31A、Y31K、Y32H、A33G、S34A及S34Y。
在又一實施例中,該輕鏈突變係選自由下列各物組成之群:SEQ ID NO:13之胺基酸序列中之(i)Q24S、D26E、Y31K、S34Y;及(ii)D26E、Y31K。
在一不同實施例中,輕鏈突變係在CDR L2內。
因此,例如,該突變可選自由下列各物組成之群:SEQ ID NO:13胺基酸序列中之G50A、G50K、G50S、K51D、N52A、N52S、N52L、N52Q、N53A、N53E、N53Q、N53S、P55A及S56A。
在另一實施例中,該抗體可含有一組選自由下列各物組成之群之突變:SEQ ID NO:13之胺基酸序列中之(i)G50K、K52S、N53E;(ii)G50S、K51D、N52S、N53E;(iii)N52S、N53E;及(iv)N52Q、N53S。
在又一實施例中,輕鏈突變係在CDR L3內。
在又一實施例中,該抗體包含選自由下列各物組成之群之至少一突變:SEQ ID NO:13中之N89A、N89L、N89Q、R91A、S93A、N95aA、N95aT、N95aQ、H95bA、N95bY、V96A、V97A。
或者,抗-DR5抗體可包含一組選自由下列各物組成之群之突變:SEQ ID NO:13序列中之(i)N89L、R91A、N95aT、H95bY;及(ii)N95aT、H95bY。
在又一實施例中,抗-DR5抗體包含一組選自由下列各物組成之群之輕鏈突變:SEQ ID NO:13胺基酸序列中之(i)Q24S、G50K、K51D、H95bY;(ii)Q24S、K51A、D92S、S93Y;及(iii)Q24S、K51A、R91A,且可額外地包含一組選自由下列各物組成之群之重鏈突變:SEQ ID NO:11胺基酸序列中之(i)M34L、N53Q、L102Y;(ii)M34L、N53Y、L102Y;(iii)G33A、N53Q、L102Y;(iv)G33A、N53Y、L102Y;(v)M34L、N53Q、L102Y;(vi)M34L、N53Y、L103Y;(vii)G33A、N53Q、L102Y;(viii)G33A、N53Y、L102Y;及(ix)T28A、N53Q、L102Y,並視情況包含表5所列之一組構架突變。
在一具體實施例中,抗-DR5抗體包含以下突變:SEQIDNO:11序列中之G33A、N53Q、L102Y;及SEQ ID NO:13序列中之Q24S、K51A、R91A,且可額外包含至少一構架突變,例如,其可為SEQ ID NO:11的6、11、12、13及105殘基中之至少一者。
在一具體實施例中,抗-DR5抗體係選自由下列各物組成之群:Apomab 1.1、2.1、3.1、4.1、5.1、6.1、7.1、8.1、9.1、1.2、2.2、3.2、4.2、5.2、6.2、7.2、8.2、9.2、1.3、2.2、3.3、4.3、5.3、6.3、7.3、8.3及9.3。
在一具體實施例中,抗-DR5抗體係選自由下列各物組成之群:Apomab 5.2、5.3、6.2、6.3、7.2、7.3、8.3及25.3。
在另一具體實施例中,抗-DR5抗體為Apomab 7.3或Apomab 8.3,特定言之為Apomab 7.3。
在其它實施例中,抗-DR5抗體係可選自由下列各物組成之群之抗體片段:Fab、Fab'、F(ab')2
及Fv片段、雙功能抗體、單鏈抗體分子及自抗體片段形成的多特異性抗體。
在其它實施例中,該抗體可為單鏈抗體。
舉例而言,抗-DR5抗體可具有抗癌活性,諸如其可具有活化或刺激癌細胞內之細胞凋亡的能力。
例如,癌症(cancer)包括癌(carcinoma)、淋巴瘤、胚細胞瘤、肉瘤及白血病。
癌症之更特定實例包括鱗狀細胞癌、小細胞肺癌、非小細胞肺癌(NSCLC)、非霍奇金氏淋巴瘤、胚細胞瘤、腸胃癌、腎癌(renal cancer)、卵巢癌、肝癌、胃癌、膀胱癌、肝細胞瘤、乳癌、結腸癌、結腸直腸癌、胰腺癌、子宮內膜癌、唾液腺癌、腎癌(kidney cancer)、肝癌、前列腺癌、外陰癌、甲狀腺癌、肝癌及頭及頸癌。
癌症之特定組包括:肺癌(例如,非小細胞肺癌-NSCLC);或腺癌,其可為(例如)結腸直腸腺癌、胰腺癌或轉移性腺癌。亦包括血癌。
如同調節抗體依賴細胞毒性(ADCC)之抗體,嵌合抗體、人源化抗體及人類抗體亦在本文之範疇內。
在一較佳實施例中,抗-DR5抗體包含Apomab 7.3、或Apomab 8.3或其片段。
該等抗體可為二聚形式及/或(例如)與抗-人類IgG Fc區形成之交聯形式。
在其它實施例中,本文之抗-DR5抗體與抗原決定部位標籤序列融合。
在另一態樣中,本發明係關於包含融合於異源胺基酸序列之本文抗-DR5抗體或抗體片段之嵌合分子,例如,此處該異源胺基酸序列可包含免疫球蛋白序列,諸如抗-人類IgG Fc區。
在另一態樣中,本發明係關於編碼本文抗-DR5抗體或抗體片段之經分離核酸分子、包含該等核酸分子之載體、包含該等核酸分子之宿主細胞及產生本文抗體及抗體片段之方法。
本發明進一步係關於包含如上文所定義之抗-DR5抗體及載劑之組合物。
該載劑可為醫藥學上可接受之載劑,且該組合物可進一步包含其它抗癌劑及/或其它抗-DR5抗體。
在其它態樣中,本發明係關於誘導細胞凋亡之方法,其包含將哺乳動物癌細胞曝露於如上文所定義之抗-DR5抗體。
在其它態樣中,本發明係關於治療癌症之方法,其包含對哺乳動物受檢者投用有效量之如上文所定義的抗-DR5抗體。
在所有態樣中,該受檢者可為人類患者,且癌症可為任何癌症,包括上文所列之癌症。
在其它態樣中,本發明係關於包含一容器及該容器中所含之組合物的製造物品,其中該組合物包括本發明之抗-DR5抗體。該製造物品可進一步包含活體外或活體內使用抗-DR5抗體之說明書。在一較佳實施例中,該等說明書係關於癌症之治療。
本文中交替使用的術語"Apo-2配位體"、"Apo-2L"、"Apo2L"、"Apo-2配位體/TRAIL"及"TRAIL"係指包括圖1所示胺基酸序列(SEQ ID NO:1)之胺基酸殘基114-281、胺基酸殘基95-281、胺基酸殘基92-281、胺基酸殘基91-281、胺基酸殘基41-281、胺基酸殘基39-281、胺基酸殘基15-281或胺基酸殘基1-281之多肽序列以及上述序列之生物活性片段、缺失、插入及/或取代變異體。在一實施例中,該多肽序列包含圖1之殘基114-281(SEQ ID NO:1)。該多肽序列視情況包含圖1之殘基92-281或殘基91-281(SEQ ID NO:1)。Apo-2L多肽可藉由圖1所示之天然核苷酸序列編碼。編碼殘基Pro119(圖1;SEQ ID NO:2)之密碼子視情況可為"CCT"或"CCG"。該等片段或變異體視情況具有生物活性,且與上述序列中之任一者具有至少約80%之胺基酸序列一致性,或至少約90%之序列一致性,或至少95%、96%、97%、98%或99%之序列一致性。該定義涵蓋Apo-2配位體之取代變異體,其中其天然胺基酸中之至少一者由諸如丙胺酸殘基之另一胺基酸取代。該定義亦涵蓋自Apo-2配位體源分離或藉由重組及/或合成方法製備之天然序列Apo-2配位體。本發明之Apo-2配位體包括下列文獻中所揭示的稱作Apo-2配位體或TRAIL之多肽:1997年1月16日公開之WO97/01633;1997年7月17日公開之WO97/25428;1999年7月22日公開之WO99/36535;2001年1月4日公開之WO 01/00832;2002年2月7日公開之WO02/09755;2000年12月14日公開之WO 00/75191;及2000年2月29日頒與之美國專利第6,030,945號。該等術語之使用通常係指包括單體、二聚體、三聚體、六聚體或更高寡聚物形式多肽之Apo-2配位體形式。除非另外特定說明,否則Apo-2L序列中所涉及之胺基酸殘基的所有編號均使用根據圖1之編號(SEQ ID NO:1)。
"Apo-2配位體受體"包括此項技術中稱作"DR4"及"DR5"之受體,其聚核苷酸及多肽序列分別示於圖2A-2C(SEQ ID NOS 4及3)及3A-3C(SEQ ID NOS:6及5)中。Pan等人已描述稱為"DR4"之TNF受體家族成員(Pan等人,Science
,276
:111-113(1997);亦參看1998年7月30日公開之WO98/32856;1999年7月29日公開之WO 99/37684;2000年12月7日公開之WO 00/73349;2002年8月13日頒與之US 6,433,147;2002年10月8日頒與之US 6,461,823;及2002年1月29日頒與之US 6,342,383)。Sheridan等人,Science
,277
:818-821(1997)及Pan等人,Science
,277
:815-818(1997)描述Apo2L/TRAIL之另一受體(亦參看1998年11月19日公開之WO98/51793;1998年9月24日公開之WO98/41629)。此受體稱為DR5(該受體或亦已稱為Apo-2、TRAIL-R、TR6、Tango-63、hAPO8、TRICK2或KILLER;Screaton等人,Curr.Biol.
,7:693-696(1997);Walczak等人,EMBO J.
,16
:5386-5387(1997);Wu等人,Nature Genetics
,17
:141-143(1997);1998年8月20日公開之WO98/35986;1998年10月14日公開之EP870,827;1998年10月22日公開之WO98/46643;1999年1月21日公開之WO99/02653;1999年2月25日公開之WO99/09165;1999年3月11日公開之WO99/11791;2002年8月13日公開之US 2002/0072091;2001年12月7日公開之US 2002/0098550;2001年12月6日頒與之US 6,313,269;2001年8月2日公開之US 2001/0010924;2003年7月3日公開之US 2003/01255540;2002年10月31日公開之US 2002/0160446;2002年4月25日公開之US 2002/0048785;2003年5月27日頒與之US 6,569,642;2000年6月6日頒與之US 6,072,047;2003年11月4日頒與之US 6,642,358)。如上所述,Apo-2L之其它受體包括DcR1、DcR2及OPG(參看,Sheridan等人,上文
;Marsters等人,上文
;及Simonet等人,上文
)。本文所用之術語"Apo-2L受體"涵蓋天然序列受體及受體變異體。該等術語涵蓋在包括人類之多種哺乳動物中表現的Apo-2L受體。Apo-2L受體可如同在多種人類組織系中天然產生一樣內源表現,或可藉由重組或合成方法表現。"天然序列Apo-2L受體"包含與自天然獲得的Apo-2L受體具有相同胺基酸序列的多肽。因此,天然序列Apo-2L受體可具有來自包括人類之任何哺乳動物的天然產生Apo-2L受體之胺基酸序列。此天然序列Apo-2L受體可自天然分離或可藉由重組或合成方式產生。術語"天然序列Apo-2L受體"特定涵蓋該受體之天然產生截斷或分泌形式(例如,含有(例如)細胞外域序列之可溶形式)、天然產生變異體形式(例如,或經剪切形式)及天然產生等位基因變異體。受體變異體可包括天然序列Apo-2L受體的片段或缺失突突變體。圖3A-3C展示如1998年11月19日公開之WO 98/51793之人類DR5的411胺基酸序列。此項技術中已知人類DR5之轉錄剪切變異體。此DR5剪切變異體編碼圖4A-4C所示及如1998年8月20日公開之WO 98/35986之人類DR5的440胺基酸序列,連同其核苷酸序列(SEQ ID NOS:7及8)。
本文所用"死亡受體抗體"通常係指針對屬於腫瘤壞死因子受體總科並含有能夠發出細胞凋亡訊號之死亡域的受體之抗體,且該等抗體包括DR5抗體及DR4抗體。
廣泛意義上使用之"DR5受體抗體"、"DR5抗體"或"抗-DR5抗體"係指結合DR5受體之至少一種形式或其細胞外域之抗體。DR5抗體視情況融合或連接於異源序列或分子。異源序列較佳地允許或輔助該抗體以形成更高級或寡聚複合物。DR5抗體視情況結合DR5受體,但不結合任何額外Apo-2L受體(例如,DR4、DcR1或DcR2)或不與其發生交叉反應。該抗體視情況為DR5訊號發送活性之促效劑。術語"抗-DR5抗體"及其語法等同成分特定涵蓋實例中所述的抗體,其包括(但不限於)表11及12中所列之"Apomab"抗體,例如Apomab 1.1、2.1、3.1、4.1、5.1、6.1、7.1、8.1、9.1、1.2、2.2、3.2、4.2、5.2、6.2、7.2、8.2、9.2、1.3、2.2、3.3、4.3、5.3、6.3、7.3、8.3及9.3,較佳為Apomab 7.3。
本發明DR5抗體視情況以如BIAcore結合檢定所量測的約0.1 nM至約20 mM之濃度範圍結合DR5受體。本發明DR5抗體視情況展示如BIAcore結合檢定所量測的約0.6 nM至約18 mM之Ic 50值。
廣泛意義上使用之"DR4受體抗體"、"DR4抗體"或"抗-DR4抗體"係指結合DR4受體之至少一種形式或其細胞外域之抗體。DR4抗體視情況融合或連接於異源序列或分子。異源序列較佳地允許或輔助該抗體以形成更高級或寡聚複合物。DR4抗體視情況結合DR4受體,但不結合任何額外Apo-2L受體(例如,DR5、DcR1或DcR2)或不與其發生交叉反應。該抗體視情況為DR4訊號發送活性之促效劑。
DR4抗體視情況以如BIAcofe結合檢定所量測的約0.1 nM至約20 mM之濃度範圍結合DR4受體。本發明DR5抗體視情況展示如BIAcore結合檢定所量測的約0.6 nM至約18 mM之Ic 50值。
術語"促效劑"以最廣泛意義使用,且包括活體外、原位或活體內部分地或完全增強、刺激或活化Apo2L/TRAIL、DR4或DR5之一或多種生物活性之任何分子。Apo2L/TRAIL結合於DR4或DR5之此種生物活性的實例包括細胞凋亡及文獻中另外所報導者。促效劑可以直接或間接方式起作用。舉例而言,促效劑可作用為活體外、原位或活體內部分地或完全增強、刺激或活化DR4或DR5之一或多種生物活性,此係由於促效劑直接結合DR4或DR5,其引起受體活化或訊號轉導。促效劑亦可間接地作用為活體外、原位或活體內部分地或完全增強、刺激或活化DR4或DR5之一或多種生物活性,舉例而言,此係由於刺激另一效應分子,其然後引起DR4或DR5活化或訊號轉導。預期促效劑可充當強化分子,其間接作用以增強或增加DR4或DR5活化或活性。舉例而言,促效劑可增強哺乳動物之內源Apo-2L活性。舉例而言,此可藉由預配位DR4或DR5或藉由使個別配位體與DR4或DR5受體之複合物穩定(諸如,使形成於Apo-2L與DR4或DR5之間之自身複合物穩定)來達成。
術語"細胞外域"或"ECD"係指大體上無跨膜域及細胞質域之配位體或受體形式。可溶ECD通常應具有小於1%之此等跨膜域及細胞質域,且較佳地應具有小於0.5%之此等域。
本文所用術語"經抗原決定部位標籤"係指包含諸如Apo-2配位體或DR5受體之蛋白或其部分或結合此配位體或受體之抗體的融合於"標籤多肽"之嵌合多肽。標籤多肽具有足夠殘基以提供可製得抗體之抗原決定部位,然而其亦應足夠短以使其不干擾配位體或受體之活性。標籤多肽較佳地亦相當獨特,因此抗體大體上不與其它抗原決定部位發生交叉反應。適合之標籤多肽通常具有至少6個胺基酸殘基,且通常介於約8與約50個胺基酸殘基之間(較佳地,介於約10與約20個殘基之間)。
當用於描述本文所揭示之各種蛋白時,"經分離"意謂蛋白已自其天然環境之組分識別及分離及/或回收。其天然環境之污染組分係通常將干擾蛋白之診斷或治療用途的材料,且可包括酶、激素及其它蛋白或非蛋白溶質。在較佳實施例中,蛋白應純化至:(1)足以藉由使用旋轉杯測序儀來獲得N-末端或內部胺基酸序列的至少15個殘基之程度;或(2)使用庫馬斯(Coomassie)藍或較佳地銀染色在非還原或還原條件下藉由SDS-PAGE獲得同質性。經分離蛋白包括重組細胞中之原位蛋白,因為Apo-2配位體天然環境的至少一種組分應不存在。然而,經分離蛋白通常應藉由至少一個純化步驟來製備。
關於本文所識別序列的"胺基酸序列一致性百分比(%)"係定義為為了在有需要時達到最大序列一致性百分比而將序列及引入間隙對準,且不將任何保守取代視為序列一致性之部分,之後與所比較配位體、受體或抗體序列中的胺基酸殘基相同之胺基酸殘基在候選序列中的百分比。為了確定胺基酸一致性百分比而進行的對準可以此項技術中熟知之可確定用於量測對準之適當參數的各種方法來達成,該等方法包括達成所比較之全長序列的最大對準所需之指定算法。為了達成本文之目的,可使用序列比較電腦程式ALIGN-2來獲得胺基酸一致性百分比數值,該程式由Genentech,Inc.授權,且其原始碼已歸檔於US Copyright Office,Washington,DC,20559中之使用者文獻說明,其註冊號為美國版權註冊號第TXU510087號。ALIGN-2程式可經由Genentech,Inc.,South San Francisco,CA公開使用。所有序列比較參數均由ALIGN-2程式設定,且並未改變。然後,相對於較長序列來計算胺基酸序列一致性百分比。因此,即使較短序列完全包括於較長序列之內,序列一致性亦將小於100%。
術語"對照序列"係指特定宿主生物體內的可操作性連接編碼序列之表現所需的DNA序列。例如,適於原核生物之對照序列包括啟動子、視情況存在之操縱序列及核糖體結合位點。已知真核生物利用啟動子、聚腺苷酸化訊號及強化子。
當核酸與另一核酸序列功能相關時,其係經"可操作性連接"。舉例而言,若前序列或分泌引導子表現為參與多肽分泌之前蛋白,則其DNA可操作性連接該多肽之DNA;若啟動子或強化子影響序列轉錄,則其可操作性連接編碼序列;或若將核糖體結合位點定位以促進轉譯,則其可操作性連接編碼序列。"可操作性連接"通常意謂所連接之DNA序列係鄰近的且在分泌引導子之情形下,其鄰近且在閱讀階段。然而,強化子並不必鄰近。連接(linking)係藉由便利限制位點處之連接作用(ligation)來達成。若不存在此等位點,則根據習知實踐來使用合成寡核苷酸接頭或連接子。
本文所用術語"多元醇"廣泛係指多羥基醇化合物。舉例而言,多元醇可為任何水溶性聚(氧化烯)聚合物,且可具有直鏈或支鏈。較佳多元醇包括於一或多個羥基位置處經化學基團(諸如具有1至4個碳之烷基)取代之多元醇。多元醇通常為聚(烷二醇),較佳為聚(乙二醇)(PEG)。然而,熟習此項技術者應瞭解使用本文所述PEG結合技術可採用諸如聚(丙二醇)及聚乙二醇-聚丙二醇共聚物之其它多元醇。該等多元醇包括此項技術中熟知之多元醇及可公開使用之多元醇,諸如可購自諸如NektarCorporation之來源的多元醇。
根據最廣泛定義,本文所用術語"結合(conjugate)"意謂接合或連接在一起。當分子如同經接合來起作用或操作時,其均"經結合"。
雜交反應之"嚴格性"可易於藉由一般熟習此項技術者確定,且通常係取決於探針長度、洗滌溫度及鹽濃度之經驗計算。一般,較長探針需要較高溫度以用於適當退火,而較短探針需要較低溫度。雜交通常取決於當互補鏈存在於低於其熔解溫度之環境中時,變性DNA之再退火能力。探針與可雜交序列之間之所需一致性程度愈高,可使用之相對溫度愈高。因此,其遵循下列實情,即較高相對溫度應傾向於使反應條件更嚴格,而較低溫度略遜。雜交反應嚴格性之額外詳情及解釋見Ausubel等人,Current Protocols in Molecular Biology
,Wiley Interscience Publishers,(1995)。
如本文所定義,"嚴格條件"或"高嚴格性條件"係由以下要求來識別:(1)採用低離子強度及高溫以進行洗滌,例如在50℃下採用0.015 M氯化鈉/0.0015 M檸檬酸鈉/0.1%十二烷基硫酸鈉;(2)在雜交期間採用諸如甲醯胺之變性劑,例如在42℃下採用50%(v/v)甲醯胺與0.1%牛血清白蛋白/0.1% Ficoll/0.1%聚乙烯吡咯啶酮/pH 6.5之50 mM磷酸鈉緩衝液與750 mM氯化鈉、75 mM檸檬酸鈉;或(3)在42℃下採用50%甲醯胺、5×SSC(0.75 M NaCl、0.075 M檸檬酸鈉)、50 mM磷酸鈉(pH 6.8)、0.1%焦磷酸鈉、5×丹哈德溶液、經超音波處理之鮭魚精子DNA(50 μg/ml)、0.1% SDS及10%硫酸葡聚糖,並於42℃下在0.2×SSC(氯化鈉/檸檬酸鈉)中及於55℃下在50%甲醯胺中進行洗滌,接著在55℃下進行由含有EDTA之0.1×SSC組成的高嚴格性洗滌。
"適度嚴格條件"係如Sambrook等人,Molecular Cloning:A Laboratory Manual
,New York:Cold Spring Harbor Press,1989所述來識別,且包括使用較上文所述者具有更低嚴格性之洗滌溶液及雜交條件(例如,溫度、離子強度及SDS%)。適度嚴格條件之實例係在37℃下於包含20%甲醯胺、5×SSC(150 mM NaCl、15 mM檸檬酸三鈉)、50 mM磷酸鈉(pH 7.6)、5×丹哈德溶液、10%硫酸葡聚糖及20 mg/ml經變性剪切鮭魚精子DNA之溶液中培育隔夜,接著在約37-50℃下在1×SSC中洗滌過濾器。熟練技工應瞭解如何調節溫度、離子強度等,其為適應諸如探針長度及其類似物之因子所必需。
術語"胺基酸"("amino acid"及"amino acids")係指所有天然產生之L-α-胺基酸。此定義意謂包括正白胺酸、鳥胺酸及高半胱胺酸。胺基酸由單字母或三字母名稱來識別:Asp D 天冬胺酸 Ile I 異白胺酸Thr T 酥胺酸 Leu L 白胺酸Ser S 絲氨酸 Tyr Y 酪胺酸Glu E 麩胺酸 Phe F 苯丙胺酸Pro P 脯胺酸 His H 組胺酸Gly G 甘胺酸 Lys K 離胺酸Ala A 丙胺酸 Arg R 精胺酸Cys C 半胱胺酸 Trp W 色胺酸Val V 纈胺酸 Gln Q 麩醯胺酸Met M 甲硫胺酸 Asn N 天冬醯胺酸
圖中可採用某些其它單字母或三字母名稱來指代並識別序列中之給定位置處的兩種或兩種以上胺基酸或核苷酸。
術語"抗體"以最廣泛意義使用,且特定涵蓋單抗-DR5單株抗體(包括促效劑、拮抗劑及中和或阻斷抗體)及具有多抗原決定部位特異性之抗-DR5抗體組合物。如本文所用之"抗體"包括完整免疫球蛋白或抗體分子、多株抗體、多特異性抗體(意即,由至少兩個完整抗體形成之雙特異性抗體)及免疫球蛋白片段(諸如Fab、F(ab')2
或Fv),只要其展示本文所述的任何所需促效或拮抗特性。
抗體通常係展示與特定抗原具有結合特異性之蛋白或多肽。天然抗體通常為異源四聚糖蛋白,其包含兩個相同輕(L)鏈及兩個相同重(H)鏈。每個輕鏈通常藉由一共價二硫鍵連接於重鏈,而二硫鍵之數目在不同免疫球蛋白同型之重鏈之間有所不同。每個重鏈及輕鏈亦具有規則間隔之鏈內二硫橋。每個重鏈在一端具有可變域(VH
),其後存在多個恆定域。每個輕鏈在一端具有可變域(VL
),並在其另一端具有恆定域;輕鏈之恆定域與重鏈之第一恆定域對準,且輕鏈可變域與重鏈可變域對準。據信特定胺基酸殘基在輕與重鏈可變域之間形成界面[Chothia等人,J.Mol.Biol.
,186
:651-663(1985);Novotny及Haber,Proc.Natl.Acad.Sci.USA
,82
:4592-4596(1985)]。來自任何脊椎動物的抗體之輕鏈可基於其恆定域之胺基酸序列而指定為兩個明顯不同類型(稱為與λ)之一。取決於重鏈恆定域之胺基酸序列,免疫球蛋白可指定為不同類別。存在五種主要的免疫球蛋白類別:IgA、gD、IgE、IgG及IgM,且其中一些可進一步分為子類(同型),例如IgG-1、IgG-2、IgG-3及IgG-4、IgA-1及IgA-2。對應於不同免疫球蛋白類別之重鏈恆定域分別稱為α、δ、ζ、γ及μ。
"抗體片段"包含完整抗體之一部分,通常為完整抗體之抗原結合區或可變區。抗體片段之實例包括Fab、Fab'、F(ab')2及Fv片段、雙功能抗體、單鏈抗體分子及自抗體片段形成之多特異性抗體。
本文使用術語"可變"來描述可變域之某些部分,其序列在抗體之間有所不同,且用於每個特定抗體與其特定抗原之結合及特異性。然而,可變性在抗體之整個可變域中通常並未均勻分佈。其通常集中於輕鏈及重鏈可變域中之三個稱為互補判定區(CDR)或高變區之區段。可變域之更高度保守部分稱為構架(FR)。天然重鏈及輕鏈之可變域各包含四個FR區,其主要採用-片狀組態、由三個形成環連接之CDR連接,且在一些情形下形成-片狀結構之部分。每個鏈內之CDR藉由FR區緊密結合在一起且與其它鏈之CDR結合在一起,有助於形成抗體之抗原結合位點[參看Kabat,E.A.等人,Sequences of Proteins of Immunological Interest
,National Institutes of Health,Bethesda,MD(1987)]。恆定域並不直接涉及抗體與抗原之結合,但展示各種效應功能,諸如抗體參與抗體依賴細胞毒性。
如本文所用之術語"單株抗體"係指自一群大體上均勻抗體所獲得的抗體,意即,除了可微量存在之可能性天然產生突變以外,包含該群之個別抗體係相同的。單株抗體具有高度特異性,針對單一抗原位點。此外,與通常包括針對不同決定子(抗原決定部位)的不同抗體之習知(多株)抗體製劑相反,每個單株抗體針對抗原上之單一決定子。
本文單株抗體包括藉由剪切抗-DR5抗體(例如"人源化"抗體)之可變(包括高變)域與恆定域或輕鏈與重鏈或來自一物種的鏈與來自另一物種的鏈或與異源蛋白形成之融合(而不管起源物種或免疫球蛋白類別或子類名稱)而產生之嵌合、雜交及重組抗體及抗體片段(例如,Fab、F(ab')2
及Fv),只要其展示所需生物活性或特性。例如,參看美國專利第4,816,567號及Mage等人,Monoclonal Antibody Production Techniques and Applications
,第79-97頁(Marcel Dekker,Inc.:New York,1987)。
因此,修飾詞"單株"指示自大體上均勻抗體群獲得的抗體之特徵,且並不認為需要藉由任何特定方法來產生抗體。舉例而言,欲根據本發明使用之單株抗體可藉由首先由Kohler及Milstein,Nature
,256
:495(1975)所述的融合瘤方法製得,或可藉由諸如美國專利第4,816,567號中所述方法之重組DNA方法製得。舉例而言,"單株抗體"亦可自使用McCafferty等人,Nature
,348
:552-554(1990)所述方法產生的噬菌體庫分離。
非人類(例如,鼠科動物)抗體之"人源化"形式係含有源自非人類免疫球蛋白之最小序列的特定嵌合免疫球蛋白、免疫球蛋白鏈或其片段(例如,Fv、Fab、Fab'、F(ab')2
或抗體之其它抗原結合子序列)。一般地,人源化抗體為人類免疫球蛋白(接受體抗體),其中來自接受體互補判定區(CDR)之殘基由來自諸如具有所需特異性、親和力及容量的小鼠、大鼠或兔之非人類物種(供體抗體)的CDR之殘基替換。在一些實例中,人類免疫球蛋白之Fv構架區(FR)殘基由相應非人類殘基替換。此外,人源化抗體可包含在接受體抗體或所輸入CDR或構架序列中均未發現的殘基。進行此等修飾以進一步改進及優化抗體效能。一般而言,人源化抗體應包含至少一個及通常兩個可變域中之大體上所有可變域,其中CDR區之所有或大體上所有殘基對應於非人類免疫球蛋白之殘基,且FR區之所有或大體上所有殘基為人類免疫球蛋白一致序列之殘基。人源化抗體最佳亦應包含免疫球蛋白恆定區或域(Fc)之至少一部分,通常應包含人類免疫球蛋白之至少一部分。
"人類抗體"為下列抗體,其具有對應於藉由人類及/或已使用此項技術中已知用於產生人類抗體之任何技術或如本文所揭示而製得的抗體的胺基酸序列之胺基酸序列。人類抗體之此種定義包括包含至少一人類重鏈多肽或至少一人類輕鏈多肽之抗體,例如包含鼠科動物輕鏈及人類重鏈多肽之抗體。可使用此項技術中已知之各種技術來產生人類抗體。在一實施例中,人類抗體係選自噬菌體庫,其中該噬菌體庫表現人類抗體(Vaughan等人,Nature Biotechnology
,14:309-314(1996);Sheets等人,PNAS
,(USA)95:6157-6162(1998);Hoogenboom及Winter,J.Mol.Biol.
,227:381(1991);Marks等人,J.Mol.Biol.
,222:581(1991))。人類抗體亦可藉由將人類免疫球蛋白基因座引入例如小鼠之基因轉殖動物(其中內源免疫球蛋白基因已部分或完全失活)中而產生。攻毒之後,觀察到人類抗體產生,其在包括基因重排、組裝及抗體集合之所有方面均與人類中可見之情形密切類似。舉例而言,此方法係描述於美國專利第5,545,807號、第5,545,806號、第5,569,825號、第5,625,126號、第5,633,425號、第5,661,016號及以下科學出版物中:Marks等人,Bio/Technology
,10:779-783(1992);Lonberg等人,Nature,368:856-859(1994);Morrison,Nature
,368:812-13(1994);Fishwild等人,Nature Biotechnology
,14:845-51(1996);Neuberger,Nature Biotechnology
,14:826(1996);Lonberg及Huszar,Intern.Rev.Immunol.
,13:65-93(1995)。或者,可經由產生針對目標抗原之抗體的人類B淋巴細胞之永生化來製備人類抗體(該等B淋巴細胞可自個體回收或可能已於活體外免疫)。舉例而言,參看Cole等人,Monoclonal Antibodies and Cancer Therapy
,Alan R.Liss,第77頁(1985);Boerner等人,J.Immunol.
,147(1):86-95(1991);及美國專利第5,750,373號。
使用術語"Fc區"來定義免疫球蛋白重鏈之C-末端區,其可藉由完整抗體之木瓜蛋白酶消化而產生。Fc區可為天然序列Fc區或變異體Fc區。雖然免疫球蛋白重鏈之Fc區邊界可不同,但人類IgG重鏈Fc區通常界定為自約Cys226位置之胺基酸殘基或自約Pro230位置之胺基酸殘基延伸至Fc區之羰基末端(本文所使用之編號系統係根據Kabat等人,上文
)。免疫球蛋白之Fc區通常包含兩個恆定域(CH2域及CH3域)且視情況包含CH4域。
本文"Fc區鏈"意謂Fc區之兩個多肽鏈之一。
人類IgG Fc區之"CH2域"(亦稱為"Cγ2"域)通常自約位置231之胺基酸殘基延伸至約位置340之胺基酸殘基。CH2域之獨特之處在於其並不與另一域緊密配對。相反,兩個N-連接支鏈碳水化合物鏈插入完整天然IgG分子之兩個CH2域之間。據推測,該碳水化合物可為域-域配對而提供替換,且幫助穩定CH2域。Burton,Molec.Immunol.22:161-206(1985)。本文CH2域可為天然序列CH2域或變異體CH2域。
"CH3域"包含C-末端殘基延伸至Fc區內之CH2域(意即,自IgG的約位置341之胺基酸殘基延伸至約位置447之胺基酸殘基)。本文CH3區可為天然序列CH3域或變異體CH3域(例如,在一條鏈中具有所引入"突起"且在另一條鏈中具有對應的所引入"空腔"之CH3域;參看美國專利第5,821,333號)。可使用此等變異體CH3域來產生如本文所述的多特異性(例如雙特異性)抗體。
"鉸鏈區"通常界定為自人類IgG1之約Glu216或約Cys226延伸至約Pro230(Burton,Molec.Immunol.22:161-206(1985))。藉由將形成重鏈間S-S鍵之第一個及最後的半胱胺酸殘基置於相同位置可使其它IgG同型之鉸鏈區與IgG1序列對準。本文鉸鏈區可為天然序列鉸鏈區或變異體鉸鏈區。變異體鉸鏈區之兩個多肽鏈通常保留至少一個半胱胺酸殘基每個多肽鏈,因此變異體鉸鏈區之兩個多肽鏈可在兩條鏈之間形成二硫鍵。本文之較佳鉸鏈區為天然序列人類鉸鏈區,例如天然序列人類IgG1鉸鏈區。
"功能性Fc區"具有天然序列Fc區之至少一個"效應功能"。例示性"效應功能"包括:C1q結合;補體依賴細胞毒性(CDC);Fc受體結合;抗體依賴細胞調節之細胞毒性(ADCC);嗜菌作用;細胞表面受體之下調(例如,B細胞受體、BCR)等。此等效應功能通常需要Fc區結合一結合域(例如,抗體可變域),且可使用此項技術中已知的各種檢定來進行分析以評估抗體效應功能。
"天然序列Fc區"包含與天然發現Fc區之胺基酸序列一致之胺基酸序列。"變異體Fc區"包含由於至少一種胺基酸修飾而與天然序列Fc區的序列不同之胺基酸序列。與天然序列Fc區或親本多肽之Fc區相比,變異體Fc區較佳地具有至少一個胺基酸取代,例如約1至約10個胺基酸取代,且較佳地在天然序列Fc區或親本多肽Fc區中存在約1至約5個胺基酸取代。本文變異體Fc區較佳地應與天然序列Fc區及/或親本多肽Fc區具有至少約80%之序列一致性,且最佳與其具有至少約90%之序列一致性,更佳其具有至少約95%之序列一致性。
"抗體依賴細胞調節之細胞毒性"及"ADCC"係指細胞調節之反應,其中表現Fc受體(FcR)之非特異細胞毒性細胞(例如,天然殺手(NK)細胞、嗜中性白血球及巨噬細胞)允許在目標細胞上結合抗體且然後引起目標細胞溶解。調節ADCC、NK細胞之原生細胞僅表現Fc(RIII,然而單核細胞表現Fc(RI、Fc(RII及Fc(RIII。造血細胞中之FcR表現概述於Ravetch及Kinet,Annu.Rev.Immunol.
,9:457-92(1991)之第464頁表3中。為了評估所關注分子的ADCC活性,可進行活體外ADCC檢定,諸如美國專利第5,500,362號或第5,821,337號中所述的檢定。適用於此等檢定之效應細胞包括末梢血液單核細胞(PBMC)及天然殺手(NK)細胞。或者或另外,所關注分子之ADCC活性可於活體內進行評估,例如在動物模型內,諸如Clynes等人之PNAS(USA)
,95:652-656(1998)中所揭示的動物模型。
"人類效應細胞"係表現一或多個FcR並執行效應功能的白細胞。該等細胞較佳地至少表現Fc(RIII並執行ADCC效應功能。調節ADCC之人類白細胞之實例包括末梢血液單核細胞(PBMC)、天然殺手(NK)細胞、單核細胞、細胞毒性T細胞及嗜中性白血球;其中PBMC及NK細胞較佳。該等效應細胞可自其天然來源分離,例如自如本文所述的血液或PBMC分離。
使用術語"Fc受體"及"FcR"來描述結合抗體Fc區之受體。較佳FcR為天然序列人類FcR。此外,較佳FcR為結合IgG抗體(γ受體)者,並包括Fc(RI、Fc(RII及Fc(RIII子類之受體,其包括等位基因變異體及該等受體之替代性剪切形式。Fc(RII受體包括Fc(RIIA("活化受體")及Fc(RIIB("抑制受體"),該兩者具有類似胺基酸序列,主要區別在於其細胞質域。活化受體Fc(RIIA在其細胞質域中含有免疫受體酪胺酸基活化主結構(ITAM)。抑制受體Fc(RIIB在其細胞質域中含有免疫受體酪胺酸基抑制主結構(ITIM)(參看Daron,Annu.Rev.Immunol.
,15:203-234(1997))。FcR綜述於下列文獻中:Ravetch及Kinet,Annu.Rev.Immunol.
,9:457-92(1991);Capel等人,Immunomethods
,4:25-34(1994);及de Haas等人,J.Lab.Clin.Med.
,126:330-41(1995)。本文術語"FcR"涵蓋其它FcR,包括將來待識別之FcR。該術語亦包括負責向胎兒轉移母體IgG之新生受體FcRn(Guyer等人,J.Immunol.
,117:587(1976);及Kim等人,J.Immunol.
,24:249(1994))。
"補體依賴細胞毒性"及"CDC"係指補體存在下之目標溶解。補體活化路徑係藉由使補體系統之第一組分(Clq)結合與同源抗原複合之分子(例如,抗體)來起始。為了評估補體活化,可執行CDC檢定,例如,如Gazzano-Santoro等人,J.Immunol.Methods
,202:163(1996)所述。
"親和成熟"抗體係在一或多個CDR中具有一或多個變更之抗體,其導致相較於不具有該等變更之親本抗體,該抗體與抗原之親和力得到改良。較佳親和成熟抗體對目標抗原應具有奈莫耳或甚至皮莫耳之親和力。藉由此項技術中已知之程序來產生親和成熟抗體。Marks等人,Bio/Technology
,10:779-783(1992)描述藉由VH及VL域混編所達成之親和成熟。CDR及/或構架殘基之隨機突變誘發係由以下文獻描述:Barbas等人,Proc Nat.Acad.Sci
,USA 91:3809-3813(1994);Schier等人,Gene
,169:147-155(1995);Yelton等人,J.Immunol.
,155:1994-2004(1995);Jackson等人,J.Im munol.
,154(7):3310-9(1995);及Hawkins等人,J.Mol.Biol.
,226:889-896(1992)。
舉例而言,用於"抗體之免疫特異性結合"中之"免疫特異性"係指在抗體之抗原結合位點與由該抗體所識別之特異抗體之間發生抗原特異性結合交互作用。
用於達成本文目的之"生物活性"及"所需生物活性"意謂具有調節DR5活性及DR5活化作用之能力,舉例而言,其包括至少一種哺乳動物細胞類型中之活體內或活體外細胞凋亡(以促效或刺激方式或以拮抗或阻斷方式)、結合Apo-2配位體(TRAIL)或調節細胞內訊號發送路徑中之一或多個分子(諸如卡斯蛋白酶3、卡斯蛋白酶8、卡斯蛋白酶10或FADD)的活化作用。用於確定該等細胞內分子之活化作用之檢定在此項技術中已為吾人所知,舉例而言,參看Boldin等人,J.Biol.Chem.,270:7795-7798(1995);Peter,Cell Death Differ.,7:759-760(2000);Nagata,Cell,88:355-365(1998);Ashkenazi等人,Science,281:1305-1308(1999)。
本文所用之術語"促效劑"及"促效"係指或描述能夠直接或間接地大體上誘導、促進或增強DR5生物活性或活化作用之分子。"促效劑DR5抗體"視情況為與DR5之配位體具有可相當活性之抗體,稱作Apo-2配位體(TRAIL);或為能夠活化DR5受體之抗體,該抗體引起一或多個細胞內訊號發送路徑之活化,其可包括卡斯蛋白酶3、卡斯蛋白酶8、卡斯蛋白酶10或FADD之活化。
本文所用之術語"拮抗劑"及"拮抗"係指或描述能夠直接或間接地大體上抵消、減少或抑制DR5生物活性或DR5活化作用之分子。拮抗劑視情況為中和生物活性之分子,該活性由DR5活化作用或DR5與其配位體(諸如Apo-2配位體)之間之複合物形成引起。
術語"細胞凋亡"及"細胞凋亡活性"以廣泛意義使用,並指通常伴隨一或多種特徵性細胞改變之哺乳動物細胞死亡之有序或受控形式,該等特徵性細胞改變包括細胞質濃縮、質膜微絨毛喪失、核分段、染色體DNA降解或粒線體功能喪失。舉例而言,此活性可藉由細胞生存力檢定、膜聯蛋白V結合檢定、PARP檢定、FACS分析或DNA電泳來確定及量測,所有該等檢定均為此項技術中已知。細胞凋亡活性應視情況藉由膜聯蛋白V或PARP檢定來確定。
術語"癌症(cancer)"、"癌性(cancerous)"及"惡性"指或描述哺乳動物之病情,其特徵通常在於不規則細胞生長。癌症之實例包括(但不限於)癌,其包括腺癌、淋巴瘤、胚細胞瘤、黑素瘤、神經膠質瘤、肉瘤、骨髓瘤(諸如多發性骨髓瘤)及白血病。該等癌症之更特定實例包括鱗狀細胞癌、小細胞肺癌、非小細胞肺癌、肺腺癌、肺鱗狀細胞癌、腸胃癌、霍奇金氏及非霍奇金氏淋巴瘤、胰腺癌、神經膠母細胞瘤、宮頸癌、神經膠質瘤、卵巢癌、肝癌(諸如肝癌及肝細胞瘤)、膀胱癌、乳癌、結腸癌、結腸直腸癌、子宮內膜或子宮癌、唾液腺癌、腎癌(諸如腎細胞癌及威爾姆氏腫瘤)、基細胞癌、黑素瘤、前列腺癌、外陰癌、甲狀腺癌、睾丸癌、食道癌及各種類型之頭及頸癌。
術語"免疫相關疾病"意謂其中哺乳動物免疫系統之組分引起、調節或另外有助於哺乳動物病態之疾病。亦包括其中免疫反應之刺激或干涉對疾病擴展具有改善作用之疾病。本術語中包括自體免疫疫病、免疫調節發炎性疾病、非免疫調節發炎性疾病、傳染病及免疫缺乏疾病。可根據本發明治療之免疫相關及發炎性疾病(其中一些為免疫或T細胞調節)之實例包括:全身性紅斑性狼瘡、類風濕性關節炎、青少年慢性關節炎、脊椎關節病、全身性硬化症(硬皮病)、特發性發炎性肌病(皮肌炎、多肌炎)、謝格爾氏症候群、全身性血管炎、類肉瘤症、自體免疫溶血性貧血(免疫全血球減少症、陣發性睡眠性血紅素尿症)、自體免疫血小板減少症(特發性血小板減少性紫癜、免疫調節之血小板減少症)、甲狀腺炎(格雷氏疾病、橋本氏甲狀腺炎、青少年淋巴性甲狀腺炎、萎縮性甲狀腺炎)、糖尿病、免疫調節之腎病(絲球體腎炎、腎小管間質性腎炎)、中樞及周圍神經系統之脫髓鞘性疾病(諸如多發性硬化症、特發性脫髓鞘性多發性神經病或吉蘭-巴雷氏症候群(Guillain-Barrsyndrome)及慢性發炎性脫髓鞘性多發性神經病)、肝膽疾病(諸如傳染性肝炎(肝炎A、B、C、D、E及其它非趨肝性病毒)、自體免疫慢性活性肝炎、原發性膽汁性肝硬化、肉芽腫性肝炎及硬化性膽道炎)、發炎性及纖維化肺病(諸如發炎性腸病(潰瘍性結腸炎:克羅恩氏病)、麩質敏感性腸病及惠普爾氏病)、自體免疫或免疫調節之皮膚病(包括大皰性皮膚病、多形性紅斑及接觸性皮炎、牛皮癬)、過敏性疾病(諸如哮喘、過敏性鼻炎、異位性皮炎、食物超敏及風疹)、肺之免疫疾病(諸如嗜酸性球性肺炎、特發性肺纖維化及過敏性肺炎)、移植相關疾病(包括移植排斥及移植物抗宿主疾病)。傳染病包括AIDS(HIV感染)、肝炎A、B、C、D及E、細菌感染、真菌感染、原生動物感染及寄生蟲感染。
本文在廣泛、普通意義上使用"自體免疫疾病"以指其中正常或健康組織之損壞由個體哺乳動物對其自身組織成分之體液或細胞免疫反應引起的病症或病情。實例包括(但不限於)紅斑性狼瘡、甲狀腺炎、類風濕性關節炎、牛皮癬、多發性硬化症、自體免疫糖尿病及發炎性腸病(IBD)。
本文使用之"生長抑制劑"係指活體外及/或活體內抑制細胞生長之化合物或組合物。因此,生長抑制劑可為顯著減少S階段中之細胞百分比者。生長抑制劑之實例包括阻斷細胞週期進程之藥劑(在除了S階段之外的位置),諸如誘導G1停滯及M階段停滯之藥劑。經典M階段阻斷劑包括長春花屬(長春新鹼(vincristine)及長春鹼(vinblastine))、TAXOL及拓撲異構酶(topo)II抑制劑,諸如小紅莓(doxorubicin)、表柔比星(epirubicin)、道諾黴素(daunorubicin)、足葉乙甙(etoposide)及博萊黴素(bleomycin)。停滯G1之藥劑亦溢出至S階段停滯內,例如DNA烷基化劑,諸如泰莫西芬(tamoxifen)、強的松(prednisone)、氮烯唑胺(dacarbazine)、氮芥(mechlorethamine)、西伯拉丁(cisplatin)、甲胺喋呤(methotrexate)、5-氟尿嘧啶及阿糖胞苷(ara-C)。其它資訊可見於The Molecular Basis of Cancer
,Mendelsohn及Israel編輯,第1章,Murakami等人,題為"Cell cycle regulation,oncogenes,and antineoplastic drugs"(WB Saunders:Philadelphia,1995),尤其第13頁。
如本申請案所用之術語"前藥"係指相較於親本藥物對癌細胞具有較小細胞毒性且能夠經酶化活化或轉化成更具活性親本形式之醫藥活性物質的前驅物或衍生物形式。例如,參看Wilman,"Prodrugs in Cancer Chemotherapy",Biochemical Society Transactions,14,第375-382頁,615t h
Meeting Belfast(1986);及Stella等人,"Prodrugs:A Chemical Approach to Targeted Drug Delivery",Directed Drug Delivery,Borchardt等人(編輯),第247-267頁,Humana Press(1985)。本發明之前藥包括(但不限於)含磷酸鹽之前藥、含硫代磷酸鹽的前藥、含硫酸鹽的前藥、含肽之前藥、經D-胺基酸修飾的前藥、經糖基化前藥、含β-內醯胺之前藥、視情況經取代的含苯氧基乙醯胺之前藥或視情況經取代的含苯乙醯胺之前藥、5-氟胞嘧啶及其它可轉化成更具活性之無細胞毒性藥物的5-氟尿苷前藥。可衍生成用於本發明的前藥形式之細胞毒性藥物的實例包括(但不限於)下文所述之化學治療劑。
如本文所用之術語"細胞毒性劑"係指抑制或阻止細胞功能及/或引起細胞破壞之物質。該術語係用於包括:放射性同位素(例如,At2 1 1
、I1 3 1
、I1 2 5
、Y9 0
、Re1 8 6
、Re1 8 8
、Sm1 5 3
、Bi2 1 2
、P3 2
及Lu之放射性同位素);化學治療劑;及毒素,諸如細菌、真菌、植物或動物來源之小分子毒素或酶化活性毒素,包括其片段及/或變異體。
"化學治療劑"係適用於治療類似癌症的病情之化合物。化學治療劑之實例包括:烷基化劑,諸如噻替派及環磷醯胺(CYTOXAN);磺酸烷酯,諸如白消安、英丙舒凡及哌泊舒凡;伸乙亞胺(aziridine),諸如苯幷多巴(benzodopa)、卡波醌、美妥替哌(meturedopa)及烏瑞替派(uredopa);伸乙基亞胺(ethylenimine)及甲基三聚氰胺,包括六甲三聚氰胺(altretamine)、曲他胺(triethylenemelamine)、三伸乙基磷醯胺、三伸乙基硫磷醯胺及三羥甲基三聚氰胺;多聚乙醯(尤其布拉他辛(bullatacin)及布拉他辛酮);喜樹鹼(包括合成性類似物拓朴替康);包斯他汀(bryostatin);考斯他汀(callystatin);CC-1065(包括其阿多來新、卡折來新及比折來新合成性類似物);隱藻素(cryptophycin)(特定為隱藻素1及隱藻素8);海兔毒肽(dolastatin);多卡黴素(duocarmycin)(包括合成性類似物K W-2189及CBI-TMI);艾榴素;全能花鹼(pancratistatin);肉質網囊(sarcodictyin);海綿毒素(spongistatin);氮芥,諸如苯丁酸氮芥、萘氮芥、氯磷醯胺、雌莫司汀、異環磷醯胺、二氯甲二乙胺、鹽酸氧化二氯甲二乙胺、美法侖、新恩比興(novembichin)、膽甾醇對苯乙酸氮芥(phenesterine)、潑尼莫司汀、曲磷胺、尿嘧啶氮芥;亞硝基脲,諸如亞硝基脲氮芥、吡葡亞硝脲、福莫司汀、洛莫司汀、尼莫司汀及雷莫司汀(ranimnustine);抗生素,諸如烯二炔抗生素(例如卡奇黴素,尤其卡奇黴素(1I
及卡奇黴素2I 1
(舉例而言,見Agnew,Chem Intl.Ed.Engl.
,33:183-186(1994));戴納黴素(dynemicin),包括戴納黴素A;埃斯佩拉黴素(esperamicin);以及新制癌菌素發色團及相關色蛋白烯二炔抗生素發色團)、艾克拉西諾黴素(aclacinomysin)、放線菌素、歐司拉黴素(authramycin)、氮雜絲胺酸(azaserine)、博萊黴素、放線菌素C、卡拉比興(carabicin)、洋紅黴素、嗜癌菌素、色黴素(chromomycinis)、放線菌素D、道諾黴素、地托比星、6-重氮基-5-酮基-L-正白胺酸、小紅莓(包括嗎啉基-小紅莓、氰基嗎啉基-小紅莓、2-吡咯啉基-小紅莓及脫氧小紅莓)、表柔比星、依索比星、黃膽素、麻西羅黴素(marcellomycin)、絲裂黴素、黴酚酸、諾加黴素、橄欖黴素、戊糖苷、波非若黴素(potfiromycin)、嘌呤黴素、三鐵阿黴素(quelamycin)、羅多比星、鏈黑菌素、鏈脲黴素、殺結核菌素、烏苯美司、淨司他汀、佐柔比星;抗代謝物,諸如甲胺喋呤及5-氟尿嘧啶(5-FU);葉酸類似物,諸如迪諾特寧、甲胺喋呤、蝶羅呤、三甲曲沙;嘌呤類似物,諸如氟達拉濱、6-巰基嘌呤、塞米普林(thiamiprine)、硫鳥嘌呤;嘧啶類似物,安西他濱、阿紮胞苷、6-氮尿苷、卡莫氟、阿糖胞苷、二脫氧尿苷、去氧氟尿苷、依諾他賓、氟脫氧尿苷、5-FU;雄激素,諸如卡普睾酮、丙酸甲雄烷醇酮、環硫雄醇、環戊縮環硫雄烷、睾內酯;抗腎上腺素,諸如胺魯米特、米托坦、曲洛司坦;葉酸補償物,諸如弗洛林酸(frolinic acid);乙葡醛內酯;醛磷醯胺糖苷;胺基-γ-酮戊酸;安吖啶;貝斯塔布西(bestrabucil);比生群;依達挫薩(edatraxate);德弗法明(defofamine);脫羰秋水仙鹼;地吖醌;艾佛尼辛(elfornithine);乙酸依利乙銨;艾普塞隆;依託格魯;硝酸鎵;羥基脲;蘑菇多醣;隆尼達明(lonidamine);美登素類化合物,諸如美登素及安絲菌素;丙脒腙;米托蒽醌;莫哌達醇(mopidamol);奈川克林(nitracrine);戊糖苷;芬納美(phenamet);吡柔比星;足葉草酸(podophyllinic acid);2-乙基醯肼;丙卡巴肼;PSK;雷佐生;根膽酸;西索菲蘭;鍺螺胺;細交鏈孢菌酮酸;三亞胺醌;2,2',2"-三氯三乙胺;單端孢黴烯(尤其T-2毒素、維拉可林A(verracurin A)、桿孢菌素A及蛇形菌素(anguidine));烏拉坦;長春地辛;達卡巴嗪;甘露莫司汀;二溴甘露糖醇;二溴衛矛醇;哌泊溴烷;加西托辛(gacytosine);阿拉伯糖苷("Ara-C");環磷醯胺;噻替派;紫杉類藥物(taxoids),例如紫杉醇(TAXOL,Bristol-Myers Squibb Oncology,Princeton,NJ)及多烯紫杉醇(TAXOTERE,Rhne-Poulenc Rorer,Antony,France);瘤可寧(chlorambucil);吉西他濱;6-硫鳥嘌呤;巰基嘌呤;甲胺喋呤;鉑類似物,諸如順鉑及卡波鉑;長春鹼;鉑;依託泊苷(VP-16);異環磷醯胺;絲裂黴素C;米托蒽醌;長春新鹼;長春瑞濱;諾維本;能滅瘤(novantrone);替尼泊苷;道諾黴素;胺基喋呤;截瘤達(xeloda);伊班膦酸鹽;CPT-11;拓撲異構酶抑制劑RFS 2000;二氟甲基鳥胺酸(DMFO);視黃酸;卡培他濱;及以上任何物質的醫藥學上可接受之鹽、酸或衍生物。此定義中亦包括充當調節或抑制腫瘤上之激素活性的抗激素劑,諸如下列各物:抗雌激素,其包括(例如)塔莫西芬(tamoxifen)、雷洛昔芬(raloxifene)、芳香酶抑制性4(5)-咪唑、4-羥基塔莫西芬、曲沃昔芬(trioxifene)、雷洛昔芬(keoxifene)、LY117018、奧那司酮(onapristone)及托瑞米芬(toremifene)(Fareston);及抗雄激素,諸如氟他胺、尼魯米特、比卡魯胺、亮丙瑞林(leuprolide)及戈舍瑞林(goserelin);及以上任何物質的醫藥學上可接受之鹽、酸或衍生物。
術語"細胞激素"係由一個細胞群所釋放之充當細胞內介體作用於另一細胞的蛋白之通用術語。該等細胞激素之實例為淋巴因子、單核因子及傳統多肽激素。細胞激素包括生長激素,諸如人類生長激素、N-甲硫胺醯基人類生長激素及牛生長激素;副甲狀腺激素;甲狀腺素;胰島素;胰島素原;鬆弛素;鬆弛素原;糖蛋白激素,諸如促濾泡激素(FSH)、促甲狀腺激素(TSH)及促黃體激素(LH);肝生長因子;纖維原細胞生長因子;促乳素;胎盤促乳素;腫瘤壞死因子-α及-β;苗勒氏抑制物質;小鼠促性腺激素相關肽;抑制素;活化素;血管內皮生長因子;整合素;血小板生成素(TPO);神經生長因子,諸如NGF-α;血小板生長因子;轉化生長因子(TGF),諸如TGF-α及TGF-β;類胰島素生長因子-I及-II;紅細胞生成素(EPO);骨誘導因子;干擾素,諸如干擾素-α、-β及-γ;群落刺激因子(CSF),諸如巨噬細胞-CSF(M-CSF);粒細胞-巨噬細胞-CSF(GM-CSF);及粒細胞-CSF(G-CSF);介白素(IL),諸如IL-1、IL-α、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12;腫瘤壞死因子,諸如TNF-α或TNF-β;及其它包括LIF及套組配位體(KL)之多肽因子。如本文所用,術語細胞激素包括來自天然來源或來自重組細胞培養基及天然序列細胞激素之生物活性等同物的蛋白。
如本文所用之術語"治療"及"療法"係指治癒性療法及預防性療法。
術語"治療有效劑量"指有效治療哺乳動物疾病或病症之藥物量。對於癌症之情形,治療有效劑量之藥物可減少癌細胞之數目;減少腫瘤尺寸;抑制(意即,以一定程度減慢且較佳地停止)癌細胞擴散至周圍器官中;抑制(意即,以一定程度減慢且較佳地停止)腫瘤轉移;以一定程度抑制腫瘤生長;及/或以一定程度緩解與病症相關的症狀中之一或多者。直至藥物可阻止現有癌細胞生長及/或將其殺死的程度,其可具有細胞抑制性及/或細胞毒性。舉例而言,可藉由評估腫瘤負荷或體積、疾病擴展時間(TTP)及/或藉由確定反應率(RR)來量測癌症療法之活體內功效。
如本文所用之術語"哺乳動物"係指任何分類為哺乳動物之哺乳動物,其包括人類、高級靈長類動物、母牛、馬、狗及貓。在本發明之一較佳實施例中,哺乳動物為人類。
術語"客觀反應"係定義為對受檢者治療之完全或部分反應,如使用Response Evaluation Criteria in Solid Tumors(RECIST)(J.Nat.Cancer Inst.92(3):205-216(2000))所確定。
本文所用之術語"反應持續時間"係指自初始完全或部分反應時間持續至疾病擴展或死亡之時間。
本文所用之術語"無擴展存活"係指自治療第一天持續至疾病擴展或死亡之時間,而無論哪個首先發生。
使用術語"完全退化(CR)"來指示三個連續量測使得腫瘤體積13.5 mm3
。
術語"部分退化(PR)"指示三個連續量測使得腫瘤體積其第一天體積之50%,且該等量測中之一或多個者使得腫瘤體積13.5 mm3
。
在本發明之一實施例中,提供DR5抗體。例示性抗體包括多株、單株、人源化、雙特異性及複共軛對配合抗體。該等抗體可為促效劑、拮抗劑或阻斷抗體。
本發明之抗體可包含多株抗體。熟練技工已知製備多株抗體之方法。舉例而言,藉由一或多次注射免疫劑且必要時藉由注射佐劑可自哺乳動物中獲得多株抗體。免疫劑及/或佐劑通常應藉由多次皮下注射或腹膜內注射而注射至哺乳動物中。免疫劑可包括DR5多肽(或DR5 ECD)或其融合蛋白。將免疫劑結合於已知在經免疫哺乳動物中具有免疫原性之蛋白可能係有用的。該等免疫原性蛋白之實例包括(但不限於)鑰孔血藍蛋白、血清白蛋白、牛甲狀腺球蛋白及大豆胰島素抑制劑。可採用的佐劑之實例包括弗氏完全佐劑及MPL-TDM佐劑(單磷醯脂A、合成海藻糖二紫菫黴菌酸酯(dicorynomycolate))。可藉由熟習此項技術者來選擇免疫實驗程序,而無不適當之實驗。接著,哺乳動物可能流血,且檢定血清以用於DR5抗體力價。必要時可向哺乳動物注射促升劑量,直至抗體力價增加或達到穩定。
或者,本發明之抗體可為單株抗體。可使用融合瘤方法製備單株抗體,諸如Kohler及Milstein,Nature
,256
:495(1975)所述之方法。在融合瘤方法中,小鼠、倉鼠或其它適當的宿主動物通常用免疫劑免疫以引出產生或能夠產生應特異結合該免疫劑之抗體之淋巴細胞。或者,該等淋巴細胞可於活體外免疫。
該免疫劑通常應包括DR5多肽(DR5 ECD)或其融合蛋白,諸如DR5 ECD-IgG融合蛋白。該免疫劑或可包含具有一或多個參與Apo-2L與DR5的結合之胺基酸的DR5之片段或部分。在一較佳實施例中,免疫劑包含融合於IgG序列之DR5的細胞外域序列。
通常,若需要人類來源之細胞,則使用末梢血液淋巴細胞("PBL");或若需要非人類哺乳動物來源,則使用脾細胞或淋巴結細胞。接著,使用諸如聚乙二醇之合適融合劑以永生化細胞株來融合該等淋巴細胞以形成融合瘤細胞[Goding,Monoclonal Antibodies:Principles and Practice
,Academic Press(1986),第59-103頁]。永生化細胞株通常為經轉化之哺乳動物細胞,尤其為齧齒動物、牛及人類來源之骨髓瘤細胞。通常採用大鼠或小鼠骨髓瘤細胞株。可在較佳地含有一或多種抑制未經融合、永生化細胞的生長或存活之物質的合適培養基中培養融合瘤細胞。舉例而言,若親本細胞缺乏酶次黃嘌呤鳥嘌呤磷酸核糖轉移酶(HGPRT或HPRT),則融合瘤之培養基通常應包括次黃嘌呤、胺基蝶呤及胸苷("HAT培養基"),該等物質阻止HGPRT缺失細胞之生長。
較佳之永生化細胞株係有效融合、藉由所選抗體產生細胞來支持抗體之穩定高水平表現及對諸如HAT培養基之培養基敏感的細胞株。更佳之永生化細胞株為鼠科動物骨髓瘤系,例如,其可獲自the Salk Institute Cell Distribution Center,San Diego,California and the American Type Culture Collection,Manassas,Virginia。此種鼠科動物骨髓瘤細胞株之實例為P3X63Ag8U.1,(ATCC CRL 1580)。亦已描述人類骨髓瘤及小鼠-人類雜交骨髓瘤細胞株以用於產生人類單株抗體[Kozbor,J.Immunol.
,133
:3001(1984);Brodeur等人,Monoclonal Antibody Production Techniques and Applications
,Marcel Dekker,Inc.,New York(1987),第51-63頁]。
接著,可檢定其中培養融合瘤細胞之培養基以確定針對DR5之單株抗體的存在。由融合瘤細胞產生的單株抗體之結合特異性較佳藉由免疫沉澱或藉由諸如放射免疫檢定(RIA)或酶聯免疫吸附檢定(ELISA)之活體外結合檢定來確定。該等技術及檢定在此項技術中已為吾人所知。舉例而言,單株抗體之結合親和力可藉由Munson及Pollard,Anal.Biochem.
,107
:220(1980)之Scatchard分析來確定。
在識別出所需融合瘤細胞之後,可藉由以標準方法限制稀釋程序及生長來次選殖該等純系[Goding,上文
]。例如,適於達成此目的之培養基包括杜貝卡氏經改良依格培養基或RPMI-1640培養基。或者,融合瘤細胞可如同哺乳動物中之腹水於活體內生長。
由次純系分泌之單株抗體可藉由諸如蛋白A-瓊脂糖凝膠、羥基磷灰石層析、凝膠電泳、透析或親和層析之習知免疫球蛋白純化程序而自培養基或腹水流體中分離或純化。
亦可藉由重組DNA方法製得單株抗體,諸如美國專利第4,816,567號所述之方法。使用習知程序(例如,藉由使用能夠特異結合編碼單株抗體的重鏈及輕鏈之基因的寡核苷酸探針)易於分離編碼單株抗體之DNA並對其測序。融合瘤細胞充當該DNA之較佳來源。一旦經分離,則可將DNA置於表現載體中,該表現載體接著轉染至諸如另外不產生免疫球蛋白之大腸桿菌(E.coli)細胞、猿COS細胞、中國倉鼠卵巢(CHO)細胞或骨髓瘤細胞之宿主細胞中以獲得重組宿主細胞內之單株抗體的合成。該DNA亦可經修飾,例如,藉由以人類重鏈及輕鏈恆定域之編碼序列替代同源鼠科動物序列(Morrison等人,Proc.Nat.Acad.Sci.81
,6851(1984))或藉由使非免疫球蛋白多肽之編碼序列中的所有或部分共價連接免疫球蛋白編碼序列來進行修飾。以此方式來製備與本文抗-DR5單株抗體具有結合特異性之"嵌合"或"雜交"抗體。
通常,由該等非免疫球蛋白多肽來替代本發明抗體之恆定域,或由其來替代本發明抗體之一抗原結合位點的可變域以創造包含對DR5具有特異性之一抗原結合位點及對另一抗原具有特異性之另一抗原結合位點的嵌合二價抗體。
使用包括涉及交聯劑的方法之合成蛋白化學中已知之方法亦可於活體外
製備嵌合或雜交抗體。舉例而言,使用二硫交換反應或藉由形成硫醚鍵可建構免疫毒素。適於達成此目的之藥劑的實例包括亞胺基硫醇鹽及4-巰基丁醯亞胺甲酯。
亦可產生單鏈Fv片段,諸如Iliades等人之FEBS Letters
,409
:437-441(1997)中所述。使用各種連接子來偶合該等單鍵片段係描述於Kortt等人之Protein Engineering
,10
:423-433(1997)中。用於重組體產生及抗體操縱之各種技術在此項技術中已為吾人所熟知。下文將更詳細地描述通常由熟練技工採用的該等技術之說明性實例。
人源化抗體通常具有自非人類來源引入其中的一或多個胺基酸殘基。該等非人類胺基酸殘基通常稱為"輸入"殘基,其通常來自"輸入"可變域。人源化基本上可根據Winter及其合作者之方法來執行[Jones等人,Nature
,321
:522-525(1986);Riechmann等人,Nature
,332
:323-327(1988);Verhoeyen等人,Science
,239
:1534-1536(1988)],其係藉由以齧齒動物CDR或CDR序列來替代人類抗體之相應序列來實現。
因此,該等"人源化"抗體為嵌合抗體,其中大體上尚不完整之人類可變域已由來自非人類物種之相應序列替代。實際上,人源化抗體通常係其中一些CDR殘基及可能地一些FR殘基由來自齧齒動物抗體中的類似位點之殘基替代之人類抗體。
使抗體人源化並與抗原保持高親和力且具有其它有利生物特性係重要的。為了達到此目標,根據一較佳方法,藉由使用親本與人源化序列之三維模型分析親本序列與各種概念性人源化產物之方法來製備人源化抗體。三維免疫球蛋白模型通常可購得且為熟習此項技術者所熟習。有說明並顯示所選候選免疫球蛋白序列之可能三維構型結構之電腦程式可資利用。檢查該等呈現可分析殘基在候選免疫球蛋白序列之功能執行中之可能性作用,意即分析影響候選免疫球蛋白結合其抗原的能力之殘基。以此方式可自一致及輸入序列選擇並組合FR殘基,以致達到所需抗體特徵,諸如與目標抗原之經增加的親和力。一般而言,CDR殘基係直接並大體上最涉及影響抗原結合。
人類單株抗體可藉由融合瘤方法製得。已描述用於產生人類單株抗體之人類骨髓瘤及小鼠-人類雜交骨髓瘤細胞株,例如,Kozbor,J.Immunol.133
,3001(1984);及Brodeur等人,Monoclonal Antibody Production Techniques and Applications
,第51-63頁(Marcel Dekker,Inc.,New York,1987)。
目前可產生在免疫之後能夠在無內源免疫球蛋白產生情形下產生人類抗體集合的基因轉殖動物(例如,小鼠)。舉例而言,已描述嵌合及生殖系突變體小鼠中之抗體重鏈結合區(JH
)基因的純合缺失導致完全抑制內源抗體產生。在該等生殖系突變體小鼠中轉移人類生殖系免疫球蛋白基因陣列將導致抗原攻毒後隨即產生人類抗體。例如,參看Jakobovits等人,Proc.Natl.Acad.Sci.USA 90
,2551-255(1993);Jakobovits等人,Nature 362
,255-258(1993)。
Mendez等人(Nature Genetics 15:146-156[1997])已進一步改良該技術,且已產生稱為"Xenomouse II"之基因轉殖小鼠系,當以抗原攻毒時,其產生高親和力之完全人類抗體。此係藉由將百萬鹼基人類重鏈及輕鏈基因座生殖系整合至如上所述缺失內源JH
區段之小鼠中來達成。Xenomouse II包含含有約66個VH
基因、完全DH
及JH
區及三個不同恆定區(μ、δ及χ)之1,020 kb人類重鏈基因座,且亦包含含有32 V基因、J區段及C基因之800 kb人類基因座。該等小鼠中產生的抗體緊密組裝,在包括基因重排、組裝及集合之人類所有方面均可見。歸因於阻止鼠科動物基因座中的基因重排之內源JH
區段的缺失,人類抗體較佳地在內源抗體中表現。
或者,可使用噬菌體呈現技術(McCafferty等人,Nature 348
,552-553[1990])以於活體外自未經免疫之供體的免疫球蛋白可變(V)域基因集合產生人類抗體及抗體片段。根據此技術,抗體V域基因於框內選殖至纖維狀噬菌體(諸如M13或fd)的主要或次要外殼蛋白基因內,且呈現為噬菌體粒子表面上之功能性抗體片段。因為纖維狀粒子含有噬菌體基因組之單鏈DNA複本,基於抗體功能性特性之選擇亦引起編碼展示該等特性之抗體的基因之選擇。因此,噬菌體模擬B細胞之一些特性。可以多種格式執行噬菌體呈現;舉例而言,其概述見Johnson,Kevin S.及Chiswell,David J.,Current Opinion in Structural Biology 3
,564-571(1993)。V基因區段之一些來源可用於噬菌體呈現。Clackson等人,Nature 352
,624-628(1991)自衍生自經免疫小鼠之脾的V基因之小隨機組合庫分離出抗噁唑酮抗體之不同陣列。可建構來自未經免疫人類供體之V基因集合,且基本上可根據Marks等人,J.Mol.Biol.222
,581-597(1991)或Griffith等人,EMBO J.12
,725-734(1993)所述的技術來分離抗體與不同陣列之抗原(包括自身抗原)。在天然免疫反應中,抗體基因積累高比率突變(體細胞超突變)。所引入的一些改變應給予較高親和力,且呈現高親和力表面免疫球蛋白之B細胞較佳地在隨後抗原攻毒期間內經複製及分化。此天然過程可藉由採用稱作"鏈混編"之技術來模擬(Marks等人,Bio/Technol.10
,779-783[1992])。在此方法中,藉由噬菌體呈現所獲得的"原生"人類抗體之親和力繼而可藉由以獲自未經免疫供體之V域基因的天然產生變異體(集合)之集合來替代重及輕鏈V區基因而得以改良。此技術允許產生具有nM範圍內的親和力之抗體及抗體片段。Waterhouse等人,Nucl.Acids Res.21
,2265-2266(1993)已描述製得極大噬菌體抗體集合(亦稱作"所有庫之母")之策略。亦可使用基因混編以自齧齒動物抗體衍生人類抗體,其中人類抗體與起始齧齒動物抗體具有類似親和力及特異性。根據此亦稱為"抗原決定部位印記"之方法,以人類V域基因之集合來替代藉由噬菌體呈現技術所獲得之齧齒動物抗體的重或輕鏈V域基因,以產生齧齒動物-人類嵌合體。抗原上之選擇引起能夠恢復功能性抗原結合位點之人類可變域之分離,意即抗原決定部位支配(印記)夥伴之選擇。當重複該過程以替代剩餘齧齒動物V域時,獲得人類抗體(參看PCT專利申請案WO 93/06213,1993年4月1日公開)。與藉由CDR移植進行之齧齒動物抗體傳統人源化不同,此技術提供不具有齧齒動物來源之構架或CDR殘基之完全人類抗體。
如下文詳細討論,本發明之抗體可視情況包含單體抗體、二聚體抗體及多價形式抗體。熟習此項技術者可藉由此項技術中已知之方法及使用本文DR5抗體來建構該等二聚體或多價形式。製備單價抗體之方法在此項技術中亦已為吾人所熟知。舉例而言,一方法涉及免疫球蛋白輕鏈及經修飾重鏈之重組表現。通常在Fc區中之任何點截斷重鏈以阻止重鏈交聯。或者,相關半胱胺酸殘基係經另一胺基酸殘基替代或缺失以阻止交聯。
雙特異性抗體係與至少兩個不同抗原具有結合特異性之單株(較佳為人類或人源化)抗體。在此情形下,結合特異性之一係關於DR5受體,另一者係關於任何其它抗原,且較佳係關於另一受體或受體次單位。舉例而言,特異結合DR5受體及另一細胞凋亡/訊號發送受體之雙特異性抗體在本發明之範疇內。
製得雙特異性抗體之方法在此項技術中已為吾人所知。重組產生雙特異性抗體傳統上係基於兩個免疫球蛋白重鏈與輕鏈對之共表現,其中兩個重鏈具有不同特異性(Millstein及Cuello,Nature 305
,537-539(1983))。由於免疫球蛋白重及輕鏈之隨機分類,該等融合瘤(quadroma)產生10個不同抗體分子之潛在混合物,其中僅一種具有正確雙特異性結構。通常藉由親和層析步驟完成之正確分子之純化相當麻煩,且產物產率低。類似程序揭示於PCT申請公開案第WO 93/08829號(1993年5月13日公開)及Traunecker等人,EMBO 10
,3655-3659(1991)中。
根據不同且更佳方法,使具有所需結合特異性(抗體-抗原結合位點)之抗體可變域融合於免疫球蛋白恆定域序列。較佳與免疫球蛋白重鏈恆定域融合,該恆定域包含鉸鏈區、CH2及CH3區中之至少部分。最好使含有結合輕鏈所需位點之第一重鏈恆定區(CH1)存在於該等融合中之至少一者中。將編碼免疫球蛋白重鏈融合及(必要時)免疫球蛋白輕鏈之DNA插入至分離表現載體內,且將其共轉染至合適宿主生物體內。當用於建構之三個多肽鏈之不等比率提供最佳產率時,此在調節實施例中的三個多肽片段之共有比例時提供極大可撓性。然而,當等比率之至少兩個多肽鏈的表現引起高產率或當該等比率並無特定意義時,向一表現載體中插入兩個或全部三個多肽鏈之編碼序列係可能的。在此方法之一較佳實施例中,雙特異性抗體在一條臂上包含具有第一結合特異性之雜交免疫球蛋白重鏈,且在另一臂上包含雜交免疫球蛋白重鏈-輕鏈對(提供第二結合特異性)。已發現此不對稱結構有助於自非所需免疫球蛋白鏈組合物中分離所需雙特異性化合物,因為僅在雙特異性分子中之一半中存在免疫球蛋白輕鏈會提供一簡單分離方法。此方法揭示於1994年3月3日所公開之PCT公開案第WO 94/04690號中。
舉例而言,產生雙特異性抗體之其它細節見Suresh等人,Methodsin Enzymology 121
,210(1986)。
複共軛對配合抗體亦在本發明之範疇內。複共軛對配合抗體包含兩個共價結合抗體。舉例而言,已揭示該等抗體使免疫系統細胞靶向於非所需細胞(美國專利第4,676,980號),且用於治療HIV感染(PCT申請公開號第WO 91/00360號及第WO 92/200373號;EP 03089)。可使用任何便捷交聯方法製得複共軛對配合抗體。合適交聯劑在此項技術中已為吾人所熟知,且伴隨多種交聯技術揭示於美國專利第4,676,980號中。
在某些實施例中,抗-DR5抗體(包括鼠科動物、人類及人源化抗體以及抗體變異體)為抗體片段。已開發出各種產生抗體片段之技術。該等片段傳統上係經由完整抗體之蛋白水解消化而產生(舉例而言,參看Morimoto等人,J.Biochem.Biophys.Methods 24:107-117(1992)及Brennan等人,Science 229:81(1985))。然而,該等片段現可藉由重組宿主細胞直接產生。舉例而言,Fab'-SH片段可直接自大腸桿菌回收且經化學偶合以形成F(ab')2
片段(Carter等人,Bio/Technology 10:163-167(1992))。在另一實施例中,使用白胺酸拉鏈GCN4來形成F(ab')2
以促進F(ab')2
分子組裝。根據另一方法,Fv、Fab或F(ab')2
片段可自重組宿主細胞培養基直接分離。熟練專業人員明顯瞭解多種產生抗體片段之技術。舉例而言,可用木瓜蛋白酶進行消化。木瓜蛋白酶消化之實例係描述於1994年12月22日公開之WO 94/29348及美國專利第4,342,566號中。抗體之木瓜蛋白酶消化通常產生兩個相同的稱為Fab片段之抗原結合片段(各含有單一抗原結合位點)及一殘餘Fc片段。胃蛋白酶處理產生具有兩個抗原結合位點且仍然能與抗原交聯之F(ab')2
片段。
抗體消化中產生的Fab片段亦含有輕鏈之恆定域及重鏈之第一恆定域(CH1
)。Fab'片段因在重鏈CH1
域之羧基末端添加一些包括來自抗體鉸鏈區之一或多個半胱胺酸的殘基而與Fab片段不同。本文Fab'-SH消化係用於Fab',其中恆定域之半胱胺酸殘基具有游離硫醇基。F(ab')2
抗體片段最初產生Fab'片段對,其間具有鉸鏈半胱胺酸。亦已知抗體片段之其它化學偶合。
藉由向抗-DR5抗體DNA中引入適當核苷酸改變或藉由肽合成來製備抗-DR5抗體之胺基酸序列變異體。例如,該等變異體包括本文實例之抗-DR5抗體的胺基酸序列中之殘基的缺失及/或插入及/或取代。可進行缺失、插入及取代之任何組合以產生最終構築體,其限制條件在於該最終構築體具有所需特徵。胺基酸改變亦可改變人源化或變異體抗-DR5抗體之轉譯後程序,諸如改變糖基化位點之數目或位置。
適於識別抗-DR5抗體中作為突變誘發之較佳位置的某些殘基或區之方法稱為"丙胺酸掃描突變誘發",如Cunningham及Wells Science,244:1081-1085(1989)所述。此處,目標殘基之殘基或基團係經識別(例如,帶電殘基,諸如arg、asp、his、lys及glu)並經中性或帶負電胺基酸(最佳為丙胺酸或聚丙胺酸)替代以影響胺基酸與DR5抗原之交互作用。證明對該等替代功能性敏感之該等胺基酸位置接著藉由在替代位點引入另外或其它變異體或為之引入另外或其它變異體而經改善。因此,儘管用於引入胺基酸序列變化之位點係預定的,突變性質本身並不需要預定。舉例而言,為分析給定位點之突變效能,在目標密碼子或區進行ala掃描或隨機突變誘發,且篩選所表現抗-DR5抗體變異體的所需活性。
胺基酸序列插入包括自一個殘基至含有100或更多殘基之多肽範圍內的胺基及/或羧基末端融合以及單一或多個胺基酸殘基之序列間插入。末端插入之實例包括具有N-末端甲硫胺醯基殘基之抗-DR5抗體或融合於抗原決定部位標籤之抗體。抗-DR5抗體分子之其它插入變異體包括融合於酶或多肽或多元醇之抗-DR5抗體的N-或C-末端,其增加抗體之血清半衰期。
另一變異體類型為胺基酸取代變異體。該等變異體使得抗-DR5抗體分子內之至少一個胺基酸殘基經去除,且使得不同殘基插入其位置中。最關注之取代突變誘發位點包括高變區,但亦涵蓋FR變更。表1展示保守性取代,其標題為"較佳取代"。若該等取代引起生物活性之改變,則可引入更多在表1中稱為"例示性取代"或如下文參考胺基酸類別進一步描述之取代改變,且篩選產物。
抗體生物特性之大體上修飾係藉由選擇對維持以下作用的影響顯著不同之替代而達成:(a)替代區域中的多肽骨架之結構,例如片狀或螺旋狀構型;(b)目標位點處的分子之電荷或疏水性;或(c)側鏈整體。基於普通側鏈特性來劃分天然產生殘基:(1)疏水性:正白胺酸、met、ala、val、leu、ile;(2)中性親水性:cys、ser、thr;(3)酸性:asp、glu;(4)鹼性:asn、gln、his、lys、arg;(5)影響鏈取向之殘基:gly、pro;及(6)芳族:trp、tyr、phe。
非保守性替代應要求此等類別中之一者的成員變換成另一類別。
通常,亦可以絲胺酸來替代不涉及維持人源化或變異體抗-DR5抗體的適當構型之任何半胱胺酸殘基,以改良分子之氧化穩定性並阻止異常交聯。相反,可向抗體中添加半胱胺酸鍵以改良其穩定性(尤其在抗體為諸如Fv片段之抗體片段之情形下)。
尤其較佳類型的替代變異體涉及替代親本抗體之一或多個高變區殘基(例如,人源化或人類抗體)。經選擇用於進一步研究之所得變異體通常應具有相對於產生其之親本抗體有所改良之生物活性。產生該等替代性變異體之便捷方法係使用噬菌體呈現之親和力成熟。簡言之,一些高變區位點(例如,6-7個位點)經突變以在每個位點產生所有可能性胺基替代。因此所產生的抗體變異體以來自纖維狀噬菌體粒子之單價形式呈現為每個粒子內封裝之M13的基因III產物之融合物。如本文所揭示,接著篩選經噬菌體呈現之變異體的生物活性(例如,結合親和力)。為了識別用於修飾之候選高變區位點,可進行丙胺酸掃描突變誘發以識別顯著有助於抗原結合之高變區殘基。或者或此外,分析抗原-抗體複合物之晶體結構以識別抗體與人類DR5之間之接觸點可能係有益的。根據本文所詳述之技術,該等接觸殘基及鄰近殘基為替代之候選殘基。一旦產生該等變異體,即如本文所述使變異體之面板經受篩選,且可選擇在一或多個相關檢定中具有極好特性之抗體以用於進一步研究。
抗體在其恆定區內之保守位置經糖基化(Jefferis及Lund,Chem.Immunol.65
:111-128[1997];Wright及Morrison,TibTECH 15
:26-32[1997])。免疫球蛋白之寡醣側鏈影響蛋白之功能(Boyd等人,Mol.Immunol.32
:1311-1318[1996];Wittwe及Howard,Biochem.29
:4175-4180[1990]),並影響可影響糖蛋白之構型及所展示三維表面的糖蛋白部分間之分子內交互作用(Hefferis及Lund,上文;Wyss及Wagner,Current Opin.Biotech.7
:409-416[1996])。基於特定識別結構,寡醣亦可用以使給定糖蛋白靶向特定分子。舉例而言,已報導在半乳糖基化(agalactosylated)IgG中,CH2間隔中之寡醣部分‘翻(flip)’出及末端N-乙醯胺基葡萄糖殘基可用於結合甘露糖結合蛋白(Malhotra等人,Nature Med.1
:237-243[1995])。儘管用神經胺糖酸酶選擇性去除唾液酸殘基未引起DMCL損失,藉由糖肽酶自中國倉鼠卵巢(CHO)細胞中所產生的CAMPATH-1H(識別人類淋巴細胞之CDw52抗原的重組人源化鼠科動物單株IgGl抗體)去除寡醣會引起補體調節之溶解(CMCL)的完全減少((Boyd等人,Mol.Immunol.32
:1311-1318[1996])。已報導抗體之糖基化影響抗體依賴細胞毒性(ADCC)。詳言之,已報導具有β(1,4)-N-乙醯基葡糖胺基轉移酶III(GnTIII)之四環素調節表現、切開GlcNAc的糖基轉移酶催化形成之CHO細胞具有改良之ADCC活性(Umana等人,Mature Biotech.17
:176-180[1999])。
抗體之糖基化變異體係其中改變抗體之糖基化模式之抗體。改變意謂刪除見於抗體中之一或多個碳水化合物部分,向抗體中添加一或多個碳水化合物部分,改變糖基化之組合物(糖基化模式)、糖基化程度等。舉例而言,可藉由在編碼抗體之核酸序列中去除、改變及/或添加一或多個糖基化位點來製備糖基化變異體。
抗體之糖基化通常為N-連接或O-連接。N-連接係指碳水化合物部分連接至天冬醯胺酸殘基之側鏈。三肽序列天冬醯胺酸-X-絲胺酸及天冬醯胺酸-X-酥胺酸為用於使碳水化合物部分酶連接至天冬醯胺酸側鏈之識別序列,其中X為除脯胺酸之外的任何胺基酸。因此,多肽中存在該等三肽序列中之任一者均會產生潛在糖基化位點。O-連接糖基化係指N-乙醯基胺基半乳糖、半乳糖或木糖中之一者連接至羥胺酸,最普遍為絲胺酸或酥胺酸,儘管亦可使用5-羥基脯胺酸或5-羥基離胺酸。
將糖基化位點添加至抗體中便於藉由改變胺基酸序列來達成,以致該序列含有上述三肽序列(N-連接糖基化位點)中之一或多者。變更亦可藉由在初始抗體序列中添加一或多個絲胺酸或酥胺酸殘基或由其進行替代來完成(O-連接糖基化位點)。
編碼抗-DR5抗體之胺基酸序列變異體的核酸分子係藉由此項技術中已知之多種方法製備。該等方法包括(但不限於)自天然來源分離(在天然產生胺基酸序列變異體之情形下)或藉由寡核苷酸調節(或定點)之突變誘發、PCR突變誘發及抗-DR5抗體之早期製備的變異體或非變異體形式的盒式突變誘發進行製備。
在不改變基礎核苷酸序列之情形下,亦可改變抗體之糖基化(包括糖基化模式)。糖基化主要取決於用於表現抗體之宿主細胞。由於用於表現作為潛在治療劑之重組糖蛋白(例如,抗體)之細胞類型很少為原生細胞,可預期抗體糖基化模式之重要變化(舉例而言,參看Hse等人,J.Biol.Chem.272
:9062-9070[1997])。除了選擇宿主細胞之外,影響抗體重組產生期間的糖基化之因子包括生長模式、培養基調配物、培養密度、氧化、pH值、純化流程及其類似因子。已提出各種方法以改變特定宿主生物體內達到的糖基化模式,其包括引入或過量表現某些涉及寡醣產生之酶(美國專利第5,047,335號、第5,510,261號及第5,278,299號)。例如,使用內切糖苷酶H(Endo H)可自糖蛋白中酶切去除糖基化或某些類型之糖基化。此外,重組宿主細胞可經遺傳加工,例如在某些類型之多醣的加工中產生缺陷。該等及類似技術在此項技術中已為吾人所熟知。
抗體之糖基化結構可簡單地藉由碳水化合物分析之習知技術來分析,該等技術包括凝集素層析、NMR、質譜分析、HPLC、GPC、單醣成分分析、後續酶消化及使用高pH陰離子交換層析以基於電荷來分離寡醣之HPAEC-PAD。釋放寡醣以用於分析目的之方法亦為已知的,且包括(但不限於):酶處理(通常使用肽-N-糖苷酶F/內切-β-半乳糖苷酶進行);使用極具鹼性環境來主要釋放O-連接結構之消除作用;及使用無水肼來釋放N-及O-連接寡醣之化學方法。
本發明揭示多種例示性實施例。下文描述本發明之多種典型實施例。以下實施例僅為達成說明之目的而提供,且並不傾向於以任何方式限制本發明之範疇。
如下文實例中所述,已識別出多種抗-DR5單株抗體。在一實施例中,本發明之DR5抗體應與本文特定揭示的任何抗-DR5抗體具有相同生物特徵。
本文所用術語"生物特徵"係指單株抗體之活體外及/或活體內活性或特性,諸如特異結合DR5之能力或阻斷、誘導或增強DR5活化(DR5相關活性)之能力。下文實例中將進一步描述DR5抗體之特性及活性。
本發明之單株抗體視情況應與抗體16E2或表11-13所列之任何抗體具有相同生物特徵,及/或結合與抗體16E2或表11-13所列之任何抗體相同的抗原決定部位,尤其為Apomab 7.3或Apomab 8.3。此可藉由進行諸如本文及實例中所述的檢定之各種檢定來確定。舉例而言,為了確定單株抗體是否與本文所特定指出的DR5抗體具有相同特異性,吾人可比較其在競爭結合檢定或細胞凋亡誘導檢定中之活性,諸如下文實例中所述之檢定。此外,特定抗-DR5抗體所結合的抗原決定部位可藉由DR5與所述抗體間之複合物的結晶學研究來確定。
因此,介於Apomab 7.3之Fab片段與DR5細胞外域間之複合物的X光結晶學研究展示Apomab 7.3結合與DR5受體上的Apo2L/TRAIL之結合位點重疊(但有所不同)的DR5抗原決定部位。
人類、嵌合、雜交或重組抗-DR5抗體(例如,以及本文所述的雙功能抗體或三功能抗體)可包含的抗體具有全長重及輕鏈或其片段(諸如Fab、Fab'、F(ab')2
或Fv片段)、該輕鏈或重鏈之單體或二聚體、其中該(該等)重或輕鏈由連接子分子所連接之單鏈Fv,或具有仍然結合其它類型抗體域之該(該等)輕或重鏈的可變域(或高變域)。
如本文所述之DR5抗體應視情況具有一或多個所需生物活性或特性。該等DR5抗體可包括(但不限於)嵌合、人源化、人類及親和力成熟抗體。如本文所述,DR5抗體可使用達到該等所需活性或特性之各種技術來建構或加工。在一實施例中,DR5抗體可具有至少105
M- 1
之DR5受體結合親和力,至少在106
M- 1
至107
M- 1
範圍內較佳,至少在108
M- 1
至101 2
M- 1
範圍內更佳,且至少在109
M- 1
至101 2
M- 1
範圍內甚至更佳。DR5抗體之結合親和力可藉由根據此項技術中已知之技術測試DR5抗體而無不適當實驗來確定,其包括斯卡查德(Scatchard)分析(參看Munson等人,上文
)。
在另一實施例中,本發明之DR5抗體可結合DR5上之結合Apo-2L的相同抗原決定部位,或結合DR5上之與結合Apo-2L的DR5上的抗原決定部位一致或重疊之抗原決定部位,例如稱為Apomab 7.3之抗體。DR5抗體亦可以此方式交互作用以創造阻止Apo-2配位體結合DR5之立體構型。如上所述,本發明DR5抗體之抗原決定部位結合特性可使用此項技術中已知之技術確定。舉例而言,DR5抗體可於諸如競爭性抑制檢定之活體外檢定中進行測試以確定DR5抗體阻斷或抑制Apo-2L結合DR5的能力。DR5抗體視情況可於競爭性抑制檢定中進行測試以確定DR5抗體抑制Apo-2L多肽結合DR5-IgG構築體或結合表現DR5之細胞的能力。DR5抗體視情況應能夠將Apo-2L與DR5之結合阻斷或抑制至少50%,較佳為至少75%,更佳為至少90%,以實例說明之,其可在使用可溶形式的Apo-2配位體(TRAIL)(諸如Pitti等人,J.Biol.Chem.,上文中所述的114-281細胞外域,其亦稱為Apo2L.0)及DR5 ECD-IgG之活體外競爭性抑制檢定中確定。DR5抗體之抗原決定部位結合特性亦可使用測試DR5抗體阻斷經Apo-2L誘導之細胞凋亡的能力之活體外檢定或藉由結晶學研究來確定。
在又一實施例中,DR5抗體應包含具有與Apo-2配位體(TRAIL)可比的活性之促效劑。此種促效劑DR5抗體較佳應誘導至少一種類型的癌症或腫瘤細胞株或原始腫瘤中之細胞凋亡。可使用已知之活體外或活體內檢定來確定促效劑DR5抗體之細胞凋亡活性。多種該等活體外及活體內檢定之實例在此項技術中已為吾人所熟知。在活體外檢定中,可使用諸如膜聯蛋白V結合之已知技術確定細胞凋亡活性。在活體內檢定中,例如,可藉由量測腫瘤負擔或體積之減少來確定細胞凋亡活性。
如上所述,本文所揭示的抗體具有多種特性,其包括調節某些生理交互作用及/或過程之能力。如下文實例所示,本文所揭示的抗體能誘導DR5所調節的細胞凋亡,且在癌症之各種鼠科動物異種移植模型中展示有效的抗腫瘤特性。在本發明之一具體實施例中,抗體之拮抗劑活性係藉由抗體與抗人類IgG Fc之交聯來增強。在本發明之一較佳實施例中,此經增強之細胞凋亡可與Apo-2L細胞凋亡活性相當。
本發明之額外實施例包括連接於選自由聚乙二醇、聚丙二醇及聚環氧烷組成之群的一或多個非蛋白聚合物之本文所揭示抗-DR5抗體。在一替代實施例中,本文所揭示的抗-DR5受體抗體連接於細胞毒性劑或酶。在另一實施例中,本文所揭示的抗-DR5受體抗體連接於放射性同位素、螢光化合物或化學發光化合物。本文所揭示的抗-DR5受體抗體視情況經糖基化或未經糖基化。
如下文所詳細討論,可在調節生理過程之多種方法中使用本發明之抗體。本發明之一實施例包括誘導哺乳動物細胞內的細胞凋亡之方法,其包含將表現DR5受體之哺乳動物細胞曝露於治療有效劑量之經分離抗-DR5受體單株抗體,包含結合圖3A-3C(411胺基酸)或圖4A-4C(440胺基酸)所示的DR5受體之抗體,尤其其細胞外域。在此等方法中,哺乳動物細胞通常為癌細胞。在較佳實施例中,用於此等方法中之抗-DR5受體抗體為下文實例中所述的Apomab抗體,諸如Apomab 7.3或Apomab 8.3抗體。
本發明之另一實施例係誘導哺乳動物細胞內的細胞凋亡之方法,其包含將表現DR5受體之哺乳動物細胞曝露於治療有效劑量之經分離抗-DR5受體單株抗體,包含結合如上文所定義的DR5受體之抗體或其細胞外域。
三功能抗體亦在本發明之範疇內。舉例而言,該等抗體係描述於Iliades等人,上文及Kortt等人,上文中。
本文涵蓋DR5抗體之其它修飾。本發明之抗體可藉由將抗體共軛至細胞毒性劑(類似毒素分子)或前藥活化酶而進行修飾,該前藥活化酶將前藥(例如,肽基化學治療劑,參看WO81/01145)轉化成活性抗癌藥物。舉例而言,參看WO88/07378及美國專利第4,975,278號。此技術亦稱為"抗體依賴酶調節之前藥療法(Antibody Dependent Enzyme Mediated Prodrug Therapy)"(ADEPT)。
適用於ADEPT的免疫共軛物之酶組分包括能以將前藥轉化成其更具活性的細胞毒性形式之方式作用於該前藥之任何酶。適用於本發明方法之酶包括(但不限於):適用於將含磷前藥轉化成游離藥物的鹼性磷酸酶;適用於將含硫前藥轉化成游離藥物的芳基硫酸脂酶;適用於將無毒5-氟胞嘧啶轉化成抗癌藥物5-氟尿嘧啶的胞嘧啶脫胺酶;蛋白酶,諸如沙雷菌屬蛋白酶、嗜熱菌蛋白酶、枯草桿菌蛋白酶及組織蛋白酶(諸如組織蛋白酶B及L),其適用於將含肽前藥轉化成游離藥物;卡斯蛋白酶,諸如卡斯蛋白酶-3;適用於轉化含D-胺基酸取代基之前藥的D-丙胺醯基羧基肽酶;碳水化合物裂解酶,諸如適用於將糖基化前藥轉化成游離藥物的β-半乳糖苷酶及神經胺糖酸酶;適用於將源自β-內醯胺之藥物轉化成游離藥物的β-內醯胺酶;及青黴素醯胺酶,諸如青黴素V醯胺酶或青黴素G醯胺酶,其適用於將胺氮原子處連接苯氧基乙醯基或苯基乙醯基的藥物分別轉化成游離藥物。或者,可使用具有酶活性之抗體(亦稱作"抗體酶")以將本發明之前藥轉化成無活性藥物(舉例而言,參看Massey,Nature 328:457-458(1987))。可如本文所述來製備抗體-酶共軛物以用於將抗體酶傳遞至腫瘤細胞群體。
可藉由此項技術中熟知之技術將酶共價結合於抗體,諸如使用異雙功能交聯藥劑。或者,可使用此項技術中熟知之重組DNA技術(見Neuberger等人,Nature,312:604-608(1984))來建構至少包含至少連接於本發明酶之功能活性部分的本發明抗體之抗原結合區之融合蛋白。
本發明亦涵蓋其它抗體修飾。舉例而言,抗體可連接於多種非蛋白聚合物中之一種,例如聚乙二醇、聚丙二醇、聚環氧烷或聚乙二醇與聚丙二醇之共聚物。抗體亦可包裹於微膠囊中,例如,該等微膠囊係藉由在膠狀藥物傳遞系統(例如,脂質體、白蛋白微球體、微乳液、奈米粒子及奈米膠囊)或巨乳液中利用凝聚技術或界面聚合(例如,分別為羥甲基纖維素或明膠微膠囊及聚-(甲基丙烯酸甲酯)微膠囊)來製備。此等技術揭示於Remington's Pharmaceutical Sciences,第16版,Oslo,A.編輯(1980)中。為了增加抗體之血清半衰期,吾人可將補救受體結合抗原決定部位併入抗體(尤其為抗體片段)中,例如,如美國專利5,739,277所述。如本文所用,術語"補救受體結合抗原決定部位"係指負責增加IgG分子的活體外血清半衰期之IgG分子(例如,IgG1
、IgG2
、IgG3
或IgG4
)的Fc區之抗原決定部位。
本文所揭示之抗-DR5抗體亦可調配成免疫脂質體。含該抗體之脂質體藉由此項技術中已知之技術來製備,諸如以下文獻所述:Epstein等人,Proc.Natl.Acad.Sci.USA 82:3688(1985);Hwang等人,Proc.Natl Acad.Sci.USA 77:4030(1980);及美國專利第4,485,045號及第4,544,545號。具有經增加循環時間之脂質體揭示於美國專利第5,013,556號中。尤其有用之脂質體可藉由反相蒸發方法用包含卵磷脂、膽固醇及PEG-衍生的磷脂醯乙醇胺(PEG-PE)之脂質組合物產生。脂質體經由微孔尺寸經改善之過濾器擠出以產生具有所需直徑之脂質體。如Martin等人,J.Biol.Chem.257:286-288(1982)所述,本發明抗體之Fab'片段可經由二硫化物互換反應共軛至脂質體。化學治療劑(諸如小紅莓)視情況含於脂質體內。參看Gabizon等人,J.National Cancer Inst.81(19):1484(1989)。
本發明之抗體包括"交聯"DR5抗體。如本文所用之術語"交聯"係指結合至少兩個IgG分子以形成一(或單一)分子。DR5抗體可使用各種連接子分子交聯,該等DR5抗體較佳使用抗IgG分子、補體、化學修飾或分子加工經交聯。熟習此項技術者應瞭解一旦抗體結合細胞表面膜,補體即與抗體分子具有相對高親和力。因此,據信補體可用作交聯分子以連接結合於細胞表面膜上之兩個或兩個以上抗-DR5抗體。
本發明亦提供如本文所揭示之編碼DR5抗體的經分離核酸、包含該核酸之載體及宿主細胞以及用於產生該抗體之重組技術。
對於抗體之重組產生,編碼其之核酸係經分離並插入至可複製載體中以用於進一步選殖(DNA擴增)或用於表現。編碼抗體之DNA易於使用習知程序來分離並測序(例如,藉由可特異結合編碼抗體之基因的寡核苷酸探針)。多種載體均可用。載體組分通常包括(但不限於)以下組分中之一或多者:訊號序列、複製起點、一或多個標記基因、強化子元件、啟動子及轉錄終止序列。
本文之方法包括用於產生嵌合或重組抗-DR5抗體之方法,其包含以下步驟:提供包含編碼抗-DR5抗體輕鏈或重鏈(或輕鏈及重鏈)之DNA序列的載體;以載體轉染或轉化宿主細胞;及在足以產生重組抗-DR5抗體產物之條件下培養宿主細胞。
本發明之抗-DR5抗體不僅可直接地重組產生,亦可生成具有異源多肽之融合多肽,其較佳為訊號序列或在成熟蛋白或多肽之N-末端具有特異剪切位點之其它多肽。所選之異源訊號序列較佳係由宿主細胞識別及加工(意即,由訊號肽酶剪切)之序列。對於並不識別並加工天然抗體訊號序列之原核宿主細胞而言,該訊號序列由(例如)選自鹼性磷酸酶、青黴素酶、1pp或熱穩定腸毒素II引導子之群的原核訊號序列替代。對於酵母分泌而言,天然訊號序列可由(例如)酵母轉化酶引導子、α因子引導子(包括釀酒酵母(Saccharomyces)及克魯維酵母(Kluyveromyces)α因子引導子)或酸性磷酸酶引導子、白假絲酵母菌(C.albicans)葡糖澱粉酶引導子或WO 90/13646中所述的訊號來替代。在哺乳動物細胞表現中,哺乳動物訊號序列及病毒分泌引導子(例如單純疱疹gD訊號)均可用。
此前驅物區之DNA於閱讀框架內連接至編碼抗體之DNA。
表現及選殖載體均含有能使載體於一或多個所選宿主細胞中複製之核酸序列。在選殖載體內,此序列通常係能使載體獨立於宿主染色體DNA複製之序列,且包括複製起點或自主複製序列。在多種細菌、酵母及病毒中熟知該等序列。自質體pBR322複製之起點適於大部分格蘭氏(Gram)陰性細菌,2 μ質體起點適於酵母,且各種病毒起點(SV40、多形瘤、腺病毒、VSV或BPV)適用於哺乳動物細胞中之載體選殖。通常,哺乳動物表現載體不需要複製組分起點(通常,僅可使用SV40起點,因為其含有早期啟動子)。
表現及選殖載體可含有選擇基因,其亦稱作可選標記。典型選擇基因編碼如下所述的蛋白:(a)賦予抗生素或其它毒素以抗性,諸如氨苄青黴素、新黴素、甲胺喋呤或四環素;(b)補充營養缺陷;或(c)供應複合培養基中不含的關鍵營養物,例如,編碼桿菌(Bacilli)之D-丙胺酸消旋酶的基因。
選擇流程之一實例採用藥物以停滯宿主細胞之生長。以異源基因成功轉化之細胞產生賦予藥物抗性並因此存活於選擇方案的蛋白。該等優勢選擇之實例使用藥物新黴素、黴酚酸及潮黴素。
哺乳動物細胞之合適可選標記之另一實例係能識別可吸收抗體核酸之細胞者,諸如DHFR、胸苷激酶、金屬硫蛋白-I及-II(較佳為靈長類動物金屬硫蛋白基因)、腺苷脫胺酶、鳥胺酸脫羧酶等。
舉例而言,以DHFR選擇基因轉化之細胞係藉由在含有DHFR之競爭性拮抗劑甲胺喋呤(Mtx)之培養基上培養所有轉化體而首先識別。當採用野生型DHFR時,適當宿主細胞為缺失DHFR活性之中國倉鼠卵巢(CHO)細胞株。
或者,以編碼抗-DR5抗體、野生型DHFR蛋白及另一可選標記(諸如胺基糖苷3'-磷酸轉移酶(APH))之DNA序列轉化或共轉化之宿主細胞(尤其為含有內源DHFR之野生型宿主)可藉由在含有諸如胺基糖苷抗生素(例如卡那黴素、新黴素或G418)之可選標記的選擇劑之培養基中生長細胞而得以選擇。參看美國專利第4,965,199號。
適用於酵母的選擇基因係存在於酵母質體YRp7中的trp1基因(Stinchcomb等人,Nature,282:39(1979))。trp1基因提供缺乏在色胺酸中生長的能力之酵母的突變株之選擇標記,例如ATCC第44076號或PEP4-1。Jones,Genetics,85:12(1977)。接著,酵母宿主細胞基因組內存在trp1損傷藉由在無色胺酸存在下生長來提供用於偵測轉化的有效環境。同樣,Leu2-缺陷型酵母菌株(ATCC 20,622或38,626)由具有Leu2基因之已知質體所補充。
此外,源自1.6 μm環形質體pKD1之載體可用於克魯維酵母轉化。或者,已報導用於乳酸克魯維酵母(K.lactis)之大規模產生重組小牛凝乳酶之表現系統。Van den Berg,Bio/Technology,8:135(1990)。亦已揭示用於由克魯維酵母工業菌株分泌成熟重組人類血清白蛋白之穩定多複本表現載體。Fleer等人,Bio/Technology,9:968-975(1991)。
表現及選殖載體通常含有由宿主生物體識別並可操作性連接於抗體核酸的啟動子。適用於原核宿主之啟動子包括phoA啟動子、β-內醯胺酶及乳糖啟動子系統、鹼性磷酸酶、色胺酸(trp)啟動子系統及雜交啟動子,諸如tac啟動子。然而,其它已知之細菌啟動子亦係合適的。用於細菌系統之啟動子亦應含有可操作性連接於編碼抗-DR5抗體之DNA的Shine-Dalgarno(S.D.)序列。
已知真核生物之啟動子序列。實質上,所有真核生物基因均具有位於轉錄起始位點上游約25至30個鹼基處的富AT區。多種基因中已發現的位於轉錄起點上游70至80個鹼基處的另一序列為CNCAAT區,其中N可為任何核苷酸。大部分真核生物基因之3'末端為AATAAA序列,其可為用於將聚A尾添加至編碼序列之3'末端的訊號。所有該等序列菌均適於插入至真核生物表現載體內。
適於與酵母宿主一起使用的啟動序列之實例包括3-磷酸甘油酸激酶或其它糖酵解酶之啟動子,諸如烯醇酶、甘油醛-3-磷酸脫氫酶、己糖激酶、丙酮酸脫羧酶、磷酸果糖激酶、葡萄糖-6-磷酸異構酶、3-磷酸甘油酸變位酶、丙酮酸激酶、磷酸丙糖異構酶、磷酸葡萄糖異構酶及葡萄糖激酶。
作為具有由生長條件控制之額外轉錄優勢之可誘導啟動子的其它酵母啟動子係用於以下各物之啟動子區:醇脫氫酶2、異細胞色素C、酸性磷酸酶、與氮代謝相關之降解酶、金屬硫蛋白、甘油醛-3-磷酸脫氫酶及負責麥芽糖與半乳糖利用之酶。用於酵母表現之合適載體及啟動子進一步描述於EP 73,657中。酵母強化子亦有利地與酵母啟動子一起使用。
自哺乳動物宿主細胞內的載體轉錄之抗-DR5抗體係藉由啟動子控制,例如,獲自諸如多形瘤病毒、禽痘病毒、腺病毒(諸如腺病毒2)、牛乳頭狀瘤病毒、禽肉瘤病毒、細胞巨化病毒、逆轉錄酶病毒、肝炎B病毒且最佳地猿病毒40(SV40)之病毒的基因組、異源哺乳動物啟動子(例如肌動蛋白啟動子或免疫球蛋白啟動子)、熱休克啟動子之啟動子,其限制條件在於該等啟動子與宿主細胞系統可相容。
便捷地獲得SV40病毒之早期及晚期啟動子,其為亦含有SV40病毒複製起點之SV40限制性片段。便捷地獲得人類細胞巨化病毒之即刻早期啟動子,其為HindIII E限制片段。使用牛乳頭狀瘤病毒作為載體在哺乳動物宿主內表現DNA之系統揭示於美國專利第4,419,446號中。此系統之修正描述於美國專利第4,601,978號中。亦參看Reyes等人,Nature 297:598-601(1982)關於在來自單純疤疹病毒之胸苷激酶啟動子的控制下在小鼠細胞中之人類β-干擾素cDNA表現。或者,魯斯氏(Rous)肉瘤病毒之長末端重複可用作啟動子。
由較高級真核生物進行之編碼本發明抗-DR5抗體的DNA之轉錄通常藉由向載體中插入強化子序列而經增加。現已知來自哺乳動物基因(球蛋白、彈性蛋白酶、白蛋白、α-胎蛋白及胰島素)之多種強化子序列。然而,吾人通常應使用來自真核細胞病毒之強化子。實例包括複製起點(bp 100-270)後側之SV40強化子、細胞巨化病毒早期啟動子強化子、複製起點後側之多形瘤強化子及腺病毒強化子。亦參看Yaniv,Nature 297:17-18(1982)關於活化真核生物啟動子之增強元件。強化子可在抗體編碼序列之位置5'或3'剪接至載體內,但較佳地位於啟動子之5'位點。
用於真核宿主細胞(酵每、真菌、昆蟲、植物、動物、人類或來自其它多細胞生物體之有核細胞)之表現載體亦應含有終止轉錄及穩定mRNA所必需的序列。此等序列通常可來自真核生物或病毒DNA或cDNA之5'非轉譯區,且有時可來自3'非轉譯區。該等區含有轉錄為編碼多價抗體的mRNA之非轉譯部分內的聚腺苷酸化片段之核苷酸區段。一有用轉錄終止組分為牛生長激素聚腺苷酸化區。參看WO94/11026及其中所揭示的表現載體。
適於在本文載體中進行DNA選殖或表現之宿主細胞為上文所述的原核生物、酵母或較高級真核生物細胞。適合此目的之原核生物包括真細菌,諸如格蘭氏陰性或格蘭氏陽性生物體,例如腸內桿菌科,諸如埃希氏菌屬,例如大腸桿菌、腸桿菌屬(Enterobacter)、歐文氏菌(Erwinia)、雷伯菌(Klebsiella)、變形桿菌屬(Proteus)、沙門氏菌屬(Salmonella)(例如沙門氏菌(Salmonella typhimurium)、沙雷氏菌屬(Serratia),例如黏質沙雷氏菌(Serratia marcescans)及志賀氏菌屬(Shigella));以及(諸如)枯草桿菌(B.subtilis)及地衣芽孢桿菌(B.licheniformis)(例如,公開於1989年4月12日之DD 266,710所揭示的地衣芽孢桿菌)、假單胞菌屬(Pseudomonas)(諸如綠膿桿菌(P.aeruginosa))及鏈黴菌(Streptomyces)。雖然諸如大腸桿菌B、大腸桿菌X1776(ATCC 31,537)及大腸桿菌W3110(ATCC 27,325)之其它菌株亦合適,但一較佳之大腸桿菌選殖宿主為大腸桿菌294(ATCC 31,446)。該等實例具有說明性而非限制性。
除了原核生物之外,諸如纖維狀真菌或酵母之真核微生物亦為編碼DR5抗體之載體的合適選殖或表現宿主。釀酒酵母(Saccharomyces cerevisiae)或普通麵包酵母為通常使用的較低級真核宿主微生物。然而,多種其它的屬、種及菌株通常可用並適用於本文,諸如裂殖酵母(Schizosaccharomyces pombe);克魯維酵母宿主,諸如乳酸克魯維酵母、脆壁克魯維酵母(K.fragilis)(ATCC 12,424)、保加利亞克魯維酵母(K.bulgaricus)(ATCC 16,045)、威克克魯維酵母(K.wickeramii)(ATCC 24,178)、瓦提克魯維酵母(K.waltii)(ATCC 56,500)、果蠅克魯維酵母菌(K.drosophilarum)(ATCC 36,906)、耐熱克魯維酵母菌(K.thermotolerans)及馬克斯克魯維酵母(K.marxianus);解脂耶氏酵母(yarrowia)(EP 402,226);甲醇酵母(Pichia pastoris)(EP 183,070);假絲酵母(Candida);半知菌木霉(Trichoderma reesia)(EP 244,234);紅色麵包黴菌(Neurospora crassa);許旺酵母屬(Schwanniomyces),諸如許旺酵母(Schwanniomyces occidentalis);及纖維狀真菌,器如脈孢菌屬(Neurospora)、青黴菌屬(Penicillium)、黴菌(Tolypocladium)及曲黴菌(Aspergillus)宿主,器如溝巢麯黴(A.nidulans)及黑麯黴(A.niger)。
適於糖基化抗體表現之宿主細胞來白多細胞生物體。無脊相動物細胞之實例包括植物及昆蟲細胞。已識別出多種桿狀病毒菌株及變異體與來自諸如草地夜蛾(Spodoptera frugiperda)(毛蟲)、埃及伊蚊(Aedes aegypti)(蚊子)、白紋伊蚊(Aedes albopictus)(蚊子)、黑腹果蠅(Drosophila melanogaster)(果蠅)及家蠶(Bombyx mori)之宿主的相應被動侵入昆蟲宿主細胞。多種用於轉染之病毒菌株係可用的,例如苜蓿銀紋夜蛾核型多角體病毒(Autographa californica NPV)之L-1變異體及家蠶NPV之Bm-5菌株,且該等病毒可用作根據本發明之病毒,尤其用於草地貪夜蛾(Spodoptera frugiperda)細胞轉染。
棉花、玉米、馬鈴薯、大豆、矮牽牛花、西紅柿及煙草之植物細胞培養基亦可用作宿主。
然而,最關注脊椎動物細胞,且脊椎動物細胞於培養基(組織培養基)中之增殖已變成常規程序。有用哺乳動物宿主細胞株之實例為:由SV40(COS-7,ATCC CRL 1651)轉化之猴子腎CV1系;人類胚胎腎系(293或293細胞,經次選殖以用於懸浮培養基中之生長,Graham等人,J.Gen Virol.36:59(1977));幼倉鼠腎細胞(BHK,ATCC CCL 10);中國倉鼠卵巢細胞/-DHFR(CHO,Urlaub等人,Proc.Natl.Acad.Sci.USA 77:4216(1980));小鼠塞爾托利氏(sertoli)細胞(TM4,Mather,Biol.Reprod.23:243-251(1980));猴子腎細胞(CV1 ATCC CCL 70);非洲綠猴腎細胞(VERO-76,ATCC CRL-1587);人類子宮頸癌細胞(HELA,ATCC CCL 2);犬類腎細胞(MDCK,ATCC CCL 34);布法羅(buffalo)大鼠肝細胞(BRL 3A,ATCC CRL 1442);人類肺細胞(W138,ATCC CCL 75);人類肝細胞(Hep G2,HB 8065);小鼠乳房腫瘤(MMT 060562,ATCC CCL51);TRI細胞(Mather等人,Annals N.Y.Acad.Sci.383:44-68(1982));MRC 5細胞;FS4細胞;人類肝細胞瘤系(Hep G2);及骨髓瘤或淋巴瘤細胞(例如,Y0、J558L、P3及NS0細胞)(參看美國專利第5,807,715號)。
以上述表現或選殖載體來轉化宿主細胞以產生抗體,且在經修飾以適於誘導啟動子、選擇轉化子或擴增編碼所需序列之基因的習知營養培養基中培養該等宿主細胞。
用於產生本發明抗體之宿主細胞可在多種培養基中培養。諸如Ham's F10(Sigma)、最低要求培養基((MEM),(Sigma)、RPMI-1640(Sigma)及杜貝卡氏經改良依格培養基((DMEM),Sigma)之市售培養基適於培養宿主細胞。此外,可將下列文獻中所述的任何培養基用作宿主細胞的培養基:Ham等人,Meth.Enz.58:44(1979);Barnes等人,Anal.Biochem.102:255(1980);美國專利第4,767,704號、第4,657,866號、第4,927,762號、第4,560,655號或第5,122,469號、WO 90/03430、WO 87/00195或美國專利Re.30,985。任何該等培養基均可需補充有激素及/或其它生長因子(諸如胰島素、鐵傳遞蛋白或表皮生長因子)、鹽(諸如鈉、鈣、鎂之鹽酸鹽及磷酸鹽)、緩衝液(諸如HEPES)、核苷酸(諸如腺苷及胸苷)、抗生素(諸如GENTAMYCINT M
藥物)、痕量元素(定義為通常以微莫耳範圍內之濃度存在的無機化合物)及葡萄糖或等同能量源。亦可包括熟習此項技術者已知之適當濃度的任何其它必須補充物。諸如溫度、pH值及其類似條件之培養條件係為表現所選之宿主細胞先前所用的條件,且普通熟練技工應瞭解。
當使用重組技術時,可在膜間質空間內於細胞內產生抗體或可直接將抗體分泌至培養基中。若作為第一步驟於細胞內產生抗體,則藉由(例如)離心或超濾來去除微粒碎片(宿主細胞或所溶解片段)。Carter等人,Bio/Technology 10:163-167(1992)描述分泌至大腸桿菌膜間質空間內之抗體的分離程序。簡言之,細胞團(cell paste)在乙酸鈉(pH 3.5)、EDTA及苯基甲基磺醯氟(PMSF)存在下經約30 min解凍。細胞碎片可藉由離心去除。在將抗體分泌至培養基中之處,通常首先用市售蛋白濃縮過濾器來濃縮來自該等表現系統之上清液,例如,使用Amicon或Millipore Pellicon超濾單元。任何先前步驟中均可包括諸如PMSF之蛋白酶抑制劑以抑制蛋白水解,且可包括抗生素以阻止外來污染物之生長。
可使用(例如)羥基磷灰石層析、凝膠電泳、透析及親和層析來純化自細胞製備之抗體組合物,其中親和層析為較佳純化技術。蛋白A作為親和力配位體之適宜性取決於存在於抗體中之免疫球蛋白Fc區的物種及同型。可用蛋白A來純化基於人類γ1、γ2或γ4重鏈之抗體(Lindmark等人,J.Immunol.Meth.62:1-13(1983))。推薦將蛋白G用於所有小鼠同型及人類γ3(Guss等人,EMBO J.5:15671575(1986))。親和配位體所結合之基質通常主要為瓊脂糖,但其它基質亦可用。諸如受控微孔玻璃或聚(苯乙烯二乙烯基)苯之機械穩定基質允許較瓊脂糖達到更快流動速率及更短加工時間。包含CH
3域、Bakerbond ABXT M
樹脂(J.T.Baker,Phillipsburg,NJ)之抗體適用於純化。取決於待回收之抗體,其它蛋白純化技術亦為可用的,諸如離子交換管柱分餾、乙醇沉澱、反相HPLC、二氧化矽層析、肝磷脂SEPHAROSET M
層析、陰離子或陽離子交換樹脂層析(諸如聚天冬胺酸管柱)、層析聚焦、SDS-PAGE及硫酸銨沉澱。
本發明之DR5抗體具有各種效用。
已知DR5調節細胞凋亡訊號發送。雖然一些類型之正常細胞表現DR5,但經由此受體發出細胞凋亡訊號顯示主要受限於腫瘤細胞,就藉由諸如MYC或RAS之癌基因進行轉化而言,該等腫瘤細胞變為更易受死亡受體調節之細胞凋亡影響(Wang等人,Cancer Cell
5:501-12(2004);Nesterov等人,Cancer Res.
64:3922-7(2004))。DR5經常由人類癌細胞株及主要腫瘤表現。因此,尋找抗-DR5抗體在癌症診斷及治療中之用途。舉例而言,可在用於治療包括人類之哺乳動物中的癌症之方法中使用DR5促效抗體。在該等方法中,將較佳為促效抗體之DR5抗體單獨或組合其它治療劑或治療技術投與至哺乳動物。癌症可為表現DR5之癌症的任何類型,其包括實體腫瘤,尤其為先前療法治療後已惡化或無已知有效療法之晚期或轉移性實體腫瘤。癌症之特定類型包括(但不限於):結腸直腸癌、非小細胞肺癌(NSCLC)、胰腺癌、卵巢癌、乳癌、非霍奇金氏淋巴瘤(NHL)、神經膠母細胞瘤或黑素瘤,較佳為結腸直腸癌、NSCLC或NHL。
此外,DR5抗體適用於診斷及治療其它DR5相關病情,諸如包括人類之哺乳動物的免疫相關疾病。
哺乳動物中之各種本文所述病情之診斷可藉由熟練專業人員來完成。診斷技術為此項技術中可用,其允許(例如)哺乳動物之癌症或免疫相關疾病之診斷或偵測。舉例而言,癌症可經由包括(但不限於)觸診、血液分析、x光、NMR及其類似技術之技術來識別。
免疫相關疾病亦可簡單地識別。
在全身性紅斑性狼瘡中,疾病之中心介體係自身蛋白/組織之自體反應性抗體的產生及免疫調節發炎之隨後產生。多個器官及系統受臨床影響,其包括腎、肺、肌骨骼系統、黏膜與皮膚、眼、中樞神經系統、心血管系統、胃腸道、骨髓及血液。
類風濕性關節炎(RA)係主要包括關節軟骨受傷引起之多個關節滑膜的慢性全身性自體免疫發炎性疾病。發病機理取決於T淋巴細胞並與針對天然IgG之自身抗體的類風濕性因子之產生相關,因此形成在關節流體及血液中達到高含量之免疫複合物。關節中的該等複合物可誘導淋巴細胞及單核細胞經標記滲透至滑膜內及隨後所標記的滑液改變;關節空間/流體,若藉由添加有多種嗜中性白血球之類似細胞進行滲透。受影響之組織主要為關節,且通常為對稱模式。然而,關節外疾病亦以兩種主要形式發生。一形式係正在惡化之關節疾病之關節外損害及肺纖維化、脈管炎及皮膚潰爛之典型損害的發展。關節疾病之第二形式為所謂的費爾蒂氏(Felty's)症候群,其在RA疾病後期發生,有時在關節疾病已受到遏制之後發生,且其涉及嗜中性白血球減少症、血小板減少症及脾腫大之存在。此可伴隨形成梗塞、皮膚潰爛及壞死之多個器官的脈管炎。通常,患者在疊加患病關節之皮下組織中亦發展類風濕性結節;結節晚期具有由經混合發炎性疾病細胞滲透所環繞的壞死中心。RA中可發生的其它表現包括:心包炎、胸膜炎、冠狀動脈炎、伴隨肺部纖維化的間質性肺炎、角膜結膜炎及風濕性結節。
青少年慢性關節炎係通常在小於16歲年齡時開始的慢性先天性發炎性疾病疾病。其表現型與RA有幾分類似;類風濕性陽性因子之一些患者分類為青少年類風濕性關節炎。此疾病再亞分類成三個主要種類:少關節型、多關節型及全身型。關節炎可能係嚴重的且通常具有毀壞性,並導致關節僵硬及緩慢生長。其它顯示可包括慢性前葡萄膜炎及全身性澱粉樣變性病。
脊椎關節病係一組具有一些普通臨床特徵且通常與HLA-B27基因表現產物相關之病症。該等病症包括:僵硬脊椎炎、萊特氏(Reiter's)症候群(反應性關節炎)、發炎性腸病相關關節炎、牛皮癬相關脊椎炎、青少年發作脊管柱關節病及無差別脊管柱關節病。區別特徵包括有或無脊椎炎之骶髂關節炎;發炎性不對稱關節炎;HLA-B27相關(I類MHC之HLA-B基因座之血清學定義的等位基因);眼鏡發炎性疾病及與其它類風濕性疾病相關之自體抗體缺失。所揭示的誘導疾病之最關鍵細胞為CD8+T淋巴細胞,其靶向由I MHC分子組所展示之抗原。CD8+T細胞可與I類MHC等位基因HLA-B27反應,似乎其為I類MHC分子所表現的外源肽。已假設HLA-B27抗原決定部位可模擬細菌或其它微生物抗原之抗原決定部位,且因此誘導CD8+T細胞反應。
全身性硬化症(硬皮病)具有未知病因。疾病之特性為皮膚硬化;其同樣由活性發炎性程序所誘導。硬皮病可係局部的或全身性的;常見脈管損害且微脈管系統中之內皮細胞損傷為全身性硬化發展之早期及重要事件;脈管損傷可經受免疫調節。免疫基礎暗指皮膚損害中的單核細胞滲透之存在及多種患者體內的抗核抗體之存在。ICAM-1通常在皮膚損害內之纖維原細胞之細胞表面上經上調,揭示T細胞與該等細胞之交互作用在疾病發病機理中可能起作用。所包含的其它器官包括:胃腸道:導致不正常蠕動/運動之平滑肌的萎縮及纖維化;腎:引起小弓形及小葉間動脈降低之腎皮質血液流動之同中心內皮下內增殖,其導致蛋白尿症、氮血症及高血壓;骨骼肌肉:萎縮症、間質性纖維化;發炎性疾病;肺:間質性肺炎及間質性纖維化;及心臟:收縮帶壞死、疤痕/纖維症。
包括皮肌炎、多肌炎及其它疾病之先天性發炎性肌病係引起肌肉虛弱之未知病因的慢性肌肉發炎性疾病病症。肌肉損傷/發炎性疾病通常係對稱及漸進的。自體抗體與大部分形式相關。肌炎特異自體抗體針對並抑制蛋白合成中所涉及之組分(蛋白及RNA)的作用。
謝格爾氏症候群歸因於免疫所調節之發炎性疾病及淚腺與唾液腺之隨後功能性破壞。疾病可聯繫於或伴隨發炎性連接組織疾病。疾病與Ro及La抗原之自體抗體產生相關,該兩個均為小RNA-蛋白複合物。損害引起角膜結膜炎、口腔乾燥,其伴隨著包括膽汁性肝硬化、外周或感觀神經病及可觸及紫癜之其它顯示或與其相關。
全身性脈管炎包括初始損害為發炎且後續對血管造成損壞之疾病,其在一些情形下引起由脈管及終器官機能紊亂所影響的組織萎縮/壞死/降解。脈管炎亦可發生為其它免疫發炎性疾病所調節疾病之二級損害或後遺症,諸如類風濕性關節炎、全身性硬化症等,尤其係亦與免疫複合物形成相關之疾病。初始全身性脈管炎組之疾病包括:全身性壞死脈管炎:結節性多動脈炎、過敏性血管炎及肉芽腫、多發性血管炎;韋格納(Wegener's)肉芽腫病;淋巴瘤樣肉芽腫病;及巨細胞動脈炎。各種脈管炎包括:黏膜皮膚淋巴結徵候群(MLNS或川崎(Kawasaki's))、經隔離CNS脈管炎、Behet's病、血栓閉塞性脈管炎(伯格氏(Buerger's)病)及皮膚壞死小靜脈炎(venulitis)。據信所列之大部分類型脈管炎之發病機理主要取決於免疫球蛋白複合物在血管壁上的沉積及隨後經由ADCC(補充活化)或兩者來誘導發炎性反應。
類肉瘤症為未知病因之病情,其特徵在於上皮肉牙腫在體內幾乎任何組織中之存在;最常涉及肺。發病機理涉及具有後續慢性後遺症之疾病位點處所活化巨噬細胞及淋巴細胞之存活,該後遺症自該等細胞類型所釋放之活性產物的局部及全身性釋放產生。
包括自體免疫性溶血性貧血、免疫性全血球減少症及突發性夜間血紅蛋白尿之自體免疫性溶血性貧血係與在血紅細胞(且在一些情形下,亦包括血小板之其它血細胞)表面所表現之抗原反應的抗體之產生結果,且係經由補體調節溶解及/或ADCC/Fc-受體調節之機制來去除包被抗體的細胞之反映。
在包括血小板減少性紫癜及其它臨床硬化之免疫調節血小板減少症的自體免疫血小板減少症中,血小板破壞/去除作為抗體或補體連接至血小板且隨後由補體溶解、ADCC或FC-受體調節機制去除之結果而發生。
包括格雷氏(Grave's)疾病、橋本(Hashimoto's)甲狀腺炎、青少年淋巴細胞甲狀腺炎及萎縮性甲狀腺炎的甲狀腺炎係自體免疫對於甲狀腺抗原反應之結果,其伴隨產生與所存在之蛋白反應且通常特異於甲狀腺之抗體。所存在的實驗模型包括天然模型:大鼠(BUF及BB大鼠)及雞(肥胖雞種);可誘導模型:以甲狀腺球蛋白、甲狀腺微生物抗原(甲狀腺過氧化物酶)來免疫動物。
類型I糖尿病或依賴胰島素糖尿病係胰島β細胞之自體免疫破壞;此破壞由自體抗體及自體反應性T細胞所調節。胰島素或胰島素受體之抗體亦可產生胰島素無反應性表現型。
包括血管球性腎炎及腎小管間質性腎炎的免疫調節腎病係抗體或T淋巴細胞調節腎組織損傷的結果,其直接為產生相抵於腎抗原之自體反應性抗體或T細胞之結果,或間接為腎中的與其它非腎抗原反應之抗體及/或免疫複合物之沉積造成的結果。因此,引起形成免疫複合物之免疫調節疾病亦可誘導作為間接後遺症之免疫所調節的腎病。直接與間接免疫機制引起產生/誘導腎組織中所發展之損害的發炎性反應,其伴隨因此而產生的器官功能損壞,且在一些情形下伴隨腎衰竭惡化。腫瘤及細胞免疫機制均可涉及損害之發病機制。
據信包括多發性硬化症、脫髓鞘性多發性神經病或格林-巴利(Guillain-Barr)症候群及慢性發炎性脫髓鞘性多發性神經病之中樞及外周神經系統脫髓鞘疾病具有免疫基礎且引起神經脫髓鞘,其為直接造成少突細胞或髓磷脂損壞之結果。MS中存在暗示疾病誘導及惡化取決於於T淋巴細胞的證據。多發性硬化症為脫髓鞘疾病,其取決於T淋巴細胞且具有復發-緩解程序或惡化程序。其病因係未知的;然而,病毒感染、遺傳誘因、環境及自體免疫性對其均有所貢獻。損害含有支配T淋巴細胞調節之滲透、小神經膠細胞及滲透巨噬細胞;CD4+T淋巴細胞為損害中之支配細胞類型。少突細胞死亡及隨後脫髓鞘之機制係未知的,但可能係由T淋巴細胞所驅動。
包括嗜酸性球性性肺炎、先天性肺纖維化及過敏性肺炎之發炎性疾病及纖維化肺病可包括經異常調節之免疫發炎性反應。該反應之抑制作用可能對治療有益。
包括皰狀皮膚病、多形性紅斑及接觸性皮炎的自體免疫或免疫所調節之皮膚病由自體抗體所調節,其起源取決於T淋巴細胞。
牛皮癬係T淋巴細胞所調節的發炎性疾病。損害含有T淋巴細胞之滲透、加工細胞之巨噬細胞及抗原及一些嗜中性白血球。
包括哮喘、過敏性鼻炎、遺傳過敏性皮炎、食物超敏感及風疹的過敏疾病取決於T淋巴細胞。該等疾病主要由T淋巴細胞所誘導的發炎、IgE調節之發炎或兩者之組合所調節。
包括移植排斥及移植物抗宿主疾病(GVHD)的移植相關疾病取決於T淋巴細胞;T淋巴細胞功能之抑制作用具有改善性。
其中免疫及/或發炎性反應之干涉具有優勢的其它疾病為感染病,其包括(但不限於):病毒感染(包括(但不限於)AIDS、肝炎A、B、C、D、E);細菌感染;真菌感染;及原生動物與寄生動物感染(刺激MLR之分子(或衍生物/促效劑),其在治療學上可用於增強對感染劑之免疫反應);免疫缺陷疾病(刺激MLR之(分子/衍生物/促效劑),其在治療學上可用於增強經遺傳、所獲得、經感染誘導(如HIV感染)或醫原性(意即,如化學療法)免疫缺陷病情之免疫反應);及瘤形成。
抗體較佳地於載劑中投與至哺乳動物;醫藥學上可接受之載劑較佳。合適載劑及其調配物描述於Remington's Pharmaceutical Sciences
,第16版,1980,Mack Publishing Co.,Oslo等人編輯。通常以調配物來使用適量之醫藥學上可接受之鹽以提供等分調配物。載劑之實例包括鹽水、林格氏溶液及右旋糖溶液。溶液之pH值較佳為約5至約8,且約7至約7.5更佳。其它載劑包括持續釋放治療劑,諸如含有抗體之固體疏水性聚合物的半透性基質,其基質為成型物質,例如薄膜、脂質體或微粒。熟習此項技術者清楚地瞭解某些載劑更佳地可(例如)取決於投藥路徑及所投與抗體之濃度。
可藉由注射(例如,靜脈內、腹膜內、皮下、肌肉內、門靜脈內)或藉由其它方法(諸如保證以有效形式傳遞抗體至血流內的輸注)向哺乳動物投與抗體。抗體亦可藉由經分離之灌注技術(諸如經分離組織灌注)投用以發揮局部治療作用。局部或靜脈內注射為較佳。
可根據經驗來確定投用抗體之有效劑量及流程,且使得該等確定在此項技術中。熟習此項技術者應瞭解必須投用之抗體劑量應取決於(例如)欲接受抗體之哺乳動物、投藥路徑、所用抗體之特定類型及向哺乳動物所服用的其它藥物而變化。選擇適當抗體劑量之指導見於關於抗體治療用途之文獻中,例如Handbook of Monoclonal Antibodies
,Ferrone等人編輯,Noges Publications,Park Ridge,N.J.,(1985)第22章及第303-357頁;Smith等人,Antibodies in Human Diagnosis and Therapy
,Haber等人編輯,Raven Press,New York(1977)第365-389頁。單獨使用抗體之典型每日劑量可介於每天約1 μg/kg至高達100 mg/kg體重或更多範圍內,此取決於上文所提及之因子。
抗體亦可結合有效量之一或多種其它治療劑投與至哺乳動物。在癌症治療中,此係特定真實的,因為多種腫瘤藉由p53腫瘤抑制基因之失活而獲得化學治療或放射療法抗性。由於DR5獨立刺激p53之細胞凋亡,預期其在臨床上不僅適用作單一藥劑,且適於組合癌症治療之其它類型,諸如化學治療(化學治療劑)、放射療法、免疫佐劑、生長抑制劑及/或細胞激素。亦可採用其它已知誘導哺乳動物細胞凋亡之藥劑,且該等藥劑包括TNF-α、TNF-β、CD30配位體、4-1BB配位體及Apo-2配位體及其它可誘導細胞凋亡之抗體。一或多種其它治療劑可包括治療抗體(除DR5抗體之外),且該等抗體可包括抗-Her受體抗體(諸如HERCEPTIN搓杜滋美(trastuzumab),Genentech,Inc.)、抗-VEG抗體、抗-CD20抗體(諸如RITUXAN利妥昔單抗(rituximab),Genentech,Inc.)及抗Apo-2配位體之其它受體抗體,諸如抗-DR4抗體或抗諸如ENBREL依那西普(etanercept)(Immunex)之其它TNF受體家族成負之抗體。
本發明所涵蓋的化學治療劑包括此項技術中已知且市售之化學物質或藥物,諸如小紅莓、5-氟尿嘧啶、足葉乙甙、喜樹鹼、白葉素(Leucovorin)、胞嘧啶阿拉伯糖苷、環磷醯胺、硫替派、白消安、細胞毒素、紫杉醇鹼、甲胺喋呤、西伯拉丁、美法侖、長春鹼及卡波鉑。可根據廠商說明書或如熟練專業人員經驗所確定來使用該化學療法之製備及劑量流程。該化學療法之製備及劑量流程亦描述於Chemotherapy Service編輯,M.C.Perry,Williams & Wilkins,Baltimore,MD(1992)中。
化學療法較佳以醫藥學上可接受之載劑投藥,諸如上文所述者。化學療法之投藥模式可與DR5抗體所採用的投藥模式相同,或其可經不同模式投與至哺乳動物。舉例而言,DR5抗體可經注射,而化學療法係經口投與至哺乳動物。
可根據此項技術中一般採用及熟練技工已知的實驗程序對哺乳動物實施放射療法。該療法可包括銫、銥、碘或鈷放射。放射療法可為整體放射,或可局部針對身體內或身體上之特異位點或組織。放射療法通常以脈衝形式在約1至約2週內進行。然而,放射療法可在更長時間內進行。放射療法視情況可作為單一劑量或作為多個後續劑量來進行。
抗體可在一或多種其它治療劑之後投用或與其同時投用。舉例而言,抗體及治療劑量取決於所使用藥物的類型、經治療之病情及投藥流程及路徑,若單獨使用,則其量通常將較少。
在對哺乳動物投與抗體之後,可以熟練專業人員所熟知之各種方式監控哺乳動物病情。
預期拮抗劑或阻斷DR5抗體亦可用於治療中。舉例而言,DR5抗體可投與至哺乳動物(諸如上文所述)以阻斷DR5抗體結合Apo-2L,因此增加在Apo-2L療法中所投用的Apo-2L之生物可用性以誘導癌細胞之細胞凋亡。
本發明DR5抗體之治療作用可於活體外偵測,並可使用活體內動物模型進行偵測。多種熟知動物模型可用於進一步瞭解本文所識別DR5抗體在(例如)癌症或免疫相關疾病之發展及發病機理中的作用,且可用於測試候選治療劑之功效。該等模型之活體內特性使得其在人類患者中之反應尤其可預見。
免疫相關疾病之動物模型包括非重組及重組(基因轉殖)動物。例如,非重組動物模型包括齧齒動物,例如鼠科動物模型。該等模型可藉由使用標準技術將細胞引入同源小鼠體內而產生,該等標準技術如皮下注射、尾靜脈注射、脾移植、腹膜內移植及腎小囊下移植。
舉例而言,已知用於移植物抗宿主疾病之動物模型。當將免疫活性細胞轉移至經免疫抑制或耐受患者體內時,發生移植物抗宿主疾病。供體細胞識別並反應於宿主抗原。該反應可在生命受脅迫之嚴重發炎性疾病與緩和情形下的腹瀉及體重損失之間變化。移植物抗宿主疾病模型提供評估T細胞對於MHC抗原及小移植物抗原之反應性的方法。合適程序詳細描述於Current Protocols in Immunology,單元4.3中。
用於皮膚同種移植排斥之動物模型係測試T細胞調節活體內組織破壞之能力的方法,其係其在抗病毒及腫瘤免疫中作用的指示及量測。最普遍及所接受的模型使用鼠科動物尾皮移植物。重複實驗已展示皮膚同種移植排斥由T細胞、輔助T細胞及殺手效應子T細胞所調節,而非抗體。[Auchincloss,H.Jr.及Sachs,D.H.,Fundamental Immunology
,第2版,W.E.Paul編輯,Raven Press,NY,1989,889-992]。合適程序詳細描述於Current Protocols in Immunology,單元4.4中。可用於測試本發明組合物之其它移植排斥模型為Tanabe,M.等人,Transplantation
,(1994)58:23及Tinubu,s.A.等人,J.Immunol.
,(1994)4330-4338所述的異源心臟移植模型。
經延遲類型超敏性動物模型亦提供細胞所調節免疫功能之檢定。經延遲類型之超敏性反應為T細胞所調節之活體內免疫反應,其特徵為直至抗原攻毒後的一段時間過後方才達到峰值之發炎。該等反應亦發生於組織特異性自體免疫疾病中,諸如多發性硬化症(MS)及實驗性自體免疫腦脊髓炎(EAE,用於MS之模型)。合適程序詳細描述於Current Protocols in Immunology,單元4.5中。
關節炎之動物模型為經膠原質誘導之關節炎。該模型與人類自體免疫類風濕性關節炎共享臨床、組織學及免疫血特徵,且為人類自體免疫關節炎之可接受模型。小鼠及大鼠模型之特徵為軟骨及軟骨下方硬骨之滑膜炎、糜爛。使用上文Current Protocols in Immunology,單元l5.5所述之實驗程序可測試本發明之DR5抗體對自體免疫關節炎之活性。亦參看Issekutz,A.C.等人,Immunology
,(1996)88:569所述,使用CD18與VLA-4整合素之單株抗體之模型。
已描述哮喘模型,其中抗原誘導之氣道高反應性、肺嗜酸性球性增多及發炎性疾病係藉由以卵白蛋白光敏處理動物且接著以氣溶膠所傳遞之相同蛋白攻毒動物來誘導。一些動物模型(豚鼠、大鼠、非人類靈長類動物)展示在以氣溶膠抗原攻毒後,與人類遺傳過敏性哮喘類似之症狀。鼠科動物模型具有人類哮喘之多種特徵。測試本發明之組合物在治療哮喘中之活性及效率的合適程序描述於Wolyniec,W.W.等人,Am.J.Respir.cell Mol.Biol.
,(1998)18:777及其中所引用之參考文獻中。
此外,本發明之DR5抗體可於動物模型上測試牛皮癬樣疾病。本發明之DR5抗體可如Schon,M.P.等人,Nat.Med.
,(1997)3:183所述於scid/scid小鼠模型中測試,其中小鼠表明組織病理學皮膚損害樣牛皮癬。另一合適模型係如Nickoloff,B.J.等人,Am.J.Path.
,(1995)146:580所述製備之皮膚/scid小鼠嵌合體。
熟知將各種動物模型用於測試候選治療組合物之安全性及抗癌活性。此等模型包括異種移植至無胸腺裸小鼠或scid/scid小鼠體內之人類腫瘤或遺傳鼠科動物腫瘤模型,諸如p53剔除小鼠。
重組(基因轉殖)動物模型可藉由使用產生基因轉殖動物之標準技術將本文所識別之分子的編碼部分引入所關注動物之基因組內而得以加工。可充當基因轉殖操縱目標之動物包括(但不限於):小鼠、大鼠、兔、豚鼠、綿羊、山羊、豬及非人類靈長類動物,例如狒狒、黑猩猩及猴子,諸如恆河猴(cynomolgus monkey)。此項技術中已知將基因轉殖引入該等動物體內之技術,其包括:前核微注射(Hoppe及Wanger,美國專利第4,873,191號);逆轉錄酶病毒調節之基因轉移至生殖系內(例如,Van der Putten等人,Proc.Natl.Acad.Sci.USA,82
,6148-615[1985]);胚胎幹細胞內之基因靶向(Thompson等人,Cell,56
,313-321[1989]);胚胎電穿孔(Lo,Mol.Cel.Biol.,3
,1803-1814[1983]);精子所調節之基因轉移(Lavitrano等人,Cell,57
,717-73[1989])。舉例而言,綜述見美國專利第4,736,866號。
為了達成本發明之目的,基因轉殖動物包括僅在部分細胞中攜帶基因轉殖之動物("嵌合動物")。基因轉殖可以單一基因轉殖或以串連體(例如,頭-頭或頭-尾串連)併入。將基因轉殖選擇性引入特定細胞類型中亦有可能藉由以下技術來實現,例如Lasko等人,Proc.Natl.Acad.Sci.USA,89
,6232-636(1992)所述之技術。
基因轉殖在基因轉殖動物中之表現可藉由標準技術來監控。舉例而言,可使用Southern墨點分析或PCR擴增來證實基因轉殖之整合。隨後,可使用諸如原位雜交、Northern墨點分析、PCR或免疫細胞化學之技術來分析mRNA表現水平。可進一步偵測動物之免疫疾病病理學跡象,例如,藉由組織學偵測來執行以確定特定組織內之免疫細胞滲透或癌性或惡性組織之存在。
或者,可建構具有編碼本文所識別多肽之缺陷型或經改變基因的"剔除"動物,其係編碼多肽之內源基因與編碼動物胚胎細胞中所引入之相同多肽的經改變基因組DNA之間的同源重組之結果。舉例而言,根據已建立之技術,可使用編碼特定多肽之cDNA來選殖編碼該多肽之基因組DNA。編碼特定多肽之基因組DNA的一部分可經刪除或可經另一基因替代,諸如編碼可用於監控整合之可選標記的基因。載體中通常包括數千個鹼基之未經改變的側接DNA(在5'及3'末端)[舉例而言,參看Thomas及Capecchi,Cell,51
:503(1987)之同源重組載體之描述]。將載體引入至胚胎幹細胞株(例如,藉由電穿孔)及細胞中,其中選擇已與內源DNA同源重組之所引入DNA[舉例而言,參看Li等人,Cell,69
:915(1992)]。隨後,將所選細胞注射至動物(例如,小鼠或大鼠)胚泡內以形成聚集嵌合體[舉例而言,參看Bradley,Teratocarcinomas and Embryonic Stem Cells:A Practical Approach,E.J.Robertson編輯(IRL,Oxford,1987),第113-152頁]。隨後可將嵌合胚胎植入合適之假孕雌性培育動物體內,且所引入之胚胎以產生"剔除"動物。生殖系中含有同源重組DNA之後代可藉由標準技術來識別且用於繁殖動物,其中動物之所有細胞均含有同源重組DNA。例如,剔除動物之特徵可在於防禦某些病情之能力及歸因於多肽缺失之病情發展。
在本發明之另一實施例中,提供將抗體用於診斷檢定之方法。舉例而言,抗體可用於診斷檢定中以偵測DR5在特定細胞及組織中之表現或過量表現。可使用此項技術中已知的各種診斷檢定技術,諸如活體內成像檢定、活體外競爭性結合檢定、直接或間接夾層檢定及異源或同源相中所進行之免疫沉澱檢定[Zola,Monoclonal Antibodies:A Manual of Techniques
,CRC Press,Inc.(1987),第147-158頁]。用於診斷檢定中之抗體可用可偵測部分標記。可偵測部分應能夠直接或間接產生可偵測訊號。舉例而言,可偵測部分可為:放射性同位素,諸如3
H、1 4
C、3 2
P、3 5
S或1 2 5
I;螢光或化學發光化合物,諸如螢光素異硫氰酸酯、若丹明(rhodamine)或螢光素(luciferin);或酶,諸如鹼性磷酸酶、β-半乳糖苷酶或辣根過氧化物酶。可採用此項技術中已知用於共軛抗體與可偵測部分之任何方法,其包括下列文獻中所述之方法:Hunter等人,Nature,144
:945(1962);David等人,Biochemistry,13:1014-1021(1974);Pain等人,J.Immunol.Meth.,40
:219-230(1981);及Nygren,J.Histochem.and Cytochem.,30
:407-412(1982)。
DR5抗體對於自重組細胞培養基或天然來源進行DR5之親和純化亦係有用的。在此方法中,使用此項技術中熟知之方法將抗DR5之抗體固定於諸如交聯葡聚糖凝膠(Sephadex)樹脂或過濾器之合適支撐物上。隨後使所固定之抗體接觸含有待純化DR5之樣品,且隨後以合適溶劑來洗滌支撐物以大體上去除樣品中的除DR5以外之結合於固定抗體的所有材料。最後,以另一合適溶劑來洗滌支撐物以自抗體釋放DR5。
在本發明之其它實施例中,提供製造物品及含有適於治療病情或偵測或純化DR5之材料的套組。製造物品包含具有標籤之容器。例如,合適容器包括瓶、小瓶及試管。該等容器可由多種材料形成,諸如玻璃或塑料。該容器容納具有有效治療病情或偵測或純化DR5之活性劑的組合物。組合物中之活性劑為DR5抗體,且較佳地包含對DR5具有特異性之單株抗體。容器上之標籤指示組合物係用於治療病情或偵測或純化DR5,且亦可指示活體內或活體外使用之說明書,諸如上文所述者。
本發明之套組包含上述容器及包含緩衝液之第二容器。其可進一步包括商業及使用者立場可需之其它材料,其包括其它緩衝液、稀釋劑、過濾器、針、注射器及具有使用說明書之包裝插頁。
以下實例僅為達成說明之目的而提供,且並不傾向於以任何方式限制本發明之範疇。
本說明書所引用之所有專利及參考文獻均以引用的方式全文併入本文中。
除非另外指出,否則實例中所指之市售藥劑均係根據廠商說明書來使用。以下實例中所識別之細胞及在整個說明書中以ATCC入藏登記號識別之細胞的來源為American Type Culture Collection(Manassas,Virginia)。本文所揭示之多種藥劑及實驗程序進一步討論於WO 99/37684、WO 00/73349、WO 98/32856、WO 98/51793及WO 99/64461中,其內容均以引用的方式全文併入本文中。
抗-DR5抗體16E2自人類抗體噬菌體呈現庫衍生為scFv,且已描述於1998年11月19日公開之WO 98/51793中(參看實例14)。scFv 16E2之核苷酸及胺基酸序列分別示於圖5(SEQ ID NO:9)及圖6(SEQ ID NO:10)中。在圖6中,識別出訊號序列及重與輕鏈CDR區(CDR1、CDR2及CDR3以下劃線表示)。
下文所述之實驗需要全長IgG。因此,將16E2之可變域選殖至適於全長IgG1抗體的哺乳動物細胞表現之先前所述pRK載體中(Gorman等人,DNA Prot.Eng.Tech.2:3-10(1990))。16E2可變域之胺基酸序列與Kabat資料庫(Kabat等人,Sequences of Proteins of Immunological Interest,U.S.Dept.of Health and Human Services,NIH,第5版)之比較指示16E2之輕鏈可變區(VL)來源於人類λ輕鏈基因家族。因此,首先將16E2之可變域選殖至含有λ恆定域之載體內。設計PCR引子以添加限制性酶位點SfiI及MscI,且隨後以該等兩種酶來消化所擴增之可變域。將此片段插入含有λ恆定域之經類似消化的載體內。由於此載體經設計以用於Fab在大腸桿菌中之表現,對於IgG表現而言,再次使用引子對整個輕鏈編碼區進行PCR擴增以在編碼區之5'末端添加限制性位點AgeI,並在3'末端添加限制性位點HindIII。隨後將此AgeI-HindIII片段插入至經類似消化之載體pDR1(Clontech)內。質體pDR1之整個序列示於圖11中(SEQ ID NO:15)。
對於版本1之重鏈而言,使用設計為在域之5'-末端添加PvuII位點且在3'-末端添加ApaI位點之引子以對scFv 16E2之重鏈可變(VH)域進行PCR擴增。隨後將此片段選殖至載體pDR2(Clontech)之PvuII/ApaI位點內,以用於完全重鏈(VH-CH1-CH2-CH3域)之表現。質體pDR2之整個序列展示於圖12中(SEQ ID NO:16)。
全長抗體16E2重及輕鏈之核苷酸與胺基酸序列分別展示於圖7-10中(SEQ ID NOS:11-14)。詳言之,圖7及8(SEQ ID NOS:11及12)展示全長16E2重鏈之胺基酸與核苷酸序列,且圖9及10(SEQ ID NOS:13及14)展示全長16E2輕鏈之胺基酸與核苷酸序列。全長16E2抗體之重及輕鏈在下文中亦可稱為"版本1"。
IgG變異體之建構。使用定點突變誘發,分別在輕或重鏈上建構變異體(Kunkel等人,Proc.Natl.Acad.Sci USA 82:488-492(1985))。將編碼輕鏈版本1之質體pDR1或編碼重鏈版本1之質體pDR2轉化至大腸桿菌菌株CJ236內(BioRad,Joyce及Grindley,J.Bacteriol.158:636-643(1984)),以用於製備含脫氧尿苷之單鏈DNA模板。將突變誘發反應之等分試樣轉化至大腸桿菌菌株XL-1 Blue(Stratagene,San Diego,CA)內以用於純化雙鏈DNA。使用ABI377x1或ABI3730x1自動化DNA測序儀(Perkin-Elmer Corp.)對每個變異體進行編碼輕或重鏈之DNA的完全測序。
對於每個IgG變異體而言,藉由將輕鏈表現質體及重鏈表現質體共轉染至經腺病毒轉化之人類胚胎腎細胞株293內來進行短暫轉染(Graham等人,J.Gen.Virol.,36:59-74,(1977))。簡言之,使293細胞在轉染前一天分裂,且將其塗於含血清之培養基上。第二天,自輕及重鏈之雙鏈DNA及pAdVantageT M
DNA(Promega,Madison,WI)來製備磷酸鈣沉澱物,並將其逐滴添加至培養板上。在37℃下培養細胞隔夜,隨後以PBS洗滌,並於無血清培養基上培養4天,此時收穫經調節之培養基。使用蛋白A-瓊脂糖凝膠CL-4B自培養上清液中純化抗體,隨後將緩衝液交換至10 mM琥珀酸鈉、140 mM NaCl(pH 6.0)內,並使用Centricon-10(Amicon)濃縮。藉由量測280 nm之吸光率或藉由進行定量胺基酸分析來確定蛋白質濃度。
電化學發光DR5結合檢定。以溶液相、競爭-ELISA格式來確定抗-DR5抗體之相對結合。使用生物素-X-NHS(Research Organics,Cleveland,OH)將DR5-Fc融合蛋白生物素化,且根據廠商指導以ORI-TAG NHS酯(IGEN International,Gaithersburg,MD)來標記標準抗體(版本1或Apomab 7.3)。為進行結合檢定,以檢定緩衝液(PBS,pH 7.4,含有0.5% BSA及0.5% Tween-20)連續稀釋測試抗體樣品。將等體積(每個25 μl)之抗體樣品(濃度範圍為50,000-0.85 ng/ml)、ORI-TAG標準抗體(150 ng/ml)及生物素化人類DR5-Fc(15 ng/ml)添加至96孔聚丙烯板中,並於室溫下在溫和攪動下培養1.5 hr。隨後加入磁性抗生蛋白鏈菌素(streptavidin)小珠(IGEN International)(25微升/孔),並如上文將該等板額外培養30 min。加入檢定緩衝液以使最終體積為250微升/孔,並使用ORIGEN M384儀器(IGEN International)對該等板讀數。使用樣品曲線之4個參數擬合計算IC50值。
生物檢定:腫瘤細胞生長抑制/殺死。以活體外腫瘤細胞殺死檢定來確定每個抗體變異體之表觀效能。在含有10%胎牛血清之RPMI培養基中培養Colo205人類結腸癌細胞株。在含有具有或不具有10毫克/毫升交聯抗體(抗人類Fc、山羊親和純化之F(ab')2
)之培養基的96孔組織培養板中進行標準物(版本1或Apomab 7.3)及樣品之兩倍連續稀釋。隨後將細胞(20,000/孔)加入該等板中。在37℃下將該等板培養共計48 h。在培養之最終3 h時,向孔中添加AlamarBlue。使用具有530 nm激發及590 nm發射之螢光儀來讀取螢光。使用4參數曲線擬合程式來分析資料。
此工作之總體目標係開發具有經改良生物化學特性及經改良功效而不危及安全性之抗-DR5抗體。
使用一些方法來達到所需改良,該等方法包括:在DR5重及輕鏈中進行胺基酸替代以改良化學或熱穩定性;折疊;CDR殘基之丙胺酸掃描以確定可能對結合或折疊重要之殘基,並因此可經改變以獲得更大親和力;及使用CDR之噬菌體呈現庫以識別具有改良親和力之純系。亦研究構架區中之改變對免疫原性及生物活性之可能作用。將同源模型(圖19及20)用作該等改變中之多者的選擇輔助。
重鏈之版本2含有來自版本1之5個改變。該等改變(Q6E、V11L、E12V、R13Q及K105Q)在可變域之構架內,且經添加以使構架更接近人類VH
III一致序列。表1展示以重鏈CDR中之改變建構的第一變異體。該等突變體之ssDNA模板為版本2。在位置102處將Leu改變成Tyr以改良包裝,並因此改良穩定性。與此改變組合,將Asn53改變成Gln或Tyr以去除潛在脫醯胺位點。使Met34改變成Leu以去除潛在氧化位點。以初始輕鏈來表現該等重鏈變異體以產生版本20-23(表1)。隨後,將含有三個突變M34L、N53Q及L102Y之重鏈及如版本2之構架改變稱作"三重一(triple heavy one)"或TH1,而具有三個突變M34L、N53Y及L102Y之重鏈及版本2之構架類似地稱作TH2。
因為加入M34L(意即,v21與v20比較,v23與v22比較,表1)突變而引起結合及活體外殺死細胞活性之損失,所以使用重鏈版本20作為模板在重鏈CDR1中產生藉由掃描Kabat資料庫所建議之丙胺酸或其它殘基之一系列額外突變、替代。該等重鏈以輕鏈版本1表現。表2中展示經突變之胺基酸、相對於v1所產生的結合及該等版本之生物檢定資料。將Gly33變為Ala會增強結合及改良效能。將此含有三個突變G33A、N53Q及L102Y的重鏈稱作TH3。類似地,建構具有G33A、N53Y及L102Y之TH4。將Thr28變為Ala相對於v1亦增強活性,且將含有T28A、N53Q、L102Y之重鏈稱作TH9。表5中概述TH1、TH2、TH3、TH4及TH9中之CDR改變。在與輕鏈組合共表現之後,進一步研究該等5個重鏈(參看下文)。
Ala掃描CDRH2及CDRH3。為了進一步闡明重鏈CDR2及CDR3之每個胺基酸之貢獻,藉由以丙胺酸替代該等殘基中之每一者來建構突變體。使用重鏈版本1作為模板,以編碼丙胺酸替代之合成寡核苷酸來進行定點突變誘發。使用版本1輕鏈表現該等重鏈。表3及4展示所得抗體之表觀親和力及功效之改變。Gly99Ala及Arg100Ala中之每一者均展示經改良活性,且因此該等改變可用於建構重鏈之額外組合突變體。
使用與版本TH1、TH2、TH3及TH4相同之CDR來建構第二系列重鏈,其中將構架殘基E6、L11、V12、Q13及Q105轉化為版本1中所發現的胺基酸,意即Q6、V11、E12、R13及K105。該等重鏈係稱作TH5、TH6、TH7及TH8(參看表5)。
為了更好地瞭解輕鏈CDR殘基對結合及生物活性之貢獻,使用定點突變誘發將每個胺基酸改變成丙胺酸。將每個輕鏈變異體與重鏈v1結合以用於如上所述之IgG短暫表現。表6中概述輕鏈CDR ala掃描之結果。有意思的是,與多種其它抗體相反,CDR L1顯示在抗原結合中起重要作用。此輕鏈為λ鏈,且圖20所示模型指示CDR1可形成α螺旋。除了取消結合之CDR2中的G50A以外,更允許替代L2及L3中之丙胺酸。相反,一些ala替代(尤其為R91A及K51A)會改良結合及生物活性。
使用第二類型之定點突變體來研究輕鏈。在此方法中,以似乎存在於模型中之環的每一側且因此可能起支撐作用而非直接涉及抗原結合之CDR殘基來交換其它緊密相關λ基因家族中之對應位置的殘基。亦使用v1重鏈來表現該等突變體,且結果概述於表7中。在CDR L2中,G50K、K51D之組合顯著地改良結合及生物活性,且包含四個突變G50K、K51D、N52S、N53E之組合亦改良至超過v1。不允許在同一區內僅包含一個殘基替代之其它更保守改變。
對於CDR L1、L2及L3中之每一者而言,分別建構噬菌體呈現庫,並選擇與DR5-Ig具有增加親和力之純系。模型(圖20)之檢查指示CDR之殘基可能曝露,且隨機選擇該等殘基。將版本1之整個λ輕鏈及VH域選殖至噬菌體呈現載體pS1602中,參看Vajdos等人,J.Mol.Biol.320:415-428(2002),且進一步描述於Sidhu等人,Curr.Opin.Biotechnol.11:610-616(2002)中。使用Kunkel突變誘發來建構庫。將v1質體轉化至大腸桿菌菌株CJ236中以用於單鏈DNA製備,且將在每個隨機選擇之位點含有TAA密碼子之寡核苷酸用於產生庫模板。隨後,將使用簡並密碼子NNS(其中N為G、A、T及C之等同混合物,而S為G及C之等同混合物)之寡聚體用於建構庫。使用終止模板寡聚體CA945及庫寡聚體CA946使CDRL1突變。使用終止模板寡聚體CA947及庫寡聚體CA948使CDRL1突變。使用終止模板寡聚體CA949及庫寡聚體CA950使CDRL3突變。庫建構概述於表8中。
將隨機突變誘發反應之產物電穿孔至XLI-Blue大腸桿菌細胞(Stratagene)中,並藉由以M13K07輔助噬菌體生長14-16小時來使其擴增。若起始轉化係在羧苄青黴素(carbenicillin)板上進行且為1.9×109
至2.2×109
個純系,則藉由連續稀釋及鋪板來評估庫尺寸。
使用生物素化DR5-Ig(Genentech),以溶液狀態將庫搖動4圈。在RT下,在轉輪上以3%脫脂乳粉、0.2% Tween於PBS中之1 ml溶液(噬菌體阻斷)來阻斷約101 1
噬菌體歷經1 h。向阻斷溶液中加入1微莫耳DR4-IG及CD4-IG以減少非特異性結合。在第一輪中加入100 nM生物素化抗原,且允許結合進行2 h。在隨後各輪的搖晃中,抗原濃度降低至10、5及1奈莫耳。
為了捕獲抗原結合之噬菌體,首先以噬菌體阻斷劑將經鏈黴和素(strepavidin)塗覆之磁珠(Dynal)洗滌三次,且隨後以1 ml噬菌體阻斷劑在RT下阻斷1 h。使用磁體濃縮磁珠,並隨後將其添加至抗原-噬菌體溶液中歷經15 min。隨後,使用磁體以將磁珠-抗原-噬菌體複合物吸出溶液。隨後以噬菌體阻斷劑洗滌該等粒子3次,以PBS-Tween(0.02% Tween)洗滌3次,並以PBS洗滌1次。在10 min內以100微升0.1 MHCl自磁珠中溶離噬菌體,並以NaOH中和之。將所溶離出的噬菌體用於感染XL1Blue大腸桿菌,且如上文進行繁殖以用於隨後各輪。洗滌之嚴格性在各輪中增強。
將來自每個庫之純系測序。對於L1庫而言,僅獲得野生型序列,支持下列觀點,即此CDR對於抗原結合或抗體構型係重要的且可允許潛在螺旋中之極少突變。對於L2內之庫而言,未發現一致序列,此揭示多個CDRL2序列對於結合DR5均係可接受的。對於L3庫而言,一些序列出現多次,且使用寡聚體定點突變誘發將該等序列移植至全長輕鏈載體上。使用重鏈版本1在293細胞中再次表現IgG以用於共轉染。表9描述表現為全長抗體之L3序列及結合與生物檢定之結果。與版本1相比,兩個經測試、併入至版本69及70內之序列使得抗體具有經改良之結合及生物活性。
如上文所述,在輕鏈CDR中之每一者中識別出活體外個別增強結合及腫瘤細胞殺死之突變。隨後組合該等突變以使一些輕鏈在每個CDR內均具有改良。該等"三輕1(triple light 1)"等稱作TL1、TL2及TL3,並描述於表10中。因此,TL1含有與版本26中所識別之L2突變及版本29中所識別之L3突變相結合的版本44中所識別之L1突變。TL2類似地含有具有來自v65之L2突變及來自v69之L3突變的來自版本44之L1突變,而TL3組合來自v44之L1及來自v65之L2及來自v74之L3。
在產生三重鏈及三輕鏈之後,藉由在293細胞中共轉染3條輕鏈中之每一者與9條重鏈中之每一者並如上文所述來純化所得抗體而創建抗體組合之9×3柵格。該等Apomab之活體外研究指示一些版本在生物檢定中係極有效的。因此,製備適於活體內小鼠腫瘤模型研究之材料。
如下描述自所收穫之細胞培養基流體(HCCF)回收及純化Apomab抗體之方法:前序列蛋白A層析-以1.5 M Tris鹼將自中國倉鼠卵巢(CHO)細胞產生之所收穫細胞培養基流體(HCCF)之pH值調節至7.0,並隨後將其負載於以25 mM NaCl/25 mM Tris/5 mM EDTA(pH 7.5)平衡之前序列蛋白A管柱(Millipore,U.S.A.)上。使未結合蛋白流經該管柱,並藉由以平衡緩衝液洗滌、接著以平衡緩衝液中之0.5 M TMAC進行第二洗滌步驟且以平衡緩衝液進行三次洗滌來去除之。使用0.1 M乙酸進行一步溶離,自蛋白A管柱溶離出Apomab抗體。由A280監控管柱溶離。Apomab抗體峰值集中。
SP-瓊脂糖快流層析-以1.5 M Tris鹼將來自前序列蛋白A之Apomab抗體池的pH值調節至5.5,並隨後將其負載於以25 mM MOPS(pH 7.1)平衡之SP-瓊脂糖快流層析管柱(Amersham Pharmacia,Sweden)上。在樣品負載之後,以平衡緩衝液洗滌管柱至基線@ A280。藉由使用平衡緩衝液(pH 8)中之0至0.2 M氯化鈉之線性12管柱體積梯度而自管柱中溶離出Apomab抗體。由A280監控管柱溶離。收集餾分,且集中如SEC-HPLC分析所確定之含有適當折疊Apomab抗體之餾分。
Q-瓊脂糖快流層析-隨後,將SP-瓊脂糖餾分池負載於以50 mM氯化鈉/25 mM Tris緩衝液(pH 8)平衡之Q-瓊脂糖FF管柱(Amersham pharmacia,Sweden)上。以平衡緩衝液洗滌管柱,且隨後於管柱流出物中收集Apomab抗體。
UF/DF調配物-藉由在具有約10,000道爾頓截止分子量之膜上進行超濾來濃縮Q-瓊脂糖池。隨後,將所濃縮之Q-瓊脂糖FF池以10體積之10 mM組胺酸/8%蔗糖(pH 6)透濾。以10%聚山梨醇酯20來調節所透濾之Q-瓊脂糖池以達到0.02%聚山梨醇酯20之最終濃度。使所調配之主體經由無菌0.22 μm過濾器過濾並儲存於2-8℃或-70℃下。藉由SDS-PAGE、SEC-HPLC及胺基酸序列分析來確定Apomab抗體之最終純度。
於ABI3700或ABI3730應用生物系統測序機器上進行測序。使用測序儀(GeneCodes,Ann Arbor,MI)序列分析軟體來分析測序層析圖。
在開始以Apomab進行活體內研究之前,如上文所述來測試每批之活體外活性。該等結果展示於表13中。
本實例及後續實例中常用的縮寫詞如下:CR 完全恢復PR 部分恢復MTD 最大耐受劑量MTV 中值腫瘤體積NTR 非治療相關死亡LTTFS 長期無腫瘤存活PBS 磷酸鹽緩衝鹽水q3d x 4 每三天一次,總計4個劑量qd x 1 第一天給出之1劑量qd x 5 5天內每天一次TFS 無腫瘤存活TR 治療相關死亡TTE 終點時間T-C 多天內,經治療動物及對照動物之中間TTE值之間之差異TGD 腫瘤生長延遲;T-C;與通常以對照%表示的對照組相比,治療組的中值TTE之增加。
達到2xVo之時間 雙倍時間(DT);腫瘤體積加倍之時間。細胞殺死對數治療時,實際腫瘤體積之對數log1 0
(Vp r e
)與log1 0
(Vp o s t
)(Chenevert等人,Clin.Cancer Res.
3:1457-1466(1997))之間之差異。
在6-8週大雌性無胸腺裸小鼠(Charles River Laboratories)之右背側面經皮下接種五百萬個Colo 205細胞每隻小鼠,0.2 ml體積/小鼠。所有小鼠均經耳朵標記以用於識別。一旦腫瘤體積約為100-200 mm3
,則Colo 205腫瘤忍耐小鼠即經受隨機分組並投與治療。
治療方案係經腹膜內注射單一劑量,媒劑對照物或標準抗體及測試抗體之劑量為3毫克/公斤/小鼠或10毫克/公斤/小鼠。在一些實例中,對媒劑及10 mg/kg組之3或4隻小鼠實施安樂死,並於治療後5分鐘、24小時或48小時收集血清及腫瘤以用於血清藥物濃度及腫瘤組織學研究。在剩餘小鼠中,在前兩週內每週量測腫瘤兩次,隨後在另外四週內每週量測一次。
Colo 205異種移植無胸腺裸小鼠模型中所獲得之結果展示於圖21-25中。
圖21展示Apomab 5.3、6.3及8.3中之每一者在所有經測藥劑量下均高度有效地減少平均腫瘤體積,且其功效基本上與抗體16E2版本1之功效相同。
在Colo 205異種移植無胸腺裸小鼠模型中,測試單一腹膜內劑量之Apomab 5.2、6.2、5.3、7.2及7.3的功效,且結果展示於圖22中。所有經測試之Apomab均高度有效地減少腫瘤體積,且其功效基本上與抗體16E2版本1之功效相同。
圖23所示之結果類似地展示Apomab 5.2、7.3及8.3在此結腸直腸癌模型中有效地減少腫瘤體積。在此實驗中,Apomab及16E2以1 mg/kg及3 mg/kg劑量投與,但另外如上文所述進行處理。Apomab 7.3及8.3之功效係尤其顯著的,但其在20天測試期間內並未展示任何逆轉。
如圖24所示,在Colo 205異種移植模型中,Apomab 7.3之抗癌活性遠勝於Apomab 23.3及25.3之活性。
圖25說明比較來源於Colo 205小鼠異種移植模型中的穩定與短暫細胞株之Apomab 7.3的抗腫瘤活性的檢定結果。簡言之,如上文所述,在6-8週大雌性無胸腺裸小鼠的右背側面經皮下接種五百萬個Colo 205細胞/小鼠0.2 ml體積/小鼠。劑量展示於圖中。圖25之資料展示分別來源於Colo 205小鼠異種移植模型中的穩定及短暫細胞株之Apomab 7.3等效。
圖26展示測試Apomab 7.3(10 mg/kg劑量)在結腸直腸癌之HCT15異種移植模型中作為單一療法或作為與80 mg/kgCPT-11(伊立替康(irinotecan),治療結腸直腸癌之已知藥物)組合的組合療法之抗癌活性的實驗結果。如所示結果證明,儘管當單獨投藥時,Apomab 7.3與CPT-11均有效,此兩者之組合卻展示為極其有效,超過作為單一療法投與之Apomab 7.3與CPT-11之活性。
以Apomab 7.3組合CPT-11(伊立替康)來治療具有肉瘤LS180異種移植物之裸小鼠的代表性實驗之結果展示於圖27中。再次發現相對於作為單一藥劑之Apomab 7.3或CPT-11,組合療法極為有效,且具有顯著統計學差異(第二面)。比較所有對之Tukey-Kramer P<0.05。
在非霍奇金氏淋巴瘤之BJAB異種移植模型中評估單獨Apomab 7.3(10 mg/kg q1 wk)及組合RITUXAN(利妥昔單抗,Genentech.Inc.)(4 mg/kg,q1 wk)之抗癌活性。因為已知淋巴瘤細胞在SCID小鼠中更好地生長,所以本研究使用6-8週大之SCID小鼠(Charles River Laboratory)。治療參數及結果展示於圖28中。組合投與之Apomab 7.3及RITUXAN展示增效活性。
調查雌性無胸腺裸小鼠(Charles River Laboratory)中之人類胰腺癌的BxPC3異種移植模型內的單獨Apomab 7.3(10 mg/kg,經靜脈內)及組合吉西他濱(160 mg/kg,經腹膜內)之抗癌活性。治療參數及結果展示於圖29中。資料展示單一療法投與Apomab 7.3之抗癌活性遠勝於吉西他濱之功效。Apomab 7.3與吉西他濱之組合引起功效之額外改良。
相對於媒劑對照物且相對於卡波鉑及紫杉醇鹼之組合,評估單獨Apomab 7.3(10 mg/kg,1x wk,經腹膜內)及組合卡波鉑及紫杉醇鹼之抗癌活性。在60隻雌性無胸腺裸小鼠(Charles River Laboratory)的右背側面經皮下接種五百萬個H460細胞/小鼠,0.2 ml體積/小鼠。所有小鼠均經耳朵標記以用於識別。允許腫瘤達到100-200 mm3
之平均腫瘤體積,並如圖30所示進行治療。簡言之,將小鼠分為四組。組1為經媒劑處理之對照組(10 mM組胺酸、8%蔗糖及0.02% Tween 20(pH 6))。組2係經Apomab 7.3處理,10毫克/公斤/小鼠劑量,經腹膜內,1x/週,歷經兩週。組3係經投與卡波鉑(100毫克/公斤/小鼠,經腹膜內,第0天單一劑量)+紫杉醇鹼(6.25毫克/公斤/小鼠,經皮下,5個連續日每天投藥,歷經2週)。組4接收Apomab 7.3(10毫克/公斤/小鼠劑量,經靜脈內,1x/週,歷經2週)+卡波鉑(100毫克/公斤/小鼠,經靜脈內,第0天單一劑量)+紫杉醇鹼(6.25毫克/公斤/小鼠,經皮下,5個連續日每天投藥,歷經2週)。作為單一療法投與之Apomab 7.3的抗癌活性與卡波鉑+紫杉醇鹼組合之抗癌活性可相當。發現相較於其它治療形式,Apomab 7.3+卡波鉑+紫杉醇鹼之經組合投藥極好。
在此研究中,在雌性無胸腺裸小鼠(Charles River Laboratory,10隻小鼠/組)的右背側面經皮下接種五百萬個H2122細胞/小鼠,0.2 ml體積/小鼠。所有小鼠均經耳朵標記以用於識別。允許腫瘤達到100-200 mm3
之平均腫瘤體積,隨機分為四組(6隻小鼠/組),並如圖31所示進行治療。組1為經媒劑處理之對照組(10 mM組胺酸、8%蔗糖及0.02% Tween 20(pH 6))。組2係經投與卡波鉑(100毫克/公斤/小鼠,經腹膜內,第0天單一劑量)+紫杉醇鹼(6.25毫克/公斤/小鼠,經皮下,5個連續日每天投藥,歷經2週)。組3接收Apomab 7.3(10毫克/公斤/小鼠劑量,經腹膜內,1x/週,歷經2週)。組4接收Apomab 7.3(10毫克/公斤/小鼠劑量,經靜脈內,1x/週,歷經2週)+卡波鉑(100毫克/公斤/小鼠,經靜脈內,第0天單一劑量)+紫杉醇鹼(6.25毫克/公斤/小鼠,經皮下,5個連續日每天投藥,歷經2週)。如圖31所示,卡波鉑+紫杉醇鹼之組合並未展示相對於經媒劑處理對照組之顯著抗癌活性。完全相反,作為單一療法投與之Apomab 7.3展示顯著抗腫瘤活性。以Apomab 7.3治療之所有六隻小鼠均展示完全反應(CR),而在70天治療期間內無任何恢復。在經Apomab 7.3+卡波鉑+紫杉醇鹼組合處理只組內發現相同活性。
為了確定此模型中之Apomab 7.3最大有效劑量,在6-8週大雌性無胸腺裸小鼠(Charles River Laboratory)的右背側面經皮下接種五百萬個H2122細胞/小鼠,0.2 ml體積/小鼠。所有小鼠均經耳朵標記以用於識別。允許腫瘤達到100-200 mm3
之平均腫瘤體積,並隨機分組(13隻小鼠/組),並如下文描述進行治療。對治療組之外的任何小鼠實施安樂死。
組A為經媒劑處理之對照組(0.5 M精胺酸琥珀酸酯、20 mM Tris、0.02% Tween 20,pH 7.2)。經腹膜內5x/週投與媒劑,歷經一週。組B係以1毫克/公斤/小鼠單一靜脈內劑量投用Apomab 7.3。組C係以3毫克/公斤/小鼠單一靜脈內劑量投用Apomab 7.3。組D係以10毫克/公斤/小鼠單一靜脈內劑量投用Apomab 7.3。第一次治療之後48小時,對來自組B、C及D中之每一組之三隻小鼠實施安樂死,並如下收集其腫瘤。將一腫瘤保存於10%福爾馬林中以用於組織學研究。將一腫瘤冷凍於液氮中以用於RNA研究。將一腫瘤冷凍於液氮中以用於Western墨點。在開始2週內2x/週進行腫瘤量測,其後4週內1x/週進行量測。在6週末期或直至腫瘤達到約800-1000 mm3
之體積時,對所有剩餘小鼠實施安樂死。第一面,圖32所示之劑量-反應曲線指示Apomab 7.3在所有經測試之劑量中均有效,但3 mg/kg及10 mg/kg劑量展示相對於1 mg/kg劑量存在獨特改良(儘管非統計學顯著)。比較所有對之Tukey-Kramer P<0.05(參看圖32,第二面)。
在此研究中,在雌性無胸腺裸小鼠(Charles River Laboratory)的右背側面經皮下接種五百萬個Colo 205細胞/小鼠,0.2 ml體積/小鼠。所有小鼠均經耳朵標記以用於識別。允許腫瘤達到100-200 mm3
之平均腫瘤體積,隨機分為七組(10隻小鼠/組),並如圖33所示進行治療。組1為經媒劑處理之對照組(10 mM組胺酸、8%蔗糖及0.02% Tween 20(pH 6))。組2係經投與單一3毫克/公斤/小鼠靜脈內劑量之Apomab 7.3。組3係經投與單一10毫克/公斤/小鼠靜脈內劑量之Apomab 7.3。組4係經投與單一3毫克/公斤/小鼠靜脈內劑量之Apomab 23.3。組5係經投與單一10毫克/毫克/小鼠靜脈內劑量之Apomab 23.3。組6係經投與單一3毫克/公斤/小鼠靜脈內劑量之Apomab 25.3。組7係經投與單一10毫克/公斤/小鼠靜脈內劑量之Apomab 25.3。治療之後24小時,稱重所有小鼠。在開始2週內2x/週進行腫瘤量測,且其後4週內每週一次進行量測。6週後或當腫瘤達到>1000 mm3
之尺寸時,犧牲小鼠。
結果展示於圖33中。如25天資料所說明,此模型中之Apomab 7.3及Apomab 25.3均展示顯著抗癌活性。
在研究第一天,雌性無胸腺裸小鼠(nu/nu,Harlan)為11或12週大。對動物任意餵食水及由18.0%粗蛋白、5.0%粗脂肪及5.0%粗纖維組成之NIH 31 Modified and Irradiated Lab Diet。在12小時光循環中,在21-22℃及40-60%濕度下,於靜態式微隔離器中之經放射ALPHA-Dribed-o'cobsLaboratory Animal Bedding上圈養小鼠。
自經培養之Colo 205人類結腸癌細胞起始異種移植物。在補充有10%熱失活胎牛血清、100單位/毫升青黴素G鈉、100 μg/mL硫酸鏈黴素、0.25 μg/mL兩性黴素B及25 μg/mL慶大黴素、2 mM麩醯胺酸、1 mM丙酮酸鈉、10 mM HEPES及0.075%碳酸氫鈉之RPMI-1640中使腫瘤細胞生長至對數生長中期。在37℃、5% CO2
及95%空氣之氣氛下,在潮濕培育箱內之組織培養燒瓶中維持細胞培養基。在腫瘤細胞植入當天,收穫Colo 205細胞並將其以5×106
個細胞/毫升之濃度再懸浮於PBS中之50%基底膜膠(Matrigel)基質(BD Biosciences)中。在每隻測試小鼠之右側經皮下植入1×106
個Colo 205細胞,並監控腫瘤生長直至平均尺寸達到100至300 mm3
。13天後,即指定為研究之第一天,個體腫瘤體積介於126至288 mm3
內,並將動物分為6組,每組由10隻具有188 mm3
之平均腫瘤體積之小鼠組成。
在給藥期間將測試材料保持於冰上,隨後將給藥溶液儲存於4℃下。在媒劑對照組(組1)中,小鼠接收經腹膜內投與之媒劑,每天一次,歷經5天,接著休息兩天,隨後再歷經額外5天,每天一次。在測試組(組2-4)中,以Apo2L.0配位體(60 mg/kg,經腹膜內,5/2/5進度)、Apomab 7.3(3 mg/kg,經靜脈內,第1、8天)及抗-VEGF鼠科動物單株抗體B20-4.1(10 mg/kg,經腹膜內,第1及8天)來處理動物。組5及6分別接收B20-4.1與Apo2L.0之組合及B20-4.1與Apomab 7.3之組合。每劑量係以每20 g體重(10 mL/kg)0.2 mL體積來傳遞,其係根據動物體重定標。
使用測徑規每週兩次量測腫瘤。當腫瘤體積達到2000 mm3
,或在第68天結束研究時,無論先後對每隻動物實施安樂死。歸因於並未達到2000 mm3
尺寸之腫瘤數目,選擇1000 mm3
之終點腫瘤體積以用於腫瘤生長延遲分析。根據以下等式來計算每隻小鼠至終點(TTE)之時間:
其中b為截距,且m係由經對數轉化腫瘤生長資料組之線性回歸獲得之直線的斜率。資料組包含超越研究終點體積之第一觀測及即刻領先達到終點體積之三個連續觀測。將並未達到終點之動物指定為等於研究最後日期之TTE值。將經受治療相關死亡或歸因於細胞凋亡而經受非治療相關死亡之動物指定為等於死亡日期之TTE值。將經受非治療相關死亡或未知病因之死亡的動物排除出TTE計算中。
藉由腫瘤生長延遲(TGD)來評估治療結果,腫瘤生長延遲之定義為與對照組相比,治療組中之達到終點之中值時間的增加:TGD=T-C,以天表示,或作為對照組之中值TTE的百分比
其中:T=治療組之中值TTE,C=對照組之中值TTE。
治療可引起動物體內的腫瘤之部分恢復(PR)或完全恢復(CR)。在PR反應中,對於研究期間之三個連續量測而言,腫瘤體積係其第一天體積之50%或更小;且對於該等三個量測中之一或多者而言,腫瘤體積等於或大於13.5 mm3
。在CR反應中,對於研究期間之該等三個量測中的一或多者而言,腫瘤體積小於13.5 mm3
。將在研究終點具有CR反應之動物另外分類為無腫瘤存活(TFS)。監控並記錄恢復反應。
在終點時,自每組之動物提取腫瘤樣品。藉由在取樣之前立即進行子宮頸脫位來對該等動物實施安樂死。每組之三個動物的腫瘤係經收穫、切開並於室溫下保存在10%中性緩衝福爾馬林中歷經12至24小時。
使用Logrank測試來分析治療組與對照組之TTE值之間的差異顯著性。在P=0.05之顯著水平下進行兩尾統計分析,吾人認為結果在0.01P0.05時顯著,且在P<0.01時高度顯著。
中值腫瘤生長曲線展示組中值腫瘤體積為時間之函數。當動物因為腫瘤尺寸而排除在研究以外時,包括關於動物所記錄之最終腫瘤體積以及用於計算隨後時間點之組中值腫瘤體積之資料。建構Kaplan-Meier曲線以展示作為時間函數之研究中的剩餘動物之百分比。該等曲線使用與Logrank測試相同之資料設定。
圖34展示本研究每組之組中值腫瘤生長曲線(上面)及Kaplan-Meier曲線(下面)。經媒劑處理之對照小鼠的中值TTE為10.0天,其中一(十分之一)腫瘤並未達到1000 mm3
終點腫瘤體積。在第1及8天,經腹膜內投用之10 mg/kg B20-4.1產生並非統計顯著之適度19.9天(113%)TGD。Apo2L.0與Apomab 7.3單一療法有效抗Colo 205,其分別產生28.4天(190%)與53.0天(355%)之腫瘤生長延遲。向Apo2L.0或Apomab 7.3中添加B20-4.1並未改良對於TGD或恢復反應之治療功效。
測試作為單一療法之Apo2L.0配位體及Apomab 7.3及組合卡波鉑加之紫杉醇抗SKMES-1人類NSCLC之活體內抗腫瘤活性。
雌性無胸腺裸小鼠(nu/nu,Harlan)為9至10週大,且在研究第一天之體重介於17.4至25.4 g範圍內。對動物任意餵食水及由18.0%粗蛋白、5.0%粗脂肪及5.0%粗纖維組成之NIH 31 Modified and Irradiated Lab Diet。在12小時光循環中,在21-22℃及40-60%濕度下,於靜態式微隔離器中之經放射ALPHA-Dribed-o'cobsLaboratory Animal Bedding上圈養小鼠。
自藉由於PRC下進行連續移植所維持的SKMES-1肺腫瘤來起始異種移植物。使每隻測試小鼠接收在右側經皮下植入之1 mm3
SKMES-1腫瘤片段,並監控腫瘤生長。13天後,指定為研究之第一天,個體腫瘤體積介於63至144 mm3
範圍內,並將動物分為每組由10隻小鼠組成之4組及每組由9隻小鼠組成之2組。平均腫瘤體積為93至95 mm3
。
所有測試材料均提供為易於以每20 g體重(5 mL/kg)0.1 mL給藥,並在接受之後儲存於-80℃下。在給藥第一天解凍測試材料,在給藥期間將其保持於冰上,隨後將其儲存於4℃下。以5%右旋糖之水溶液(D5W)稀釋卡波鉑(PARAPLATIN注射,Bristol Myers Squibb)以產生每10 g體重0.2 mL體積之所需劑量(10 mL/kg)。在給藥的每天,以D5W自10×儲存溶液稀釋紫杉醇(Natural Pharmaceuticals,Inc.),以產生由90% D5 W中之5%乙醇及5% Cremophor EL組成之媒劑(5% EC媒劑),因此以每20 g體重0.1 mL傳遞所需劑量。
使組1(媒劑對照組)小鼠接收經腹膜內投與之媒劑,每天一次,歷經(經腹膜內,qd x 5)並充當腫瘤生長對照物。使組2及3中之小鼠分別接收具有Apo2L.0(60 mg/kg,經皮下,qd x 5)及Apomab 7.3(10 mg/kg,經靜脈內,qd x 1)之單一療法。使組4中之小鼠接收卡波鉑(100 mg/kg,經腹膜內,qd x 1)加之紫杉醇(6.25 mg/kg,經皮下,qd x 5)之組合。使組5及6中之小鼠接收卡波鉑加之紫杉醇分別與Apo2L或Apomab 7.3之組合。以先前部分所指示之體積投與每劑量,並根據動物體重定標。
確定終點,並如先前實例8所述進行取樣及統計分析。
圖35及36展示分別以Apo2L.0及Apomab 7.3處理之組的組中值腫瘤生長曲線及Kaplan-Meier曲線。
所有經媒劑處理之對照小鼠的腫瘤均生長至1500 mm3
終點體積,中值TTE為18.9天。因此,在此45天研究中可達到之最大TGD為26.1天(138%)。對照組之中值腫瘤生長曲線及Kaplan-Meier曲線包括於圖35及36之上面與下面。
對於經Apo2L.0處理之組(組2)而言,中值TTE為22.9天,並對應於4.0天(21%)TGD及統計學非顯著活性。圖28(上面)指示在治療期間內組2中之中值腫瘤體積減小,隨後返回快速腫瘤生長。
組3之中值TTE為2.0天,並對應於7.1天(38%)TGD及高度統計顯著活性(P=0.005)。無恢復反應經歸檔,且所有腫瘤均達到1500 mm3
終點體積。組3中值腫瘤生長曲線揭示相對於對照組之腫瘤生長的起始延遲。
以卡波鉑加之紫杉醇處理之組4小鼠之中值TTE為26.5天,且對應於7.6天(40%)TGF及統計顯著活性(P=0.01)。所有組4之腫瘤均生長至1500 mm3
終點體積,且未歸檔恢復反應。組4之中值腫瘤生長曲線指示相對於對照小鼠之腫瘤生長的適度延遲(參看圖35及36,上面)。
以Apo2L.0、卡波鉑及紫杉醇之三重組合進行的處理產生32.7天之中值TTE,其對應於13.9天(73%)TGD及相對於組1之高度顯著活性(P=0.002)。此三重組合之32.7天的中值TTE長於Apo2L.0單一療法組之22.9天中值TTE或化學療法對照治療之16.5天中值TTE,但根據Logrank分析,其差異並未達到統計顯著性。儘管無統計顯著性,中值腫瘤生長曲線指示組5組合相對於Apo2L.0單一療法或卡波鉑加之紫杉醇化學療法具有較大活性(參看圖28,上面)。
以Apomab 7.3(組6)、卡波鉑及紫杉醇之三重組合進行的處理導致3/10 TR死亡,因此此組不可評估TGD。然而,中值腫瘤生長曲線指示組6組合較Apomab 7.3單一療法或卡波鉑加紫杉醇化學療法具有較大活性(參看,圖37,上面)。
儘管本實驗中存在相對高死亡率,資料揭示Apo2L.0及Apomab 7.3中之任一者對卡波鉑及紫杉醇治療均可補充抗腫瘤優點。
在研究第一天,雌性無胸腺裸小鼠(nu/nu,Harlan)為7-8週大。對動物任意餵食水及由18.0%粗蛋白、5.0%粗脂肪及5.0%粗纖維組成之NIH 31 Modified and Irradiated Lab Diet。在12小時光循環中,在21-22℃及40-60%濕度下,於靜態式微隔離器中之經放射ALPHA-Dribed-o'cobsLaboratory Animal Bedding上圈養小鼠。
在含有100單位/毫升青黴素G鈉、100 μg/mL硫酸鏈黴素、0.25 μg/mL兩性黴素B及25 μg/mL慶大黴素之RPMI1640培養基中培養人類Colo 205結腸癌細胞。該培養基補充有10%熱失活胎牛血清、2 mM麩醯胺酸及1 mM碳酸氫鈉。在37℃、5% CO2
及95%空氣之氣氛下,在潮濕培育箱內之組織培養燒瓶中培養腫瘤細胞。
在對數生長期內收穫用於植入之人類Colo 205癌細胞,並將其再懸浮於50%基底膜膠中以達到5×106
個細胞/毫升。每隻小鼠在右側經皮下注射1×106
細胞(0.2 mL細胞懸浮液)。每週兩次監控腫瘤,且接著當其體積達到100-300 mm3
時,每天一次。在研究第一天,將動物分為具有108.0-220.5 mm3
腫瘤尺寸及149.8 mm3
組平均腫瘤尺寸之治療組。可以1 mg等於1 mm3
腫瘤體積之假定來評估腫瘤重量。
在給藥之前立即提供測試材料。將給藥溶液儲存於4℃下。
將小鼠分為6組,每組10隻。所有處理均為經腹膜內(i.p.)投藥。
在第1-5(qd x 5)天,每天一次分別投與Apo2L.0及其媒劑。第一天(qd x 1)給予一次Apomab 7.3及鼠科動物抗-VEGF抗體抗-G6。以Apo2L.0媒劑處理對照組1小鼠。組2接收60 mg/kg之Apo2L.0單一療法。組3接收3 mg/kg之Apomab 7.3單一療法。組4接收5 mg/kg之BY4單一療法。組5及6分別接收60 mg/kg之Apo2L.0及3 mg/kg之Apomab 7.3,其各自均與5 mg/kg抗-G6組合。在所有組中,0.2 ml/20 g小鼠之給藥體積係根據每隻動物之體重來定標。
確定終點,並如先前實例8所述進行取樣及統計分析。
結果展示於圖37中,其中上面曲線展示組中值腫瘤體積對時間之曲線圖,下面Kaplan-Meier曲線展示每組中剩餘的可評估動物之百分對時間之曲線圖。
對照組1小鼠接收Apo2L.0媒劑,並充當所有處理組之對照組。所有十隻小鼠之腫瘤均生長至1500 mm3
終點體積,中值TTE為20.8天。因此,在此61天研究中可達到之最大TGD為193%。
組2接收60 mg/kg之Apo2L.0單一療法。此治療產生相對於媒劑對照組(P<0.001)之高度顯著抗腫瘤活性及53.6天之中值TTE。此中值TTE對應於32.8天T-C及158% TGD。5隻小鼠在第61天之中值腫瘤體積為1,210 mm3
。記錄一LTTFS。
組3接收3 mg/kg之Apomab 7.3單一療法。此治療產生高度顯著活性(P<0.001),其具有最大可能193% TGD及776 mm3
之MTV(6)。記錄一LTTFS、一CR反應及三個FR反應。
組4接收5 mg/kg之抗-G6單一療法。此治療產生高度顯著活性(P<0.001),其具有86% TGF及1,224 mm3
之MTV(3)。未記錄恢復反應。
組5接收與5 mg/kg之抗-G6組合之60 mg/kg Apo2L.0。該組合治療產生138% TGD。抗腫瘤活性相對於媒劑治療係高度顯著的(P<0.001),但相對於兩個單一療法卻不顯著。組5中之MTV(3)為1,080 mm3
,並記錄一PR反應。
組6接收以3 mg/kg之Apomab 7.3及5 mg/kg之抗-G6進行的組合療法。此治療產生最大可能193% TGD。抗腫瘤活性相對於媒劑治療(P<0.001)係高度顯著的,相對於抗-G6單一療法係顯著的,但相對於Apomab 7.3單一療法並不顯著。組6中之MTV(8)為208 mm3
,並記錄五個PR反應。
腫瘤對以3 mg/kg qd x 1 Apomab 7.3(組3)進行之單一療法作出強烈反應。此治療產生相對於媒劑對照組之高度顯著活性及最大可能193% TGD。在第61天存活的具有776 mm3
MTV之6隻小鼠中的5隻經受腫瘤恢復。此單一療法產生一LTTFS、一短暫CR反應及三個PR反應。中值腫瘤體積直至第15天方才增加(圖37)。
Apomab 7.3與鼠科動物抗-VEGF抗體抗-G6之組合療法產生較單獨Apomab 7.3或抗-G6所觀測之活性更強之活性。此組合療法產生8隻61天存活者,並產生研究之最低MTV,208 mm3
。中值腫瘤生長曲線展示腫瘤減小或停滯至第33天,接著為極慢腫瘤生長(圖37)。此組合產生較抗-G6單一療法顯著更強之活性,但與Apomab 7.3單一療法之結果並無顯著差異。此外,此組合產生五個PR反應,然而以Apomab 7.3單一療法所獲得之五個恢復反應包括一短暫CR及一LTTFS。
所有治療均具有良好耐受型。在該研究中未觀察到體重損失或其它明顯毒性。
一般而言,Apomab 7.3/抗-G6組合療法產生較使用相應單一療法中之任一者進行治療更多之61天存活者及更小MTV。然而,Apomab 7.3/抗-G6組合並未產生醫療活性,而在Apomab 7.3單一療法中發現此醫療活性。
圖1展示人類Apo-2配位體cDNA之核苷酸序列(SEQ ID NO:2)及其所衍生之胺基酸序列(SEQ ID NO:1)。使用核苷酸位置447之"N"(於SEQ ID NO:2中)來指示可為"T"或"G"之核苷酸鹼。
圖2A-2C展示用於全長人類DR4受體之cDNA核苷酸序列(SEQ ID NO:4)及其所衍生之胺基酸序列(SEQ ID NO:3)。Pan等人,Science,276
:111(1997)亦報導用於人類DR4受體之個別核苷酸及胺基酸序列。
圖3A-3C揭示如1998年11月19日之WO 98/51793中所公開的人類DR5受體之411胺基酸序列(SEQ ID NO:5)及編碼核苷酸序列(SEQ ID NO:6)。
圖4A-4C揭示亦於1998年8月20日之WO 98/35986中所公開的人類DR5之440胺基酸序列(SEQ ID NO:7)及編碼核苷酸序列(SEQ ID NO:8)。
圖5展示單鏈抗-DR5抗體16E2(16E2 scFv)之核苷酸序列(SEQ ID NO:9)。
圖6展示單鏈抗-DR5抗體16E2(16E2 scFv)之胺基酸序列(SEQ ID NO:10),其中展示訊號序列及重鏈與輕鏈CDR。
圖7展示全長16E2抗體重鏈之胺基酸序列(SEQ ID NO:11)。
圖8展示全長16E2抗體重鏈之核苷酸序列(SEQ ID NO:12)。
圖9展示全長16E2抗體輕鏈之胺基酸序列(SEQ ID NO:13)。
圖10展示全長16E2抗體重鏈之核苷酸序列(SEQ ID NO:14)。
圖11A及B展示用於表現免疫球蛋白輕鏈之質體pDR1的序列(SEQ ID NO:15,5391 bp)。pDR1含有編碼無關抗體、人源化抗-CD3抗體之輕鏈(Shalaby等人,J.Exp.Med.175:217-225(1992))、粗體及下劃線所指示的起始及終止密碼子之序列。
圖12A及B展示用於表現免疫球蛋白重鏈之質體pDR2的序列(SEQ ID NO:16)。pDR2含有編碼無關抗體、人源化抗-CD3抗體之重鏈(Shalaby等人,上文)、粗體及下劃線所指示的起始及終止密碼子之序列。
圖13展示Apomab 7.3重鏈核苷酸序列(SEQ ID NO:17)。
圖14展示Apomab 7.3重鏈胺基酸序列(SEQ ID NO:18)。
圖15展示Apomab 7.3輕鏈核苷酸序列(SEQ ID NO:19)。
圖16展示Apomab 7.3輕鏈胺基酸序列(SEQ ID NO:20)。
圖17A及B展示16E2與Apomab 7.3重鏈之對準。
圖18展示16E2與Apomab 7.3輕鏈之對準。
圖19為抗-DR5抗體重鏈之同源模型。
圖20為抗-DR5抗體輕鏈之同源模型。
圖21展示相較於人類結腸癌之Colo 205異種移植無胸腺裸小鼠模型內的全長16E2(版本1)抗體,Apomab 5.3、6.3及8.3之單一腹膜內(IP)劑量的抗癌活性。
圖22展示相較於人類結腸癌之Colo 205異種移植無胸腺裸小鼠模型內的全長16E2(版本1)抗體,Apomab 5.2、6.2、5.3、7.2及7.3之單一IP劑量的抗癌活性。
圖23展示相較於人類結腸癌之Colo 205異種移植無胸腺裸小鼠模型內的全長16E2(版本1)抗體,Apomab 5.2、7.3及8.3之單一IP劑量的抗癌活性。
圖24展示相較於人類結腸癌之Colo 205異種移植無胸腺裸小鼠模型內的Apomab 7.3,Apomab 23.3及25.3之抗癌活性。
圖25展示源自人類結腸癌之Colo 205異種移植無胸腺裸小鼠模型內的穩定細胞株對短暫細胞株之Apomab 7.3的抗癌活性。
圖26展示肺癌之HCT15異種抑移植模型內的單獨Apomab 7.3與組合CPT-11的抗癌活性。
圖27展示人類肉瘤之LS180異種抑移植模型內的單獨Apomab 7.3與組合CPT-11的抗癌活性。
圖28展示非霍奇金氏淋巴瘤之BJAB異種抑移植CB17 ICR SCID小鼠模型內的單獨Apomab 7.3與組合RITUXAN(利妥昔單抗,rituximab)的抗癌活性。
圖29展示人類胰腺癌之BxPC3異種抑移植無胸腺裸小鼠模型內的單獨Apomab 7.3與組合吉西他濱(gemcitabine)的抗癌活性。
圖30展示人類肺癌之H460異種抑移植模型內的單獨Apomab 7.3與組合卡波鉑(carboplatin)及紫杉醇鹼(taxol)的抗癌活性。
圖31展示人類肺癌之H2122異種抑移植模型內的單獨Apomab 7.3與組合卡波鉑及紫杉醇鹼的抗癌活性。
圖32展示Apomab 7.3在人類肺癌之H2122異種抑移植模型中的劑量反應曲線。
圖33展示相較於人類結腸癌之Colo 205異種移植模型內的Apomab 7.3,Apomab 23.3及25.3的抗癌活性。
圖34展示單獨Apo2L.0、單獨Apomab 7.3及各種組合抗裸小鼠中的Colo 205人類結腸癌異種移植物之中值腫瘤生長及Kaplan-Meier曲線。
圖35及36展示單獨Apo2L.0、單獨Apomab 7.3及各種組合抗無胸腺裸小鼠異種移植模型中的SKMES-1非小細胞肺癌(NSCLC)之中值腫瘤生長及Kaplan-Meier曲線。
圖37展示人類Colo 205結腸癌異種移植模型中的單獨Apo2L.0、單獨Apomab 7.3及各種組合之中值腫瘤生長及Kaplan-Meier曲線。
<110> 美商建南德克公司<120> DR5抗體及其用途<130> 39766-0164 <140> 095103829 <141> 2006-02-03 <150> US 60/649,550; <151> 2005-02-02;2006-01-30 <160> 29 <170> FastSEQ for windows Version 4.0 <210> 1 <211> 281 <212> PRT <213> 智人<400> 1<210> 2 <211> 1042 <212> DNA <213> 智人<220> <221> misc_feature <222> 447 <223> n=t或g <400> 2<210> 3 <211> 468 <212> PRT <213> 智人<400> 3 <210> 4 <211> 2152 <212> DNA <213> 智人<400> 4<210> 5 <211> 411 <212> PRT <213> 智人<220> <221> VARIANT <222> 410 <223> xaa=Leu或Met <400> 5 <210> 6 <211> 1799 <212> DNA <213> 智人<400> 6 <210> 7 <211> 440 <212> PRT <213> 智人<400> 7<210> 8 <211> 1323 <212> DNA <213> 智人<400> 8<210> 9 <211> 930 <212> DNA <213> 智人<400> 9<210> 10 <211> 309 <212> PRT <213> 智人<400> 10 <210> 11 <211> 451 <212> PRT <213> 智人<400> 11 <210> 12 <211> 1353 <212> DNA <213> 智人<400> 12<210> 13 <211> 213 <212> PRT <213> 智人<400> 13 <210> 14 <211> 639 <212> DNA <213> 智人<400> 14<210> 15 <211> 5391 <212> DNA <213> 智人<400> 15 <210> 16 <211> 6135 <212> DNA <213> 智人<400> 16 <210> 17 <211> 1353 <212> DNA <213> 智人<400> 17<210> 18 <211> 451 <212> PRT <213> 人工序列<220> <223> 合成序列<400> 18 <210> 19 <211> 639 <212> DNA <213> 人工序列<220> <223> 合成序列<400> 19<210> 20 <211> 213 <212> PRT <213> 人工序列<220> <223> 合成序列<400> 20 <210> 21 <211> 48 <212> DNA <213> 人工序列<220> <223> 合成序列<400> 21<210> 22 <211> 48 <212> DNA <213> 人工序列<220> <223> 合成序列<220> <221> misc_feature <222> 15,16,24,25,30,31 <223> n=A,T,C及G <220> <221> misc_feature <222> 17,26,32 <223> s=G及C <400> 22<210> 23 <211> 44 <212> DNA <213> 人工序列<220> <223> 合成序列<400> 23<210> 24 <211> 47 <212> DNA <213> 人工序列<220> <223> 合成序列<220> <221> misc_feature <222> 19,20,22,23,25,26 <223> n=A,T,C或G <220> <221> misc_feature <222> 21,24,27 <223> s=G及C <400> 24<210> 25 <211> 59 <212> DNA <213> 人工序列<220> <223> 合成序列<400> 25<210> 26 <211> 59 <212> DNA <213> 人工序列<220> <223> 合成序列<220> <221> misc_feature <222> 25,26,28,29,31,32,37,38 <223> n=A,T,C或G <220> <221> misc_feature <222> 27,30,33,39 <223> s=G及C <400> 26<210> 27 <211> 11 <212> PRT <213> 人工序列<220> <223> 合成序列<400> 27<210> 28 <211> 11 <212> PRT <213> 人工序列<220> <223> 合成序列<400> 28<210> 29 <211> 11 <212> PRT <213> 人工序列<220> <223> 合成序列<400> 29
Claims (42)
- 一種抗-DR5抗體,其包含重鏈及輕鏈,其中該抗體包含至少一組相對於全長抗-DR5抗體16E2(SEQ ID NO:11及/或13)之重鏈及/或輕鏈序列之取代,其中該重鏈取代係選自由以下組成之群:(a)M34L、N53Q、L102Y(TH1);(b)M34L、N53Y、L102Y(TH2);(c)G33A、N53Q、L102Y(TH3);(d)G33A、N53Y、L102Y(TH4);(e)M34L、N53Q、L102Y(TH5);(f)M34L、N53Y、L102Y(TH6);(g)G33A、N53Q、L102Y(TH7);(f)G33A、N53Y、L102Y(TH8);(g)T28A、N53Q、L102Y(TH9);且該輕鏈取代係選自由以下組成之群:(h)Q24S、G50K、K51D、N52S、N53E、H95By(TL1);(i)Q24S、K51A、D92S、S93Y(TL2);且(j)Q24S、K51A、R91A(TL3);或其抗原結合片段,其中胺基酸取代之位置係按Kabat編號協定(Kabat numbering convention)所示。
- 如請求項1之抗-DR5抗體,其較該全長抗體16E2具有更大之DR5親和力,及/或較該全長抗體16E2顯示更大之生物活性及/或效能,或其抗原結合片段,其中該生物活性或效能為癌細胞之細胞凋亡的活化或刺激作用。
- 如請求項1或2之抗-DR5抗體,其中該抗體基本上結合於與全長抗體16E2相同之抗原決定部位,或其抗原結合片段。
- 如請求項1之抗-DR5抗體,其額外包含該全長16E2抗體重鏈(SEQ ID NO:11)可變域之構架中之一或多個突變,其中該構架突變係選自由以下組成之群:(i)Q6E、V11L、E12V、R13Q、K105Q;(ii)Q6E、V11L、E12V、R13Q;(iii)Q6E、K105Q;(iv)V11L、E12V、R13Q;(v)K105Q;(vi)Q6E;(vii)V11L;(viii)R13Q;(ix)E12V、R13Q;(x)E12V;(xi)E12N;(xii)V11L、R12V;其中構架突變之位置係按Kabat編號協定所示,或其抗原結合片段。
- 如請求項1之抗-DR5抗體,其係選自由5.2、5.3、6.2、7.2、7.3、8.3、23.3及2.3所組成之群之抗體,或其抗原結合片段,其中5.2 包含TH5及TL2,5.3 包含TH5及TL3, 6.2 包含TH6及TL2,7.2 包含TH7及TL2,7.3 包含TH7及TL3,8.3 包含TH8及TL3,23.3 包含TH2及Q6E,V11L,E12V,R13Q及K105Q之構架突變,及2.3 包含TH2及TL3。
- 如請求項5之抗-DR5抗體,其為抗體7.3,或其抗原結合片段。
- 5或6之抗-DR5抗體,其中該抗原結合片段係選自由下列各物組成之群:Fab、Fab'、F(ab')2及Fv片段、雙功能抗體、單鏈抗體分子及自抗體片段形成之多特異性抗體。
- 如請求項7之抗-DR5抗體,其中該抗體為單鏈抗體,或其抗原結合片段。
- 如請求項7之抗-DR5抗體,其中該抗原結合片段為Fv片段,或其抗原結合片段。
- 如請求項2之抗-DR5抗體,其中該生物活性為抗癌活性,或其抗原結合片段。
- 如請求項2或10之抗-DR5抗體,其中癌症(cancer)係選自由下列各病組成之群:癌(carcinoma)、淋巴瘤、胚細胞瘤、肉瘤及白血病,或其抗原結合片段。
- 如請求項2或10之抗-DR5抗體,其中該癌症係選自由下列各病組成之群:鱗狀細胞癌、小細胞肺癌、非小細胞肺 癌(NSCLC)、非霍奇金氏(non-Hodgkin's)淋巴瘤、胚細胞瘤、腸胃癌、腎癌、卵巢癌、肝癌、胃癌、膀胱癌、肝細胞瘤、乳癌、結腸癌、結腸直腸癌、胰腺癌、子宮內膜癌、唾液腺癌、腎癌、肝癌、前列腺癌、外陰癌、甲狀腺癌、肝癌及頭及頸癌,或其抗原結合片段。
- 如請求項12之抗-DR5抗體,其中該癌症為NSCLC、非霍奇金氏淋巴瘤、結腸直腸癌或胰腺癌,或其抗原結合片段。
- 如請求項11之抗-DR5抗體,其中該癌症為腺癌,或其抗原結合片段。
- 如請求項14之抗-DR5抗體,其中該腺癌為結腸直腸腺癌、胰腺癌或轉移性腺癌,或其抗原結合片段。
- 如請求項2之抗-DR5抗體,其中該效能係在活體外腫瘤殺死檢定中測定,或其抗原結合片段。
- 如請求項1之抗-DR5抗體,其為嵌合抗體、人源化抗體或人類抗體,或其抗原結合片段。
- 如請求項1之抗-DR5抗體,其調節抗體依賴性細胞毒性(ADCC)。
- 一種經分離核酸,其編碼如請求項1、5或6之抗-DR5抗體的重或輕鏈,或該重或輕鏈之抗原結合片段。
- 一種表現載體,其包含如請求項19之核酸。
- 一種宿主細胞,其包含且可表現如請求項19之核酸。
- 一種產生抗-DR5抗體或其抗原結合片段之方法,其包含在其中表現核酸之條件下培養如請求項21之宿主細胞。
- 一種醫藥組合物,其包含如請求項1、5或6之抗-DR5抗體或其抗原結合片段及醫藥可接受載劑。
- 如請求項23之醫藥組合物,其係用於治療癌症,其進一步包含額外的抗癌劑。
- 如請求項24之醫藥組合物,其中該額外的抗癌劑為抗體。
- 如請求項25之醫藥組合物,其中該抗體係選自由下列各抗體組成之群:額外的抗-DR5抗體、利妥昔單抗(rituximab)及抗-VEGF抗體。
- 如請求項24之醫藥組合組,其中該額外的抗癌劑為化學治療劑。
- 如請求項27之醫藥組合物,其中該化學治療劑係選自由下列各物組成之群:CPT-11(伊立替康(irinotecan))、吉西他濱(gemcitabine)、卡波鉑(carboplatin)、紫杉醇鹼(taxol)及紫杉醇(paclitaxel)。
- 如請求項24之醫藥組合物,其中該額外的抗癌劑為包含SEQ ID NO:1之胺基酸114-281之Apo2L配位體。
- 一種誘導細胞凋亡之活體外方法,其包含將哺乳動物癌細胞曝露於如請求項1、5或6之抗-DR5抗體或其抗原結合片段。
- 如請求項30之方法,其中該抗體為嵌合抗體、人源化抗體或人類抗體。
- 如請求項31之方法,其中該哺乳動物癌細胞係曝露於活化DR5之藥劑,該藥劑係選自抗-DR5抗體或DR5之促效劑。
- 一種如請求項1、5或6之抗-DR5抗體或其抗原結合片段之用途,其係用於製造用於治療哺乳動物個體的癌症之藥物。
- 如請求項33之用途,其中該哺乳動物個體為人類患者。
- 如請求項34之用途,其中該癌症係選自由下列各病組成之群:鱗狀細胞癌、小細胞肺癌、非小細胞肺癌(NSCLC)、非霍奇金氏淋巴瘤、胚細胞瘤、腸胃癌、腎癌、卵巢癌、肝癌、胃癌、膀胱癌、肝細胞瘤、乳癌、結腸癌、結腸直腸癌、胰腺癌、子宮內膜癌、唾液腺癌、腎癌、肝癌、前列腺癌、外陰癌、甲狀腺癌、肝癌及頭及頸癌。
- 如請求項35之用途,其中該癌症為NSCLC、結腸直腸癌、非霍奇金氏淋巴瘤或胰腺癌。
- 如請求項33之用途,其中該癌症為腺癌。
- 如請求項37之用途,其中該腺癌為結腸直腸腺癌、胰腺癌或轉移性腺癌。
- 如請求項33-38中任一項之用途,其中該藥物係與另一抗癌劑組合使用。
- 一種用於治療癌症之套組,其包含一容器及含於該容器中之組合物,其中該組合物包括如請求項1、5或6之抗-DR5抗體或其抗原結合片段。
- 如請求項40之套組,其進一步包含活體外或活體內使用該抗-DR5抗體之說明書。
- 如請求項41之套組,其中該等說明書涉及癌症之治療。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64955005P | 2005-02-02 | 2005-02-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200640948A TW200640948A (en) | 2006-12-01 |
TWI419903B true TWI419903B (zh) | 2013-12-21 |
Family
ID=37820467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95103829A TWI419903B (zh) | 2005-02-02 | 2006-02-03 | Dr5抗體及其用途 |
Country Status (4)
Country | Link |
---|---|
AR (1) | AR052109A1 (zh) |
MY (1) | MY160566A (zh) |
TW (1) | TWI419903B (zh) |
ZA (1) | ZA200706246B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998051793A1 (en) * | 1997-05-15 | 1998-11-19 | Genentech, Inc. | Apo-2 RECEPTOR |
-
2006
- 2006-01-31 ZA ZA200706246A patent/ZA200706246B/xx unknown
- 2006-02-02 AR ARP060100379 patent/AR052109A1/es active IP Right Grant
- 2006-02-03 MY MYPI20060477A patent/MY160566A/en unknown
- 2006-02-03 TW TW95103829A patent/TWI419903B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998051793A1 (en) * | 1997-05-15 | 1998-11-19 | Genentech, Inc. | Apo-2 RECEPTOR |
Also Published As
Publication number | Publication date |
---|---|
ZA200706246B (en) | 2008-11-26 |
TW200640948A (en) | 2006-12-01 |
AR052109A1 (es) | 2007-02-28 |
MY160566A (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5886509B2 (ja) | Dr5抗体およびその使用 | |
AU2005201915B2 (en) | DR4 antibodies and uses thereof | |
US7744881B2 (en) | Human DR4 antibodies and uses thereof | |
MXPA05000940A (es) | Anticuerpos taci y su uso. | |
JP2005517021A5 (zh) | ||
US20080095700A1 (en) | DR4 antibodies and uses thereof | |
TWI419903B (zh) | Dr5抗體及其用途 |