TWI416889B - Hd physical layer of a wireless communication device - Google Patents

Hd physical layer of a wireless communication device Download PDF

Info

Publication number
TWI416889B
TWI416889B TW96105916A TW96105916A TWI416889B TW I416889 B TWI416889 B TW I416889B TW 96105916 A TW96105916 A TW 96105916A TW 96105916 A TW96105916 A TW 96105916A TW I416889 B TWI416889 B TW I416889B
Authority
TW
Taiwan
Prior art keywords
lrp
communication device
circuit
physical layer
hrp
Prior art date
Application number
TW96105916A
Other languages
Chinese (zh)
Other versions
TW200803236A (en
Inventor
Karim Nassiri-Toussi
Keangpo Ricky Ho
Jianhan Liu
Jeffrey M Gilbert
Dengwei Fu
Chuen-Shen Shung
Stephen P Pope
Original Assignee
Sibeam Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sibeam Inc filed Critical Sibeam Inc
Publication of TW200803236A publication Critical patent/TW200803236A/en
Application granted granted Critical
Publication of TWI416889B publication Critical patent/TWI416889B/en

Links

Abstract

A radio frequency (RF) transmitter is coupled to and controlled by a processor to transmit data. A physical layer circuit is coupled to the RF transmitter to encode and decode between a digital signal and a modulated analog signal. The physical layer circuit comprises a high ate physical layer circuit (HRP) and a low rate physical layer circuit (LRP). The low rate channels generated by the low rate physical layer circuit (LRP) share a same frequency band as a corresponding high rate channel generated by the high rate physical layer circuit (HRP).

Description

無線通信裝置之HD實體層HD physical layer of wireless communication device

本發明係關於無線通信之領域;更明確言之,本發明係關於一種使用適應性波束成型(beamforming)的無線通信裝置。The present invention relates to the field of wireless communications; more specifically, the present invention relates to a wireless communication device using adaptive beamforming.

1998年,形成數位顯示工作組(DDWG)以在電腦與顯示器之間建立一通用介面標準來替代類比視頻圖形介面卡(VGA)連接標準。所得標準為1999年4月發行之數位視訊介面(DVI)規範。In 1998, the Digital Display Working Group (DDWG) was formed to replace the analog video graphics interface card (VGA) connection standard by establishing a common interface standard between the computer and the display. The resulting standard is the Digital Video Interface (DVI) specification issued in April 1999.

存在若干可用之內容保護機制。舉例而言,高頻寬數位內容保護(HDCP)及數位傳輸內容保護(DTCP)為眾所熟知之內容保護機制。建議將HDCP作為DVI之安全組件且針對數位視訊監視器介面來設計HDCP。There are several content protection mechanisms available. For example, High Frequency Wide Digital Content Protection (HDCP) and Digital Transmission Content Protection (DTCP) are well known content protection mechanisms. It is recommended to use HDCP as a security component of DVI and design HDCP for the digital video monitor interface.

高清晰度多媒體影音介面(HDMI)為發展用以滿足對高清晰度音訊及視訊之爆炸性需求的連接介面標準。HDMI能夠載運視訊及音訊且與DVI(其僅載運視訊信號)回溯相容。DVI及HDMI之主要優點在於兩者皆能夠經由單個電纜傳輸未經壓縮的高清晰度數位流。The High Definition Multimedia Audio Interface (HDMI) is a connectivity interface standard developed to meet the explosive demand for high definition audio and video. HDMI is capable of carrying video and audio and is compatible with DVI (which only carries video signals). The main advantage of DVI and HDMI is that both can transmit uncompressed high definition digital bit streams over a single cable.

HDCP為用於保護在DVI及HDMI上傳送之內容不被複製的系統。詳情參見HDCP 1.0。HDCP提供鑑認、加密及撤銷。播放裝置及顯示監視器中之專用電路將視訊資料加密之後將其發送出。使用HDCP,內容在DVI或HDMI發射器晶片之前(或內部)立刻加密且在DVI或HDMI接收器晶片之後(或內部)立刻解密。HDCP is a system for protecting content transmitted on DVI and HDMI from being copied. See HDCP 1.0 for details. HDCP provides authentication, encryption and revocation. The dedicated circuitry in the playback device and display monitor encrypts the video data and sends it out. With HDCP, content is encrypted immediately before (or inside) the DVI or HDMI transmitter chip and decrypted immediately after (or inside) the DVI or HDMI receiver chip.

除加密及解密功能之外,HDCP實施鑑認以驗證接收裝置(例如,顯示器、電視等)被授權接收加密內容。大致每兩秒鐘進行重新鑑認以持續地確認DVI或HDMI介面的安全性。在任一時刻,若藉由(例如)斷開裝置及/或連接不合法之記錄裝置而使得重新鑑認未發生,則源裝置(例如,數位多功能碟片(DVD)播放器、視訊轉換器等)結束對加密內容的傳輸。In addition to the encryption and decryption functions, the HDCP performs authentication to verify that the receiving device (eg, display, television, etc.) is authorized to receive the encrypted content. Re-authentication is performed approximately every two seconds to continuously confirm the security of the DVI or HDMI interface. At any one time, if re-authentication does not occur by, for example, disconnecting the device and/or connecting an illegal recording device, the source device (eg, a digital versatile disc (DVD) player, a video converter) Etc.) End the transfer of encrypted content.

雖然對HDMI及DVI之討論大體而言集中於有線通信,但使用無線通信傳輸內容已變得日益流行。雖然當前較多關注蜂巢式技術及無線網路,但對用於無線視訊傳輸或極高速度網路連結的60 GHz附近之未授權頻譜已存在愈來愈多的興趣。更具體言之,在美國及日本,已開放7 GHz之鄰近頻寬用於在60 GHz附近以毫米波頻率進行未授權之使用。While the discussion of HDMI and DVI is generally focused on wired communications, the use of wireless communications to transmit content has become increasingly popular. Although there is currently a lot of attention to cellular technology and wireless networks, there is an increasing interest in unlicensed spectrum near 60 GHz for wireless video transmission or very high speed network connections. More specifically, in the United States and Japan, the adjacent bandwidth of 7 GHz has been opened for unauthorized use at millimeter wave frequencies around 60 GHz.

一射頻(RF)發射器係耦接至一處理器且由該處理器控制以傳輸資料。一實體層電路係耦接至該RF發射器以在一數位信號與一調變類比信號之間進行編碼及解碼。該實體層電路包含一高速率實體層電路(HRP)及一低速率實體層電路(LRP)。由該低速率實體層電路(LRP)產生之低速率頻道與由該高速率實體層電路(HRP)產生之一對應高速率頻道共用同一頻帶。A radio frequency (RF) transmitter is coupled to and controlled by the processor to transmit data. A physical layer circuit is coupled to the RF transmitter to encode and decode between a digital signal and a modulation analog signal. The physical layer circuit includes a high rate physical layer circuit (HRP) and a low rate physical layer circuit (LRP). The low rate channel generated by the low rate physical layer circuit (LRP) shares the same frequency band as the corresponding high rate channel generated by the high rate physical layer circuit (HRP).

本發明揭示一種用於無線通信之設備及方法。在一實施例中,使用一具有適應性波束成型天線的無線通信收發器進行無線通信。如對於熟習此項技術者顯而已見,使用無線接收器或發射器可進行無線通信。An apparatus and method for wireless communication is disclosed. In one embodiment, wireless communication is performed using a wireless communication transceiver with an adaptive beamforming antenna. As is apparent to those skilled in the art, wireless communication can be performed using a wireless receiver or transmitter.

在一實施例中,該無線通信包括一額外鏈路或頻道,其用於在發射器與接收器之間傳輸資訊。此鏈路可為單向或雙向的。在一實施例中,該頻道用於將天線資訊自接收器發送回發射器,從而使發射器能夠藉由操控天線元件來調適其天線陣列以發現另一方向之路徑。此方式可避免障礙。In an embodiment, the wireless communication includes an additional link or channel for transmitting information between the transmitter and the receiver. This link can be unidirectional or bidirectional. In one embodiment, the channel is used to transmit antenna information from the receiver back to the transmitter, thereby enabling the transmitter to adapt its antenna array to find the path in the other direction by manipulating the antenna elements. This approach avoids obstacles.

在一實施例中,該鏈路亦用於傳送與經無線傳送之內容(例如,無線視訊)相對應之資訊。此資訊可為內容保護資訊。舉例而言,在一實施例中,該鏈路用於在收發器傳送HDMI資料時傳送加密密鑰及加密密鑰之確認。因此,在一實施例中,此鏈路傳送控制資訊及內容保護資訊。In an embodiment, the link is also used to transmit information corresponding to wirelessly transmitted content (eg, wireless video). This information can be content protection information. For example, in one embodiment, the link is used to transmit an encryption key and an encryption key confirmation when the transceiver transmits the HDMI material. Thus, in an embodiment, the link transmits control information and content protection information.

此額外鏈路可為在60 GHz帶中之獨立頻道。在一替代實施例中,該鏈路可為在2.4 GHz或5 GHz帶中之無線頻道。This extra link can be an independent channel in the 60 GHz band. In an alternate embodiment, the link can be a wireless channel in the 2.4 GHz or 5 GHz band.

在以下之描述內容中,陳述大量細節以提供對本發明之更全面之解釋。然而,可不使用此等特定細節來實行本發明,此對於熟習此項技術者而言係顯而易見的。在其他情況下,眾所熟知之結構及裝置以方塊圖之形式展示而不詳細展示,以避免使本發明不夠突出。In the following description, numerous details are set forth to provide a more comprehensive explanation of the invention. However, the invention may be practiced without these specific details, as will be apparent to those skilled in the art. In other instances, well-known structures and devices are shown in the form of block diagrams and are not shown in detail in order to avoid obscuring the invention.

以下之詳細描述之某些部分係根據對電腦記憶體中之資料位元所進行之操作的演算及符號表示而表現的。此等演算描述及表示係熟習資料處理技術者所使用的方法,用於最有效地向其他熟習此項技術者傳達其工作之本質。演算法在此處且通常設想為產生所需結果的自身一致之步驟序列。該等步驟為要求對物理量進行實體操縱之步驟。通常(雖然並非必要)此等量採取電或磁信號之形式,可對其進行儲存、傳送、組合、比較及其他操縱。原則上出於一般使用之原因,已證實有時將該等信號稱作位元、值、元件、符號、字元、項、編號或其類似物係便利的。Some portions of the detailed description that follows are presented in terms of calculations and symbolic representations of operations performed on data bits in computer memory. These calculus descriptions and representations are used by those skilled in the art to communicate the nature of their work most effectively to those skilled in the art. The algorithm is here and is generally envisaged as a self-consistent sequence of steps leading to the desired result. These steps are steps that require physical manipulation of physical quantities. Usually, though not necessarily, such quantities are in the form of an electrical or magnetic signal that can be stored, transferred, combined, compared and otherwise manipulated. In principle, it has proven convenient at times, principally, to refer to such signals as bits, values, elements, symbols, characters, terms, numbers, or the like.

然而,應牢記,所有此等及類似術語應與適當物理量相結合,且其僅為應用於此等量之便利標記。除非另有明確陳述(如在以下描述中顯而易見),應瞭解,貫穿本描述內容,利用諸如"處理"或"計算(computing)"或"計算(calculating)"或"確定"或"顯示"或其類似物之術語的討論係指電腦系統或類似電子計算裝置之行為及過程,該行為或過程將表示為電腦系統暫存器及記憶體中之物理(電子)量的資料操縱及轉變為類似地表示為電腦系統記憶體或暫存器或其他此類資訊儲存、傳輸或顯示裝置中之物理量的其他資料。However, it should be borne in mind that all such and similar terms should be combined with the appropriate physical quantities and are merely the convenience of the application. Unless otherwise expressly stated (as will be apparent from the description below), it should be understood that throughout the description, such as "processing" or "computing" or "calculating" or "determining" or "displaying" or The discussion of the terms of the analogy refers to the behavior and process of a computer system or similar electronic computing device, which is expressed as a physical (electronic) amount of data in a computer system register and memory. The location is expressed as computer system memory or scratchpad or other such information to store, transmit or display other physical quantities of the device.

本發明亦係關於一種用於執行本文中之操作的設備。此設備可按所需目的特別建構,或其可包含一通用電腦,該電腦由儲存於該電腦中之電腦程式選擇性啟動或重新組態。此電腦程式可儲存於電腦可讀儲存媒體中,例如(但不限於)任一類型之碟片,包括軟性磁碟、光碟、光碟-唯讀記憶體(CD-ROM)及磁光碟、唯讀記憶體(ROM)、隨機存取記憶體(RAM)、可擦可程式唯讀記憶體(EPROM)、電子可擦可程式化唯讀記憶體(EEPROM)、磁卡或光卡或任一類型之適用於儲存電子指令之媒體,且該等媒體中之每一者耦接至一電腦系統匯流排。The invention also relates to an apparatus for performing the operations herein. The device may be specially constructed for the desired purpose, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. The computer program can be stored in a computer readable storage medium such as, but not limited to, any type of disc, including a floppy disk, a compact disc, a compact disc-read only memory (CD-ROM), and a magneto-optical disc. Memory (ROM), random access memory (RAM), erasable programmable read only memory (EPROM), electronically erasable programmable read only memory (EEPROM), magnetic or optical card or any type Suitable for storing media of electronic instructions, and each of the media is coupled to a computer system bus.

本文中所表現之演算法及顯示本質上並不關於任一特定電腦或其他設備。可配合根據本文教示之程式而使用各種通用系統,或可方便地建構更專用之設備用於執行所需之方法步驟。所需之用於各種此等系統之結構將自以下之描述中出現。此外,並不參照任一特定程式語言描述本發明。應瞭解,可使用各種程式語言實施如本文所描述之本發明之教示。The algorithms and displays presented in this article are not intrinsically related to any particular computer or other device. Various general purpose systems may be utilized in conjunction with the programs taught herein, or more specialized apparatus may be conveniently constructed for performing the required method steps. The structures required for a variety of such systems will appear from the description below. Moreover, the invention is not described in reference to any particular programming language. It will be appreciated that the teachings of the present invention as described herein can be implemented using a variety of programming languages.

一機器可讀媒體包括用於以可由機器(例如,電腦)讀取之形式儲存或傳輸資訊的任一機制。舉例而言,機器可讀媒體包括唯獨記憶體("ROM");隨機存取記憶體("RAM");磁碟儲存媒體;光學儲存媒體;快閃記憶體裝置;電學、光學、聲學或其他形式之傳播信號(例如,載波、紅外信號、數位信號,等)等。A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (eg, a computer). By way of example, a machine-readable medium includes only memory ("ROM"); random access memory ("RAM"); disk storage media; optical storage media; flash memory devices; electrical, optical, acoustic Or other forms of propagating signals (eg, carrier waves, infrared signals, digital signals, etc.).

通信系統之一實例An example of a communication system

圖1為通信系統之一實施例的方塊圖。參看圖1,該系統包含媒體接收器100、一媒體接收器介面102、一發射裝置140、一接收裝置141、一媒體播放器介面113、一媒體播放器114及一顯示器115。1 is a block diagram of one embodiment of a communication system. Referring to FIG. 1, the system includes a media receiver 100, a media receiver interface 102, a transmitting device 140, a receiving device 141, a media player interface 113, a media player 114, and a display 115.

媒體接收器100自一源(未圖示)接收內容。在一實施例中,媒體接收器100包含一視訊轉換器。該內容可包含基頻數位視訊,例如(但不限於)符合HDMI或DVI標準之內容。在此種情況下,媒體接收器100可包括一發射器(例如,HDMI發射器)以轉發所接收之內容。Media receiver 100 receives content from a source (not shown). In an embodiment, the media receiver 100 includes a video converter. The content may include baseband digital video such as, but not limited to, content conforming to the HDMI or DVI standard. In this case, media receiver 100 can include a transmitter (eg, an HDMI transmitter) to forward the received content.

媒體接收器100經由媒體接收器介面102發送內容101至發射器裝置140。在一實施例中,媒體接收器介面102包括將內容101轉換為HDMI內容之邏輯。在此情況下,媒體接收器介面102可包含一HDMI插頭,且內容101係經由一有線連接發送;然而,可經由一無線連接進行傳送。在另一實施例中,內容101包含DVI內容。The media receiver 100 transmits the content 101 to the transmitter device 140 via the media receiver interface 102. In an embodiment, the media receiver interface 102 includes logic to convert the content 101 to HDMI content. In this case, the media receiver interface 102 can include an HDMI plug and the content 101 is transmitted via a wired connection; however, it can be transmitted via a wireless connection. In another embodiment, the content 101 contains DVI content.

在一實施例中,內容101在媒體接收器介面102與發射器裝置140之間的傳送係在一有線連接上進行;然而,該傳送可經由一無線連接進行。In one embodiment, the transfer of content 101 between the media receiver interface 102 and the transmitter device 140 is performed over a wired connection; however, the transfer can occur via a wireless connection.

發射器裝置140使用兩個無線連接將資訊無線傳送至接收器裝置141。該等無線連接中之一者係經由一具有適應性波束成型之相控陣列天線。另一無線連接係經由無線通信頻道107,本文稱為回返頻道(back channel)。在一實施例中,無線通信頻道107係單向的。在一替代實施例中,無線通信頻道107係雙向的。Transmitter device 140 wirelessly transmits information to receiver device 141 using two wireless connections. One of the wireless connections is via a phased array antenna with adaptive beamforming. Another wireless connection is via wireless communication channel 107, referred to herein as a back channel. In an embodiment, the wireless communication channel 107 is unidirectional. In an alternate embodiment, the wireless communication channel 107 is bidirectional.

接收器裝置141經由媒體播放器介面113將接收自發射器裝置140之內容傳送至媒體播放器114。在一實施例中,在接收器裝置141與媒體播放器介面113之間的內容傳送係經由一有線連接進行;然而,該傳送可經由一無線連接進行。在一實施例中,媒體播放器介面113包含一HDMI插頭。類似地,在媒體播放器介面113與媒體播放器114之間的內容傳送係經由一有線連接進行;然而,該傳送可經由一無線連接進行。The receiver device 141 transmits the content received from the transmitter device 140 to the media player 114 via the media player interface 113. In one embodiment, content transfer between the receiver device 141 and the media player interface 113 is via a wired connection; however, the transfer can occur via a wireless connection. In an embodiment, the media player interface 113 includes an HDMI plug. Similarly, content transfer between the media player interface 113 and the media player 114 is via a wired connection; however, the transfer can occur via a wireless connection.

媒體播放器114使內容在顯示器115上播放。在一實施例中,該內容為HDMI內容,且媒體播放器114經由一有線連接將媒體內容傳送至顯示器;然而,該傳送可經由一無線連接進行。顯示器115可包含電漿顯示器、液晶顯示器(LCD)、陰極射線管(CRT)等。The media player 114 causes the content to be played on the display 115. In one embodiment, the content is HDMI content, and the media player 114 transmits the media content to the display via a wired connection; however, the transfer can occur via a wireless connection. Display 115 can include a plasma display, a liquid crystal display (LCD), a cathode ray tube (CRT), and the like.

注意,可將圖1中之系統更改為包括DVD播放器/記錄器來代替DVD播放器/記錄器而用於接收及播放及/或記錄該內容。Note that the system of Figure 1 can be modified to include a DVD player/recorder instead of a DVD player/recorder for receiving and playing and/or recording the content.

在一實施例中,發射器140及媒體接收器介面102為媒體接收器100之部分。類似地,在一實施例中,接收器140、媒體播放器介面113及媒體播放器114皆為同一裝置之部分。在一替代實施例中,接收器140、媒體播放器介面113、媒體播放器114及顯示器115皆為顯示器之部分。此裝置之實例展示於圖3中。In an embodiment, transmitter 140 and media receiver interface 102 are part of media receiver 100. Similarly, in one embodiment, receiver 140, media player interface 113, and media player 114 are all part of the same device. In an alternate embodiment, receiver 140, media player interface 113, media player 114, and display 115 are all part of the display. An example of such a device is shown in Figure 3.

在一實施例中,發射器裝置140包含一處理器103、一可選基頻處理組件104、一相控陣列天線105及一無線通信頻道介面106。相控陣列天線105包含一射頻(RF)發射器,該發射器具有一數位控制之相控陣列天線,該天線耦接至處理器103且由處理器103控制以使用適應性波束成型傳輸內容至接收器裝置141。In one embodiment, the transmitter device 140 includes a processor 103, an optional baseband processing component 104, a phased array antenna 105, and a wireless communication channel interface 106. Phased array antenna 105 includes a radio frequency (RF) transmitter having a digitally controlled phased array antenna coupled to processor 103 and controlled by processor 103 to transmit content to receive using adaptive beamforming Device 141.

在一實施例中,接收器裝置141包含一處理器112、一可選基頻處理組件111、一相控陣列天線110及一無線通信頻道介面109。相控陣列天線110包含一射頻(RF)發射器,該發射器具有一數位控制之相控陣列天線,該天線耦接至處理器112且由處理器112控制以使用適應性波束成型自發射器裝置140接收內容。In one embodiment, the receiver device 141 includes a processor 112, an optional baseband processing component 111, a phased array antenna 110, and a wireless communication channel interface 109. Phased array antenna 110 includes a radio frequency (RF) transmitter having a digitally controlled phased array antenna coupled to processor 112 and controlled by processor 112 for use with adaptive beamforming from the transmitter device 140 receives the content.

在一實施例中,處理器103產生基頻信號,該等信號在由相控陣列天線105進行無線傳輸之前由基頻信號處理104進行處理。在此情況下,接收器裝置141包括基頻信號處理以將相控陣列天線110所接收之類比信號轉換為由處理器112進行處理之基頻信號。在一實施例中,基頻信號為正交分頻多工(OFDM)信號。在一實施例中,基頻信號為單個之載波相位、振幅,或相位與振幅調變信號。In one embodiment, processor 103 generates baseband signals that are processed by baseband signal processing 104 prior to wireless transmission by phased array antenna 105. In this case, the receiver device 141 includes baseband signal processing to convert the analog signal received by the phased array antenna 110 into a baseband signal processed by the processor 112. In an embodiment, the baseband signal is an orthogonal frequency division multiplexing (OFDM) signal. In one embodiment, the baseband signal is a single carrier phase, amplitude, or phase and amplitude modulated signal.

在一實施例中,發射器裝置140及/或接收器裝置141為單獨收發器之部分。In an embodiment, transmitter device 140 and/or receiver device 141 are part of a separate transceiver.

發射器裝置140及接收器裝置141使用允許波束操控的具適應性波束成型之相控陣列天線來執行無線通信。波束成型在此項技術中眾所熟知。在一實施例中,處理器103發送數位控制資訊至相控陣列天線105以指示用來偏移相控陣列天線105中之一或多個移相器的量,從而操控藉此以此項技術中眾所熟知之方式形成之波束。處理器112同樣使用數位控制資訊來控制相控陣列天線110。使用發射器裝置140中之控制頻道121及接收器裝置141中之控制頻道122發送數位控制資訊。在一實施例中,數位控制資訊包含一組係數。在一實施例中,處理器103及112中之每一者包含一數位信號處理器。Transmitter device 140 and receiver device 141 perform wireless communication using a phased array antenna with adaptive beamforming that allows beam steering. Beamforming is well known in the art. In one embodiment, the processor 103 sends digital control information to the phased array antenna 105 to indicate the amount used to offset one or more phase shifters in the phased array antenna 105, thereby manipulating the technique A beam formed by a method well known to the public. Processor 112 also uses digital control information to control phased array antenna 110. The digital control information is transmitted using the control channel 121 in the transmitter device 140 and the control channel 122 in the receiver device 141. In an embodiment, the digital control information includes a set of coefficients. In one embodiment, each of processors 103 and 112 includes a digital signal processor.

無線通信鏈路介面106耦接至處理器103,且在無線通信鏈路107與處理器103之間提供一介面以傳達關於相控陣列天線之使用的天線資訊且傳達資訊以有助於在另一位置處播放內容。在一實施例中,在發射器裝置140與接收器裝置141之間傳送以有助於播放內容之資訊包括:自處理器103發送至接收器裝置141之處理器112之加密密鑰及一或多個自接收器裝置141之處理器112發送至發射器裝置140之處理器103之確認。A wireless communication link interface 106 is coupled to the processor 103 and provides an interface between the wireless communication link 107 and the processor 103 to convey antenna information about the use of the phased array antenna and to convey information to facilitate Play content at one location. In an embodiment, the information transmitted between the transmitter device 140 and the receiver device 141 to facilitate playback of the content includes: an encryption key sent from the processor 103 to the processor 112 of the receiver device 141 and one or A plurality of acknowledgments from the processor 112 of the receiver device 141 are sent to the processor 103 of the transmitter device 140.

無線通信鏈路107亦在發射器裝置140與接收器裝置141之間傳送天線資訊。在相控陣列天線105及110之初始化期間,無線通信鏈路107傳送資訊以使處理器103能夠為相控陣列天線105選擇方向。在一實施例中,該資訊包括(但不限於):天線位置資訊及對應於天線位置之效能資訊,例如一或多對包括相控陣列天線110之定位及用於該天線定位之頻道之信號強度的資料。在另一實施例中,該資訊包括(但不限於):由處理器112發送至處理器103以使處理器103能夠確定使用相控陣列天線105之哪些部分來傳送內容的資訊。Wireless communication link 107 also transmits antenna information between transmitter device 140 and receiver device 141. During initialization of phased array antennas 105 and 110, wireless communication link 107 transmits information to enable processor 103 to select direction for phased array antenna 105. In one embodiment, the information includes, but is not limited to, antenna position information and performance information corresponding to the antenna position, such as one or more pairs of signals including the position of the phased array antenna 110 and the channel used for the antenna positioning. Strength data. In another embodiment, the information includes, but is not limited to, transmitted by processor 112 to processor 103 to enable processor 103 to determine which portions of phased array antenna 105 are used to convey information of the content.

當相控陣列天線105及110以某一模式操作而在以該模式操作期間該等天線可傳送內容(例如,HDMI內容)時,無線通信鏈路107傳送來自接收器裝置141之處理器112對通信路徑之狀態的指示。對通信狀態的指示包含來自處理器112促使處理器103在另一方向(例如,至另一頻道)上操控波束的指示。此促使可回應對內容之部分之傳輸的干擾而進行。該資訊可指定處理器103可使用之一或多個替代頻道。The wireless communication link 107 transmits a pair of processors 112 from the receiver device 141 when the phased array antennas 105 and 110 are operating in a mode in which the antennas can transmit content (e.g., HDMI content) during operation in the mode. An indication of the status of the communication path. The indication of the communication status includes an indication from the processor 112 that causes the processor 103 to steer the beam in another direction (e.g., to another channel). This facilitates the response to interference with the transmission of portions of the content. This information may specify that one or more alternate channels may be used by processor 103.

在一實施例中,天線資訊包含由處理器112發送以指定一位置之資訊,接收器裝置141將引導相控陣列天線110至此位置。在初始化期間,當發射器裝置140告知接收器裝置141將其天線定位於何處以便進行信號品質量測從而識別出最佳頻道時,此方式係可用的。所指定之定位可為一確切位置或可為一相對位置,例如,發射器裝置140及接收器裝置所遵循之一預定位置順序中之下一位置。In one embodiment, the antenna information includes information transmitted by the processor 112 to specify a location, and the receiver device 141 will direct the phased array antenna 110 to the location. This mode is available during initialization, when the transmitter device 140 informs the receiver device 141 where to locate its antenna for signal quality measurements to identify the best channel. The specified location may be an exact location or may be a relative location, for example, one of the predetermined location sequences followed by the transmitter device 140 and the receiver device.

在一實施例中,無線通信鏈路107將資訊自接收器裝置141傳送至發射器裝置140來指定相控陣列天線110之天線特徵或反之。In one embodiment, the wireless communication link 107 transmits information from the receiver device 141 to the transmitter device 140 to specify the antenna characteristics of the phased array antenna 110 or vice versa.

收發器架構之一實例An example of a transceiver architecture

圖2為適應性波束成型多天線無線電系統之一實施例的方塊圖,該系統含有圖1之發射器裝置140及接收器裝置141。收發器200包括多個獨立的傳輸及接收鏈。收發器200使用一採取相同RF信號之相控陣列執行相控陣列波束成型,且偏移此陣列中之一或多個天線元件之相位來達成波束操控。2 is a block diagram of one embodiment of an adaptive beamforming multi-antenna radio system including the transmitter device 140 and the receiver device 141 of FIG. Transceiver 200 includes a plurality of independent transmit and receive chains. Transceiver 200 performs phased array beamforming using a phased array of identical RF signals and offsets the phase of one or more antenna elements in the array to achieve beam steering.

參看圖2,數位信號處理器(DSP)201將內容格式化且產生即時基頻信號。DSP 201可提供調變、FEC編碼、封包裝配、交錯及自動增益控制。Referring to Figure 2, a digital signal processor (DSP) 201 formats the content and produces an instantaneous baseband signal. The DSP 201 provides modulation, FEC coding, package matching, interleaving, and automatic gain control.

然後DSP 201轉發基頻信號以在發射器之RF部分上調變且向外發送。在一實施例中,內容經以此項技術中眾所熟知之方式調變為OFDM信號。The DSP 201 then forwards the baseband signal to be modulated on the RF portion of the transmitter and transmitted out. In one embodiment, the content is modulated into an OFDM signal in a manner well known in the art.

數位/類比轉換器(DAC)202接收自DSP 201輸出之數位信號且將其轉換為類比信號。在一實施例中,自DAC 202輸出之信號為在0 MHz至256 MHz之間的信號。在一替代實施例中,自DAC 202輸出之信號為在0 MHz至750 MHz之間的信號。A digital/analog converter (DAC) 202 receives the digital signal output from the DSP 201 and converts it to an analog signal. In one embodiment, the signal output from DAC 202 is a signal between 0 MHz and 256 MHz. In an alternate embodiment, the signal output from DAC 202 is a signal between 0 MHz and 750 MHz.

混頻器203接收自DAC 202輸出之信號且將其與來自本機振盪器(LO)204之信號組合。自混頻器203輸出之信號處於中頻。在一實施例中,中頻係在2 GHz至15 GHz之間。Mixer 203 receives the signal output from DAC 202 and combines it with the signal from local oscillator (LO) 204. The signal output from the mixer 203 is at an intermediate frequency. In an embodiment, the intermediate frequency is between 2 GHz and 15 GHz.

多個移相器2050-N 接收來自混頻器203之輸出。包括一倍減器以控制哪些移相器接收信號。在一實施例中,此等移相器為經量化之移相器。在一替代實施例中,該等移相器可由複數乘法器替代。在一實施例中,DSP 201亦經由控制頻道208控制相控陣列天線220中之該等天線元件中之每一者中之電流的相位及量值,從而以此項技術中眾所熟知之方式產生所需波束場型。換言之,DSP 201控制相控陣列天線220之移相器2050-N 以產生所需場型。A plurality of phase shifters 205 0-N receive the output from the mixer 203. A double downconverter is included to control which phase shifters receive signals. In an embodiment, the phase shifters are quantized phase shifters. In an alternate embodiment, the phase shifters can be replaced by a complex multiplier. In one embodiment, DSP 201 also controls the phase and magnitude of the current in each of the antenna elements in phased array antenna 220 via control channel 208, in a manner well known in the art. Produce the desired beam pattern. In other words, DSP 201 controls phase shifters 205 0-N of phased array antenna 220 to produce the desired pattern.

移相器2050-N 中之每一者產生一輸出,該輸出被發送至將信號放大之功率放大器2060-N 中之一者。經放大之信號被發送至具有多個天線元件2070-N 之天線陣列207。在一實施例中,自天線2070-N 傳輸之信號為在56 GHz至64 GHz之間的射頻信號。因此,多個波束自相控陣列天線220輸出。Each of the phase shifters 205 0-N produces an output that is sent to one of the power amplifiers 206 0-N that amplifies the signal. The amplified signal is sent to an antenna array 207 having a plurality of antenna elements 207 0-N . In one embodiment, the signal transmitted from antennas 207 0-N is a radio frequency signal between 56 GHz and 64 GHz. Therefore, a plurality of beams are output from the phased array antenna 220.

對於接收器,天線2100-N 自天線2070-N 接收無線傳輸且將其提供至移相器2110-N 。如以上所討論,在一實施例中,移相器2110-N 包含經量化之移相器。或者,移相器2110-N 可由複數乘數器替代。移相器2110-N 自天線2100-N 接收信號,該等信號經組合以形成以一單路饋線輸出。在一實施例中,一多工器用於組合來自不同元件之信號且輸出該單路饋線。移相器2110-N 之輸出被輸入至中頻(IF)放大器212,該放大器將信號之頻率降低至中頻。在一實施例中,中頻係在2 GHz至9 GHz之間。For the receiver, antennas 210 0-N receive wireless transmissions from antennas 207 0-N and provide them to phase shifters 211 0-N . As discussed above, in one embodiment, phase shifters 211 0-N include quantized phase shifters. Alternatively, the phase shifters 211 0-N may be replaced by a complex multiplier. Phase shifters 211 0-N receive signals from antennas 210 0-N that are combined to form a single feed line output. In one embodiment, a multiplexer is used to combine signals from different components and output the single feed. The output of phase shifter 211 0-N is input to an intermediate frequency (IF) amplifier 212, which reduces the frequency of the signal to an intermediate frequency. In an embodiment, the intermediate frequency is between 2 GHz and 9 GHz.

混頻器213接收IF放大器212之輸出且以此項技術中眾所熟知之方式將其與來自LO 214之信號組合。在一實施例中,混頻器213之輸出為在0 MHz至約250 MHz之範圍內的信號。在一實施例中,各頻道有I及Q信號。在一替代實施例中,混頻器213之輸出為在0 MHz至約750 MHz之範圍內的信號。Mixer 213 receives the output of IF amplifier 212 and combines it with the signal from LO 214 in a manner well known in the art. In one embodiment, the output of mixer 213 is a signal in the range of 0 MHz to about 250 MHz. In one embodiment, each channel has an I and Q signal. In an alternate embodiment, the output of mixer 213 is a signal in the range of 0 MHz to about 750 MHz.

類比/數位轉換器(ADC)215接收混頻器213之輸出且將其轉換為數位形式。來自ADC 215之數位輸出係由DSP 216接收。DSP 216復原信號之振幅及相位。DSP 201可提供解調變、封包拆卸、反交錯、FEC解碼及自動增益控制。An analog/digital converter (ADC) 215 receives the output of mixer 213 and converts it to digital form. The digital output from ADC 215 is received by DSP 216. The DSP 216 restores the amplitude and phase of the signal. The DSP 201 can provide demodulation, packet disassembly, deinterlacing, FEC decoding, and automatic gain control.

在一實施例中,該等收發器中之每一者包括一控制微處理器,該微處理器為DSP建立控制資訊。該控制微處理器可與DSP處於同一晶粒上。In one embodiment, each of the transceivers includes a control microprocessor that establishes control information for the DSP. The control microprocessor can be on the same die as the DSP.

DSP控制之適應性波束成型DSP-controlled adaptive beamforming

在一實施例中,DSP實施一適應性演算法,使波束成型加權在硬體中實施。亦即,發射器及接收器共同工作以使用數位控制類比移相器來執行RF頻率中之波束成型;然而,在一替代實施例中,波束成型係在IF中執行。移相器2050-N 及2110-N 分別經由控制頻道208及控制頻道217經其各自之DSP以此項技術中眾所熟知之方式而控制。舉例而言,DSP 201控制移相器2050-N 以使發射器執行適應性波束成型從而操控波束,而DSP 201控制移相器2110-N 以引導天線元件接收來自天線元件的無線傳輸且組合來自不同元件之信號從而形成一單路饋線輸出。在一實施例中,一多工器用於組合來自不同元件之信號且輸出該單路饋線。In one embodiment, the DSP implements an adaptive algorithm that enables beamforming weighting to be implemented in hardware. That is, the transmitter and receiver work together to perform beamforming in the RF frequency using a digitally controlled analog phase shifter; however, in an alternate embodiment, beamforming is performed in the IF. Phase shifters 205 0-N and 211 0-N are controlled via control channel 208 and control channel 217 via their respective DSPs in a manner well known in the art. For example, DSP 201 controls phase shifters 205 0-N to cause the transmitter to perform adaptive beamforming to steer the beam, while DSP 201 controls phase shifters 211 0-N to direct the antenna elements to receive wireless transmissions from the antenna elements and Signals from different components are combined to form a single feeder output. In one embodiment, a multiplexer is used to combine signals from different components and output the single feed.

DSP 201藉由脈衝或激發來執行波束操控,適當之移相器連接至各天線元件。在DSP 201下之脈衝演算法控制各元件之相位及增益。執行DSP控制之相控陣列波束成型在此項技術中眾所熟知。The DSP 201 performs beam steering by pulse or excitation, and a suitable phase shifter is connected to each antenna element. The pulse algorithm under DSP 201 controls the phase and gain of each component. Phased array beamforming to perform DSP control is well known in the art.

適應性波束成型天線用於避免干擾阻礙。藉由調適波束成型及操控波束,可避免阻礙而進行通信,該等障礙可妨礙或干擾發射器與接收器之間的無線傳輸。Adaptive beamforming antennas are used to avoid interference barriers. By adapting beamforming and steering the beam, communication can be avoided without hindering the wireless transmission between the transmitter and the receiver.

在一實施例中,關於適應性波束成型天線,其具有三個操作階段。該三個操作階段為訓練階段、搜尋階段及追蹤階段。訓練階段及搜尋階段在初始化期間進行。訓練階段確定具有預定序列之空間場型{}及{}的頻道概況。搜尋階段計算候選空間場型{}、{}之列表,且選擇一首選{,}用於在一收發器之發射器與另一收發器之接收器之間的資料傳輸。追蹤階段保持對候選列表之強度的追蹤。當首選被阻礙時,選擇下一對空間場型使用。In an embodiment, with respect to an adaptive beamforming antenna, it has three phases of operation. The three operational phases are the training phase, the search phase, and the tracking phase. The training phase and the search phase are performed during the initialization period. The training phase determines the spatial field type with a predetermined sequence { }and{ } channel overview. Calculate candidate spatial patterns in the search phase { },{ a list of } and choose a preferred { , } for data transfer between a transmitter of one transceiver and a receiver of another transceiver. The tracking phase keeps track of the strength of the candidate list. When the first choice is blocked, select the next pair of spatial field types to use.

在一實施例中,在訓練階段期間,發射器向外發送某一序列之空間場型{}。對於各空間場型{}而言,接收器將所接收之信號投射至另一序列之場型{}上。投射之結果為:在{},{}之對上得到頻道概況。In an embodiment, during the training phase, the transmitter transmits a sequence of spatial patterns to the outside { }. For each spatial field type { }, the receiver projects the received signal to another sequence of scenes { }on. The result of the projection is: at { },{ On the opposite side, get the channel overview.

在一實施例中,在發射器與接收器之間執行徹底訓練,其中接收器之天線定位於所有位置且發射器發送多個空間場型。徹底訓練在此項技術中眾所熟知。在此情況下,由發射器傳輸M個傳輸空間場型且由接收器接收N個接收空間場型以形成一N×M之頻道矩陣。因此,發射器遍曆傳輸扇區之場型且接收器搜尋以發現用於該傳輸之最強信號。然後,發射器移動至下一扇區。在徹底搜尋過程之終點,獲得發射器及接收器之所有定位的分級及在彼等定位處之頻道之信號強度。資訊保持為天線所指之定位與頻道之信號強度的配對。該列表可在有干擾情況下用於操控天線波束。In an embodiment, thorough training is performed between the transmitter and the receiver, wherein the antenna of the receiver is positioned at all locations and the transmitter transmits a plurality of spatial patterns. Thorough training is well known in the art. In this case, the M transmission spatial patterns are transmitted by the transmitter and the N received spatial patterns are received by the receiver to form an N x M channel matrix. Thus, the transmitter traverses the field pattern of the transmission sector and the receiver searches for the strongest signal for the transmission. The transmitter then moves to the next sector. At the end of the thorough search process, the grading of all locations of the transmitter and receiver and the signal strength of the channels at their locations are obtained. The information remains paired with the location of the antenna and the signal strength of the channel. This list can be used to manipulate the antenna beam in the presence of interference.

在一替代實施例中,使用二區段訓練,其中所發送之正交天線場型將空間分為接連之狹窄區段從而獲得一頻道概況。In an alternate embodiment, two-segment training is used in which the transmitted orthogonal antenna pattern divides the space into successive narrow segments to obtain a channel profile.

假設DSP 101處於一穩定狀態且天線應指向之方向已確定。在標稱狀態下,DSP將具有一組其發送至移相器之係數。該等係數為信號之對應天線指示移相器偏移信號的相位量。舉例而言,DSP 101發送一組數位控制資訊至移相器,指示不同的移相器將偏移不同量,例如,偏移30度、偏移45度、偏移90度、偏移180度等。因此,發送至天線元件之信號的相位將偏移特定數目的度數。將(例如)陣列中16、34、32、64元件偏移不同量之最後結果使天線能夠被操控至為接收天線提供最敏感接收位置的方向上。亦即,整個天線陣列上之複合組合之偏移提供改變天線之最敏感點在半球上所指處的能力。It is assumed that the DSP 101 is in a steady state and the direction in which the antenna should be pointed has been determined. In the nominal state, the DSP will have a set of coefficients that it sends to the phase shifter. The coefficients are the phase quantities of the phase shifter offset signal for the corresponding antenna of the signal. For example, the DSP 101 sends a set of digital control information to the phase shifter, indicating that different phase shifters will be offset by different amounts, for example, offset by 30 degrees, offset by 45 degrees, offset by 90 degrees, offset by 180 degrees. Wait. Therefore, the phase of the signal sent to the antenna element will be offset by a certain number of degrees. The final result of shifting, for example, 16, 16, 32, 64 elements in the array by a different amount enables the antenna to be manipulated to provide the most sensitive receiving position for the receiving antenna. That is, the offset of the composite combination across the array of antennas provides the ability to change the position of the most sensitive point of the antenna on the hemisphere.

注意,在一實施例中,在發射器與接收器之間的適當連接可不為自發射器至接收器之直接路徑。舉例而言,最適當路徑可自最高限度上彈回。Note that in an embodiment, the appropriate connection between the transmitter and the receiver may not be a direct path from the transmitter to the receiver. For example, the most appropriate path can bounce back from the ceiling.

回返頻道Return channel

在一實施例中,無線通信系統包括一用於在無線通信裝置(例如,發射器與接收器、一對收發器等)之間傳輸資訊之回返頻道或鏈路。該資訊係關於波束成型天線且該資訊使無線通信裝置中之一者或兩者能夠調適天線元件之陣列從而更佳地將發射器之天線元件至接收裝置之天線元件引導至一起。該資訊亦包括有助於使用在發射器與接收器之天線元件之間無線傳送之內容的資訊。In one embodiment, a wireless communication system includes a return channel or link for transmitting information between wireless communication devices (e.g., transmitters and receivers, a pair of transceivers, etc.). This information relates to beamforming antennas and this information enables one or both of the wireless communication devices to adapt the array of antenna elements to better direct the antenna elements of the transmitter to the antenna elements of the receiving device. The information also includes information that facilitates the use of content that is wirelessly transmitted between the transmitter and receiver antenna elements.

在圖2中,回返頻道220係耦接於DSP 216與DSP 201之間以使DSP 216能夠發送追蹤及控制資訊至DSP 201。在一實施例中,回返頻道220充當高速度下行鏈路及確認頻道。In FIG. 2, the return channel 220 is coupled between the DSP 216 and the DSP 201 to enable the DSP 216 to send tracking and control information to the DSP 201. In an embodiment, the return channel 220 acts as a high speed downlink and acknowledge channel.

在一實施例中,回返頻道亦用於傳送對應於應用的資訊,無線通信係針對此應用而進行(例如,無線視訊)。此資訊包括內容保護資訊。舉例而言,在一實施例中,回返頻道用於在收發器傳送HDMI資料時傳送加密資訊(例如,加密密鑰及加密密鑰之確認)。在此情況下,回返頻道用於內容保護通信。In an embodiment, the return channel is also used to transmit information corresponding to the application, and the wireless communication is performed for the application (eg, wireless video). This information includes content protection information. For example, in one embodiment, the return channel is used to transmit encrypted information (eg, an encryption key and an encryption key confirmation) when the transceiver transmits the HDMI material. In this case, the return channel is used for content protection communication.

更明確言之,在HDMI中,加密係用於驗證資料儲集器為一經許可之裝置(例如,經許可之顯示器)。當傳送HDMI資料流時,傳送連續之新加密密鑰流以驗證經許可之裝置未被改變。HD TV資料之訊框之區塊由不同之密鑰加密,且然後該等密鑰必須在回返頻道220上進行回返確認以驗證播放器。回返頻道220在正向上傳送加密密鑰至接收器,且在返回方向上傳送來自接收器之密鑰接收之確認。因此,所加密之資訊在兩個方向上發送。More specifically, in HDMI, encryption is used to verify that the data store is a licensed device (eg, a licensed display). When an HDMI stream is transmitted, a continuous stream of new encryption keys is transmitted to verify that the licensed device has not been altered. The blocks of the HD TV data frame are encrypted by different keys, and then the keys must be returned on the return channel 220 for verification to verify the player. The return channel 220 transmits the encryption key to the receiver in the forward direction and transmits an acknowledgement of the key reception from the receiver in the return direction. Therefore, the encrypted information is sent in both directions.

回返頻道用於內容保護通信係有益的,此係因為當該等通信與內容一同發送時,其避免了必須完成超長再訓練過程。舉例而言,若將來自發射器之密鑰與流經主鏈路之內容一起發送且主鏈路斷開,則對於典型之HDMI/HDCP系統而言,其將強加超長之2秒至3秒之再訓練。在一實施例中,與給出其全向方位之主方向鏈路相比,此分開之雙向鏈路具有更高之可靠性。藉由將此回返頻道用於HDCP密鑰及來自接收裝置之回返確認的通信,可在甚至最具衝擊性之阻礙之情況下避免耗時之再訓練。The use of a return channel for content protection communication is beneficial because it avoids having to complete a very long retraining process when the communication is sent with the content. For example, if the key from the transmitter is sent with the content flowing through the primary link and the primary link is disconnected, for a typical HDMI/HDCP system, it will impose a very long 2 seconds to 3 Retraining in seconds. In an embodiment, the separate bidirectional link has higher reliability than the main direction link that gives its omnidirectional orientation. By using this return channel for the HDCP key and the communication of the return confirmation from the receiving device, time-consuming retraining can be avoided even with the most impulsive obstacles.

在作用中期間,當波束成型天線正傳送內容時,回返頻道用於允許接收器通知發射器關於頻道之狀態。舉例而言,當波束成型天線之間的頻道具有充分品質時,接收器在回返頻道上發送資訊以指示頻道係可接受的。接收器亦可使用回返頻道發送發射器可量化資訊,該等資訊指示正在使用之頻道之品質。若發生某種形式之如下干擾(例如,阻礙):其將頻道之品質降級至可接受位準之下或妨礙波束成型天線之間的完全傳輸,則接收器可指示頻道不再可接受及/或可要求在回返頻道上之頻道的改變。接收器可要求改變至一預定組之頻道中之下一頻道,或可為發射器指定一特定頻道以供使用。During the action, when the beamforming antenna is transmitting content, the return channel is used to allow the receiver to inform the transmitter about the status of the channel. For example, when the channel between the beamformed antennas is of sufficient quality, the receiver sends a message on the return channel to indicate that the channel is acceptable. The receiver can also use the return channel to send transmitter measurable information indicating the quality of the channel being used. If some form of interference (eg, obstruction) occurs that degrades the quality of the channel below an acceptable level or prevents complete transmission between the beamforming antennas, the receiver may indicate that the channel is no longer acceptable and / Or you can request a change in the channel on the return channel. The receiver may request to change to the next channel in a predetermined group of channels, or may assign a particular channel to the transmitter for use.

在一實施例中,回返頻道係雙向的。在此情況下,在一實施例中,發射器使用回返頻道以發送資訊至接收器。此資訊可包括指令接收器將其天線元件定位於不同固定位置(發射器將在初始化期間掃描該等位置)之資訊。發射器可藉由以下對此進行指定:藉由明確地指明此位置,或藉由指示接收器應繼續行進至一預定順序或列表中(發射器與接收器兩者皆行進遍曆此順序或列表)所指明之下一位置。In an embodiment, the return channel is bidirectional. In this case, in one embodiment, the transmitter uses the return channel to send information to the receiver. This information may include information that the command receiver positions its antenna elements at different fixed positions (the transmitter will scan for such positions during initialization). The transmitter may specify this by explicitly indicating the location, or by indicating that the receiver should continue to travel to a predetermined sequence or list (both transmitter and receiver travel through this sequence or The list indicates the next position.

在一實施例中,回返頻道由發射器及接收器中之任一者或兩者使用以將特定天線特徵資訊通知至另一者。舉例而言,該天線特徵資訊可指定天線能接受低至6度之半徑解析度及天線具有特定數目之元件(例如,32個元件、64個元件等)。In an embodiment, the return channel is used by either or both of the transmitter and the receiver to inform the other antenna characteristic information. For example, the antenna characteristic information can specify that the antenna can accept a radius resolution as low as 6 degrees and the antenna has a certain number of components (eg, 32 components, 64 components, etc.).

在一實施例中,藉由使用介面單元在回返頻道上執行無線通信。可使用任一形式之無線通信。在一實施例中,OFDM用於在回返頻道上傳送資訊。在另一實施例中,具低的峰值對平均功率比率的連續相位調變(CPM)用於在回返頻道上傳送資訊。In an embodiment, wireless communication is performed on the return channel by using an interface unit. Any form of wireless communication can be used. In an embodiment, OFDM is used to transmit information on a return channel. In another embodiment, continuous phase modulation (CPM) with a low peak to average power ratio is used to communicate information on the return channel.

實體層(PHY)概述Physical layer (PHY) overview

無線HD規範支援兩種基本類型之PHY:高速率PHY(HRP)及低速率PHY(LRP)。The Wireless HD specification supports two basic types of PHYs: High Rate PHY (HRP) and Low Rate PHY (LRP).

根據一實施例,HRP支援多個Gbps之資料速率。HRP可以定向模式(通常為波束成型模式)操作。HRP可用於傳輸音訊、視訊、資料及控制訊息。LRP僅可自HTx/HTR裝置發送至HRx/HTR裝置。在一實施例中,HRP佔據大概1.7 GHz之頻寬。According to an embodiment, the HRP supports data rates of multiple Gbps. HRP can operate in a directional mode (typically a beamforming mode). HRP can be used to transmit audio, video, data and control messages. The LRP can only be sent from the HTx/HTR device to the HRx/HTR device. In an embodiment, the HRP occupies a bandwidth of approximately 1.7 GHz.

根據一實施例,LRP支援多個Mbps之資料速率。LRP可以定向、全向或波束成型模式操作。在一實施例中,LRP可用於傳輸控制訊息、信標及確認。在一替代實施例中,LRP可進一步用於傳輸音訊或壓縮視訊。在又一實施例中,LRP可進一步用於傳輸低速度資料。LRP可在任何裝置之間發送。LRP佔據如下所討論之HRP頻道之三個91 MHz之副頻道中之一者。According to an embodiment, the LRP supports multiple data rates of Mbps. The LRP can operate in a directional, omnidirectional or beamforming mode. In an embodiment, the LRP can be used to transmit control messages, beacons, and acknowledgments. In an alternate embodiment, the LRP can be further used to transmit audio or compress video. In yet another embodiment, the LRP can be further used to transmit low speed data. LRP can be sent between any device. The LRP occupies one of the three 91 MHz subchannels of the HRP channel discussed below.

頻率計劃Frequency plan

HRP及LRP可共用同一頻帶。圖4說明針對HRP及LRP之頻率計劃之一實施例。低速率頻道404與對應高速率頻道402共用同一頻帶。三個低速率頻道1A、1B、1C可配置於各高速率頻道頻寬(頻道1)中以避免干擾。根據另一實施例,低速率及高速率頻道可以分時雙工模式操作。圖4說明四個在57 GHz至66 GHz之間的頻道之實例:頻道1在57.2 GHz與59.2 GHz之間操作,頻道2在59.4 GHz與61.4 GHz之間操作,頻道3在61.6 GHz與63.6 GHz之間操作,頻道4在63.8 GHz與65.8 GHz之間操作。HRP and LRP can share the same frequency band. Figure 4 illustrates one embodiment of a frequency plan for HRP and LRP. The low rate channel 404 shares the same frequency band as the corresponding high rate channel 402. The three low rate channels 1A, 1B, 1C can be configured in each high rate channel bandwidth (channel 1) to avoid interference. According to another embodiment, the low rate and high rate channels can operate in a time division duplex mode. Figure 4 illustrates four examples of channels between 57 GHz and 66 GHz: channel 1 operates between 57.2 GHz and 59.2 GHz, channel 2 operates between 59.4 GHz and 61.4 GHz, and channel 3 operates at 61.6 GHz and 63.6 GHz. Operation between, channel 4 operates between 63.8 GHz and 65.8 GHz.

單個低成本晶體振盪器能夠產生該等頻率。基頻時鐘頻率可接近2.5 GHz(例如,2.508 GHz)。根據一實施例,頻率計劃可支援易於實施之RF合成器的設計。所得中心頻率可為:58.608 GHz、60.720 GHz、62.832 GHz及64.944 GHz。可能之晶體頻率可包括44 MHz,、66 MHz及132 MHz。A single low cost crystal oscillator is capable of generating these frequencies. The baseband clock frequency can be close to 2.5 GHz (for example, 2.508 GHz). According to an embodiment, the frequency plan can support the design of an easily implemented RF synthesizer. The resulting center frequencies can be: 58.608 GHz, 60.720 GHz, 62.832 GHz, and 64.944 GHz. Possible crystal frequencies can include 44 MHz, 66 MHz, and 132 MHz.

高速率PHY(HRP)High Rate PHY (HRP)

HRP可支援3.76 Gbps、1.88 Gbps、0.94 Gbps之資料速率。資料速率可視需要個別對應於針對各種取樣率之1080p、1080i、480p的視訊解析度標準。因此,該範圍可在較低之資料速率時增加。較高之PHY速率仍可允許多個經由MAC之較低速率流。HRP supports data rates of 3.76 Gbps, 1.88 Gbps, and 0.94 Gbps. The data rate can be individually matched to the video resolution standards of 1080p, 1080i, and 480p for various sampling rates. Therefore, this range can be increased at lower data rates. A higher PHY rate can still allow multiple lower rate streams via the MAC.

HRP可利用若干類型之編碼及調變:OFDM、16QAM及QPSK調變、內部迴旋碼(1/3、2/3、4/7、4/5速率)及速率0.96之裏德-所羅門(Reed-Solomon)外碼。除內部迴旋碼以外,裏德-所羅門外碼之使用將SNR之要求較低了約2 dB。可使用外部交錯器來實現外碼的完全增益。HRP can utilize several types of coding and modulation: OFDM, 16QAM and QPSK modulation, internal convolutional codes (1/3, 2/3, 4/7, 4/5 rates) and Reed-Solomon (Reed) at a rate of 0.96 -Solomon) Outer code. In addition to the internal convolutional code, the use of the Reed-Solomon outer code reduces the SNR requirement by approximately 2 dB. An external interleaver can be used to achieve full gain of the outer code.

HRP可在全域60 GHz帶上利用四個頻道用於1.7 GHz之作用中頻道頻寬。根據一實施例,每一區域可存在三個頻道。HRP can utilize four channels for the channel bandwidth of 1.7 GHz in the global 60 GHz band. According to an embodiment, there may be three channels per zone.

HRP可經擴充以包括FEC流之並行化,從而用於節省成本之實施及對不等誤碼保護(UEP)概念之支援。HRP can be extended to include parallelization of FEC streams for cost-effective implementation and support for the unequal error protection (UEP) concept.

圖5A說明一Tx PHY方塊圖之一實施例。擾碼器502接收LMAC資料且將其饋入MSB/LSB分離區塊504。對於MSB,可使用RS編碼器506及外部交錯器510。對於LSB,可使用RS編碼器508及外部交錯器512。擊穿電路514可耦接至外部交錯器510及512。以下電路形成在擊穿電路514之後的序列:資料多工器516、位元交錯器518、QAM映射器520、載頻調交錯器522、導頻/DC/空值插入524及IFFT 526。Figure 5A illustrates an embodiment of a Tx PHY block diagram. The scrambler 502 receives the LMAC data and feeds it into the MSB/LSB separation block 504. For the MSB, an RS encoder 506 and an external interleaver 510 can be used. For the LSB, an RS encoder 508 and an external interleaver 512 can be used. The breakdown circuit 514 can be coupled to external interleavers 510 and 512. The following circuits are formed after the breakdown circuit 514: data multiplexer 516, bit interleaver 518, QAM mapper 520, carrier interleaver 522, pilot/DC/null insertion 524, and IFFT 526.

HRP外碼交錯器510、512可包括一區塊交錯器及一迴旋交錯器。外部交錯器之功能為:確保將外碼之各位元組映射至內碼碼字之連續位元,且確保將外碼之連續位元組映射至不同內碼碼字。區塊交錯器要求發射器中幾乎沒有記憶體且可在無零插入之情況下改良效率。藉由外部交錯器可易於添加尾部位元。迴旋交錯器要求發射器中有若干移位暫存器且在有零插入之情況下可能使效率降級。當使用迴旋交錯器時,可需要四個OFDM符號(symbol)以傳輸移位暫存器中之初始/最終之零。效率可自約0.5%降級至約2%。區塊外部交錯器510、512可使裏德-所羅門外碼與內部迴旋碼之間的記憶體要求降至最低。在一實施例中,區塊交錯器深度(depth)為4且存在M=4個用於各外部交錯器之內部迴旋編碼器。外部區塊交錯器將針對HRP資料以四之深度進行操作。在一實施例中,可藉由八位元組之表格來實施區塊交錯器,使行之數目與深度相同且列之數目與裏德-所羅門碼之長度相同:b(i,k),i=0,1,...,depth-1;k=0,1,...,N-1b(i,K),b(i,K+1), ...,b(i,N-1)之八位元組為b(i,0),b(i,1),...,b(i,K-1) 之八位元組的裏德-所羅門碼同位位元,此處RS(N,K)為裏德-所羅門碼。在一實施例中,外部交錯器之參數為depth =4、K=216且N=224。在另一實施例中,區塊交錯器在位元之群組(稱作位元組)上進行操作。在另一實施例中,各位元組具有8個位元或一個八位元組。在另一實施例中,各位元組具有多於1個位元。The HRP outer code interleaver 510, 512 can include a block interleaver and a convolutional interleaver. The function of the external interleaver is to ensure that the tuples of the outer code are mapped to consecutive bits of the inner codeword and that successive contigs of the outer code are mapped to different inner codewords. Block interleaver requires almost no memory in the transmitter and can improve efficiency without zero insertion. The tail element can be easily added by an external interleaver. The cyclotron interleaver requires several shift registers in the transmitter and may degrade efficiency with zero insertion. When a cyclotron interleaver is used, four OFDM symbols may be required to transmit the initial/final zero in the shift register. Efficiency can be degraded from about 0.5% to about 2%. The block outer interleaver 510, 512 minimizes the memory requirements between the Reed-Solomon outer code and the internal whirling code. In an embodiment, the block interleaver depth is 4 and there are M = 4 internal cyclotron encoders for each external interleaver. The external block interleaver will operate at four depths for HRP data. In an embodiment, the block interleaver can be implemented by a table of octets such that the number of rows is the same as the depth and the number of columns is the same as the length of the Reed-Solomon code: b(i, k), i=0,1,...,depth-1;k=0,1,...,N-1 b(i,K),b(i,K+1), ...,b(i,N The octet of -1) is the Reed-Solomon code co-bit of the octet of b(i,0), b(i,1),..., b(i,K-1) , Here RS(N, K) is the Reed-Solomon code. In an embodiment, the parameters of the external interleaver are depth = 4, K = 216, and N = 224. In another embodiment, the block interleaver operates on a group of bits (referred to as a byte). In another embodiment, each tuple has 8 bits or an octet. In another embodiment, each tuple has more than one bit.

圖5B說明區塊交錯器碼之一實例。為降低記憶體要求,至圖5B之行與列之映射應使用以下公式:i=fioor{[l mod(depth * M)]/M} k=M floor[l/(depth * M)+l mod M l=0,1,...,depth * K-1此處l 為外部交錯器之輸入處的八位元組數目。Figure 5B illustrates an example of a block interleaver code. To reduce memory requirements, the mapping to the row and column of Figure 5B should use the following formula: i=fioor{[l mod(depth * M)]/M} k=M floor[l/(depth * M)+l mod M l = 0, 1, ..., depth * K-1 where l is the number of octets at the input of the external interleaver.

外部交錯器可自開始時之i=0,k =0至最後之i=depth-1,kN-1 而輸出八位元組。在M與各RS碼字之迴旋內部編碼器並行之情況下,外部交錯器會將b(0,0),...,b(depth-1,0) 之八位元組賦予第一迴旋編碼器,以LSB為首。b(i,k *Mm) (i =0,...,depth-1,k =0,1,...,N/M-1 )之所有八位元組將輸出至第m個迴旋編碼器。迴旋編碼器之尾部位元由外部交錯器插入。圖5B之i=depth-1 行為一同位位元位於b(depth-1,K-M-9),b(depth-1,K-M-8),...,b(depth-1,K-M-1) 處的縮短RS(N-M,K-M,t=4) 碼。b(depth-1,N-M),...,b(depth-1,N-1) 之位元組以零補上。The external interleaver can output octets from the beginning i = 0, k = 0 to the last i = depth -1, k = N-1 . In the case where M is parallel with the cyclotron internal encoder of each RS codeword, the external interleaver assigns the octet of b(0,0),..., b(depth-1,0) to the first roundabout. Encoder, led by LSB. All octets of b(i,k * M + m) ( i =0,..., depth-1,k =0,1,..., N/M-1 ) will be output to the mth One rotary encoder. The tail element of the cyclotron encoder is inserted by an external interleaver. The i= depth-1 behavior of Figure 5B is a parity bit located at b(depth-1, K-M-9), b(depth-1, K-M-8),..., b(depth-1, The shortened RS (N-M, K-M, t=4) code at K-M-1) . The b- bits of b(depth-1, N-M), ..., b(depth-1, N-1) are complemented by zeros.

圖6以三個不同表格(602、604、606)說明HRP之各種參數。表格602及604說明根據本發明之HRP的不同參數。表格606說明在不同模式之HRP中之支援速率。Figure 6 illustrates various parameters of the HRP in three different tables (602, 604, 606). Tables 602 and 604 illustrate different parameters of the HRP in accordance with the present invention. Table 606 illustrates the support rates in different modes of HRP.

圖7及8中說明HRP內碼電路之一實施例。圖7說明一HRP內碼之電路圖700。可使用(133,171,165)之多項式來描述內碼電路。圖8說明HRP內碼電路之碼率、擊穿場型及傳輸序列之表格。擊穿場型中之"0"意謂擊穿或刪除且擊穿場型中之"1"意謂不擊穿或不刪除。One embodiment of an HRP internal code circuit is illustrated in Figures 7 and 8. Figure 7 illustrates a circuit diagram 700 of an HRP internal code. The inner code circuit can be described using a polynomial of (133, 171, 165). Figure 8 illustrates a table of the code rate, breakdown field type, and transmission sequence of the HRP internal code circuit. The "0" in the breakdown pattern means that the breakdown or deletion and the "1" in the breakdown type means no breakdown or deletion.

為支援3.9 Gps之資料速率,可能需要迴旋編碼器並行化。在一實施例中,可在接收器處使用基4積累-比較-選擇技術。基4 ACS在每個循環中處理2個位元。所需之時鐘頻率等於3.9 Gps除以解碼器之數目且除二。舉例而言,對於8個解碼器,可需要244 MHz之時鐘。To support a data rate of 3.9 Gps, it may be necessary to parallelize the cyclotron encoder. In an embodiment, a base 4 accumulation-comparison-selection technique can be used at the receiver. The base 4 ACS processes 2 bits in each loop. The required clock frequency is equal to 3.9 Gps divided by the number of decoders and divided by two. For example, for 8 decoders, a clock of 244 MHz may be required.

HRP資料多工器516可組合來自8個迴旋編碼器之資料。其模式可視EEP或UEP而定。在EEP模式中,實施循環機制以平均地分配位元。在UEP調變模式中,MSB對應於QAM映射器之I分枝,且LSB對應於QAM映射器之Q分枝。在UEP編碼模式中,強MSB迴旋碼引起資料多工器516之輸入處之MSB位元多於LSB位元。8個迴旋編碼器中之每一者之4個輸入位元(總共32個)之區塊可表現擊穿場型之一全循環。UEP編碼模式可引起迴旋編碼器輸出處有28個MSB位元及20個LSB位元,該等位元映射至48個分散於I及Q上之傳輸位元。The HRP data multiplexer 516 can combine data from eight cyclotron encoders. The mode can be determined by EEP or UEP. In the EEP mode, a loop mechanism is implemented to evenly allocate bits. In the UEP modulation mode, the MSB corresponds to the I branch of the QAM mapper, and the LSB corresponds to the Q branch of the QAM mapper. In the UEP coding mode, the strong MSB convolutional code causes the MSB bit at the input of the data multiplexer 516 to be more than the LSB bit. The block of 4 input bits (32 in total) of each of the 8 whirling encoders can represent one full cycle of the breakdown field type. The UEP coding mode can cause 28 MSB bits and 20 LSB bits at the output of the cyclotron encoder, which are mapped to 48 transmission bits scattered over I and Q.

HRP位元交錯器518可將位元自HRP資料多工器516分散至QAM或QPSK集群之I/Q-分枝。QAM集群之MSB及LSB不提供相同的經編碼之BER。位元交錯器可確保來自同一內碼編碼器之各位元流的BER相同。各位元流映射至QAM集群的相等數量之MSB及LSB。以下為一建議解決方案:P16:0,1,2,3,4,5,6,7,9,8,11,10,13,12,15,14,使i=M*floor(k/M)+mod(2*floor(k/2)+mod(k+floor(k/M),2),M),k=0,1,...,2M-1,其中在2M=16之區塊中,i為輸出位元之索引,且k為輸入位元之索引。The HRP bit interleaver 518 can spread the bits from the HRP data multiplexer 516 to the I/Q-branch of the QAM or QPSK cluster. The MSB and LSB of the QAM cluster do not provide the same encoded BER. The bit interleaver ensures that the BERs of the individual element streams from the same inner code encoder are the same. Each elementary stream is mapped to an equal number of MSBs and LSBs of the QAM cluster. The following is a suggested solution: P16:0,1,2,3,4,5,6,7,9,8,11,10,13,12,15,14, making i=M*floor(k/ M)+mod(2*floor(k/2)+mod(k+floor(k/M), 2), M), k=0,1,...,2M-1, where in the block of 2M=16 , i is the index of the output bit, and k is the index of the input bit.

P32:0,1,2,3,4,5,6,7,11,8,9,10,15,12,13,14,18,19,16,17,22,23,20,21,25,26,27,24,29,30,31,28,使i=M*floor(k/M)+mod(4*floor(k/4)+mod(k+floor(k/M),4),M),k=0,1,...4M-1,其中在4M=32之區塊中,i為輸出位元之索引,且k為輸入位元之索引。P32: 0, 1, 2, 3, 4, 5, 6, 7, 11, 8, 9, 10, 15, 12, 13, 14, 18, 19, 16, 17, 22, 23, 20, 21, 25,26,27,24,29,30,31,28, such that i=M*floor(k/M)+mod(4*floor(k/4)+mod(k+floor(k/M),4),M ), k = 0, 1, ... 4M-1, where in the block of 4M = 32, i is the index of the output bit, and k is the index of the input bit.

圖9及10中用圖表說明以上解決方案。The above solutions are illustrated graphically in Figures 9 and 10.

在具有頻率選擇性衰落之HRP頻道中,OFDM符號之不同副頻道可具有不同之頻道回應且相鄰之OFDM副頻道通常經歷相同的衰落作用。為改良效能,載頻調交錯器將相鄰之資料映射至遠處的OFDM副頻道。在一實施例中,HRP螺旋式掃描載頻調交錯器可包括以下解決方案:i=mod(floor(k/24)+3*mod(k,24),14)*24+mod(k,24),k=0,0,...,N dsc(HR) -1其中i為輸出載頻調之索引且k為輸入載頻調之索引。In an HRP channel with frequency selective fading, different subchannels of an OFDM symbol may have different channel responses and adjacent OFDM subchannels typically experience the same fading effect. To improve performance, the carrier interleaver maps adjacent data to distant OFDM subchannels. In an embodiment, the HRP spiral scan carrier interleaver may include the following solution: i=mod(floor(k/24)+3*mod(k,24), 14)*24+mod(k,24), k = 0, 0, ... , N dsc(HR) -1 where i is the index of the output carrier frequency and k is the index of the input carrier frequency.

圖11中用圖表說明以上解決方案。The above solution is illustrated graphically in Figure 11.

在一替代實施例中,載頻調交錯器可基於位元反向原則而設計。在IFFT之實際實施中,在IFFT計算之前抑或之後存在一位元反向電路。在位元反向電路中,輸入資料之索引首先表現為二進位數,所得之二進位表示法係位元反向的,且該位元反向二進位數成為輸出資料之索引。當使用位元反向載頻調交錯器時,載頻調交錯器及IFFT計算可組合。IFFT計算電路嵌入位元反向載頻調交錯器中。DC、空值及導頻載頻調將插入載頻調交錯器之前的位元反向定位。以此方式保證在排列之後,DC、空值及導頻載頻調將出現在預先指定之定位中。使用如後所述之行進導頻,用於導頻之位元反向定位按OFDM符號依次改變。當用於基2 IFFT實施(其使用多個2×2基本架構區塊)時,位元反向載頻調交錯器可進行最佳操作。例如,對於使用多個8×8架構區塊之基8 IFFT實施,輸入資料之索引應首先表示為一個八位元數,八位元反向數則為輸出資料。在此特定實例中,八位元反向載頻調交錯器為組合載頻調交錯器及IFFT提供最簡易之實施。In an alternate embodiment, the carrier shift interleaver can be designed based on the bit reverse principle. In the actual implementation of IFFT, there is a one-bit inverse circuit before or after the IFFT calculation. In the bit reverse circuit, the index of the input data first appears as a binary digit, and the resulting binary representation indicates that the legal system bit is inverted, and the reverse binary digit of the bit becomes the index of the output data. When using a bit reverse carrier interleaver, the carrier interleaver and the IFFT calculation can be combined. The IFFT calculation circuit is embedded in a bit-inverse carrier-shift interleaver. The DC, null, and pilot carrier tones are placed in reverse orientation before the bit inserted into the carrier interleaver. In this way it is ensured that after the alignment, the DC, null and pilot carrier tones will appear in the pre-specified position. Using the traveling pilot as will be described later, the bit position reverse positioning for the pilot is sequentially changed in OFDM symbols. When used in a base 2 IFFT implementation (which uses multiple 2x2 basic architecture blocks), the bit reverse carrier interleaver can perform optimal operations. For example, for a base 8 IFFT implementation using multiple 8x8 architecture blocks, the index of the input data should first be represented as an octet, and the octet inverse number as the output data. In this particular example, the octet reverse carrier interleaver provides the simplest implementation for combining the carrier interleaver and IFFT.

HRP導頻524可包括一旋轉導頻機制以按每一符號變動導頻載波,從而允許必要時對封包進行更佳的頻道追蹤。此方式亦避免了必須根據覆蓋序列改變自一OFDM符號至下一OFDM符號之所有導頻之極性。導頻值可與對應之HRP前置項#5(在後描述)之載頻調相同。導頻載頻調位置可根據以一前置項#5開始之符號索引而界定。對於symbol=0:Nsymbol-1,k=(-177+mod(3*symbol,22):22:177),此處k!={-1,0,1}。根據一實施例,導頻旋轉速度可固定,以使每一符號旋轉3 bin。相反,若導頻位置固定,則其值將需要隨時間而改變以避免任何頻譜波紋效應。HRP pilot 524 may include a rotating pilot mechanism to vary the pilot carrier per symbol, thereby allowing for better channel tracking of packets as necessary. This approach also avoids having to change the polarity of all pilots from one OFDM symbol to the next OFDM symbol according to the coverage sequence. The pilot value can be the same as the carrier frequency of the corresponding HRP preamble #5 (described later). The pilot carrier tone position can be defined by a symbol index starting with a preamble #5. For symbol=0: Nsymbol-1, k=(-177+mod(3*symbol,22):22:177), here k! ={-1,0,1}. According to an embodiment, the pilot rotational speed can be fixed to rotate each symbol by 3 bins. Conversely, if the pilot position is fixed, its value will need to change over time to avoid any spectral ripple effects.

HRP前置項可包括8個符號。符號#1-#4可基於PN序列。可在4個符號中使用6個連續的m-序列。符號#1-#4可用於封包偵測,訊框同步基AGC訓練。符號#5-#8可基於OFDM符號且可用於頻偏估計及頻道估計。根據一實施例,可使用比例因數校正來保持8個前置項符號之功率與剩餘之用於資料傳輸之OFDM符號相同。在該等實施例之一者中,符號#1-#4之功率可較符號#5-#8大3 dB。The HRP preamble can include 8 symbols. Symbols #1-#4 can be based on a PN sequence. Six consecutive m-sequences can be used in 4 symbols. Symbols #1-#4 can be used for packet detection, frame synchronization based AGC training. Symbols #5-#8 may be based on OFDM symbols and may be used for frequency offset estimation and channel estimation. According to an embodiment, scaling factor correction can be used to maintain the power of the eight preamble symbols the same as the remaining OFDM symbols for data transmission. In one of these embodiments, the power of symbols #1-#4 can be 3 dB greater than the symbols #5-#8.

圖12說明用於HRP標頭之外部FEC之一實施例。HRP標頭外部FEC有些類似於用於HRP資料之外部FEC,因為其提供與資料相同或更佳之錯誤保護(error protection)。其使用同一裏德-所羅門產生器。其使用同一方法提供尾部位元來終止迴旋碼字。其在接收器中使用同一裏德-所羅門解碼器。可以1/4速率對具112個編碼位元組的HRP標頭使用四個OFDM符號。HRP標頭FEC可使用與資料相同之RS碼產生器多項式。HRP標頭FEC可包括92個或92個以上之未編碼位元組。一個編碼分枝可包括4個具有4個尾部位元組1202之迴旋編碼器。HRP標頭FEC之深度可為2個位元組1204及1206。位元組1204可包括44個資料位元組,8個同位位元組及尾部位元1202。位元組1206可包括48個資料位元組,8個同位位元組。2個區塊交錯器之深度可提供充分效能。Figure 12 illustrates one embodiment of an external FEC for an HRP header. The HRP header external FEC is somewhat similar to the external FEC for HRP data because it provides the same or better error protection as the data. It uses the same Reed-Solomon generator. It uses the same method to provide a tail part element to terminate the convolutional codeword. It uses the same Reed-Solomon decoder in the receiver. Four OFDM symbols can be used for the HRP header with 112 coded bytes at 1/4 rate. The HRP header FEC can use the same RS code generator polynomial as the data. The HRP header FEC may include 92 or more 92 uncoded bytes. A coded branch may include four cyclotron encoders having four tail position tuples 1202. The depth of the HRP header FEC can be 2 bytes 1204 and 1206. The byte 1204 can include 44 data bytes, 8 parity bits, and tail location 1202. The byte 1206 can include 48 data bytes and 8 parity bits. The depth of the two block interleavers provides sufficient performance.

圖13說明HRP資料擾碼器之一實施例。可使用一個15次多項式(xI5 +x14 +1)改良所傳輸之用於HRP之資料的隨機性。圖13說明在定位D12至D15(其中首先為D15)處具四個位元之初始化序列。Figure 13 illustrates one embodiment of an HRP data scrambler. A 15th degree polynomial (x I5 + x 14 +1) can be used to improve the randomness of the transmitted data for HRP. Figure 13 illustrates an initialization sequence with four bits at locations D12 through D15 (where D15 is first).

低速率PHY(LRP)Low rate PHY (LRP)

LRP可用於MAC訊框傳輸(例如,ACK、信標、發現等)、用於來自A/V源之低速率(小於40 Mbps)流、用於天線操控及追蹤所使用之資料的傳輸。可以具BPSK調變之基於128點FFT之OFDM及1/3、1/2及2/3速率之迴旋碼來設計LRP。可不要求裏德-所羅門碼,此係因為訊息較短及較高之BER容許度。LRP可以三種模式來操作:LRP全向(長)模式、LRP波束成型模式及LRP定向(短)模式。以下將進一步討論該等不同模式。LRP can be used for MAC frame transmission (eg, ACK, beacon, discovery, etc.), for low rate (less than 40 Mbps) streams from A/V sources, for antenna manipulation and for tracking the transmission of data used. The LRP can be designed with a BPSK modulation based on OFDM of 128-point FFT and a gyro code of 1/3, 1/2 and 2/3 rates. The Reed-Solomon code is not required because of the short message and high BER tolerance. LRP can operate in three modes: LRP omnidirectional (long) mode, LRP beamforming mode, and LRP oriented (short) mode. These different modes are discussed further below.

圖14說明LRP Tx處理之一實施例。LRP電路可包括擾碼器1402、FEC 1404、交錯器1406、映射1408、IFFT 1416、循環首碼1414、符號成形1412及增頻轉換1410。Figure 14 illustrates one embodiment of LRP Tx processing. The LRP circuit can include a scrambler 1402, an FEC 1404, an interleaver 1406, a map 1408, an IFFT 1416, a loop first code 1414, a symbol shaping 1412, and an up-conversion 1410.

圖15說明LRP資料速率之表格。如圖所示,不同LRP模式產生不同LRP資料速率。Figure 15 illustrates a table of LRP data rates. As shown, different LRP modes produce different LRP data rates.

LRP導頻及資料載頻調可如下界定:128點FFT、30個資料載頻調及4個導頻載頻調、三個在DC處之未使用之載頻調(載頻調編號-1、0及1),導頻載頻調定位可修改,在載頻調編號-14、-6、6及14處之固定導頻載頻調定位,在-18至+18之所有其他位置處之資料載頻調。The LRP pilot and data carrier frequency can be defined as follows: 128-point FFT, 30 data carrier frequency modulation and 4 pilot carrier frequency adjustments, and three unused carrier frequency adjustments at DC (carrier frequency adjustment number -1 , 0 and 1), the pilot carrier frequency adjustment position can be modified, and the fixed pilot carrier frequency adjustment position at the carrier frequency adjustment numbers -14, -6, 6 and 14 is at all other positions from -18 to +18. Data carrier frequency adjustment.

LRP擾碼器1402可使用一個6次多項式。擾碼器初始化域可為4個位元。欲初始化此多項式,該4位元初始化域可與01位元序連。The LRP scrambler 1402 can use a 6th degree polynomial. The scrambler initialization field can be 4 bits. To initialize this polynomial, the 4-bit initialization field can be concatenated with the 01 bit.

在LRP全向模式下,所產生之信號為全向的,具有至少與任一前向頻道模式同樣大之範圍,較之於前向頻道容許更強之多路徑。LRP全向模式中之線路速率可為約5 Mbps至約10 Mbps,其中目標BER小於10-6 。在LRP全向模式中,使用不同天線場型將各信號傳輸多次。在一實施例中,使用8個不同天線場型將各信號重複8次。在一實施例中,不同之天線場型彼此正交。因此,各複製使用不同的TX相控陣列設定(在循環首碼期間交換)。接收器可使用MRC或類似技術來組合複製。空間多樣化有助於保持全向覆蓋率。In LRP omni mode, the resulting signal is omnidirectional, has a range that is at least as large as any of the forward channel modes, and allows for a much stronger path than the forward channel. The line rate in LRP omni mode can be from about 5 Mbps to about 10 Mbps with a target BER of less than 10 -6 . In LRP omni mode, each signal is transmitted multiple times using different antenna patterns. In one embodiment, each signal is repeated 8 times using 8 different antenna patterns. In an embodiment, different antenna patterns are orthogonal to one another. Therefore, each copy uses a different TX phased array setting (exchanged during the cycle first code). The receiver can use MRC or similar technology to combine the copies. Spatial diversification helps maintain omnidirectional coverage.

圖16說明一LRP全向資料封包格式,其包含:前置項1602、標頭1604、有效承載1606。標頭1604可包含模式1608、保留1610、長度1612、擾碼器Init 1614及CRC-8。標頭1604為長格式,其具30個編碼為2個OFDM符號的位元,該等OFDM符號具有1/2速率之尾部位元迴旋碼。當使用尾部位元時,迴旋碼之初始及最終狀態相同。在一實施例中,標頭之最後六個資訊位元可用於使迴旋編碼器之狀態初始化。LRP全向前置項1602可包括兩種類型:長全向前置項及短全向前置項。16 illustrates an LRP omnidirectional data packet format including: a preamble 1602, a header 1604, and a valid bearer 1606. Header 1604 can include mode 1608, reserved 1610, length 1612, scrambler Init 1614, and CRC-8. Header 1604 is a long format having 30 bits encoded as 2 OFDM symbols having a 1/2 rate tail portion elementary convolutional code. When the tail element is used, the initial and final states of the whirling code are the same. In one embodiment, the last six information bits of the header can be used to initialize the state of the cyclotron encoder. The LRP full forward term 1602 can include two types: a long full forward term and a short full forward term.

長全向前置項長可為約56.67微秒。此種類型之前置項可用於信標及要求盲定時同步之其他LRP資料封包。The long full forward term can be about 56.67 microseconds. This type of preamble can be used for beacons and other LRP data packets that require blind timing synchronization.

圖17說明一具有6個區段(具17766個樣本)之長全向前置項1700之一實施例:自動增益控制(AGC)及信號偵測區段1702、粗頻偏估計(FOE)及定時復原區段1704、精細FOE及定時復原區段1706、RX波束成型區段1708、AGC區段1710及頻道估計區段1710。最先三個前置項區段1702、1704、1706由偏移-QPSK調變之碼片(碼片速率為156.75 MHz(為取樣率之二分之一))之序列組成,該等碼片經過濾以符合91 MHz之LRP傳輸遮罩。Figure 17 illustrates an embodiment of a long full forward term 1700 having six segments (with 17766 samples): automatic gain control (AGC) and signal detection segment 1702, coarse frequency offset estimation (FOE) and Timing recovery section 1704, fine FOE and timing recovery section 1706, RX beamforming section 1708, AGC section 1710, and channel estimation section 1710. The first three preamble segments 1702, 1704, 1706 consist of a sequence of offset-QPSK modulated chips (chip rate 156.75 MHz (one-half of the sampling rate)), the chips Filtered to meet the 91 MHz LRP transmission mask.

AGC及信號偵測區段1702之域包含78個符號,其中各符號界定為由用於I及Q組件之巴克(Barker)-13([-1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1])碼片序列所分散之1或-1。符號序列{Sk}(Sk=1)係由三符號序列{b k } =[-1,1,-1]之26次重複的差異編碼所建構,具體而言,S k S k-1 ×b k ,其中S 0 1。The domain of the AGC and signal detection section 1702 contains 78 symbols, each of which is defined by Barker-13 for the I and Q components ([-1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1]) 1 or -1 of the chip sequence. Symbol sequence {Sk} (Sk= 1) is constructed by differential encoding of 26 repetitions of the three-symbol sequence {b k } = [-1, 1, -1], specifically, S k = S k-1 × b k , where S 0 = 1.

粗FOE(頻偏估計)區段1704之域包含81個符號,其中各符號界定為由用於I及Q組件之巴克-13碼片序列所分散之1或-1。符號序列{S k } (S k 1)係由九符號序列{b k } =[-1 -1 -1 -1 1 1 -1 1 -1]之9次重複的差異編碼所建構,具體而言,S 9i+kS 9i+k-1 ×b k ,其中S0 為前一域的最後一個符號。The domain of the coarse FOE (Frequency Offset Estimation) section 1704 contains 81 symbols, where each symbol is defined as 1 or -1 dispersed by the Buck-13 chip sequence for the I and Q components. Symbol sequence {S k } ( S k = 1) is constructed by the differential coding of 9 repetitions of the nine-symbol sequence {b k } =[-1 -1 -1 -1 1 1 -1 1 -1], specifically, S 9i+k = S 9i+k-1 × b k , where S 0 is the last symbol of the previous field.

精細FOE及定時復原區段1706之域由用於I及Q組件之1440 PN碼片序列組成,該序列藉由使用多項式x 12 x 11 x 8 x 6 +1在0xB95之初始條件下產生。The fields of the fine FOE and timing recovery section 1706 consist of a 1440 PN chip sequence for the I and Q components generated by using the polynomial x 12 + x 11 + x 8 + x 6 +1 under the initial conditions of 0xB95. .

RX波束成型區段1708之域由用於I及Q組件之2560 PN碼片序列組成,該序列藉由使用多項式x 6 x 5 1 在101001之初始條件下產生。The domain of the RX beamforming section 1708 consists of a 2560 PN chip sequence for the I and Q components, which is generated under the initial conditions of 101001 using a polynomial x 6 + x 5 + 1 .

AGC區段1710為32個樣本長之OFDM訓練符號的20次重複,其等於以下BPSK 32點序列之IFFT:副載波-4至4等於{1 1 1 -1 0 -1 -1 1 -1}且所有其他等於零。The AGC section 1710 is 20 repetitions of an OFDM training symbol of 32 samples long, which is equal to the IFFT of the following BPSK 32-point sequence: subcarriers -4 to 4 are equal to {1 1 1 -1 0 -1 -1 1 -1} And all others are equal to zero.

頻道估計區段1712由32個128樣本之OFDM訓練符號組成,此處每一者等於以下128點BPSK序列(之前為28樣本循環首碼)之IFFT:副載波2-18等於{1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 -1 -1 1 1 },副載波-18至-2等於{-1 1 1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1},且所有其他等於零。TX天線相控陣列場型可針對LRP全向前置項1602中之該五個域中之每一者以規則時間間隔改變。所以,對於8個TX天線,TX相控陣列分別針對以上五個域中之每一者每隔78、234、160、640、64及156個樣本進行改變。The channel estimation section 1712 is composed of 32 128 sample OFDM training symbols, where each is equal to the following 128 points BPSK sequence (previously 28 sample cycle first code) IFFT: subcarrier 2-18 is equal to {1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 -1 -1 1 1 }, subcarrier -18 to -2 is equal to {-1 1 1 1 1 1 -1 -1 1 -1 1 -1 -1 - 1 1 -1 1}, and all others are equal to zero. The TX antenna phased array pattern can be changed at regular time intervals for each of the five of the LRP full forward terms 1602. Therefore, for 8 TX antennas, the TX phased array is changed for every 78, 234, 160, 640, 64, and 156 samples for each of the above five domains.

短全向前置項長可為約42.72微秒。此類型之前置項可用於競爭週期(用於分槽CSMA中)中及其他僅要求有限(+/-135奈秒)之定時同步之LRP資料封包中。The short full forward term can be about 42.72 microseconds. This type of preamble can be used in the contention period (for slotted CSMA) and other LRP data packets that require only limited (+/- 135 nanoseconds) timing synchronization.

圖18說明一具有6個區段(13392個樣本)之短全向前置項1800之一實施例:AGC區段1802、AGC區段1804、信號偵測及時間同步區段1806、RX波束成型區段1808、AGC區段1810及頻道估計區段1812。最先四個前置項域1802、1804、1806、1808由BPSK碼片(碼片速率為156.75 MHz(每一碼片等於2個樣本))之序列組成,該等碼片經過濾以符合91 MHz之LRP傳輸遮罩。碼片序列藉由重複待指定之63-tap M-序列所產生。最先兩個域1802、1804為AGC域,其長度分別為336及264個碼片。第三域1806長度為720個碼片且用於偵測LRP封包及在-/+135奈秒之窗口中使其定時同步。第四域1808長度為2560個碼片且用於RX波束成型。第二AGC域1804為32個樣本長之OFDM訓練符號之20次重複,其等於以下BPSK 32點序列之IFFT:副載波-4至4等於{1 1 1 -1 0 -1 -1 1 -1},且所有其他等於零。頻道估計域1812由32個128樣本之OFDM訓練符號組成,其中每一者等於以下128點BPSK序列(之前為28樣本循環首碼)之IFFT:副載波2-18等於{1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 -1 -1 1 1},副載波-18至-2等於{-1 1 1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1},且所有其他等於零。TX天線相控陣列場型可針對短全向前置項中之該五個域中之每一者以規則時間間隔改變。所以,對於8個TX天線,TX相控陣列分別針對以上6個域中之每一者每隔32、48、160、640、64及156個樣本進行改變。Figure 18 illustrates an embodiment of a short full forward term 1800 having six segments (13392 samples): AGC segment 1802, AGC segment 1804, signal detection and time synchronization segment 1806, RX beamforming Section 1808, AGC section 1810, and channel estimation section 1812. The first four preamble fields 1802, 1804, 1806, 1808 consist of a sequence of BPSK chips (chip rate 156.75 MHz (each chip equals 2 samples)), which are filtered to match 91. The LRP transmission mask of MHz. The chip sequence is generated by repeating the 63-tap M-sequence to be specified. The first two fields 1802 and 1804 are AGC fields with lengths of 336 and 264 chips, respectively. The third field 1806 is 720 chips in length and is used to detect LRP packets and synchronize their timing in a window of -/+ 135 nanoseconds. The fourth field 1808 is 2560 chips in length and is used for RX beamforming. The second AGC field 1804 is 20 repetitions of an OFDM training symbol of 32 samples long, which is equal to the following IFFT of the BPSK 32-point sequence: subcarriers -4 to 4 are equal to {1 1 1 -1 0 -1 -1 1 -1 }, and all others are equal to zero. Channel estimation field 1812 is composed of 32 128 sample OFDM training symbols, each of which is equal to the following 128 points BPSK sequence (previously 28 sample cycle first code) IFFT: subcarrier 2-18 equals {1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 -1 -1 1 1}, subcarrier -18 to -2 is equal to {-1 1 1 1 1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1}, and all others are equal to zero. The TX antenna phased array pattern can be changed at regular time intervals for each of the five of the short full forward terms. Therefore, for 8 TX antennas, the TX phased array is changed for every 32, 48, 160, 640, 64, and 156 samples for each of the above 6 domains.

在LRP波束成型模式中,可使用與HRP波束成型相同之技術。此模式為最高資料速率但其係定向的且要求波束更新。圖19說明LRP波束成型之資料封包格式1900之一實例,其包含一短前置項1902、一標頭1904及一有效承載1906。標頭1904可為30個編碼為3個符號的位元,該等符號具有1/3速率之尾部位元迴旋碼。In the LRP beamforming mode, the same technique as HRP beamforming can be used. This mode is the highest data rate but is oriented and requires beam update. 19 illustrates an example of a data packetization format 1900 for LRP beamforming that includes a short preamble 1902, a header 1904, and a valid bearer 1906. Header 1904 can be 30 bits that are encoded as 3 symbols, with the 1/3 rate tail portion element convolutional code.

LRP波束成型之前置項1902允許盲定時同步,且具有與HRPPDU前置項類似之結構。圖20說明LRP波束成型前置項2000之一實施例。LRP波束成型前置項2000封包長度為7.96毫秒(2496個樣本),且包含兩個域:訊框同步及AGC域2004及頻道估計域2006。The LRP beamforming preamble 1902 allows for blind timing synchronization and has a similar structure to the HRPPDU preamble. Figure 20 illustrates one embodiment of an LRP beamforming preamble 2000. The LRP beamforming preamble 2000 packet length is 7.96 milliseconds (2496 samples) and contains two fields: frame synchronization and AGC domain 2004 and channel estimation domain 2006.

訊框同步及AGC域2004由BPSK碼片(碼片速率為156.75 MHz(每一碼片等於2個樣本))之序列組成,該等碼片經過濾以符合91 MHz LRP傳輸遮罩。碼片序列等於將針對936個碼片而指定之63-tap M-序列的14次重複,其中將序列調變/分別乘以[1 1-1-1 1 1 1 111-1-1111]。Frame synchronization and AGC field 2004 consists of a sequence of BPSK chips (chip rate of 156.75 MHz (each chip equals 2 samples)) that are filtered to conform to the 91 MHz LRP transmission mask. The chip sequence is equal to 14 repetitions of the 63-tap M-sequence to be specified for 936 chips, where the sequence is modulated/multiplied by [1 1-1-1 1 1 1 111-1-1111], respectively.

如圖20之序列2002中所說明(其中加號及減號意謂對應樣本分別乘以1或-1),頻道估計域2006藉由重複128載頻調OFDM訓練符號之時域樣本(此由頻域中之表格35描述)而建構。As illustrated in the sequence 2002 of Figure 20 (where the plus and minus signs mean that the corresponding samples are multiplied by 1 or -1, respectively), the channel estimation field 2006 repeats the time domain samples of the 128 OFDM training symbols by repetition (this Constructed in Table 35 in the frequency domain.

在LRP定向模式下,所產生之信號具有與前向頻道中類似之範圍,僅要求"反向"硬體(亦即,較少之Rx/Tx)。在LRP定向模式下,使用最佳天線場型將各信號重複多次。在一實施例中,最佳天線場型選自全向模式中所使用之8個可能天線場型。在一實施例中,各信號重複5(=4+1)次或9(=8+1)次。可(例如)每隔10個封包對最佳化TX相控陣列場型進行追蹤。最佳TX多樣化場型自回返頻道接收器反饋至回返頻道發射器。In LRP directional mode, the resulting signal has a similar range as in the forward channel, requiring only "reverse" hardware (ie, less Rx/Tx). In LRP orientation mode, each signal is repeated multiple times using the best antenna pattern. In an embodiment, the optimal antenna pattern is selected from the eight possible antenna patterns used in the omni mode. In one embodiment, each signal repeats 5 (= 4 + 1) times or 9 (= 8 + 1) times. The optimized TX phased array pattern can be tracked, for example, every 10 packets. The best TX diversified field type self-return channel receiver feeds back to the return channel transmitter.

LRP定向模式下之線路速率可為約5 Mbps至約10 Mbps。定向LRP封包可用作ACK以確認HRP或波束成型LRP、具有或不具有額外有效承載之資料封包。圖21A說明無有效承載之短的15位元之ACK標頭。圖21B說明一具有效承載之16位元之短ACK標頭。定向LRP短ACK標頭藉由1/2速率尾部位元迴旋碼進行編碼且藉由1個OFDM符號進行傳輸。對於具有效承載(第二格式)之定向LRP封包,模式位元選擇以下兩個非波束成型PHY資料速率中之一者:5 Mbps:模式位元=0 10 Mbps:模式位元=1The line rate in LRP directional mode can range from about 5 Mbps to about 10 Mbps. The directional LRP packet can be used as an ACK to confirm HRP or beamforming LRP, data packets with or without additional payload. Figure 21A illustrates a short 15-bit ACK header without a valid bearer. Figure 21B illustrates a short ACK header of 16 bits with payload. The directional LRP short ACK header is encoded by a 1/2 rate tail element gyro code and transmitted by 1 OFDM symbol. For a directional LRP packet with a payload (second format), the mode bit selects one of the following two non-beamforming PHY data rates: 5 Mbps: mode bit = 0 10 Mbps: mode bit = 1

在LRP定向模式下,資訊藉由2/3速率迴旋碼進行編碼。若可使用尾部位元以減少OFDM符號之數目,則使用尾部位元。否則使用至少6個連續之零以終止迴旋碼之交織。In LRP orientation mode, information is encoded by a 2/3 rate convolutional code. If the tail part element can be used to reduce the number of OFDM symbols, the tail part element is used. Otherwise use at least 6 consecutive zeros to terminate the interleaving of the whirling code.

對於此等封裝,後置項(postamble)旗標指定一後置項是(旗標(flag)=1)否(旗標=0)依附於封包。For such packages, the postamble flag specifies that a post-term is (flag = 1) no (flag = 0) attached to the packet.

圖22說明一定向LRP封包前置項2200。定向封包之LRPPDU前置項長度為2.04毫秒(640個樣本),且包含5個如此處所展示之128樣本之OFDM訓練符號。第一符號2202用於AGC,且以後4個符號用於頻道估計及頻偏估計2204。此前置項允許有限(-/+150奈秒)的定時不准。Figure 22 illustrates a certain forward LRP packet preamble 2200. The LRPPDU preamble of the directed packet is 2.04 milliseconds (640 samples) in length and contains 5 OFDM training symbols as shown here. The first symbol 2202 is for AGC and the next 4 symbols are used for channel estimation and frequency offset estimation 2204. Pre-sets allow for limited (-/+150 nanoseconds) timing inaccuracies.

圖23說明用於定向LRP封包之天線方向追蹤。如已提及,定向LRP封包用於HRP或波束成型(BF)LRP封包之確認。該等封包自一組高達8個天線方向中使用最佳TX天線方向,其中最佳化TX天線方向需要如圖23中所描述藉由使用特殊訊框結構隨時間進行追蹤。對於每M個規則HRP/短-ACK或波束成型-LRP/短-ACK,可如圖23之2300中般形成訊框。存在一對具有以下特殊結構之HRP/短-ACK或波束成型-LRP/短-ACK訊框,其中HR/LR波束追蹤及LR天線方向追蹤(ADT)如圖23之2302中所說明般發生。Figure 23 illustrates antenna direction tracking for directional LRP packets. As already mentioned, directional LRP packets are used for the validation of HRP or beamforming (BF) LRP packets. The packets use the best TX antenna direction from a group of up to 8 antenna directions, wherein optimizing the TX antenna direction needs to be tracked over time using a special frame structure as described in FIG. For every M regular HRP/short-ACK or beamforming-LRP/short-ACK, a frame can be formed as in 2300 of FIG. There is a pair of HRP/short-ACK or beamforming-LRP/short-ACK frames with the following special structure, where HR/LR beam tracking and LR antenna direction tracking (ADT) occur as illustrated in 2302 of FIG.

如圖所示,天線方向追蹤發生於兩個階段:(1)藉由使用專用後置項選擇最佳化TX天線方向及(2)藉由使用專用前置項對所選擇之TX天線方向進行RX波束成型/調諧。在以上兩個階段之間,所選擇之天線方向索引經由一HRP或波束成型LRP封包自短ACK RX反饋至短ACK TX。As shown, the antenna direction tracking occurs in two phases: (1) selecting the optimized TX antenna direction by using a dedicated post item and (2) using the dedicated preamble to select the selected TX antenna direction. RX beamforming/tuning. Between the above two phases, the selected antenna direction index is fed back from the short ACK RX to the short ACK TX via an HRP or beamforming LRP packet.

圖24說明一Tx天線方向追蹤後置項2400。用於定向LRPPDU之TX天線方向追蹤後置項依附於一具有效承載之定向LRP封包。TX ADT後置項長度為9.24微秒(2896個樣本),且包含三個區段2402、2404、2406。兩個後置項域2404、2406跟隨一2.04毫秒之保護時間間隔2404且由BPSK碼片(碼片速率為156.75 MHz(每一碼片等於2個樣本))之序列組成,該等碼片經過濾以符合91 MHz LRP傳輸遮罩。該碼片序列藉由重複一待指定之63 tap M-序列而產生。第二域2404用於AGC,其長度為264個碼片。第三域2406長度為864個碼片,且用於在8個天線中選擇最佳TX多樣化組合。TX天線相控陣列場型按後置項之規則時間間隔而改變。對於8個TX天線,TX相控陣列分別針對以上2個域中之每一者每隔48及192個樣本進行改變。Figure 24 illustrates a Tx antenna direction tracking post item 2400. The TX antenna direction tracking post-term for directional LRPPDUs is attached to an directional LRP packet with payload. The TX ADT post-term is 9.24 microseconds in length (2896 samples) and contains three segments 2402, 2404, 2406. The two post-term fields 2404, 2406 follow a protection interval of 2404 of 2.04 milliseconds and consist of a sequence of BPSK chips (chip rate of 156.75 MHz (each chip equals 2 samples)) Filter to match the 91 MHz LRP transmission mask. The chip sequence is generated by repeating a 63 tap M-sequence to be specified. The second field 2404 is for AGC and has a length of 264 chips. The third field 2406 is 864 chips in length and is used to select the best TX diversity combination among the 8 antennas. The TX antenna phased array field pattern changes according to the regular time interval of the post item. For 8 TX antennas, the TX phased array is changed for every 48 and 192 samples for each of the above 2 fields.

圖25說明一Tx天線方向追蹤前置項2500。將RX ADT前置項添加至無有效承載之定向LRP封包中,且將其用於針對所選擇之TX天線方向之RX波束成型。此附加前置項包含兩個區段2502、2504(1152個樣本)。該兩個域由BPSK碼片(碼片速率為156.75 MHz(每一碼片等於2個樣本))之序列組成,該等碼片經過濾以符合91 MHz LRP傳輸遮罩。該碼片序列藉由重複一待指定之63 tap M-序列而產生。第一域2502用於AGC,其長度為128個碼片。第二域2504長度為448個碼片且用於進行RX波束成型。Figure 25 illustrates a Tx antenna direction tracking preamble 2500. The RX ADT preamble is added to the directional LRP packet without payload and used for RX beamforming for the selected TX antenna direction. This additional preamble contains two sections 2502, 2504 (1152 samples). The two fields consist of a sequence of BPSK chips (chip rate of 156.75 MHz (each chip equals 2 samples)) that are filtered to conform to the 91 MHz LRP transmission mask. The chip sequence is generated by repeating a 63 tap M-sequence to be specified. The first field 2502 is for AGC and has a length of 128 chips. The second field 2504 is 448 chips in length and is used for RX beamforming.

在閱讀前述描述之後,對於一般技術者而言,本發明之多個變更及修改係顯而易見的,應瞭解,決不意欲認為經由說明所展示及所描述之任何實施例係限制性的。因此,對各種實施例之細節之參考並不意欲限制申請專利範圍之範疇,申請專利範圍在其自身內部僅列舉認為對本發明至關重要之特性。It will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Therefore, the reference to the details of the various embodiments is not intended to limit the scope of the claims.

100...媒體接收器100. . . Media receiver

101...內容101. . . content

102...媒體接收器介面102. . . Media receiver interface

103...處理器103. . . processor

104...可選基頻處理組件104. . . Optional baseband processing component

105...相控陣列天線105. . . Phased array antenna

106...線通信頻道介面106. . . Line communication channel interface

107...無線通信頻道/鏈路107. . . Wireless communication channel/link

109...無線通信頻道介面109. . . Wireless communication channel interface

110...相控陣列天線110. . . Phased array antenna

111...可選基頻處理組件111. . . Optional baseband processing component

112...處理器112. . . processor

113...媒體播放器介面113. . . Media player interface

114...媒體播放器114. . . media Player

115...顯示器115. . . monitor

122...控制頻道122. . . Control channel

140...發射裝置140. . . Launcher

141...接收裝置141. . . Receiving device

201...數位信號處理器201. . . Digital signal processor

202...數位/類比轉換器202. . . Digital/analog converter

203...混頻器203. . . Mixer

204...本機振盪器204. . . Local oscillator

2050-N ...移相器205 0-N . . . Phase shifter

2060-N ...功率放大器206 0-N . . . Power amplifier

2070-N ...天線元件207 0-N . . . Antenna component

208...控制頻道208. . . Control channel

2100-N ...天線210 0-N . . . antenna

2110-N ...移相器211 0-N . . . Phase shifter

212...中頻放大器212. . . IF amplifier

213...混頻器213. . . Mixer

214...本機振盪器214. . . Local oscillator

215...類比/數位轉換器215. . . Analog/digital converter

216...數位信號處理器216. . . Digital signal processor

217...控制頻道217. . . Control channel

220...回返頻道220. . . Return channel

402...高速率頻道402. . . High rate channel

404...低速率頻道404. . . Low rate channel

502...擾碼器502. . . Scrambler

504...分離區塊504. . . Separation block

506...RS編碼器506. . . RS encoder

508...RS編碼器508. . . RS encoder

510...外部交錯器510. . . External interleaver

512...外部交錯器512. . . External interleaver

514...擊穿電路514. . . Breakdown circuit

516...資料多工器516. . . Data multiplexer

518...位元交錯器518. . . Bit interleaver

520...QAM映射器520. . . QAM mapper

522...載頻調交錯器522. . . Carrier frequency interleaver

524...導頻/DC/空值插入524. . . Pilot/DC/null insertion

526...IFFT526. . . IFFT

602...表格602. . . form

604...表格604. . . form

606...表格606. . . form

700...電路圖700. . . Circuit diagram

1202...尾部位元組1202. . . Tail part tuple

1204...位元組1204. . . Byte

1206...位元組1206. . . Byte

1402...擾碼器1402. . . Scrambler

1404...前向糾錯1404. . . Forward error correction

1406...交錯器1406. . . Interleaver

1408...映射1408. . . Mapping

1410...增頻轉換1410. . . Upconversion

1412...符號成形1412. . . Symbol shaping

1414...循環首碼1414. . . Cycle first code

1416...IFFT1416. . . IFFT

1700...長全向前置項1700. . . Long full forward

1702...自動增益控制(AGC)及信號偵測區段1702. . . Automatic Gain Control (AGC) and Signal Detection Section

1704...粗頻偏估計(FOE)及定時復原區段1704. . . Coarse frequency offset estimation (FOE) and timing recovery section

1706...精細FOE及定時復原區段1706. . . Fine FOE and timing recovery section

1708...RX波束成型區段1708. . . RX beamforming section

1710...AGC區段1710. . . AGC section

1712...頻道估計區段1712. . . Channel estimation section

1800...短全向前置項1800. . . Short full forward

1802...AGC區段1802. . . AGC section

1804...AGC區段1804. . . AGC section

1806...信號偵測及時間同步區段1806. . . Signal detection and time synchronization section

1808...RX波束成型區段1808. . . RX beamforming section

1810...AGC區段1810. . . AGC section

1812...頻道估計區段1812. . . Channel estimation section

1900...資料封包格式1900. . . Data packet format

1902...短前置項1902. . . Short predecessor

1904...標頭1904. . . Header

1906...有效承載1906. . . Effective bearer

2000...LRP波束成型前置項2000. . . LRP beamforming predecessor

2002...序列2002. . . sequence

2004...訊框同步及AGC域2004. . . Frame synchronization and AGC domain

2006...頻道估計域2006. . . Channel estimation domain

2200...定向LRP封包前置項2200. . . Directional LRP packet preamble

2202...第一符號2202. . . First symbol

2204...頻道估計及頻偏估計2204. . . Channel estimation and frequency offset estimation

2400...Tx天線方向追蹤後置項2400. . . Tx antenna direction tracking back item

2402...區段/後置項域2402. . . Section/post field

2404...區段/後置項域2404. . . Section/post field

2406...區段/後置項域2406. . . Section/post field

2500...Tx天線方向追蹤前置項2500. . . Tx antenna direction tracking front item

2502...區段/前置項域2502. . . Section/prefix field

2504...區段/前置項域2504. . . Section/prefix field

圖1為通信系統之一實施例的方塊圖。1 is a block diagram of one embodiment of a communication system.

圖2為通信系統之一實施例的更詳盡方塊圖。2 is a more detailed block diagram of one embodiment of a communication system.

圖3為周邊裝置之一實施例的方塊圖。3 is a block diagram of one embodiment of a peripheral device.

圖4為不同頻道共用頻率之一實施例的方塊圖。4 is a block diagram of one embodiment of a different channel sharing frequency.

圖5A為用於圖1之無線HD通信系統之實體層之一實施例的方塊圖。5A is a block diagram of one embodiment of a physical layer for the wireless HD communication system of FIG. 1.

圖5B為說明區塊交錯器碼之一實例的表格。Figure 5B is a table illustrating one example of a block interleaver code.

圖6為用於圖1之無線HD通信系統的高速率封包(HRP)參數之一實施例的方塊圖。6 is a block diagram of one embodiment of a High Rate Packet (HRP) parameter for the wireless HD communication system of FIG. 1.

圖7為圖1之無線HD通信系統之內碼電路之一實施例的方塊圖。7 is a block diagram of an embodiment of an inner code circuit of the wireless HD communication system of FIG. 1.

圖8為圖7之內碼電路之內碼率的表格。Figure 8 is a table of the code rate of the inner code circuit of Figure 7.

圖9為圖1之無線HD通信系統之位元交錯器之一實施例的方塊圖。9 is a block diagram of one embodiment of a bit interleaver of the wireless HD communication system of FIG. 1.

圖10為圖9之位元交錯器之規範的表格。Figure 10 is a table of the specifications of the bit interleaver of Figure 9.

圖11為圖1之無線HD通信系統之載頻調交錯器之一實施例的圖表。11 is a diagram of an embodiment of a carrier frequency interleaver of the wireless HD communication system of FIG. 1.

圖12為圖1之無線HD通信系統的高速率封包(HRP)標頭之外部FEC之一實施例的方塊圖。12 is a block diagram of one embodiment of an external FEC of a High Rate Packet (HRP) header of the wireless HD communication system of FIG.

圖13為圖1之無線HD通信系統之高速率封包(HRP)資料擾碼器之一實施例的方塊圖。13 is a block diagram of one embodiment of a high rate packet (HRP) data scrambler of the wireless HD communication system of FIG. 1.

圖14為圖1之無線HD通信系統之低速率封包(LRP)傳輸之實體層之一實施例的方塊圖。14 is a block diagram of one embodiment of a physical layer of low rate packet (LRP) transmission of the wireless HD communication system of FIG.

圖15為圖1之無線HD通信系統之低速率封包(LRP)資料速率的表格。15 is a table of low rate packet (LRP) data rates for the wireless HD communication system of FIG. 1.

圖16為用於全向低速率封包(LRP)資料封包之格式之一實施例的方塊圖。16 is a block diagram of one embodiment of a format for an Omnidirectional Low Rate Packet (LRP) data packet.

圖17為用於全向低速率封包(LRP)資料封包之長前置項格式之一實施例的方塊圖。17 is a block diagram of one embodiment of a long preamble format for an Omnidirectional Low Rate Packet (LRP) data packet.

圖18為用於全向低速率封包(LRP)資料封包之短前置項格式之一實施例的方塊圖。18 is a block diagram of one embodiment of a short preamble format for an Omnidirectional Low Rate Packet (LRP) data packet.

圖19為用於經波束成型之低速率封包(LRP)資料封包之格式之一實施例的方塊圖。19 is a block diagram of one embodiment of a format for beamformed low rate packet (LRP) data packets.

圖20為用於經波束成型之低速率封包(LRP)資料封包之前置項格式之一實施例的方塊圖。20 is a block diagram of one embodiment of a beamformed low rate packet (LRP) data packet preamble format.

圖21A為用於無有效承載之定向低速率封包(LRP)資料封包之格式之一實施例的方塊圖。21A is a block diagram of one embodiment of a format for a directional low rate packet (LRP) data packet without a valid bearer.

圖21B為用於具有效承載之定向低速率封包(LRP)資料封包之格式之一實施例的方塊圖。21B is a block diagram of one embodiment of a format for a directional low rate packet (LRP) data packet with payload.

圖22為用於定向低速率封包(LRP)前置項之格式之一實施例的方塊圖。22 is a block diagram of one embodiment of a format for a directional low rate packet (LRP) preamble.

圖23為用於天線方向追蹤之定向低速率封包(LRP)之格式之一實施例的方塊圖。23 is a block diagram of one embodiment of a format for directional low rate packet (LRP) for antenna direction tracking.

圖24為用於傳輸天線方向追蹤之定向低速率封包(LRP)之後置項格式之一實施例的方塊圖。24 is a block diagram of one embodiment of a directional low rate packet (LRP) post-entry format for transmission antenna direction tracking.

圖25為用於接收天線方向追蹤之定向低速率封包(LRP)之前置項格式之一實施例的方塊圖。25 is a block diagram of one embodiment of a directional low rate packet (LRP) preamble format for receiving antenna direction tracking.

201...數位信號處理器201. . . Digital signal processor

202...數位/類比轉換器202. . . Digital/analog converter

203...混頻器203. . . Mixer

204...本機振盪器204. . . Local oscillator

2050-N ...移相器205 0-N . . . Phase shifter

2060-N ...功率放大器206 0-N . . . Power amplifier

2070-N ...天線元件207 0-N . . . Antenna component

208...控制頻道208. . . Control channel

2100-N ...天線210 0-N . . . antenna

2110-N ...移相器211 0-N . . . Phase shifter

212...中頻放大器212. . . IF amplifier

213...混頻器213. . . Mixer

214...本機振盪器214. . . Local oscillator

215...類比/數位轉換器215. . . Analog/digital converter

216...數位信號處理器216. . . Digital signal processor

217...控制頻道217. . . Control channel

220...回返頻道220. . . Return channel

Claims (74)

一種通信設備,其包含:一處理器;一射頻(RF)發射器,其耦接至該處理器且由該處理器控制以傳輸資料;一實體層電路,其耦接至該RF發射器以在一數位信號與一調變類比信號之間進行編碼及解碼,該實體層電路包含一高速率實體層電路(HRP)及一低速率實體層電路(LRP);其中由該低速率實體層電路(LRP)產生之低速率頻道與由該高速率實體層電路(HRP)產生之一對應高速率頻道共用同一頻帶;其中該HRP包含以串聯方式耦合之一外碼電路、一外部交錯器電路以及M個內編碼器,其中M大於1,且該外部交錯器電路包含一區塊交錯器,該區塊交錯器將外碼碼字之連續位元組映射至不同內碼,且將該外碼碼字中之同一位元組映射至該內碼之連續位元;以及其中該LRP得以操作成用以產生一LRP資料封包,以用於HRP封包之確認。 A communication device comprising: a processor; a radio frequency (RF) transmitter coupled to the processor and controlled by the processor to transmit data; a physical layer circuit coupled to the RF transmitter Encoding and decoding between a digital signal and a modulation analog signal, the physical layer circuit comprising a high rate physical layer circuit (HRP) and a low rate physical layer circuit (LRP); wherein the low rate physical layer circuit The low rate channel generated by (LRP) shares the same frequency band as the corresponding high rate channel generated by the high rate physical layer circuit (HRP); wherein the HRP includes one external code circuit coupled in series, an external interleaver circuit, and M internal encoders, wherein M is greater than 1, and the external interleaver circuit includes a block interleaver that maps consecutive bit groups of outer codewords to different inner codes, and the outer code The same byte in the codeword is mapped to consecutive bits of the inner code; and wherein the LRP is operative to generate an LRP data packet for acknowledgment of the HRP packet. 如請求項1之通信設備,其中該高速率實體層電路(HRP)將產生每秒約數十億位元之資料速率,且該低速率實體層電路(LRP)將產生每秒約數百萬位元之資料速率。 The communication device of claim 1, wherein the high rate physical layer circuit (HRP) is to generate a data rate of about several billion bits per second, and the low rate physical layer circuit (LRP) will generate millions of bits per second. The data rate of the bit. 如請求項1之通信設備,其中由該低速率實體層電路(LRP)產生之三個低速率頻道係配置於由該高速率實體 層電路(HRP)產生之一個高速率頻道中。 A communication device as claimed in claim 1, wherein the three low rate channel systems generated by the low rate physical layer circuit (LRP) are configured by the high rate entity Layer circuit (HRP) is generated in a high rate channel. 如請求項1之通信設備,其中該等低速率頻道及該等高速率頻道以分時雙工(TDD)方式進行操作。 The communication device of claim 1, wherein the low rate channels and the high rate channels operate in a time division duplex (TDD) manner. 如請求項1之通信設備,其中該射頻(RF)發射器包含一晶體以產生中頻(IF)及射頻(RF)。 The communication device of claim 1, wherein the radio frequency (RF) transmitter comprises a crystal to generate an intermediate frequency (IF) and a radio frequency (RF). 如請求項5之通信設備,其中該晶體產生中心位於約57GHz與約66GHz之間的四個頻道。 A communication device as claimed in claim 5, wherein the crystal generating center is located at four channels between about 57 GHz and about 66 GHz. 如請求項6之通信設備,其中該四個頻道包含58.608GHz、60.720GHz、62.832GHz及64.944GHz。 The communication device of claim 6, wherein the four channels comprise 58.608 GHz, 60.720 GHz, 62.832 GHz, and 64.944 GHz. 如請求項1之通信設備,其中該高速率實體層電路(HRP)將產生佔據約1.7GHz頻寬之一或多個無線信號。 The communication device of claim 1, wherein the high rate physical layer circuit (HRP) is to generate one or more wireless signals occupying a bandwidth of about 1.7 GHz. 如請求項1之通信設備,其中該高速率實體層電路(HRP)將產生一用於該RF發射器之定向波束成型信號。 The communication device of claim 1, wherein the high rate physical layer circuit (HRP) is to generate a directional beamforming signal for the RF transmitter. 如請求項1之通信設備,其中該高速率實體層電路(HRP)與音訊、視訊、資料及控制訊息之傳輸相關聯。 The communication device of claim 1, wherein the high rate physical layer circuit (HRP) is associated with transmission of audio, video, data, and control messages. 如請求項1之通信設備,其中該低速率實體層電路(LRP)將產生佔據一頻寬約為91MHz之副頻道的一或多個無線信號。 The communication device of claim 1, wherein the low rate physical layer circuit (LRP) is to generate one or more wireless signals occupying a sub-channel having a bandwidth of about 91 MHz. 如請求項1之通信設備,其中該低速率實體層電路(LRP)將產生用於該RF發射器之一定向信號、一全向信號或一波束成型信號。 A communication device as claimed in claim 1, wherein the low rate physical layer circuit (LRP) is to generate a directional signal, an omnidirectional signal or a beamforming signal for the RF transmitter. 如請求項1之通信設備,其中該低速率實體層電路(LRP)與控制訊息、信標、確認及低速度資料相關聯。 The communication device of claim 1, wherein the low rate physical layer circuit (LRP) is associated with control messages, beacons, acknowledgments, and low speed data. 如請求項1之通信設備,其中該HRP包含以串聯方式耦合 之該外碼電路、該外部交錯器電路、一內碼電路、一位元交錯器電路、一載頻調交錯器電路及一資料擾碼器電路。 The communication device of claim 1, wherein the HRP comprises coupling in series The outer code circuit, the outer interleaver circuit, an inner code circuit, a one-bit interleaver circuit, a carrier frequency interleaver circuit and a data scrambler circuit. 如請求項1之通信設備,其中耦合至該外碼電路之該外部交錯器電路係用以將該等輸入位元組進一步分為連續M個位元組之一群組,將該M個位元組輸入至該外碼之連續位元組,且將該M個位元組映射至M個不同內碼。 The communication device of claim 1, wherein the external interleaver circuit coupled to the outer code circuit is configured to further divide the input bit groups into a group of consecutive M bytes, the M bits The tuple is input to consecutive bytes of the outer code, and the M bytes are mapped to M different inner codes. 如請求項1之通信設備,其進一步包含:一位元交錯器電路,其以串聯方式耦合至該外部交錯器電路且將來自同一內碼之位元映射至信號集群之相等數目之MSB及LSB。 A communication device as claimed in claim 1, further comprising: a one-bit interleaver circuit coupled in series to the external interleaver circuit and mapping bits from the same inner code to an equal number of MSBs and LSBs of the signal cluster . 如請求項1之通信設備,其中該LRP包含以串聯方式耦合之一導頻載頻調電路、一載頻調交錯器電路、一FEC電路及一資料擾碼器電路。 The communication device of claim 1, wherein the LRP comprises a pilot carrier frequency modulation circuit, a carrier frequency interleaver circuit, an FEC circuit and a data scrambler circuit coupled in series. 如請求項1之通信設備,其中該LRP經組態以產生一LRP長全向資料封包、一LRP波束成型資料封包及一LRP短定向資料封包。 The communication device of claim 1, wherein the LRP is configured to generate an LRP long omnidirectional data packet, an LRP beamform data packet, and an LRP short directional data packet. 如請求項18之通信設備,其中該LRP長全向資料封包包含一LRP前置項、一LRP標頭、一LRP有效承載。 The communication device of claim 18, wherein the LRP long omnidirectional data packet includes an LRP preamble, an LRP header, and an LRP payload. 如請求項19之通信設備,其中該LRP標頭係藉由一尾部位元迴旋碼進行編碼。 The communication device of claim 19, wherein the LRP header is encoded by a tail portion meta-rotation code. 如請求項19之通信設備,其中該LRP前置項包含一長全向LRP前置項或一短全向LRP前置項。 The communication device of claim 19, wherein the LRP preamble comprises a long omnidirectional LRP preamble or a short omnidirectional LRP preamble. 如請求項21之通信設備,其中該長全向LRP前置項長度 為約57微秒。 The communication device of claim 21, wherein the length of the long omnidirectional LRP preamble It is about 57 microseconds. 如請求項21之通信設備,其中該長全向LRP前置項經組態以用於信標及具盲定時同步之LRP資料封包。 The communication device of claim 21, wherein the long omnidirectional LRP preamble is configured for beaconing and LRP data packets with blind timing synchronization. 如請求項21之通信設備,其中該長全向LRP前置項包含一第一AGC及信號偵測區段、一粗FOE及定時復原區段、一精細FOE及定時復原區段及一接收器波束成型區段、一第二AGC區段以及一頻道估計區段。 The communication device of claim 21, wherein the long omnidirectional LRP preamble includes a first AGC and signal detection section, a coarse FOE and timing recovery section, a fine FOE and timing recovery section, and a receiver A beamforming section, a second AGC section, and a channel estimation section. 如請求項21之通信設備,其中該短全向LRP前置項長度為約43微秒。 The communication device of claim 21, wherein the short omnidirectional LRP preamble is about 43 microseconds in length. 如請求項21之通信設備,其中該短全向LRP前置項經組態以用於競爭週期及具定時同步之LRP資料封包。 The communication device of claim 21, wherein the short omnidirectional LRP preamble is configured for a contention period and an LRP data packet with timing synchronization. 如請求項21之通信設備,其中該短全向LRP前置項包含一第一AGC區段、一第二AGC區段、一信號偵測及時間同步區段、一接收器波束成型區段、一第三AGC區段以及一頻道估計區段。 The communication device of claim 21, wherein the short omnidirectional LRP preamble comprises a first AGC segment, a second AGC segment, a signal detection and time synchronization segment, a receiver beamforming segment, A third AGC segment and a channel estimation segment. 如請求項18之通信設備,其中該LRP波束成型之資料封包包含一LRP波束成型前置項、一LRP波束成型標頭及一LRP波束成型有效承載。 The communication device of claim 18, wherein the LRP beamformed data packet comprises an LRP beamforming preamble, an LRP beamforming header, and an LRP beamforming payload. 如請求項28之通信設備,其中該LRP波束成型之前置項包含一訊框同步及AGC區段,以及一頻道估計區段。 The communication device of claim 28, wherein the LRP beamforming preamble comprises a frame synchronization and AGC segment, and a channel estimation segment. 如請求項18之通信設備,其中該LRP短定向資料封包包含一LRP短定向前置項及一LRP短定向標頭。 The communication device of claim 18, wherein the LRP short-directional data packet comprises an LRP short-directional preamble and an LRP short-directional header. 如請求項18之通信設備,其中該LRP短定向資料封包包含一LRP短定向前置項、一LRP短定向標頭及一LRP短定 向有效承載。 The communication device of claim 18, wherein the LRP short-directional data packet comprises an LRP short-directional preamble, an LRP short-directional header, and an LRP short-term To be effectively carried. 如請求項30之通信設備,其中該LRP短定向前置項包含一AGC區段及一頻道估計區段。 The communication device of claim 30, wherein the LRP short directional preamble comprises an AGC segment and a channel estimation segment. 如請求項18之通信設備,其中該LRP短定向資料封包經組態以用於HRP封包及波束成型LRP封包之確認。 The communication device of claim 18, wherein the LRP short-directional data packet is configured for confirmation of HRP packets and beamforming LRP packets. 一種通信設備,其包含:一處理器;一射頻(RF)發射器,其具有一數位控制之相控陣列天線,該發射器耦接至該處理器且由該處理器控制以傳輸資料或內容;一至一無線通信頻道之介面,該介面耦接至該處理器以傳達關於該相控陣列天線之使用之天線資訊且傳達資訊以有助於在另一位置處接收該資料或播放該內容;及一實體層電路,其耦接至該射頻發射器及該介面以在一數位信號與一調變類比信號之間進行編碼及解碼,該實體層電路包含一高速率實體層電路(HRP)及一低速率實體層電路(LRP),其中由該低速率實體層電路(LRP)產生之低速率頻道與由該高速率實體層電路(HRP)產生之一對應高速率頻道共用同一頻帶;以及其中該HRP包含以串聯方式耦合之一外碼電路、一外部交錯器電路以及M個內編碼器,其中M大於1,且該外部交錯器電路包含一區塊交錯器,該區塊交錯器將外碼碼字之連續位元組映射至不同內碼,且將該外碼碼字中 之同一位元組映射至該內碼之連續位元。 A communication device comprising: a processor; a radio frequency (RF) transmitter having a digitally controlled phased array antenna coupled to the processor and controlled by the processor to transmit data or content An interface of one to one wireless communication channel coupled to the processor to convey antenna information about the use of the phased array antenna and to convey information to facilitate receiving the material or playing the content at another location; And a physical layer circuit coupled to the RF transmitter and the interface for encoding and decoding between a digital signal and a modulation analog signal, the physical layer circuit comprising a high rate physical layer circuit (HRP) and a low rate physical layer circuit (LRP), wherein a low rate channel generated by the low rate physical layer circuit (LRP) shares the same frequency band as a high rate channel corresponding to one of the high rate physical layer circuits (HRP) generation; The HRP includes an external code circuit coupled in series, an external interleaver circuit, and M inner encoders, wherein M is greater than 1, and the external interleaver circuit includes a block interleaver, the region The outer code interleaver successive bytes of the codeword is mapped to a different inner code and the outer code codeword The same tuple is mapped to consecutive bits of the inner code. 如請求項34之通信設備,其中該高速率實體層電路(HRP)將產生每秒約數十億位元之資料速率,且該低速率實體層電路(LRP)將產生每秒約數百萬位元之資料速率。 The communication device of claim 34, wherein the high rate physical layer circuit (HRP) is to generate a data rate of approximately several billion bits per second, and the low rate physical layer circuit (LRP) will generate approximately millions per second The data rate of the bit. 如請求項34之通信設備,其中由該低速率實體層電路(LRP)產生之三個低速率頻道係配置於由該高速率實體層電路(HRP)產生之一個高速率頻道中。 The communication device of claim 34, wherein the three low rate channels generated by the low rate physical layer circuit (LRP) are configured in a high rate channel generated by the high rate physical layer circuit (HRP). 如請求項34之通信設備,其中該高速率實體層電路(HRP)將產生佔據約1.7GHz頻寬之一或多個無線信號。 The communication device of claim 34, wherein the high rate physical layer circuit (HRP) is to generate one or more wireless signals occupying a bandwidth of about 1.7 GHz. 如請求項34之通信設備,其中該高速率實體層電路(HRP)將產生一用於該RF發射器之定向波束成型信號。 The communication device of claim 34, wherein the high rate physical layer circuit (HRP) is to generate a directional beamforming signal for the RF transmitter. 如請求項34之通信設備,其中該高速率實體層電路(HRP)與音訊、視訊、資料及控制訊息之傳輸相關聯。 The communication device of claim 34, wherein the high rate physical layer circuit (HRP) is associated with the transmission of audio, video, data, and control messages. 如請求項34之通信設備,其中該低速率實體層電路(LRP)將產生佔據一頻寬約為91MHz之副頻道的一或多個無線信號。 The communication device of claim 34, wherein the low rate physical layer circuit (LRP) is to generate one or more wireless signals occupying a sub-channel having a bandwidth of about 91 MHz. 如請求項34之通信設備,其中該低速率實體層電路(LRP)將產生用於該RF發射器之一定向信號、一全向信號或一波束成型信號。 The communication device of claim 34, wherein the low rate physical layer circuit (LRP) is to generate a directional signal for the RF transmitter, an omnidirectional signal, or a beamforming signal. 如請求項34之通信設備,其中該低速率實體層電路(LRP)與控制訊息、信標、確認及低速度資料相關聯。 The communication device of claim 34, wherein the low rate physical layer circuit (LRP) is associated with control messages, beacons, acknowledgments, and low speed data. 如請求項34之通信設備,其中該HRP包含以串聯方式耦合之該外碼電路、該外部交錯器電路、一內碼電路、一 位元交錯器電路、一載頻調交錯器電路及一資料擾碼器電路。 The communication device of claim 34, wherein the HRP comprises the outer code circuit coupled in series, the external interleaver circuit, an inner code circuit, and a A bit interleaver circuit, a carrier frequency interleaver circuit and a data scrambler circuit. 如請求項34之通信設備,其中耦合至該外碼電路之該外部交錯器電路係用以將該等輸入位元組進一步分為連續M個位元組之一群組,將該M個位元組輸入至該外碼之連續位元組,且將該M個位元組映射至M個不同內碼。 The communication device of claim 34, wherein the external interleaver circuit coupled to the outer code circuit is further configured to further divide the input bit groups into a group of consecutive M bytes, the M bits The tuple is input to consecutive bytes of the outer code, and the M bytes are mapped to M different inner codes. 如請求項44之通信設備,其進一步包含:一位元交錯器電路,其與該外碼電路串聯且將來自同一內碼之位元映射至信號集群之相等數目之MSB及LSB。 The communication device of claim 44, further comprising: a one-bit interleaver circuit in series with the outer code circuit and mapping bits from the same inner code to an equal number of MSBs and LSBs of the signal cluster. 如請求項34之通信設備,其中該LRP包含以串聯方式耦合之一導頻載頻調電路、一載頻調交錯器電路、一FEC電路及一資料擾碼器電路。 The communication device of claim 34, wherein the LRP comprises a pilot carrier frequency modulation circuit, a carrier frequency interleaver circuit, an FEC circuit and a data scrambler circuit coupled in series. 如請求項34之通信設備,其中該LRP經組態以產生一LRP長全向資料封包、一LRP波束成型資料封包及一LRP短定向資料封包。 The communication device of claim 34, wherein the LRP is configured to generate an LRP long omnidirectional data packet, an LRP beamform data packet, and an LRP short directional data packet. 如請求項47之通信設備,其中該LRP長全向資料封包包含一LRP前置項、一LRP標頭、一LRP有效承載。 The communication device of claim 47, wherein the LRP long omnidirectional data packet includes an LRP preamble, an LRP header, and an LRP payload. 如請求項48之通信設備,其中該LRP標頭係藉由一尾部位元迴旋碼進行編碼。 The communication device of claim 48, wherein the LRP header is encoded by a tail portion meta-rotation code. 如請求項48之通信設備,其中該LRP前置項包含一長全向LRP前置項或一短全向LRP前置項。 The communication device of claim 48, wherein the LRP preamble comprises a long omnidirectional LRP preamble or a short omnidirectional LRP preamble. 如請求項50之通信設備,其中該長全向LRP前置項長度為約57微秒。 The communication device of claim 50, wherein the long omnidirectional LRP preamble is about 57 microseconds in length. 如請求項50之通信設備,其中該長全向LRP前置項經組態以用於信標及具盲定時同步之LRP資料封包。 The communication device of claim 50, wherein the long omnidirectional LRP preamble is configured for beaconing and LRP data packets with blind timing synchronization. 如請求項50之通信設備,其中該長全向LRP前置項包含一第一AGC及信號偵測區段、一粗FOE及定時復原區段、一精細FOE及定時復原區段,及一接收器波束成型區段、一第二AGC區段以及一頻道估計區段。 The communication device of claim 50, wherein the long omnidirectional LRP preamble includes a first AGC and signal detection section, a coarse FOE and timing recovery section, a fine FOE and a timing recovery section, and a receiving A beamforming section, a second AGC section, and a channel estimation section. 如請求項50之通信設備,其中該短全向LRP前置項長度為約43微秒。 The communication device of claim 50, wherein the short omnidirectional LRP preamble is about 43 microseconds in length. 如請求項50之通信設備,其中該短全向LRP前置項經組態以用於競爭週期及具定時同步之LRP資料封包。 The communication device of claim 50, wherein the short omnidirectional LRP preamble is configured for a contention period and an LRP data packet with timing synchronization. 如請求項50之通信設備,其中該短全向LRP前置項包含一第一AGC區段、一第二AGC區段、一信號偵測及時間同步區段、一接收器波束成型區段、一第三AGC區段以及一頻道估計區段。 The communication device of claim 50, wherein the short omnidirectional LRP preamble comprises a first AGC segment, a second AGC segment, a signal detection and time synchronization segment, a receiver beamforming segment, A third AGC segment and a channel estimation segment. 如請求項47之通信設備,其中該LRP波束成型之資料封包包含一LRP波束成型前置項、一LRP波束成型標頭及一LRP波束成型有效承載。 The communication device of claim 47, wherein the LRP beamformed data packet comprises an LRP beamforming preamble, an LRP beamforming header, and an LRP beamforming payload. 如請求項57之通信設備,其中該LRP波束成型之前置項包含一訊框同步及AGC區段及一頻道估計區段。 The communication device of claim 57, wherein the LRP beamforming preamble comprises a frame synchronization and an AGC segment and a channel estimation segment. 如請求項57之通信設備,其中該LRP短定向資料封包包含一LRP短定向前置項及一LRP短定向標頭。 The communication device of claim 57, wherein the LRP short-directional data packet comprises an LRP short-directional preamble and an LRP short-directional header. 如請求項57之通信設備,其中該LRP短定向資料封包包含一LRP短定向前置項、一LRP短定向標頭及一LRP短定向有效承載。 The communication device of claim 57, wherein the LRP short directional data packet comprises an LRP short directional preamble, an LRP short directional header, and an LRP short directional payload. 如請求項59之通信設備,其中該LRP短定向前置項包含一AGC區段及一頻道估計區段。 The communication device of claim 59, wherein the LRP short-directional preamble comprises an AGC segment and a channel estimation segment. 如請求項57之通信設備,其中該LRP短定向資料封包經組態以用於HRP封包及波束成型LRP封包之確認。 The communication device of claim 57, wherein the LRP short-directional data packet is configured for confirmation of HRP packets and beamforming LRP packets. 一種無線通信方法,其包含:產生一調變類比信號以經由一無線通信頻道發送天線資訊及對應於內容之內容保護資訊,其中產生該調變類比信號進一步包含:使用一低速率實體層電路(LRP)產生低速率頻道;使用一高速率實體層電路(HRP)產生高速率頻道;其中由該低速率實體層電路(LRP)產生之該低速率頻道與由該高速率實體層電路(HRP)產生之一對應高速率頻道共用同一頻帶;以及其中該HRP包含以串聯方式耦合之一外碼電路、一外部交錯器電路以及M個內編碼器,其中M大於1,且該外部交錯器電路包含一區塊交錯器,該區塊交錯器將外碼碼字之連續位元組映射至不同內碼,且將該外碼碼字中之同一位元組映射至該內碼之連續位元。 A method of wireless communication, comprising: generating a modulation analog signal to transmit antenna information and content protection information corresponding to content via a wireless communication channel, wherein generating the modulation analog signal further comprises: using a low rate physical layer circuit ( LRP) generates a low rate channel; uses a high rate physical layer circuit (HRP) to generate a high rate channel; wherein the low rate channel generated by the low rate physical layer circuit (LRP) and by the high rate physical layer circuit (HRP) Generating one of the corresponding high rate channels to share the same frequency band; and wherein the HRP includes one of an outer code circuit coupled in series, an external interleaver circuit, and M inner encoders, wherein M is greater than 1, and the external interleaver circuit includes A block interleaver that maps consecutive groups of outer codewords to different inner codes and maps the same byte in the outer codeword to consecutive bits of the inner code. 如請求項63之無線通信方法,其進一步包含:將三個低速率頻道配置於一個高速率頻道中。 The method of wireless communication of claim 63, further comprising: configuring the three low rate channels in a high rate channel. 如請求項63之無線通信方法,其中產生該調變類比信號進一步包含:產生中心位於約57GHz與約66GHz之間的四個頻道,其中該四個頻道處於58.608GHz、60.720GHz、62.832 GHz及64.944GHz處。 The method of wireless communication of claim 63, wherein generating the modulated analog signal further comprises: generating four channels centered between about 57 GHz and about 66 GHz, wherein the four channels are at 58.608 GHz, 60.720 GHz, 62.832 GHz and 64.944GHz. 一種無線通信方法,其包含:產生一調變類比信號以經由一無線通信頻道發送對應於內容之內容保護資訊,其中產生該調變類比信號進一步包含:使用一佔據約91MHz之頻寬的低速率實體層電路(LRP)產生低速率頻道,使用一佔據約1.7GHz之頻寬的高速率實體層電路(HRP)產生高速率頻道,其中由該低速率實體層電路(LRP)產生之該低速率頻道與由該高速率實體層電路(HRP)產生之一對應高速率頻道共用同一頻帶且以分時雙工(TDD)方式操作該等低速率頻道及該高速率頻道;以及其中該HRP包含以串聯方式耦合之一外碼電路、一外部交錯器電路以及M個內編碼器,其中M大於1,且該外部交錯器電路包含一區塊交錯器,該區塊交錯器將外碼碼字之連續位元組映射至不同內碼,且將該外碼碼字中之同一位元組映射至該內碼之連續位元。 A method of wireless communication, comprising: generating a modulation analog signal to transmit content protection information corresponding to content via a wireless communication channel, wherein generating the modulation analog signal further comprises: using a low rate occupying a bandwidth of about 91 MHz The physical layer circuit (LRP) generates a low rate channel and generates a high rate channel using a high rate physical layer circuit (HRP) occupying a bandwidth of about 1.7 GHz, wherein the low rate is generated by the low rate physical layer circuit (LRP) The channel shares the same frequency band with a corresponding high rate channel generated by the high rate physical layer circuit (HRP) and operates the low rate channel and the high rate channel in a time division duplex (TDD) manner; and wherein the HRP includes Integrating one of an outer code circuit, an outer interleaver circuit, and M inner encoders, wherein M is greater than 1, and the external interleaver circuit includes a block interleaver, the block interleaver will be an outer codeword The consecutive bytes are mapped to different inner codes, and the same byte in the outer code code word is mapped to consecutive bits of the inner code. 如請求項66之無線通信方法,其中可自中心位於約57GHz與約66GHz之間的四個頻道傳輸該調變類比信號。 A method of wireless communication as claimed in claim 66, wherein the modulated analog signal is transmittable from four channels centered between about 57 GHz and about 66 GHz. 如請求項67之無線通信方法,其中該四個頻道包含58.608GHz、60.720GHz、62.832GHz,及64.944GHz。 The method of wireless communication of claim 67, wherein the four channels comprise 58.608 GHz, 60.720 GHz, 62.832 GHz, and 64.944 GHz. 如請求項66之無線通信方法,其中該LRP包含以串聯方 式耦合之一導頻載頻調電路、一載頻調交錯器電路、一FEC電路及一資料擾碼器電路。 The method of wireless communication of claim 66, wherein the LRP comprises a series of parties A pilot carrier frequency modulation circuit, a carrier frequency interleaver circuit, an FEC circuit and a data scrambler circuit are coupled. 如請求項66之無線通信方法,其中該HRP包含以串聯方式耦合之該外碼電路、該外部交錯器電路、一內碼電路、一位元交錯器電路、一載頻調交錯器電路及一資料擾碼器電路。 The wireless communication method of claim 66, wherein the HRP comprises the outer code circuit coupled in series, the external interleaver circuit, an inner code circuit, a bit interleaver circuit, a carrier frequency interleaver circuit, and a Data scrambler circuit. 一種通信設備,其包含:一處理器;一射頻(RF)發射器,其耦接至該處理器且由該處理器控制以傳輸內容;一實體層電路,其耦接至該RF發射器及該處理器以在一數位信號與一調變類比信號之間進行編碼及解碼,其中該實體層電路包含一高速率實體層電路(HRP)以及一低速率實體層電路(LRP),該高速率實體層電路以及該低速率實體層電路中之每一者能夠在該RF發射器之一定向模式、一全向模式或一波束成型模式中進行操作,其中在該全向模式中,該實體層電路將產生複製N次之相同信號,各複製使用一不同之TX天線相位場型,以及其中該HRP包含以串聯方式耦合之一外碼電路、一外部交錯器電路以及M個內編碼器,其中M大於1,且該外部交錯器電路包含一區塊交錯器,該區塊交錯器將外碼碼字之連續位元組映射至不同內碼,且將該外碼碼字中 之同一位元組映射至該內碼之連續位元。 A communication device, comprising: a processor; a radio frequency (RF) transmitter coupled to the processor and controlled by the processor to transmit content; a physical layer circuit coupled to the RF transmitter and The processor encodes and decodes between a digital signal and a modulation analog signal, wherein the physical layer circuit includes a high rate physical layer circuit (HRP) and a low rate physical layer circuit (LRP), the high rate Each of the physical layer circuit and the low rate physical layer circuit is operable in one of the RF transmitter directional mode, an omnidirectional mode, or a beamforming mode, wherein the omnidirectional mode, the physical layer The circuit will generate the same signal that is replicated N times, each replica using a different TX antenna phase field type, and wherein the HRP includes an outer code circuit coupled in series, an external interleaver circuit, and M inner encoders, wherein M is greater than 1, and the external interleaver circuit includes a block interleaver that maps consecutive bytes of outer codewords to different inner codes, and the outer codewords are The same tuple is mapped to consecutive bits of the inner code. 如請求項71之通信設備,其中該信號包括一OFDM符號,且N=8。 The communication device of claim 71, wherein the signal comprises an OFDM symbol and N=8. 如請求項71之通信設備,其中在該定向模式中,該實體層電路將產生複製N+1次之相同信號,各複製使用同一最佳化TX天線相位場型,該最佳化TX天線相位場型自一回返頻道接收器反饋至一回返頻道發射器。 The communication device of claim 71, wherein in the directional mode, the physical layer circuit will generate the same signal that is replicated N+1 times, each replica using the same optimized TX antenna phase field type, the optimized TX antenna phase The field type is fed back from a return channel receiver to a return channel transmitter. 如請求項73之通信設備,其中該信號包括一OFDM符號,且N=8。The communication device of claim 73, wherein the signal comprises an OFDM symbol and N=8.
TW96105916A 2006-02-14 2007-02-14 Hd physical layer of a wireless communication device TWI416889B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US77341306P 2006-02-14 2006-02-14
US77401206P 2006-02-15 2006-02-15
US80818506P 2006-05-23 2006-05-23
US85011606P 2006-10-05 2006-10-05
US85606006P 2006-11-01 2006-11-01

Publications (2)

Publication Number Publication Date
TW200803236A TW200803236A (en) 2008-01-01
TWI416889B true TWI416889B (en) 2013-11-21

Family

ID=44765594

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96105916A TWI416889B (en) 2006-02-14 2007-02-14 Hd physical layer of a wireless communication device

Country Status (1)

Country Link
TW (1) TWI416889B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9106467B2 (en) 2013-11-08 2015-08-11 Intel Corporation Backchannel communications for initialization of high-speed networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200511871A (en) * 2003-06-30 2005-03-16 Microsoft Corp Energy-aware communications for a multi-radio system
TW200605688A (en) * 2003-07-09 2006-02-01 Interdigital Tech Corp Method and system for managing radio resources in a time-slotted communicationwireless system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200511871A (en) * 2003-06-30 2005-03-16 Microsoft Corp Energy-aware communications for a multi-radio system
TW200605688A (en) * 2003-07-09 2006-02-01 Interdigital Tech Corp Method and system for managing radio resources in a time-slotted communicationwireless system

Also Published As

Publication number Publication date
TW200803236A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
US8014416B2 (en) HD physical layer of a wireless communication device
US8170617B2 (en) Extensions to adaptive beam-steering method
US10944607B2 (en) Transmission apparatus and transmission method of an aggregate physical layer protocol data unit
US9065682B2 (en) Wireless HD MAC frame format
KR101287780B1 (en) A wireless communication device using adaptive beamforming
US7899128B2 (en) Multiple-output transmitter for transmitting a plurality of spatial streams
US8229352B2 (en) Wireless architecture for 60GHZ
JPH07202855A (en) Data transmitter
US20130156128A1 (en) Transmission Device, Communication System, Transmission Method and Program
KR20070029719A (en) Method, apparatuses and signal for transmitting/receiving information comprising primary and secondary messages in a same transmission
US20080130741A1 (en) Wireless HD AV packet format
TWI416889B (en) Hd physical layer of a wireless communication device
US20040219897A1 (en) Method and apparatus for ultra wideband wireless communication using channel information
JP5341250B2 (en) Method and apparatus for collision avoidance
Seyedi On the physical layer performance of Ecma-387: A standard for 60GHz WPANs
US20040052235A1 (en) Formatter, method of formatting encoded symbols and wireless communication system employing the same
Khedr et al. Wirelesshd Video Transmission Over Multicarrier Error-Correctionchannels
Emami et al. IEEE 60 GHz Standards

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees