200803236 九、發明說明: 【發明所屬之技術領域】 本發明係關於無線通信之領域;更明確言之,本發明係 關於一種使用適應性波束成型(beamformins)的無線通信骏 置。 【先前技術】 1998年,形成數位顯示工作組(DDWG)以在電腦與顯示 器之間建立一通用介面標準來替代類比視頻圖形介面卡 (VGA)連接標準。所得標準為1999年4月發行之數位視訊 介面(DVI)規範。 存在若干可用之内容保護機制。舉例而言,高頻寬數位 内容保護(HDCP)及數位傳輸内容保護(DTCP)為眾所熟知 之内容保護機制。建議將HDCP作為DVI之安全組件且針 對數位視訊監視器介面來設計HDCP。 高清晰度多媒體影音介面(HDMI)為發展用以滿足對高 清晰度音訊及視訊之爆炸性需求的連接介面標準。HDMI 能夠載運視訊及音訊且與DVI(其僅載運視訊信號)回溯相 容。DVI及HDMI之主要優點在於兩者皆能夠經由單個電 纜傳輸未經壓縮的高清晰度數位流。 HDCP為用於保護在DVI及HDMI上傳送之内容不被複製 的系統。詳情參見HDCP 1.0。HDCP提供鑑認、加密及撤 銷。播放裝置及顯示監視器中之專用電路將視訊資料加密 之後將其發送出。使用HDCP,内容在DVI或HDMI發射器 晶片之前(或内部)立刻加密且在DVI或HDMI接收器晶片之 118831.doc 200803236 後(或内部)立刻解密。 除加密及解密功能之外,HDCP實施鑑認以驗證接收裝 置(例如,顯示器、電視等)被授權接收加密内容。大致每 兩秒鐘進行重新鑑認以持續地確認DVI或HDMI介面的安 全性。在任一時刻,若藉由(例如)斷開裝置及/或連接不合 法之記錄裝置而使得重新鑑認未發生,則源裝置(例如, 數位多功能碟片(DVD)播放器、視訊轉換器等)結束對加密 内容的傳輸。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of wireless communication; more specifically, the present invention relates to a wireless communication device using adaptive beamforming. [Prior Art] In 1998, the Digital Display Working Group (DDWG) was formed to replace the analog video graphics interface card (VGA) connection standard by establishing a common interface standard between the computer and the display. The resulting standard is the Digital Video Interface (DVI) specification issued in April 1999. There are several content protection mechanisms available. For example, High Frequency Wide Digital Content Protection (HDCP) and Digital Transmission Content Protection (DTCP) are well known content protection mechanisms. It is recommended to design HDCP as a security component of DVI and for the digital video monitor interface. The High Definition Multimedia Audio Interface (HDMI) is a connectivity interface standard developed to meet the explosive demand for high definition audio and video. HDMI is capable of carrying video and audio and is backwards compatible with DVI, which only carries video signals. The main advantage of DVI and HDMI is that both can transmit uncompressed high definition digital bit streams over a single cable. HDCP is a system for protecting content transmitted on DVI and HDMI from being copied. See HDCP 1.0 for details. HDCP provides authentication, encryption and revocation. The dedicated circuitry in the playback device and display monitor encrypts the video data and sends it out. With HDCP, the content is immediately encrypted (or internally) on the DVI or HDMI transmitter chip and decrypted immediately after (or inside) the DVI or HDMI receiver chip 118831.doc 200803236. In addition to the encryption and decryption functions, the HDCP performs authentication to verify that the receiving device (e.g., display, television, etc.) is authorized to receive the encrypted content. Re-authentication is performed approximately every two seconds to continuously confirm the security of the DVI or HDMI interface. At any one time, if re-authentication does not occur by, for example, disconnecting the device and/or connecting an illegal recording device, the source device (eg, a digital versatile disc (DVD) player, a video converter) Etc.) End the transfer of encrypted content.
雖然對HDMI及DVI之討論大體而言集中於有線通信, 但使用無線通信傳輸内容已變得日益流行。雖然當前較多 關注蜂巢式技術及無線網路,但對用於無線視訊傳輸或極 高速度網路連結的60 GHz附近之未授權頻譜已存在愈來愈 多的興趣。更具體言之’在美國及日本,已開放7咖之 鄰近頻寬用於在60 GHz附近以毫米波頻率進行未授權之使 用0 【發明内容】 一射頻(RF)發射器係耦接至—# 處理為且由該處理器控制 以傳輸資料。一實體層電路係叙垃s # 揭接至该RF發射器以在一數 位信號與一調變類比信號之間推〜^ 适仃編碼及解碼。該實體層 電路包含一高速率實體層電路(Η lWRP)及一低速率實體層電 路(LRP)。由該低速率實體層雷 尾路仏反?)產生之低速率頻道 與由該高速率實體層電路1 )度生之一對應高速率頻道 共用同一頻帶。 【實施方式】 118831.doc 200803236 本發明揭示一種用於無線通信之設備及方法。在一實施 例中’使用一具有適應性波束成型天線的無線通信收發器 進行無線通信。如對於熟習此項技術者顯而已見,使用無 線接收器或發射器可進行無線通信。 在一實施例中,該無線通信包括一額外鏈路或頻道,其 用於在發射器與接收器之間傳輸資訊。此鏈路可為單向或 雙向的。在一實施例中,該頻道用於將天線資訊自接收器 發送回發射器,從而使發射器能夠藉由操控天線元件來調 適其天線陣列以發現另一方向之路徑。此方式可避免障 礙。 在一實施例中,該鏈路亦用於傳送與經無線傳送之内容 (例如,無線視訊)相對應之資訊。此資訊可為内容保護資 訊。舉例而言,在一實施例中,該鏈路用於在收發器傳送 HDMI資料時傳送加密密鑰及加密密鑰之確認。因此,在 一實施例中,此鏈路傳送控制資訊及内容保護資訊。 此額外鏈路可為在60 GHz帶中之獨立頻道。在一替代實 施例中,該鏈路可為在2·4 GHz或5GHz帶中之無線頻道。 在以下之描述内容中,陳述大量細節以提供對本發明之 更全面之解釋。然而,可不使用此等特定細節來實行本發 明,此對於熟習此項技術者而言係顯而易見的。在其他情 況下,眾所熟知之結構及裝置以方塊圖之形式展示而不詳 細展示,以避免使本發明不夠突出。 以下之詳細描述之某些部分係根據對電腦記憶體中之資 料位元所進行之操作的演算及符號表示而表現的。此等演 118831.doc 200803236 异描述及表示係熟習資料處理技術者所使用的方法,用於 最有效地向其他熟習此項技術者傳達其工作之本質。演算 法在此處且通常設想為產生所需結果的自身一致之步驟序 列。該等步驟為要求對物理量進行實體操縱之步驟。通常 (雖然並非必要)此等量採取電或磁信號之形式,可對其進 行儲存、傳送、組合、比較及其他操縱。原則上出於一般 使用之原因,已證實有時將該等信號稱作位元、值、元 件、符唬、字元、項、編號或其類似物係便利的。 然而,應牢記,所有此等及類似術語應與適當物理量相 結合,且其僅為應用於此等量之便利標記。除非另有明確 陳述(如在以下描述中顯而易見),應瞭解,貫穿本描述内 谷利用諸如處理’’或π計算(computing),,或M計算 (calculating)”或”確定"或”顯示,,或其類似物之術語的討論 係指電腦系統或類似電子計算裝置之行為及過程,該行為 或過程將表示為電腦系統暫存器及記憶體中之物理(電子) 量的資料操縱及轉變為類似地表示為電腦系統記憶體或暫 存為或其他此類資訊儲存、傳輸或顯示裝置中之物理量的 其他資料。 本發明亦係關於-種用於執行本文中之操作的設備。此 設備可按所需目的特別建構,或其可包含一通用電腦,該 =腦由儲存於該電腦中之電腦程式選擇性啟動或重新組 態。此電腦程式可儲存於電腦可讀儲存媒體中,例如(= :限於)任一類型之碟片,包括軟性磁碟、光碟、光心 讀記憶體(CD-R0M)及磁光碟、唯讀記憶體(r〇m)、隨機 118831.doc 200803236 存取記憶體(RAM)、可擦可程式唯讀記憶體(epr〇m)、電 子可擦可程式化唯讀記憶體(EEpR〇M)、磁卡或光卡或任 —類型之適用於儲存電子指令之媒體,且該等媒體中之每 一者耦接至一電腦系統匯流排。 本文中所表現之演算法及顯示本質上並不關於任一特定 電腦或其他設備。可配合根據本文教示之程式而使用各種 通用系統,或可方便地建構更專用之設備用於執行所需之 方法步驟。所需之用於各種此等“之結構將自以下之描 述中出現H並^參照任—特定程式語言描述本發 明。應瞭解,可使用各種程式語言實施如本文所描述之本 發明之教示。 -機器可讀媒體包括用於以可由機器(例如,電腦)讀取 之形式儲存或傳輸資訊的任—機制。舉例而言,機器可讀 媒體包括唯獨記憶體("ROM");隨機存取記憶體 ("RAM");磁碟儲存媒體;光學儲存媒體;快閃記憶體裝 置;電學、光學、聲學或其他形式之傳播信號(例如,载 波、紅外信號、數位信號,等)等。 通信系統之一實例 圖1為通信系統之-實施例的方塊圖。參看W,該系統 包含媒體接收器100、一媒體接收器介面1〇2、一發射裝置 140、一接收裝置141、一媒體播放器介面113、一媒體播 放器114及一顯示器115。 媒體接收器100自一源(未圖示)接收内容。在一實施例 中,媒體接收器100包含一視訊轉換器。該内容可包含基 118831.doc •10· 200803236 頻數位視訊,例如(但不限於)符合11]0]^1或〇¥1標準之内 谷。在此種情況下,媒體接收器i00可包括一發射器(例 如’ HDMI發射器)以轉發所接收之内容。 媒體接收器100經由媒體接收器介面1〇2發送内容1〇1至 發射器裝置140。在一實施例中,媒體接收器介面1〇2包括 將内容101轉換為HDMI内容之邏輯。在此情況下,媒體接 收器介面102可包含一 HDMI插頭,且内容101係經由一有 線連接發送;然而,可經由一無線連接進行傳送。在另一 實施例中,内容1 〇 1包含D VI内容。 在一實施例中,内容101在媒體接收器介面102與發射器 裝置140之間的傳送係在一有線連接上進行;然而,該傳 送可經由一無線連接進行。 發射器裝置140使用兩個無線連接將資訊無線傳送至接 收器裝置141。該等無線連接中之一者係經由一具有適應 性波束成型之相控陣列天線。另一無線連接係經由無線通 信頻道107,本文稱為回返頻道(back channel)。在一實施 例中’無線通#頻道10 7係單向的。在一替代實施例中, 無線通信頻道107係雙向的。 接收器裝置141經由媒體播放器介面113將接收自發射器 裝置140之内容傳送至媒體播放器114。在一實施例中,在 接收器裝置141與媒體播放器介面113之間的内容傳送係經 由一有線連接進行;然而,該傳送可經由一無線連接進 行。在一實施例中,媒體播放器介面U3包含一 hdMU# 頭。類似地,在媒體播放器介面113與媒體播放器114之間 118831.doc •11· 200803236 的内容傳送係經由一有線連接進行;然而,該傳送可經由 一無線連接進行。 媒體播放器114使内容在顯示器115上播放。在一實施例 中,該内容為HDMI内容,且媒體播放器114經由一有線連 接將媒體内容傳送至顯示器;然而,該傳送可經由一無線 連接進行。顯示器115可包含電漿顯示器、液晶顯示器 (LCD)、陰極射線管(crt)等。 注意,可將圖1中之系統更改為包括DVD播放器/記錄器 來代替DVD播放器/記錄器而用於接收及播放及/或記錄該 内容。 在一實施例中,發射器140及媒體接收器介面1〇2為媒體 接收器10 0之部分。類似地,在一實施例中,接收器14 〇、 媒體播放器介面113及媒體播放器114皆為同一裝置之部 分。在一替代實施例中,接收器14〇、媒體播放器介面 113、媒體播放器114及顯示器115皆為顯示器之部分。此 裝置之實例展示於圖3中。 在一實施例中,發射器裝置140包含一處理器1〇3、一可 選基頻處理組件104、一相控陣列天線105及一無線通信頻 道介面106。相控陣列天線1〇5包含一射頻(rf)發射器,該 發射器具有一數位控制之相控陣列天線,該天線耦接至處 理器103且由處理器1 03控制以使用適應性波束成型傳輸内 容至接收器裝置141。 在一實施例中,接收器裝置141包含一處理器112、一可 選基頻處理組件111、一相控陣列天線11〇及一無線通信頻 118831.doc -12- 200803236 道介面109。相控陣列天線110包含一射頻(RF)發射器,該 發射器具有一數位控制之相控陣列天線,該天線耦接至處 理器112且由處理器112控制以使用適應性波束成型自發射 器裝置140接收内容。 在一實施例中,處理器103產生基頻信號,該等信號在 由相控陣列天線105進行無線傳輸之前由基頻信號處理1〇4 進行處理。在此情況下,接收器裝置141包括基頻信號處 理以將相控陣列天線110所接收之類比信號轉換為由處理 器112進行處理之基頻信號。在一實施例中,基頻信號為 正交分頻多工(OFDM)信號。在一實施例中,基頻信號為 單個之載波相位、振幅,或相位與振幅調變信號。 在一實施例中,發射器裝置140及/或接收器裝置141為 單獨收發器之部分。 發射器裝置140及接收器裝置141使用允許波束操控的具 適應性波束成型之相控陣列天線來執行無線通信。波束成 型在此項技術中眾所熟知。在一實施例中,處理器1⑽發 送數位控制^訊至相控陣列天線1 〇 5以指示用來偏移相控 陣列天線105中之一或多個移相器的量,從而操控藉此以 此項技術中眾所熟知之方式形成之波束。處理器1丨2同樣 使用數位控制資訊來控制相控陣列天線丨1 〇。使用發射器 裝置140中之控制頻道121及接收器裝置ι41中之控制頻道 122發送數位控制資訊。在一實施例中,數位控制資訊包 含一組係數。在一實施例中,處理器1〇3及112中之每一者 包含一數位信號處理器。 118831.doc •13· 200803236 無線通信鏈路介面106耦接至處理器i〇3,且在無線通信 鏈路107與處理器1〇3之間提供一介面以傳達關於相控陣列 天線之使用的天線資訊且傳達資訊以有助於在另一位置處 播放内容。在一實施例中,在發射器裝置14〇與接收器裝 置141之間傳送以有助於播放内容之資訊包括:自處理器 103發送至接收器裝置141之處理器U2之加密密鑰及一或 多個自接收器裝置141之處理器112發送至發射器裝置14〇 之處理器103之確認。 無線通信鏈路107亦在發射器裝置14〇與接收器裝置141 之間傳送天線資訊。在相控陣列天線1〇5及11〇之初始化期 間,無線通信鏈路107傳送資訊以使處理器1〇3能夠為相控 陣列天線105選擇方向。在一實施例中,該資訊包括(但不 限於):天線位置資訊及對應於天線位置之效能資訊,例 如一或多對包括相控陣列天線110之定位及用於該天線定 位之頻道之信號強度的資料。在另一實施例中,該資訊包 括(但不限於):由處理器112發送至處理器1〇3以使處理器 1 〇3此夠確疋使用相控陣列天線1 〇$之哪些部分來傳送内容 的資訊。 當相控陣列天線105及110以某一模式操作而在以該模式 操作期間該等天線可傳送内容(例如,HDMI内容)時,無 線通信鏈路107傳送來自接收器裝置141之處理器ιΐ2對通 信路徑之狀態的指示。對通信狀態的指示包含來自處理器 112促使處理器1〇3在另一方向(例如,至另一頻道)上操控 波束的指示。此促使可回應對内容之部分之傳輸的干擾: 118831.doc -14- 200803236 進行。該資訊可指定處理器103可使用之一或多個替代頻 道。 在一實施例中,天線資訊包含由處理器U2發送以指定 一位置之資訊,接收器裝置141將引導相控陣列天線11〇至 此位置。在初始化期間,當發射器裝置14〇告知接收器裝 置141將其天線定位於何處以便進行信號品質量測從而識 別出最佳頻道時,此方式係可用的。所指定之定位可為一 確切位置或可為一相對位置,例如,發射器裝置14〇及接 收器裝置所遵循之一預定位置順序中之下一位置。While the discussion of HDMI and DVI is generally focused on wired communications, the use of wireless communications to transmit content has become increasingly popular. Although there is currently a lot of attention to cellular technology and wireless networks, there is an increasing interest in unlicensed spectrum near 60 GHz for wireless video transmission or very high speed network connections. More specifically, 'in the United States and Japan, the adjacent bandwidth of the open 7 coffee is used for unauthorized use at a millimeter wave frequency around 60 GHz. [Inventive content] A radio frequency (RF) transmitter is coupled to - #处理为 and controlled by the processor to transfer data. A physical layer circuit is attached to the RF transmitter to push and encode between a digital signal and a modulation analog signal. The physical layer circuit includes a high rate physical layer circuit (Η lWRP) and a low rate physical layer circuit (LRP). From the low-rate physical layer, the mine tail is reversed? The resulting low rate channel shares the same frequency band as the high rate channel corresponding to one of the high rate physical layer circuits 1). [Embodiment] 118831.doc 200803236 The present invention discloses an apparatus and method for wireless communication. In one embodiment, a wireless communication transceiver having an adaptive beamforming antenna is used for wireless communication. As is apparent to those skilled in the art, wireless communication can be performed using a wireless receiver or transmitter. In an embodiment, the wireless communication includes an additional link or channel for transmitting information between the transmitter and the receiver. This link can be unidirectional or bidirectional. In one embodiment, the channel is used to transmit antenna information from the receiver back to the transmitter, thereby enabling the transmitter to adapt its antenna array to find the path in the other direction by manipulating the antenna elements. This method avoids obstacles. In one embodiment, the link is also used to transmit information corresponding to wirelessly transmitted content (e.g., wireless video). This information can be content protection information. For example, in one embodiment, the link is used to transmit an encryption key and an encryption key confirmation when the transceiver transmits HDMI data. Thus, in one embodiment, the link transmits control information and content protection information. This extra link can be an independent channel in the 60 GHz band. In an alternate embodiment, the link can be a wireless channel in the 2.4 GHz or 5 GHz band. In the following description, numerous details are set forth to provide a more comprehensive explanation of the invention. However, the present invention may be practiced without these specific details, as will be apparent to those skilled in the art. In other instances, well-known structures and devices are shown in the form of block diagrams and are not shown in detail in order to avoid obscuring the invention. Some portions of the detailed description that follows are presented in terms of calculations and symbolic representations of operations performed on the information bits in the computer memory. Such performances 118831.doc 200803236 Different descriptions and representations are used by those skilled in the art to best convey the essence of their work to those skilled in the art. The algorithm is here and is generally envisaged as a self-consistent sequence of steps that produce the desired result. These steps are steps that require physical manipulation of physical quantities. Usually, although not necessarily, such quantities are in the form of electrical or magnetic signals that can be stored, transferred, combined, compared and otherwise manipulated. In principle, it has proven convenient at times, principally, to refer to such signals as bits, values, elements, symbols, characters, terms, numbers, or the like. However, it should be borne in mind that all such and similar terms should be combined with the appropriate physical quantities and are merely the convenience of the application. Unless otherwise expressly stated (as will be apparent from the description below), it should be understood that throughout the description, such as processing '' or π computing, or 'calculating' or 'determining' or 'display' The discussion of the terminology of , or the like, refers to the act and process of a computer system or similar electronic computing device, which is expressed as a physical (electronic) amount of data manipulation in a computer system register and memory. Transitions to other materials that are similarly represented as computer system memory or as a physical quantity in a storage or transmission or display device of such other information. The present invention is also directed to apparatus for performing the operations herein. The device may be specially constructed for the desired purpose, or it may comprise a general purpose computer, the brain being selectively activated or reconfigured by a computer program stored in the computer. The computer program may be stored in a computer readable storage medium. For example (=: limited to) any type of disc, including flexible disk, optical disc, optical read memory (CD-R0M) and magneto-optical disc, read-only memory (r〇m), Random 118831.doc 200803236 Access memory (RAM), erasable programmable read-only memory (epr〇m), electronic erasable programmable read-only memory (EEpR〇M), magnetic or optical card or any - Types are suitable for media storing electronic instructions, and each of these media is coupled to a computer system bus. The algorithms and displays presented herein are not intrinsically related to any particular computer or other device. Various general-purpose systems may be used in conjunction with the programs taught herein, or more specialized apparatus may be conveniently constructed for performing the required method steps. The structures required for the various such structures will appear from the description below. The invention is described with reference to any specific programming language. It will be appreciated that the teachings of the present invention as described herein can be implemented using a variety of programming languages. - Machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a memory ("ROM"); a random access memory ("RAM"); a disk storage medium; an optical storage medium; a flash memory device; electrical, optical , acoustic or other forms of propagating signals (eg, carrier waves, infrared signals, digital signals, etc.). An Example of a Communication System FIG. 1 is a block diagram of an embodiment of a communication system. Referring to W, the system includes a media receiver 100, a media receiver interface 1, a transmitting device 140, a receiving device 141, a media player interface 113, a media player 114, and a display 115. Media receiver 100 receives content from a source (not shown). In one embodiment, media receiver 100 includes a video converter. This content may include base 118831.doc •10· 200803236 frequency bit video, such as (but not limited to) within the range of 11]0]^1 or 〇¥1. In this case, media receiver i00 may include a transmitter (e.g., an 'HDMI transmitter) to forward the received content. The media receiver 100 transmits the content 1〇1 to the transmitter device 140 via the media receiver interface 1〇2. In an embodiment, the media receiver interface 1 〇 2 includes logic to convert the content 101 to HDMI content. In this case, the media receiver interface 102 can include an HDMI plug and the content 101 is transmitted via a wired connection; however, it can be transmitted via a wireless connection. In another embodiment, content 1 〇 1 contains D VI content. In one embodiment, the transfer of content 101 between media receiver interface 102 and transmitter device 140 is performed over a wired connection; however, the transfer can occur via a wireless connection. Transmitter device 140 wirelessly transmits information to receiver device 141 using two wireless connections. One of the wireless connections is via a phased array antenna with adaptive beamforming. Another wireless connection is via wireless communication channel 107, referred to herein as a back channel. In one embodiment, 'WirelessC# channel 10 7 is unidirectional. In an alternate embodiment, the wireless communication channel 107 is bidirectional. The receiver device 141 transmits the content received from the transmitter device 140 to the media player 114 via the media player interface 113. In one embodiment, content transfer between the receiver device 141 and the media player interface 113 is via a wired connection; however, the transfer can be via a wireless connection. In one embodiment, the media player interface U3 includes an hdMU# header. Similarly, content transfer between the media player interface 113 and the media player 114 118831.doc • 11·200803236 is via a wired connection; however, the transfer can occur via a wireless connection. The media player 114 causes the content to be played on the display 115. In one embodiment, the content is HDMI content and the media player 114 communicates the media content to the display via a wired connection; however, the transmission can occur via a wireless connection. Display 115 can include a plasma display, a liquid crystal display (LCD), a cathode ray tube (crt), and the like. Note that the system of Figure 1 can be modified to include a DVD player/recorder instead of a DVD player/recorder for receiving and playing and/or recording the content. In one embodiment, the transmitter 140 and media receiver interface 1〇2 are part of the media receiver 100. Similarly, in one embodiment, the receiver 14, the media player interface 113, and the media player 114 are all part of the same device. In an alternate embodiment, the receiver 14A, the media player interface 113, the media player 114, and the display 115 are all part of the display. An example of such a device is shown in Figure 3. In one embodiment, the transmitter device 140 includes a processor 101, an optional baseband processing component 104, a phased array antenna 105, and a wireless communication channel interface 106. The phased array antenna 1〇5 includes a radio frequency (RF) transmitter having a digitally controlled phased array antenna coupled to the processor 103 and controlled by the processor 103 for transmission using adaptive beamforming. Content to the receiver device 141. In one embodiment, the receiver device 141 includes a processor 112, an optional baseband processing component 111, a phased array antenna 11A, and a wireless communication frequency 118831.doc -12-200803236 track interface 109. Phased array antenna 110 includes a radio frequency (RF) transmitter having a digitally controlled phased array antenna coupled to processor 112 and controlled by processor 112 for use with adaptive beamforming from the transmitter device 140 receives the content. In one embodiment, processor 103 generates baseband signals that are processed by baseband signal processing 1〇4 prior to wireless transmission by phased array antenna 105. In this case, the receiver device 141 includes baseband signal processing to convert the analog signal received by the phased array antenna 110 into a baseband signal processed by the processor 112. In an embodiment, the baseband signal is an orthogonal frequency division multiplexing (OFDM) signal. In one embodiment, the baseband signal is a single carrier phase, amplitude, or phase and amplitude modulated signal. In an embodiment, transmitter device 140 and/or receiver device 141 are part of a separate transceiver. Transmitter device 140 and receiver device 141 perform wireless communication using a phased array antenna with adaptive beamforming that allows beam steering. Beamforming is well known in the art. In one embodiment, processor 1 (10) sends a digital control signal to phased array antenna 1 〇 5 to indicate the amount used to offset one or more phase shifters in phased array antenna 105, thereby Beams formed in a manner well known in the art. Processor 1丨2 also uses digital control information to control the phased array antenna 丨1 〇. The digital control information is transmitted using the control channel 121 in the transmitter device 140 and the control channel 122 in the receiver device ι41. In one embodiment, the digital control information includes a set of coefficients. In one embodiment, each of processors 1〇3 and 112 includes a digital signal processor. 118831.doc • 13· 200803236 The wireless communication link interface 106 is coupled to the processor i〇3 and provides an interface between the wireless communication link 107 and the processor 1〇3 to convey the use of the phased array antenna. Antenna information and convey information to help play content at another location. In an embodiment, the information transmitted between the transmitter device 14 and the receiver device 141 to facilitate playback of the content includes: an encryption key sent from the processor 103 to the processor U2 of the receiver device 141 and a Or a plurality of acknowledgments from the processor 112 of the receiver device 141 to the processor 103 of the transmitter device 14. The wireless communication link 107 also transmits antenna information between the transmitter device 14A and the receiver device 141. During initialization of phased array antennas 1〇5 and 11〇, wireless communication link 107 transmits information to enable processor 1〇3 to select direction for phased array antenna 105. In one embodiment, the information includes, but is not limited to, antenna position information and performance information corresponding to the antenna position, such as one or more pairs of signals including the position of the phased array antenna 110 and the channel used for the antenna positioning. Strength data. In another embodiment, the information includes, but is not limited to, sent by the processor 112 to the processor 1〇3 to enable the processor 1 to determine which portions of the phased array antenna 1 〇$ are used. Information about the content being delivered. When the phased array antennas 105 and 110 operate in a mode that can transmit content (e.g., HDMI content) during operation in the mode, the wireless communication link 107 transmits a pair of processor ι2 from the receiver device 141. An indication of the status of the communication path. The indication of the communication status includes an indication from processor 112 that causes processor 1〇3 to manipulate the beam in another direction (e.g., to another channel). This motivates the response to interference with the transmission of part of the content: 118831.doc -14- 200803236. This information may specify that processor 103 may use one or more alternate channels. In one embodiment, the antenna information includes information transmitted by processor U2 to specify a location, and receiver device 141 will direct phased array antenna 11 to this location. This mode is available during initialization during initialization when the transmitter device 14 informs the receiver device 141 where to locate its antenna for signal quality measurements to identify the best channel. The designated location may be an exact location or may be a relative location, e.g., one of the predetermined locations of the sequence of locations followed by the transmitter device 14 and the receiver device.
在一實施例中,無線通信鏈路1〇7將資訊自接收器裝置 14 1傳送至發射器裝置140來指定相控陣列天線丨丨〇之天線 特徵或反之。 V 收發器架構之一實例 圖2為適應性波束成型多天線無線電系統之一實施例的 方塊圖,該系統含有圖丨之發射器裝置14〇及接收器裝置 ⑷。收發器200包括多個獨立的傳輸及接收鏈。收發器 使用-採取相同叩信號之相控陣列執行相控陣列波束 成型’且偏移此陣列中之-或多個天線元件之相位來達成 波束操控。 參看圖2,數位信號處理器(Dsp)2〇i將内容格式化且產 生即時基頻信號。DSP 可提供調變、FEC編碼、封包 裝配、交錯及自動增益控制。 然後DSP 201轉發基頻信號以在發射器之rf部分上調變 且向外發迗。在一實施例中,内容經以此項技術中眾所熟 118831.doc •15- 200803236 知之方式調變為OFDM信號。 數位/類比轉換器(DAC)202接收自DSP 201輸出之數位信 5虎且將其轉換為類比信號。在一實施例中,自DAC 202輸 出之信號為在0 MHz至256 MHz之間的信號。在一替代實 施例中,自DAC 202輸出之信號為在〇 MHz至750 MHz之 間的信號。 混頻器203接收自DAC 202輸出之信號且將其與來自本 機振盪器(LO)204之信號組合。自混頻器203輸出之信號處 於中頻。在一實施例中,中頻係在2 GHz至15 GHz之間。 多個移相器205_接收來自混頻器203之輸出。包括一倍 減器以控制哪些移相器接收信號。在一實施例中,此等移 相器為經量化之移相器。在一替代實施例中,該等移相器 可由複數乘法器替代。在一實施例中,DSP 20 1亦經由控 制頻道208控制相控陣列天線220中之該等天線元件中之每 一者中之電流的相位及量值,從而以此項技術中眾所熟知 之方式產生所需波束場型。換言之,DSP 201控制相控陣 列天線220之移相器205〇·Ν以產生所需場型。 移相器205〇-Ν中之每一者產生一輸出,該輸出被發送至 將信號放大之功率放大器206〇-Ν中之一者。經放大之信號 被發送至具有多個天線元件2〇7G-N之天線陣列2〇7。在一實 施例中,自天線207〇_Ν傳輸之信號為在56 GHz至64 GHz之 間的射頻信號。因此,多個波束自相控陣列天線22〇輸 出。 對於接收器,天線210〇_N自天線207G-N接收無線傳輸且將 118831.doc -16 - 200803236 其提供至移相器211〇_Ν。如以上所討論,在一實施例中, 移相器211〇_N包含經量化之移相器。或者,移相器211〇^可 由複數乘數器替代。移相器211 〇-N自天線21 〇0_N接收信號, 該等信號經組合以形成以一單路饋線輸出。在一實施例 中’一多工器用於組合來自不同元件之信號且輸出該單路 饋線。移相器211〇·Ν之輸出被輸入至中頻(ip)放大器212, 该放大器將信號之頻率降低至中頻。在一實施例中,中頻 係在2 GHz至9 GHz之間。 此頻器213接收IF放大器212之輸出且以此項技術中眾所 熟知之方式將其與來自LO 214之信號組合。在一實施例 中,混頻器213之輸出為在〇 MHz至約250 MHz之範圍内的 信號。在一實施例中,各頻道有〗及q信號。在一替代實施 例中,混頻器213之輸出為在〇 MHz至約750 MHz之範圍内 的信號。 類比/數位轉換器(ADC)215接收混頻器213之輸出且將其 轉換為數位形式。來自ADC 2 15之數位輸出係由DSP 216 接收。DSP 2 16復原信號之振幅及相位。DSP 201可提供解 調變、封包拆卸、反交錯、FEC解碼及自動增益控制。 在一實施例中,該等收發器中之每一者包括一控制微處 理器,該微處理器為DSP建立控制資訊。該控制微處理器 可與DSP處於同一晶粒上。 DSP控制之適應性波束成型 在一實施例中,DSP實施一適應性演算法,使波束成型 加權在硬體中實施。亦即,發射器及接收器共同工作以使 118831.doc •17- 200803236 用數位控制類比移相器來執RRF頻率中之波束成型;然 而,在-替代實施例中,波束成型係㈣中執行。移相器、 205G_N&211()_N分別經由控制頻道2〇8及控制頻道217經其各 自之DSP以此項技術中眾所熟知之方式而控制。舉例而 言,DSP 201控制移相器205〇n以使發射器執行適應性波束 成型從而操控波束,而DSP 201控制移相器211〇·ν以引導天 線元件接收來自天線元件的無線傳輸且組合來自不同元件 之信號從而形成一單路饋線輸出。在一實施例中,一多工 用於組合來自不同元件之信號且輸出該單路饋線。 DSP 201藉由脈衝或激發來執行波束操控,適當之移相 器連接至各天線元件。在DSP 201下之脈衝演算法控制各 元件之相位及增益。執行DSP控制之相控陣列波束成型在 此項技術中眾所熟知。 適應性波束成型天線用於避免干擾阻礙。藉由調適波束 成型及操控波束,可避免阻礙而進行通信,該等障礙可妨 礙或干擾發射器與接收器之間的無線傳輸。 在一實施例中,關於適應性波束成型天線,其具有三個 操作階段。該三個操作階段為訓練階段、搜尋階段及追蹤 階段。訓練階段及搜尋階段在初始化期間進行。訓練階段 確定具有預定序列之空間場型(4}及的頻道概況。搜 尋階段計算候選空間場型{4}、{巧}之列表,且選擇一首 選{4,巧}用於在一收發器之發射器與另一收發器之接收器 之間的資料傳輸。追蹤階段保持對候選列表之強度的追 蹤。當首選被阻礙時,選擇下一對空間場型使用。 118831.doc -18- 200803236 在一實施例中,在訓練階段期間,發射器向外發送某一 序列之空間場型{4}。對於各空間場型{4}而言,接收器 將所接收之#號投射至另一序列之場型丨巧}上。投射之結 果為:在{4},{巧}之對上得到頻道概況。 在一實施例中,在發射器與接收器之間執行徹底訓練, 其中接收器之天線定位於所有位置且發射器發送多個空間 場型。徹底訓練在此項技術中眾所熟知。在此情況下,由 發射器傳輸Μ個傳輸空間場型且由接收器接收^^個接收空 間場型以形成一ΝΧΜ之頻道矩陣。因此,發射器遍曆傳輸 扇區之場型且接收器搜尋以發現用於該傳輸之最強信號。 然後,發射器移動至下一扇區。在徹底搜尋過程之終點, 獲得發射器及接收器之所有定位的分級及在彼等定位處之 頻道之佗號強度。資訊保持為天線所指之定位與頻道之信 號強度的配對。該列表可在有干擾情況下用於操控天線波 束。 在一替代實施例中,使用二區段訓練,其中所發送之正 父天線場型將空間分為接連之狹窄區段從而獲得一頻道概 況。 假没DSP 1 〇 1處於一穩定狀態且天線應指向之方向已確 定。在標稱狀態下,DSP將具有一組其發送至移相器之係 數。忒等係數為信號之對應天線指示移相器偏移信號的相 位里。舉例而言,DSP 1 〇 1發送一組數位控制資訊至移相 器’指示不同的移相器將偏移不同量,例如,偏移3〇度、 偏移45度、偏移90度、偏移180度等。因此,發送至天線 118831.doc -19· 200803236 兀件之信號的相位將偏移特定數目的度數。將(例如)陣列 中16、34、32、64元件偏移不同量之最後結果使天線能夠 被操控至為接收天線提供最敏感接收位置的方向上。亦 即’整個天線陣列上之複合組合之偏移提供改變天線之最 敏感點在半球上所指處的能力。 注意’在一實施例中,在發射器與接收器之間的適當連 接可不為自發射器至接收器之直接路徑。舉例而言,最適 當路徑可自最高限度上彈回。 回返頻道 在一實施例中,無線通信系統包括一用於在無線通信裝 置(例如,發射器與接收器、一對收發器等)之間傳輸資訊 之回返頻道或鏈路。該資訊係關於波束成型天線且該資訊 使無線通信裝置中之一者或兩者能夠調適天線元件之陣列 從而更佳地將發射器之天線元件至接收裝置之天線元件引 導至一起。該資訊亦包括有助於使用在發射器與接收器之 天線元件之間無線傳送之内容的資訊。 在圖2中,回返頻道220係耦接於DSP 216與DSP 201之間 以使DSP 216能夠發送追蹤及控制資訊至DSP 201。在一實 施例中,回返頻道220充當高速度下行鏈路及確認頻道。 在一實施例中,回返頻道亦用於傳送對應於應用的資 訊,無線通信係針對此應用而進行(例如,無線視訊)。此 資訊包括内容保護資訊。舉例而言,在一實施例中,回返 頻道用於在收發器傳送HDMI資料時傳送加密資訊(例如, 加密密鑰及加密密鑰之確認)。在此情況下,回返頻道用 118831.doc -20- 200803236 於内容保護通信。 更明確言之,在HDMI中,加密係用於驗證資料儲集器 為一經許可之裝置(例如,經許可之顯示器)。當傳送 HDMI資料流時,傳送連續之新加密密鑰流以驗證經許可 之裝置未被改變。HD TV資料之訊框之區塊由不同之密鑰 加密,且然後該等密鑰必須在回返頻道220上進行回返確 認以驗證播放器。回返頻道220在正向上傳送加密密鑰至 接收器,且在返回方向上傳送來自接收器之密鑰接收之確 認。因此,所加密之資訊在兩個方向上發送。 回返頻道用於内容保護通信係有益的,此係因為當該等 通信與内容-同發送時,其避免了必須完成超長再訓練過 程。舉例而言,若將來自發射器之密鍮與流經主鏈路之内 容一起發送且主鏈路斷開,則對於典型之HDMI/HDcp系 統而言,其將強加超長之2秒至3秒之再訓練。在一實施例 中,與給出其全向方位之主方向鏈路減,此分開之雙向 鏈路具有更高之可靠性。藉由將此回返頻道用於HDcp密 鑰及來自接收裝置之回返確認的通信,可在甚至最具衝擊 性之阻礙之情況下避免耗時之再訓練。 在作用中期間’當波束成型天線正傳送内容時,回返頻 j用於允許接收器it知發射器關於頻道之狀態。舉例而 。,S波束成型天線之間的頻道具有充分品質時,接收器 在回返頻道上發送資訊以指示頻道係可接受的。接收器亦 可使用回返頻道發送發射器可量化資訊,料資訊指示正 在使用之頻道之品f。若|生某種形式之如下干擾(例 118831.doc • 21 · 200803236 如,阻礙)··其將頻道之品質降級至可接受位準之下或妨 礙波束成型天線之間的完全傳輸,則接收器可指示頻道不 ^可接受及/或可要求在回返頻道上之頻道的改變。接收 器:要求改變至-預定組之頻道中之下一頻道,或可為發 射器指定一特定頻道以供使用。 在一實施例中,回返頻道係雙向的。在此情況下,在一 =把例中’發射器使用回返頻道以發送資訊至接收器。此 育訊可包括指令接收器將其天線元件定位於不同固定位置 (發射器將在初始化期間掃描該等位置)之資訊。發射器可 藉由以下對此進行指定:藉由明確地指明此位置,或藉由 指示接收器應繼續行谁5 ^ l2r ^ 只仃進至一預定順序或列表中(發射器與 接收器兩者皆行進遍曆此皮 傻此順序或列表)所指明之下一位 置。 在一實施例中,回并i、皆Iw 返頻道由發射器及接收器中之任一者 或兩者使用以將特定夭綠主 一 疋天線特徵貧訊通知至另一者。舉例而 a 亥天線特徵資訊可少 才日疋天線犯接受低至6度之半徑解 析度及天線具有特定數 数目之兀件(例如,32個元件、64個 元件等)。 在一實施例中,藉由使 便用;丨面早兀在回返頻道上執 線通信。可使用任一形 …、 夕式之無線通信。在一實施例中, OFDM用於在回返頻道 、上得达貝訊。在另一實施例中,且 低的峰值對平均功率比 /、 旱的連續相位調變(CPM)用於在θ 返頻道上傳送資訊。 仕口 實體層(ΡΗΥ)概述 118831.doc -22- 200803236 無線HD規範支援兩種基本類型之PHY :高速率 PHY(HRP)及低速率 PHY(LRP)。 根據一實施例,HRP支援多個Gbps之資料速率。HRP可 以定向模式(通常為波束成型模式)操作。HRP可用於傳輸 音訊、視訊、資料及控制訊息。LRP僅可自HTx/HTR裝置 發送至HRx/HTR裝置。在一實施例中,HRP佔據大概1·7 GHz之頻寬。 根據一實施例,LRP支援多個Mbps之資料速率。LRP可 以定向、全向或波束成型模式操作。在一實施例中,LRP 可用於傳輸控制訊息、信標及確認。在一替代實施例中, LRP可進一步用於傳輸音訊或壓縮視訊。在又一實施例 中,LRP可進一步用於傳輸低速度資料。LRP可在任何裝 置之間發送。LRP佔據如下所討論之HRP頻道之三個9 1 MHz之副頻道中之一者。 頻率計劃 HRP及LRP可共用同一頻帶。圖4說明針對HRP及LRP之 頻率計劃之一實施例。低速率頻道404與對應高速率頻道 402共用同一頻帶。三個低速率頻道1A、IB、1C可配置於 各高速率頻道頻寬(頻道1)中以避免干擾。根據另一實施 例,低速率及高速率頻道可以分時雙工模式操作。圖4說 明四個在57 GHz至66 GHz之間的頻道之實例:頻道1在 57.2 GHz與59.2 GHz之間操作,頻道2在59·4 GHz與61.4 GHz之間操作,頻道3在61.6 GHz與63.6 GHz之間操作,頻 道4在63.8 GHz與65.8 GHz之間操作。 118831.doc •23· 200803236 單個低成本晶體振盪器能夠產生該等頻率。基頻時鐘頻 率可接近2·5 GHz(例如,2.508 GHz)。根據一實施例,頻 率計劃可支援易於實施之RF合成器的設計。所得中心頻率 可為:58.608 GHz、60.720 GHz、62.832 GHz 及 64.944 GHz。可能之晶體頻率可包括44 MHz,、66 MHz及132 MHz。 高速率PHY(HRP) HRP可支援 3.76 Gbps、1·88 Gbps、0.94 Gbps之資料速 率。資料速率可視需要個別對應於針對各種取樣率之 1080p、1080i、480p的視訊解析度標準。因此,該範圍可 在較低之資料速率時增加。較高之PHY速率仍可允許多個 經由MAC之較低速率流。 HRP可利用若干類型之編碼及調變:OFDM、16QAM及 QPSK調變、内部迴旋碼(1/3、2/3、4/7、4/5速率)及速率 0.96之裏德-所羅門(Reed-Solomon)外碼。除内部迴旋碼以 外,裏德-所羅門外碼之使用將SNR之要求較低了約2 dB。 可使用外部交錯器來實現外碼的完全增益。 HRP可在全域60 GHz帶上利用四個頻道用於1.7 GHz之 作用中頻道頻寬。根據一實施例,每一區域可存在三個頻 道。 HRP可經擴充以包括FEC流之並行化,從而用於節省成 本之實施及對不等誤碼保護(UEP)概念之支援。 圖5A說明一 Tx PHY方塊圖之一實施例。擾碼器502接收 LMAC資料且將其饋入MSB/LSB分離區塊504。對於 118831.doc -24- 200803236 MSB,可栋田μ 。 RS、、扁碼器506及外部交錯器510。對於LSB, 可使用RS編碼器5〇8及外部交錯器。擊穿電路川可麵 ,卜P交錯裔510及512。以下電路形成在擊穿電路5 14 抑/ 、序歹厂負料多工器5 16、位元交錯器51 8、QAM映射In one embodiment, the wireless communication link 101 transmits information from the receiver device 14 1 to the transmitter device 140 to specify the antenna characteristics of the phased array antenna or vice versa. One example of a V transceiver architecture Figure 2 is a block diagram of one embodiment of an adaptive beamforming multi-antenna radio system that includes a transmitter device 14A and a receiver device (4). Transceiver 200 includes a plurality of independent transmit and receive chains. The transceiver uses a phased array of the same chirp signal to perform phased array beamforming' and offsets the phase of the antenna or elements in the array to achieve beam steering. Referring to Figure 2, the digital signal processor (Dsp) 2〇i formats the content and produces an instantaneous baseband signal. The DSP provides modulation, FEC encoding, packet assembly, interleaving, and automatic gain control. The DSP 201 then forwards the baseband signal to modulate and modulate outward on the rf portion of the transmitter. In one embodiment, the content is modulated into an OFDM signal in a manner known to those skilled in the art 118831.doc • 15-200803236. A digital/analog converter (DAC) 202 receives the digital signal output from the DSP 201 and converts it to an analog signal. In one embodiment, the signal output from DAC 202 is a signal between 0 MHz and 256 MHz. In an alternate embodiment, the signal output from DAC 202 is a signal between 〇 MHz and 750 MHz. Mixer 203 receives the signal output from DAC 202 and combines it with the signal from local oscillator (LO) 204. The signal output from the mixer 203 is at the intermediate frequency. In an embodiment, the intermediate frequency is between 2 GHz and 15 GHz. A plurality of phase shifters 205_ receive the output from the mixer 203. A doubler is included to control which phase shifters receive signals. In one embodiment, the phase shifters are quantized phase shifters. In an alternate embodiment, the phase shifters can be replaced by a complex multiplier. In one embodiment, DSP 20 1 also controls the phase and magnitude of the current in each of the antenna elements in phased array antenna 220 via control channel 208, as is well known in the art. The way produces the desired beam pattern. In other words, the DSP 201 controls the phase shifters 205 Ν·Ν of the phased array antenna 220 to produce the desired field pattern. Each of the phase shifters 205〇-Ν produces an output that is sent to one of the power amplifiers 206〇-Ν that amplifies the signal. The amplified signal is sent to an antenna array 2〇7 having a plurality of antenna elements 2〇7G-N. In one embodiment, the signal transmitted from the antenna 207 〇 Ν is a radio frequency signal between 56 GHz and 64 GHz. Therefore, a plurality of beams are output from the phased array antenna 22A. For the receiver, the antenna 210〇_N receives the wireless transmission from the antenna 207G-N and provides 118831.doc -16 - 200803236 to the phase shifter 211〇_Ν. As discussed above, in one embodiment, the phase shifter 211 〇 _N includes a quantized phase shifter. Alternatively, the phase shifter 211 can be replaced by a complex multiplier. Phase shifter 211 〇-N receives signals from antenna 21 〇0_N, which are combined to form a single feed line output. In one embodiment, a multiplexer is used to combine signals from different components and output the single feed. The output of the phase shifter 211 〇 Ν is input to an intermediate frequency (ip) amplifier 212, which reduces the frequency of the signal to the intermediate frequency. In one embodiment, the intermediate frequency is between 2 GHz and 9 GHz. This frequency 213 receives the output of IF amplifier 212 and combines it with the signal from LO 214 in a manner well known in the art. In one embodiment, the output of mixer 213 is a signal in the range of 〇 MHz to about 250 MHz. In one embodiment, each channel has a ** and a q signal. In an alternate embodiment, the output of mixer 213 is a signal in the range of 〇 MHz to about 750 MHz. An analog/digital converter (ADC) 215 receives the output of mixer 213 and converts it to digital form. The digital output from ADC 2 15 is received by DSP 216. The DSP 2 16 restores the amplitude and phase of the signal. The DSP 201 provides demodulation, packet deassembly, deinterlacing, FEC decoding, and automatic gain control. In one embodiment, each of the transceivers includes a control microprocessor that establishes control information for the DSP. The control microprocessor can be on the same die as the DSP. DSP-Controlled Adaptive Beamforming In one embodiment, the DSP implements an adaptive algorithm that enables beamforming weighting to be implemented in hardware. That is, the transmitter and receiver work together to enable the beam shaping in the RRF frequency with a digitally controlled analog phase shifter; however, in an alternative embodiment, the beamforming system (4) performs . The phase shifters, 205G_N & 211()_N are controlled via control channels 2〇8 and control channels 217, respectively, via their respective DSPs in a manner well known in the art. For example, DSP 201 controls phase shifter 205〇n to cause the transmitter to perform adaptive beamforming to manipulate the beam, while DSP 201 controls phase shifter 211〇ν to direct the antenna element to receive wireless transmissions from the antenna elements and combine Signals from different components form a single feeder output. In one embodiment, a multiplex is used to combine signals from different components and output the single feed. The DSP 201 performs beam steering by pulse or excitation, and a suitable phase shifter is connected to each antenna element. The pulse algorithm under DSP 201 controls the phase and gain of each component. Phased array beamforming to perform DSP control is well known in the art. Adaptive beamforming antennas are used to avoid interference barriers. By adapting the beamforming and steering the beam, communication can be avoided without hindering the wireless transmission between the transmitter and the receiver. In an embodiment, with respect to an adaptive beamforming antenna, it has three phases of operation. The three operational phases are the training phase, the search phase and the tracking phase. The training phase and the search phase are performed during the initialization period. The training phase determines the spatial profile of the predetermined sequence (4} and the channel profile. The search phase calculates the list of candidate spatial patterns {4}, {巧}, and selects a preferred {4, smart} for use in a transceiver. Data transfer between the transmitter and the receiver of the other transceiver. The tracking phase keeps track of the strength of the candidate list. When the first choice is blocked, the next pair of spatial fields are selected for use. 118831.doc -18- 200803236 In an embodiment, during the training phase, the transmitter transmits a sequence of spatial patterns {4} outward. For each spatial pattern {4}, the receiver projects the received ## to another The result of the projection is: the channel profile is obtained on the pair of {4}, {巧}. In an embodiment, thorough training is performed between the transmitter and the receiver, wherein the receiver The antenna is positioned at all locations and the transmitter transmits multiple spatial patterns. Thorough training is well known in the art. In this case, one transmission space pattern is transmitted by the transmitter and received by the receiver. Receive spatial field type to form a frequency The track matrix. Therefore, the transmitter traverses the field pattern of the transmission sector and the receiver searches to find the strongest signal for the transmission. Then, the transmitter moves to the next sector. At the end of the thorough search process, the transmitter is obtained. And the grading strength of all the positioning of the receiver and the nickname of the channel at the same position. The information remains the pairing of the position indicated by the antenna and the signal strength of the channel. This list can be used to control the antenna beam in the presence of interference. In an alternate embodiment, two-segment training is used in which the transmitted positive parent antenna field type divides the space into successive narrow segments to obtain a channel profile. False DSP 1 〇 1 is in a steady state and the antenna The direction that should be pointed is determined. In the nominal state, the DSP will have a set of coefficients that it sends to the phase shifter. The equal coefficient is the phase of the corresponding antenna indicating the phase shifter offset signal. For example, DSP 1 〇1 sends a set of digital control information to the phase shifter' indicating that different phase shifters will shift different amounts, for example, offset by 3 degrees, offset by 45 degrees, offset by 90 degrees, offset by 180 degrees Therefore, the phase of the signal sent to the antenna 118831.doc -19·200803236 will be offset by a certain number of degrees. For example, the 16, 36, 32, 64 components in the array are offset by different amounts of the final result to make the antenna It can be manipulated to provide the most sensitive receiving position for the receiving antenna. That is, the offset of the composite combination on the entire antenna array provides the ability to change the position of the most sensitive point of the antenna on the hemisphere. In an example, the appropriate connection between the transmitter and the receiver may not be a direct path from the transmitter to the receiver. For example, the most appropriate path may bounce back from the ceiling. In one embodiment, the wireless channel The communication system includes a return channel or link for transmitting information between wireless communication devices (e.g., transmitters and receivers, a pair of transceivers, etc.). This information relates to beamformed antennas and this information enables one or both of the wireless communication devices to adapt the array of antenna elements to better direct the antenna elements of the transmitter to the antenna elements of the receiving device. The information also includes information that facilitates the use of content that is wirelessly transmitted between the transmitter and receiver antenna elements. In FIG. 2, a return channel 220 is coupled between the DSP 216 and the DSP 201 to enable the DSP 216 to send tracking and control information to the DSP 201. In one embodiment, the return channel 220 acts as a high speed downlink and acknowledge channel. In one embodiment, the return channel is also used to communicate information corresponding to the application, and the wireless communication is performed for the application (e.g., wireless video). This information includes content protection information. For example, in one embodiment, the return channel is used to transmit encrypted information (e.g., an encryption key and an encryption key confirmation) when the transceiver transmits HDMI material. In this case, the return channel uses 118831.doc -20- 200803236 for content protection communication. More specifically, in HDMI, encryption is used to verify that the data store is a licensed device (eg, a licensed display). When the HDMI stream is transmitted, a continuous stream of new encryption keys is transmitted to verify that the licensed device has not been altered. The blocks of the HD TV data frame are encrypted by different keys, and then the keys must be returned on the return channel 220 for confirmation to verify the player. The return channel 220 transmits the encryption key to the receiver in the forward direction and transmits the confirmation of the key reception from the receiver in the return direction. Therefore, the encrypted information is sent in both directions. The use of a return channel for content protection communication is beneficial because it avoids having to complete a very long retraining process when the communication is sent with the content. For example, if the key from the transmitter is sent along with the content flowing through the primary link and the primary link is disconnected, for a typical HDMI/HDcp system it will impose a very long 2 seconds to 3 Retraining in seconds. In one embodiment, the separate bidirectional link has higher reliability than the primary direction link giving its omnidirectional orientation. By using this return channel for the HDcp key and communication from the receiving device's return acknowledgment, time-consuming retraining can be avoided even with the most impulsive obstacles. During the active period, when the beamforming antenna is transmitting content, the return frequency j is used to allow the receiver to know the state of the transmitter with respect to the channel. For example. When the channel between the S beamforming antennas is of sufficient quality, the receiver sends a message on the return channel to indicate that the channel is acceptable. The receiver can also use the return channel to send transmitter measurable information indicating the product f of the channel being used. If there is some form of interference (eg, 118831.doc • 21 · 200803236, if obstructed), it degrades the quality of the channel below an acceptable level or prevents complete transmission between beamforming antennas, then receives The device may indicate that the channel is not acceptable and/or may require a change in the channel on the return channel. Receiver: Requires a change to the next channel in the - scheduled group, or a specific channel can be assigned to the transmitter for use. In an embodiment, the return channel is bidirectional. In this case, in a = example, the transmitter uses the return channel to send information to the receiver. This messaging may include information that the command receiver positions its antenna elements at different fixed positions (the transmitter will scan for such positions during initialization). The transmitter may specify this by either explicitly indicating the location, or by indicating to the receiver which 5 x l2r ^ should only proceed to a predetermined order or list (transmitter and receiver) All of them travel through the position indicated by this order or list). In one embodiment, the return channel and the Iw back channel are used by either or both of the transmitter and the receiver to notify the other of the specific green primary antenna characteristics. For example, a hai antenna characteristic information can be reduced. The antenna antenna accepts a radius resolution as low as 6 degrees and the antenna has a certain number of components (for example, 32 components, 64 components, etc.). In one embodiment, the communication is performed on the return channel as soon as it is used. Any type of wireless communication can be used. In an embodiment, OFDM is used to obtain a broadcast on the return channel. In another embodiment, a low peak-to-average power ratio /, continuous phase modulation (CPM) of the drought is used to transmit information on the θ-back channel. SHIkou Physical Layer (ΡΗΥ) Overview 118831.doc -22- 200803236 The Wireless HD specification supports two basic types of PHYs: High Rate PHY (HRP) and Low Rate PHY (LRP). According to an embodiment, the HRP supports data rates of multiple Gbps. HRP can operate in a directional mode (usually beamforming mode). HRP can be used to transmit audio, video, data and control messages. The LRP can only be sent from the HTx/HTR unit to the HRx/HTR unit. In an embodiment, the HRP occupies a bandwidth of approximately 1.7 GHz. According to an embodiment, the LRP supports multiple data rates of Mbps. The LRP can operate in either directional, omnidirectional or beamforming mode. In an embodiment, the LRP can be used to transmit control messages, beacons, and acknowledgments. In an alternate embodiment, the LRP can be further used to transmit audio or compress video. In yet another embodiment, the LRP can be further used to transmit low speed data. LRP can be sent between any device. The LRP occupies one of the three 9 1 MHz subchannels of the HRP channel discussed below. Frequency plan HRP and LRP can share the same frequency band. Figure 4 illustrates one embodiment of a frequency plan for HRP and LRP. The low rate channel 404 shares the same frequency band as the corresponding high rate channel 402. The three low rate channels 1A, IB, 1C can be configured in each high rate channel bandwidth (channel 1) to avoid interference. According to another embodiment, the low rate and high rate channels can operate in a time division duplex mode. Figure 4 illustrates four examples of channels between 57 GHz and 66 GHz: Channel 1 operates between 57.2 GHz and 59.2 GHz, Channel 2 operates between 59·4 GHz and 61.4 GHz, and Channel 3 operates at 61.6 GHz. Operating between 63.6 GHz, channel 4 operates between 63.8 GHz and 65.8 GHz. 118831.doc •23· 200803236 A single low-cost crystal oscillator can generate these frequencies. The baseband clock frequency can approach 2. 5 GHz (for example, 2.508 GHz). According to an embodiment, the frequency plan can support the design of an easily implemented RF synthesizer. The resulting center frequencies can be: 58.608 GHz, 60.720 GHz, 62.832 GHz, and 64.944 GHz. Possible crystal frequencies can include 44 MHz, 66 MHz, and 132 MHz. High-rate PHY (HRP) HRP supports data rates of 3.76 Gbps, 1.88 Gbps, and 0.94 Gbps. The data rate can be individually matched to the video resolution standards of 1080p, 1080i, and 480p for various sampling rates. Therefore, this range can be increased at lower data rates. A higher PHY rate can still allow multiple lower rate streams via the MAC. HRP can utilize several types of coding and modulation: OFDM, 16QAM and QPSK modulation, internal convolutional codes (1/3, 2/3, 4/7, 4/5 rates) and Reed-Solomon (Reed) at a rate of 0.96 -Solomon) Outer code. In addition to the internal convolutional code, the Reed-Solomon outer code uses a lower SNR requirement of approximately 2 dB. An external interleaver can be used to achieve full gain of the outer code. HRP can utilize four channels for the channel bandwidth of 1.7 GHz over the global 60 GHz band. According to an embodiment, there may be three channels per region. HRP can be extended to include parallelization of FEC streams for cost-saving implementation and support for unequal error protection (UEP) concepts. Figure 5A illustrates an embodiment of a Tx PHY block diagram. The scrambler 502 receives the LMAC data and feeds it into the MSB/LSB separation block 504. For 118831.doc -24- 200803236 MSB, you can do it. RS, flat code 506 and external interleaver 510. For the LSB, the RS encoder 5〇8 and the external interleaver can be used. The breakdown circuit can be turned into a surface, and the P-interlaced 510 and 512. The following circuit is formed in the breakdown circuit 5 14 /, the factory multiplexer 5 16 , the bit interleaver 51 8 , QAM mapping
『 載頻”周父錯器522、導頻/DC/空值插入524及IFFT 526 〇 > HR:外碼交錯器51G、512可包括—區塊交錯器及一迴旋 乂錯裔。外部交錯器之功能為··確保將外碼之各位元組映 射至内碼碼字之連續位元,且確保將外碼之連續位元組映 身^至不同内碼碼字。區塊交錯器要求發射器中幾乎沒有記 隐體且可在無零插入之情況下改良效率。藉由外部交錯器 可易於添加尾部位元。迴旋交錯器要求發射器中有若干移 位暫存器且在有零插入之情況下可能使效率降級。當使用 迴旋交錯ϋ時,可需要四個〇FDM符號(symb〇1)以傳輸移 4暫存器中之初始/最終之零。效率可自約〇·5%降級至約 2%。區塊外部交錯器51〇、5 12可使裏德-所羅門外碼與内 部迴旋碼之間的記憶體要求降至最低。在一實施例中,區 塊交錯器深度(depth)為4且存在M=4個用於各外部交錯器 之内部迴旋編碼器。外部區塊交錯器將針對HRp資料以四 之深度進行操作。在一實施例中,可藉由八位元組之表格 來實施區塊交錯器,使行之數目與深度相同且列之數目與 裏德-所羅門碼之長度相同: b(i,k),i = 〇,1,…,depth -1; k = 〇山·. ·,N -1 印,幻,机尤+7入.·.,之八位元組為b(i 〇), 118831.doc -25- 200803236 b(i,l),…,之八位元組的裏德-所羅門碼同位位元, 此處RS(N,K)為裏德-所羅門碼。在一實施例中,外部交錯 器之參數為、K=216且N=224。在另一實施例中, 區塊交錯器在位元之群組(稱作位元組)上進行操作。在另 一實施例中,各位元組具有8個位元或一個八位元組。在 另一實施例中,各位元組具有多於1個位元。 圖5B說明區塊交錯器碼之一實例。為降低記憶體要求, 至圖5B之行與列之映射應使用以下公式: i = floor {[l mod(depth * Μ)]/ Μ} k = M floor[l /(depth * M) +1 mod M 1 = 0,l”",depth*K -1 此處/為外部交錯器之輸入處的八位元組數目。 外部交錯器可自開始時之i = 〇,介=0至最後之i =3叩//2-7, 而輸出八位元組。在Μ與各RS碼字之迴旋内部編碼 器並行之情況下,外部交錯器會將b(0,0),…,叩紿-7, 之八位元組賦予第一迴旋編碼器,以LSB為首。 b(i,k*M+m)(i = Q,…,depth-1,1(:=0, 1,…,N/M-J)之所有八位 元組將輸出至第m個迴旋編碼器。迴旋編碼器之尾部位元 由外部交錯器插入。圖5B之行為一同位位元位於 b(depth-l,K-M-9),b(depth-l,K-M-8),…,b(depth-l,K-M-"處的縮短RS(N-M,尤-Μ, ί = 碼。人 iV- Μ入…, b(depth-l,Ν-1)之位元紙以零福上。 圖6以三個不同表格(602、604、606)說明HRP之各種參 數。表格602及604說明根據本發明之HRP的不同參數。表 118831.doc -26- 200803236 格606說明在不同模式之HRP中之支援速率。 圖7及8中說明HRP内碼電路之一實施例。圖7說明一 HRP 内碼之電路圖700。可使用(133,171,165)之多項式來描述 内碼電路。圖8說明HRP内碼電路之碼率、擊穿場型及傳 輸序列之表格。擊穿場型中之意謂擊穿或刪除且擊穿 場型中之” 1 ”意謂不擊穿或不刪除。 為支援3.9 Gps之資料速率,可能需要迴旋編碼器並行 化。在一實施例中,可在接收器處使用基4積累-比較-選擇 技術。基4 ACS在每個循環中處理2個位元。所需之時鐘頻 率等於3.9 Gps除以解碼器之數目且除二。舉例而言,對於 8個解碼器,可需要244 MHz之時鐘。 HRP資料多工器516可組合來自8個迴旋編碼器之資料。 其模式可視EEP或UEP而定。在EEP模式中,實施循環機 制以平均地分配位元。在UEP調變模式中,MSB對應於 QAM映射器之I分枝,且LSB對應於QAM映射器之Q分枝。 在UEP編碼模式中,強MSB迴旋碼引起資料多工器516之 輸入處之M S B位元多於L S B位元。8個迴旋編碼器中之每 一者之4個輸入位元(總共32個)之區塊可表現擊穿場型之一 全循環。UEP編碼模式可引起迴旋編碼器輸出處有28個 MSB位元及20個LSB位元,該等位元映射至48個分散於I及 Q上之傳輸位元。 HRP位元交錯器518可將位元自HRP資料多工器516分散 至QAM或QPSK集群之Ι/Q-分枝。QAM集群之MSB及LSB 不提供相同的經編碼之BER。位元交錯器可確保來自同一 118831.doc -27- 200803236 内碼編碼器之各位元流的BER相同。各位元流映射至qAM 集群的相等數量之MSB及LSB。以下為一建議解決方案: P16 : 0, 1,2, 3, 4, 5, 6, 7, 9, 8, 11,1〇, 13, 12, 15, 14 , 使 i=M*fl〇or (k/M)+mod(2*fl〇〇r(k/2)+m〇d(k+fl〇〇r(k/M),2), M),k=0,l”,2M_l, 其中在2M=16之區塊中,丨為輸出位元之索引,且k為輸入 位元之索引。 P32 : 0, 1,2, 3, 4, 5, 6, 7, 11,8, 9, 10, 15, 12, 13, 14, 18, 19’ 16,17, 22, 23, 20,21,25, 26,27, 24, 29, 30, 31,28,使 i=M*fl〇or(k/M)+m〇d(4*fl〇〇r(k/4)+m〇d(k+fi〇〇Kk/M),4), M),k=0,l”..4M-l, 其中在4M=32之區塊中,丨為輸出位元之索引,且k為輸入 位元之索引。 圖9及1〇中用圖表說明以上解決方案。 一在具有頻率選擇性衰落之HRp頻道中,圓符號之不 同田]頻道可具有不同之頻道回應且相鄰之副頻道通 吊、&歷相同的衰落作用。為改良效能,載頻調交錯器將相 郴之資料映射至遠處的〇FDM副頻道。在一實施例中, 騰螺旋式掃描載頻調交錯器可包括以下解決方案: ™od(fl〇〇r^ l4)*24W(k524),k^ /、中為輸出載頻調之索引且&為輸人載頻調之索引。 圖u中用圖表說明以上解決方案。 在一替代實施例中,載頻調交錯器可基於位元反向原則 118831.doc -28- 200803236 而設計。在IFFT之實際實施中,在IFFT計算之前抑或之後 存在一位元反向電路。在位元反向電路中,輸入資料之索 引首先表現為二進位數,所得之二進位表示法係位元反向 的,且該位元反向二進位數成為輸出資料之索引。當使用 位元反向載頻凋父錯器時,載頻調交錯器及IFFT計算可組 合。IFFT計算電路嵌入位元反向載頻調交錯器中。Dc、 空值及導頻載頻調將插入載頻調交錯器之前的位元反向定 位。以此方式保證在排列之後,DC、空值及導頻載頻調 將出現在預先指定之定位中。使用如後所述之行進導頻, 用於導頻之位元反向定位按OFDM符號依次改變。當用於 基2 IFFT實施(其使用多個2x2基本架構區塊)時,位元反向 載頻調交錯器可進行最佳操作。例如,對於使用多個8 χ衫 架構區塊之基8 IFFT實施,輸入資料之索引應首先表示為 一個八位元數,八位元反向數則為輸出資料。在此特定實 例中,八位元反向載頻調交錯器為組合載頻調交錯器及 IFFT提供最簡易之實施。 HRP導頻524可包括一旋轉導頻機制以按每一符號變動 導頻載波,從而允許必要時對封包進行更佳的頻道追蹤。 此方式亦避免了必須根據覆蓋序列改變自一 〇FDM符號至 下一 OFDM付號之所有導頻之極性。導頻值可與對應之 HRP前置項#5(在後描述)之載頻調相同。導頻載頻調位置 可根據以一前置項#5開始之符號索引而界定。對於 symbol=0:NsymboM,k=(.177+m〇d(3*symbol? 22):22:177), 此處k! = {-l,0,l}。根據一實施例,導頻旋轉速度可固定, 118831.doc -29- 200803236 以使每一符號旋轉3 bin。相反,若導頻位置固定,則其值 將需要隨時間而改變以避免任何頻譜波紋效應。 HRP前置項可包括8個符號。符號#1-#4可基於PN序列。 可在4個符號中使用6個連續的m-序列。符號#1-#4可用於 封包偵測,訊框同步基AGC訓練。符號#5·#8可基於OFDM 符號且可用於頻偏估計及頻道估計。根據一實施例,可使 用比例因數校正來保持8個前置項符號之功率與剩餘之用 於資料傳輸之OFDM符號相同。在該等實施例之一者中, 符號#1-#4之功率可較符號#5-#8大3 dB。 圖12說明用於HRP標頭之外部FEC之一實施例。HRP標 頭外部FEC有些類似於用於HRP資料之外部FEC,因為其 提供與資料相同或更佳之錯誤保護(error protection)。其使 用同一裏德-所羅門產生器。其使用同一方法提供尾部位 元來終止迴旋碼字。其在接收器中使用同一裏德-所羅門 解碼器。可以1/4速率對具112個編碼位元組的HRP標頭使 用四個OFDM符號。HRP標頭FEC可使用與資料相同之RS碼 產生器多項式。HRP標頭FEC可包括92個或92個以上之未 編碼位元組。一個編碼分枝可包括4個具有4個尾部位元組 1202之迴旋編碼器。HRP標頭FEC之深度可為2個位元組1204 及1206。位元組1204可包括44個資料位元組,8個同位位 元組及尾部位元1202。位元組1206可包括48個資料位元組, 8個同位位元組。2個區塊交錯器之深度可提供充分效能。 圖13說明HRP資料擾碼器之一實施例。可使用一個15次 多項式(xI5+x14+l)改良所傳輸之用於HRP之資料的隨機 118831.doc -30- 200803236 性。圖13說明在定位D12至D15(其中首先為D15)處具四個 位元之初始化序列。 低速率PHY(LRP) LRP可用於MAC §孔框傳輸(例如,ack、信標、發現 4 )、用於來自A/V源之低速率(小於4〇 Mbps)流、用於天 線操控及追蹤所使用之資料的傳輸。可以具BPSK調變之 基於128點FFT之OFDM及1/3、1/2及2/3速率之迴旋碼來設 計LRP。可不要求裹德-所羅門碼,此係因為訊息較短及較 南之BER容許度。LRP可以三種模式來操作·· lrp全向(長) 模式、LRP波束成型模式及LRP定向(短)模式。以下將進 一步討論該等不同模式。 圖14說明LRP Tx處理之一實施例。LRP電路可包括擾碼"Carrier frequency" parental error 522, pilot/DC/null value insertion 524 and IFFT 526 〇> HR: outer code interleaver 51G, 512 may include a block interleaver and a convolutional error. The function of the device is to ensure that the tuples of the outer code are mapped to successive bits of the inner codeword, and that the consecutive bytes of the outer code are mapped to different inner codewords. The block interleaver requires There is almost no hidden body in the transmitter and the efficiency can be improved without zero insertion. The tail part can be easily added by the external interleaver. The cyclotron requires several shift registers in the transmitter and has zero In the case of insertion, the efficiency may be degraded. When using the convolutional interleaving, four 〇FDM symbols (symb〇1) may be required to transmit the initial/final zero in the shift register. The efficiency may be approximately 〇·5. The % is downgraded to about 2%. The block external interleaver 51A, 512 minimizes the memory requirements between the Reed-Solomon outer code and the internal whirling code. In one embodiment, the block interleaver depth (depth) is 4 and there are M = 4 internal cyclotron encoders for each external interleaver. External The block interleaver will operate at a depth of four for the HRp data. In one embodiment, the block interleaver can be implemented by a table of octets such that the number of rows is the same as the depth and the number of columns is The length of the De-Solomon code is the same: b(i,k),i = 〇,1,...,depth -1; k = 〇山·. ·, N -1 印,幻,机特别+7入.·. The octet is b(i 〇), 118831.doc -25- 200803236 b(i,l),..., the octet of the Reed-Solomon code parity, where RS(N, K) is a Reed-Solomon code. In one embodiment, the parameters of the external interleaver are, K = 216 and N = 224. In another embodiment, the block interleaver is in the group of bits (referred to as Operation is performed on a byte. In another embodiment, each tuple has 8 bits or an octet. In another embodiment, each tuple has more than 1 bit. Figure 5B An example of a block interleaver code is shown. To reduce memory requirements, the following formula should be used for the mapping to the row and column of Figure 5B: i = floor {[l mod(depth * Μ)]/ Μ} k = M floor [l /(depth * M) +1 mod M 1 = 0 l "", -1 where / the number of octets depth * K at an external input of the interleaver. The external interleaver can output octets from the beginning i = 〇, 介 = 0 to the last i = 3 叩 / /2-7. In the case where Μ is in parallel with the whirling internal encoder of each RS codeword, the external interleaver assigns an octet of b(0,0),...,叩绐-7, to the first whirling encoder to LSB headed by. All octets of b(i,k*M+m)(i = Q,...,depth-1,1(:=0, 1,...,N/MJ) will be output to the mth cyclotron encoder The end of the whirling encoder is inserted by an external interleaver. The behavior of a co-located bit in Figure 5B is located at b (depth-l, KM-9), b (depth-l, KM-8),..., b(depth -l, KM-" at the shortened RS (NM, especially - Μ, ί = code. People iV- break in..., b (depth-l, Ν-1) bit paper on zero blessing. Figure 6 The various parameters of the HRP are illustrated in three different tables (602, 604, 606). Tables 602 and 604 illustrate different parameters of the HRP in accordance with the present invention. Table 118831.doc -26-200803236 606 illustrates the HRP in different modes. Support rate. One embodiment of the HRP inner code circuit is illustrated in Figures 7 and 8. Figure 7 illustrates a circuit diagram 700 of an HRP inner code. The polynomial of (133, 171, 165) can be used to describe the inner code circuit. Figure 8 illustrates the HRP. The table of the code rate, breakdown field type and transmission sequence of the inner code circuit. The breakdown type means that the breakdown or deletion and the breakdown of the field type "1" means no breakdown or deletion. 3.9 Gps data rate, may require a cyclotron encoder In one embodiment, a base 4 accumulation-comparison-selection technique can be used at the receiver. The base 4 ACS processes 2 bits in each cycle. The required clock frequency is equal to 3.9 Gps divided by the decoder. For example, for 8 decoders, a clock of 244 MHz may be required. HRP data multiplexer 516 can combine data from 8 cyclotron encoders. The mode can be determined by EEP or UEP. In the EEP mode, a round robin mechanism is implemented to evenly allocate bits. In the UEP modulation mode, the MSB corresponds to the I branch of the QAM mapper, and the LSB corresponds to the Q branch of the QAM mapper. In the UEP coding mode, The strong MSB convolutional code causes the MSB bit at the input of the data multiplexer 516 to be more than the LSB bit. The block of 4 input bits (32 in total) of each of the 8 convolutional encoders can be represented. One of the field-through modes is full-cycle. The UEP coding mode can cause 28 MSB bits and 20 LSB bits at the output of the cyclotron encoder, which are mapped to 48 transmission bits scattered over I and Q. HRP bit interleaver 518 can spread bits from HRP data multiplexer 516 to QAM or QPSK Group/Q-branch. The MSB and LSB of the QAM cluster do not provide the same encoded BER. The bit interleaver ensures the same BER for each element stream from the same 118831.doc -27-200803236 inner code encoder The metastreams are mapped to an equal number of MSBs and LSBs of the qAM cluster. The following is a suggested solution: P16 : 0, 1,2, 3, 4, 5, 6, 7, 9, 8, 11,1, 13, 12, 15, 14 , so i=M*fl〇or (k/M)+mod(2*fl〇〇r(k/2)+m〇d(k+fl〇〇r(k/M), 2), M),k=0,l”,2M_l , where in the block of 2M=16, 丨 is the index of the output bit, and k is the index of the input bit. P32 : 0, 1, 2, 3, 4, 5, 6, 7, 11, 8, 9, 10, 15, 12, 13, 14, 18, 19' 16,17, 22, 23, 20,21,25, 26,27, 24, 29, 30, 31,28, make i=M*fl 〇or(k/M)+m〇d(4*fl〇〇r(k/4)+m〇d(k+fi〇〇Kk/M), 4), M),k=0,l” ..4M-l, where in the block of 4M=32, 丨 is the index of the output bit, and k is the index of the input bit. The above solution is illustrated graphically in Figures 9 and 1〇. In the HRp channel with frequency selective fading, the different symbols of the circle symbol can have different channel responses and the adjacent subchannels are hanged and the same fading effect. To improve performance, the carrier interleaver maps the data to a distant DMFDM subchannel. In an embodiment, the Twisted Spiral Scanning Carrier Interleaver can include the following solutions: TMod(fl〇〇r^l4)*24W(k524), k^ /, where is the index of the output carrier tone and & is the index of the input carrier frequency. The above solution is illustrated graphically in Figure u. In an alternate embodiment, the carrier shift interleaver can be designed based on the bit reverse principle 118831.doc -28-200803236. In the actual implementation of IFFT, there is a one-bit inverse circuit before or after the IFFT calculation. In the bit-reverse circuit, the index of the input data first appears as a binary digit, and the resulting binary representation indicates that the legal system bit is inverted, and the reverse binary digit of the bit becomes the index of the output data. When using the bit-reverse carrier-frequency parental error, the carrier-shift interleaver and the IFFT calculation can be combined. The IFFT calculation circuit is embedded in a bit-inverse carrier-shift interleaver. The Dc, null, and pilot carrier tone are reversely positioned before the bit inserted into the carrier interleaver. In this way it is guaranteed that the DC, null and pilot carrier tones will appear in the pre-specified position after the alignment. Using the traveling pilot as will be described later, the bit reverse positioning for the pilot is sequentially changed in OFDM symbols. When used in a base 2 IFFT implementation (which uses multiple 2x2 basic architecture blocks), the bit reverse carrier interleaver can perform optimal operation. For example, for a base 8 IFFT implementation using multiple 8-shirt architecture blocks, the index of the input data should first be represented as an octet, and the octet inverse number as the output data. In this particular example, the octet reverse carrier interleaver provides the simplest implementation for combining the carrier interleaver and IFFT. HRP pilot 524 may include a rotating pilot mechanism to vary the pilot carrier per symbol, thereby allowing for better channel tracking of packets as necessary. This approach also avoids having to change the polarity of all pilots from one FDM symbol to the next OFDM pay according to the coverage sequence. The pilot value can be the same as the carrier frequency of the corresponding HRP preamble #5 (described later). The pilot carrier tone position can be defined by a symbol index starting with a preamble #5. For symbol=0:NsymboM,k=(.177+m〇d(3*symbol? 22):22:177), where k! = {-l,0,l}. According to an embodiment, the pilot rotational speed can be fixed, 118831.doc -29-200803236 to rotate each symbol by 3 bins. Conversely, if the pilot position is fixed, its value will need to change over time to avoid any spectral ripple effects. The HRP preamble can include 8 symbols. Symbols #1-#4 can be based on a PN sequence. Six consecutive m-sequences can be used in 4 symbols. Symbols #1-#4 can be used for packet detection, frame synchronization based AGC training. Symbol #5·#8 can be based on OFDM symbols and can be used for frequency offset estimation and channel estimation. According to an embodiment, scaling factor correction can be used to maintain the power of the eight preamble symbols the same as the remaining OFDM symbols used for data transmission. In one of these embodiments, the power of symbols #1-#4 can be 3 dB greater than the symbols #5-#8. Figure 12 illustrates one embodiment of an external FEC for an HRP header. The HRP header external FEC is somewhat similar to the external FEC for HRP data because it provides the same or better error protection as the data. It uses the same Reed-Solomon generator. It uses the same method to provide a tail element to terminate the whirling codeword. It uses the same Reed-Solomon decoder in the receiver. Four OFDM symbols can be used for the HRP header with 112 coded bytes at 1/4 rate. The HRP header FEC can use the same RS code generator polynomial as the data. The HRP header FEC may include 92 or more uncoded bytes. A coded branch may include four cyclotron encoders having four tail position tuples 1202. The depth of the HRP header FEC can be 2 bytes 1204 and 1206. The byte 1204 can include 44 data bytes, 8 parity bits, and tail location 1202. The byte 1206 can include 48 data bytes and 8 parity bits. The depth of the two block interleavers provides sufficient performance. Figure 13 illustrates one embodiment of an HRP data scrambler. A 15th polynomial (xI5+x14+l) can be used to improve the randomness of the transmitted data for HRP 118831.doc -30- 200803236. Figure 13 illustrates an initialization sequence with four bits at locations D12 through D15 (where D15 is first). Low Rate PHY (LRP) LRP can be used for MAC § hole frame transmission (eg, ack, beacon, discovery 4), for low rate (less than 4 Mbps) streams from A/V sources, for antenna manipulation and tracking The transmission of the data used. The LRP can be designed with a BPSK modulation based on OFDM of 128-point FFT and a gyro code of 1/3, 1/2 and 2/3 rates. The Wade-Solomon code is not required, because of the short message and the BER tolerance of the south. LRP can operate in three modes: lrp omnidirectional (long) mode, LRP beamforming mode, and LRP oriented (short) mode. These different modes are discussed further below. Figure 14 illustrates one embodiment of LRP Tx processing. LRP circuit can include scrambling code
器 1402、FEC 1404、交錯器 1406、映射 1408、IFFT 14 16、循環首碼1414、符號成形14 12及增頻轉換141 〇。 圖15說明LRP負料速率之表格。如圖所示,不同lrp模 式產生不同LRP資料速率。 LRP導頻及資料載頻調可如下界定:128點FFT、30個資 料載頻調及4個導頻載頻調、三個在DC處之未使用之載頻 調(載頻調編號-1、〇及1 ),導頻載頻調定位可修改,在載 頻調編號-14、-6、6及14處之固定導頻載頻調定位,在-Η 至+18之所有其他位置處之資料載頻調。 LRP擾碼器1402可使用一個6次多項式。擾碼器初始化 域可為4個位元。欲初始化此多項式,該4位元初始化域可 與01位元序連。 118831.doc -31- 200803236 在LRP全向模式下,所產生之信號為全向的,具有至少 與任-前向頻道模式同樣大之_,較之於前向頻道容許 更強之夕路仏。LRP全向模式中之線路速率可為約5 Μ— 至約10 Mbps,其中目標BER小於1〇·6。在LRp全向模式 中’使用不同天線場型將各信號傳輸多次。在一實施例 中,使㈣固+同天線場型將各錢重複8次。在一實施例 中,不同之天線場型彼此正交。因此,各複製使用不同的 TX相控陣列設定(在循環首碼期間交換)。接收器可使用 MRC或類似技術來組合複製。空間多樣化有助於保持全向 覆蓋率。 圖16 δ兑明一 LRP全向資料封包格式,其包含:前置項 1602、標頭1604、有效承載ι606。標頭16〇4可包含模式 1608、保留 1610、長度 1612、擾碼器 init 1614 及 CRC-8。 標頭1604為長格式,其具30個編碼為2個〇Fdm符號的位 元,該等OFDM符號具有1/2速率之尾部位元迴旋碼。當使 用尾部位元時’迴旋碼之初始及最終狀態相同。在一實施 例中,標頭之最後六個資訊位元可用於使迴旋編碼器之狀 態初始化。LRP全向前置項1602可包括兩種類型:長全向 前置項及短全向前置項。 長全向前置項長可為約56.67微秒。此種類型之前置項 可用於信標及要求盲定時同步之其他LRP資料封包。The device 1402, the FEC 1404, the interleaver 1406, the mapping 1408, the IFFT 14 16, the cyclic first code 1414, the symbol shaping 14 12, and the up-conversion 141 〇. Figure 15 illustrates a table of LRP feed rates. As shown, different lrp modes produce different LRP data rates. The LRP pilot and data carrier frequency can be defined as follows: 128-point FFT, 30 data carrier frequency modulation and 4 pilot carrier frequency adjustments, and three unused carrier frequency adjustments at DC (carrier frequency adjustment number -1 , 〇 and 1), the pilot carrier frequency adjustment can be modified, and the fixed pilot carrier frequency adjustment at the carrier frequency number -14, -6, 6 and 14 is at all other positions from -Η to +18. The data carries the tone. The LRP scrambler 1402 can use a 6th degree polynomial. The scrambler initialization field can be 4 bits. To initialize this polynomial, the 4-bit initialization field can be concatenated with the 01 bit. 118831.doc -31- 200803236 In LRP omni mode, the resulting signal is omnidirectional, with at least as large as the any-forward channel mode, allowing for a stronger eve than the forward channel. . The line rate in LRP omni mode can range from about 5 Μ to about 10 Mbps with a target BER of less than 1 〇·6. In LRp omni mode, each signal is transmitted multiple times using different antenna patterns. In one embodiment, the (four) solid + same antenna pattern is used to repeat the money 8 times. In an embodiment, different antenna patterns are orthogonal to one another. Therefore, each copy uses a different TX phased array setting (exchanged during the first cycle of the cycle). The receiver can use MRC or similar technology to combine the copies. Diversification of space helps maintain omnidirectional coverage. Figure 16 δ 明 L LRP omnidirectional data packet format, which includes: pre-column 1602, header 1604, payload ι606. Header 16〇4 may include mode 1608, reserved 1610, length 1612, scrambler init 1614, and CRC-8. Header 1604 is a long format having 30 bits encoded as 2 〇Fdm symbols having a 1/2 rate tail portion elementary convolutional code. When the tail element is used, the initial and final states of the whirling code are the same. In one embodiment, the last six information bits of the header can be used to initialize the state of the cyclotron encoder. The LRP full forward term 1602 can include two types: a long omnidirectional preamble and a short full forward term. The long full forward term can be about 56.67 microseconds. This type of preamble can be used for beacons and other LRP data packets that require blind timing synchronization.
圖17說明一具有6個區段(具17766個樣本)之長全向前置 項1700之一實施例:自動增益控制(AGC)及信號偵測區段 1702、粗頻偏估計(FOE)及定時復原區段1704、精細FOE 118831.doc -32- 200803236 及定時復原區段1706、RX波束成型區段17〇8、agC區段 1710及頻道估計區段1710。最先三個前置項區段丨7〇2、 1704、1706由偏移-QPSK調變之碼片(碼片速率為156.75 ΜΗζ(為取樣率之一分之一))之序列組成,該等碼片經過濾 以符合91 MHz之LRP傳輸遮罩。 AGC及信號偵測區段1702之域包含78個符號,其中各符 號界定為由用於I及Q組件之巴克(Barker)_13 ([-1 -1 -1 -1 _ι 1 i -1 -1 1 -1 1 -1])碼片序列所分散之1或-1。符號序列{Sk}(Sk=Tl) 係由三符號序列J = [-1,1,-1 ]之26次重複的差異編碼所 建構,具體而言,& = ,其中心=1。 粗FOE(頻偏估計)區段1704之域包含81個符號,其中各 符號界定為由用於I及Q組件之巴克-13碼片序列所分散之1 或_1。符號序列係由九符號序列/^7 = [-1 ·1 -1 -1 1 1 -1 1 -1]之9次重複的差異編碼所建構,具體而言, Ai + k^SM + k-l Xh’其中S〇為前一域的最後一個符號。 精細FOE及定時復原區段1706之域由用於I及Q組件之 1440 PN碼片序列組成,該序列藉由使用多項式 x72+;c"+/+x6+l在0xB95之初始條件下產生。 RX波束成型區段1708之域由用於I及Q組件之2560 PN碼 片序列組成,該序列藉由使用多項式+ 7在101001之 初始條件下產生。 AGC區段1710為32個樣本長之OFDM訓練符號的20次重 複,其等於以下BPSK 32點序列之IFFT :副載波·4至4等於 {1 1 1_10-1-1 1-1}且所有其他等於零。 118831.doc -33- 200803236 頻道估計區段1712由32個128樣本之OFDM訓練符號組 成’此處每一者等於以下128點3!>8£序列(之前為28樣本 循環首碼)之IFFT :副載波2-18等於{1-1 i-1-i 1-1 1 1 1 1 1 1 -1 -1 1 1},副載波 _18至 _2等於{_1 1 1 1 1 1 d 1 -1 1 -1 -1 -1 1 -1 1},且所有其他等於零。TX天線相控陣 列場型可針對LRP全向前置項16〇2中之該五個域中之每一 者以規則時間間隔改變。所以,對於8個τχ天線,TX相控 陣列分別針對以上五個域中之每一者每隔78、234、160、 640、64及156個樣本進行改變。 短全向前置項長可為約42.72微秒。此類型之前置項可 用於競爭週期(用於分槽CSMA中)中及其他僅要求有限(+/_ 135奈秒)之定時同步之LRP資料封包中。 圖18說明一具有6個區段(13392個樣本)之短全向前置項 1800之一實施例:AGC區段1802、AGC區段1804、信號偵 測及時間同步區段1806、RX波束成型區段1808、AGC區 段18 10及頻道估計區段1812。最先四個前置項域18〇2、 18 04、1806、1808 由 BPSK碼片(碼片速率為 156.75 MHz(每 一碼片等於2個樣本))之序列組成,該等碼片經過濾以符合 91 MHz之LRP傳輸遮罩。碼片序列藉由重複待指定之63-tap M_序列 所產生 。最先 兩個域 1802 、 1804為 AGC域 ,其 長度分別為336及2 64個碼片。第三域1806長度為720個 碼片且用於债測LRP封包及在-/+13 5奈秒之窗口中使其 定時同步。第四域1808長度為2560個碼片且用於rx波束 成型。第二AGC域1804為32個樣本長之〇fdm訓練符號之 118831.doc -34- 200803236 20次重複,其等於以下BPSK 32點序列之IFFT :副載波_4 至4等於{1 1 l-lO-i—i丨·”,且所有其他等於零。頻道 估計域1812由32個128樣本之OFDM訓練符號組成,其中每 一者等於以下128點BPSK序列(之前為28樣本循環首碼)之 IFFT :副載波2-18等於{1 -1 1 -1 -1 1 -1 1 1 1 i 1 1 -1」i 1},副載波-18 至-2 等於{-1 1 1 1 1 1 -1 -1 1 -1 i -ΐ ·ι < i -1 1},且所有其他等於零。TX天線相控陣列場型可針對 短全向前置項中之該五個域中之每一者以規則時間間隔改 變。所以,對於8個ΤΧ天線,ΤΧ相控陣列分別針對以上6 個域中之每一者每隔32、48、160、640、64及156個樣本 進行改變。 在LRP波束成型模式中,可使用與hrp波束成型相同之 技術。此模式為最高資料速率但其係定向的且要求波束更 新。圖19說明LRP波束成型之資料封包格式19〇〇之一實 例,其包含一短前置項1902、一標頭1904及一有效承載 1906。標頭1904可為30個編碼為3個符號的位元,該等符 號具有1/3速率之尾部位元迴旋碼。 LRP波束成型之前置項1902允許盲定時同步,且具有與 HRPPDU前置項類似之結構。圖20說明LRp波束成型前置 項2000之一實施例。LRP波束成型前置項2〇〇〇封包長度為 7.96耄秒(2496個樣本)’且包含兩個域:訊框同步及agc 域2004及頻道估計域2006。 訊框同步及AGC域2004由BPSK碼片(碼片速率為156 75 MHz(每一碼片等於2個樣本))之序列組成,該等碼片經過 118831.doc -35- 200803236 濾以符合91 MHz LRP傳輸遮罩。碼片序列等於將針對936 個碼片而指定之63-tap M-序列的14次重複,其中將序列調 變 / 分別乘以[1 1-1-1 1 1 1 111-1-1111]。 如圖20之序列2002中所說明(其中加號及減號意謂對應 樣本分別乘以1或-1),頻道估計域2006藉由重複128載頻調 OFDM訓練符號之時域樣本(此由頻域中之表格3 5描述)而 建構。 在LRP定向模式下,所產生之信號具有與前向頻道中類 似之範圍,僅要求”反向,,硬體(亦即,較少iRx/Tx)。在 LRP定向模式下,使用最佳天線場型將各信號重複多次。 在一實施例中,最佳天線場型選自全向模式中所使用之8 個可能天線場型。在一實施例中,各信號重複5(=4 + 1)次 或9(=8 + 1)次。可(例如)每隔1〇個封包對最佳化τχ相控陣 列場型進行追蹤。最佳TX多樣化場型自回返頻道接收器 反饋至回返頻道發射器。 LRP定向模式下之線路速率可為約$ Mbps至約10Figure 17 illustrates an embodiment of a long full forward term 1700 having six segments (with 17766 samples): automatic gain control (AGC) and signal detection segment 1702, coarse frequency offset estimation (FOE) and Timing recovery section 1704, fine FOE 118831.doc -32-200803236 and timing recovery section 1706, RX beamforming section 17〇8, agC section 1710, and channel estimation section 1710. The first three preamble segments 丨7〇2, 1704, and 1706 are composed of a sequence of offset-QPSK modulated chips (chip rate is 156.75 ΜΗζ (one of the sampling rate)). The chips are filtered to match the 91 MHz LRP transmission mask. The domain of the AGC and signal detection section 1702 contains 78 symbols, each of which is defined by Barker_13 for the I and Q components ([-1 -1 -1 -1 _ι 1 i -1 -1 1 -1 1 -1]) 1 or -1 dispersed by the chip sequence. The symbol sequence {Sk}(Sk=Tl) is constructed by differential encoding of 26 repetitions of the three symbol sequence J = [-1, 1, -1 ], specifically & = , center = 1. The domain of the coarse FOE (Frequency Offset Estimation) section 1704 contains 81 symbols, where each symbol is defined as 1 or _1 dispersed by the Buck-13 chip sequence for the I and Q components. The symbol sequence is constructed by the differential coding of 9 repetitions of the nine-symbol sequence /^7 = [-1 ·1 -1 -1 1 1 -1 1 -1], specifically, Ai + k^SM + kl Xh 'where S〇 is the last symbol of the previous field. The fields of the fine FOE and timing recovery section 1706 are comprised of a 1440 PN chip sequence for the I and Q components generated by the polynomial x72+;c"+/+x6+l under the initial conditions of 0xB95. The domain of the RX beamforming section 1708 consists of a 2560 PN chip sequence for the I and Q components, which is generated under the initial conditions of 101001 using polynomial +7. The AGC section 1710 is 20 repetitions of an OFDM training symbol of 32 samples long, which is equal to the IFFT of the following BPSK 32-point sequence: subcarriers 4 to 4 are equal to {1 1 1_10-1-1 1-1} and all others Equal to zero. 118831.doc -33- 200803236 The channel estimation section 1712 consists of 32 128 sample OFDM training symbols 'here each equals the following 128 points 3!> 8 £ sequence (previously 28 sample loop first code) IFFT : subcarrier 2-18 is equal to {1-1 i-1-i 1-1 1 1 1 1 1 1 -1 -1 1 1}, subcarrier _18 to _2 is equal to {_1 1 1 1 1 1 d 1 -1 1 -1 -1 -1 1 -1 1}, and all others are equal to zero. The TX antenna phased array field pattern can be varied at regular time intervals for each of the five fields in the LRP full forward term 16〇2. Therefore, for eight τχ antennas, the TX phased array is changed for every 78, 234, 160, 640, 64, and 156 samples for each of the above five domains. The short full forward term can be about 42.72 microseconds. This type of preamble can be used in the contention period (for slotted CSMA) and other LRP data packets that require only limited (+/_ 135 nanoseconds) timing synchronization. Figure 18 illustrates an embodiment of a short full forward term 1800 having six segments (13392 samples): AGC segment 1802, AGC segment 1804, signal detection and time synchronization segment 1806, RX beamforming Section 1808, AGC section 18 10 and channel estimation section 1812. The first four preamble fields 18〇2, 18 04, 1806, 1808 consist of a sequence of BPSK chips (chip rate 156.75 MHz (each chip equals 2 samples)), which are filtered To cover the 91 MHz LRP transmission mask. The chip sequence is generated by repeating the 63-tap M_ sequence to be specified. The first two domains, 1802 and 1804, are AGC fields with lengths of 336 and 2 64 chips, respectively. The third field 1806 is 720 chips in length and is used for debt measurement LRP packets and for timing synchronization in a window of -/+13 5 nanoseconds. The fourth field 1808 is 2560 chips in length and is used for rx beamforming. The second AGC field 1804 is a 32-sample length 〇fdm training symbol 118831.doc -34- 200803236 20 repetitions, which is equal to the following BPSK 32-point sequence IFFT: subcarriers _4 to 4 are equal to {1 1 l-lO -i-i丨·”, and all others are equal to zero. Channel estimation field 1812 consists of 32 128-sample OFDM training symbols, each of which is equal to the following 128-point BPSK sequence (previously 28 sample cycle first code) IFFT: Subcarrier 2-18 is equal to {1 -1 1 -1 -1 1 -1 1 1 1 i 1 1 -1"i 1}, subcarrier -18 to -2 is equal to {-1 1 1 1 1 1 -1 - 1 1 -1 i -ΐ ·ι < i -1 1}, and all others are equal to zero. The TX antenna phased array pattern can be changed at regular time intervals for each of the five fields in the short full forward term. Therefore, for eight ΤΧ antennas, the ΤΧ phased array is changed for every 32, 48, 160, 640, 64, and 156 samples for each of the above six domains. In the LRP beamforming mode, the same technique as hrp beamforming can be used. This mode is the highest data rate but is oriented and requires beam updates. Figure 19 illustrates an example of a data packet format 19 of LRP beamforming that includes a short preamble 1902, a header 1904, and a valid bearer 1906. Header 1904 can be 30 bits that are encoded as 3 symbols, which have a 1/3 rate tail elementary convolutional code. The LRP beamforming preamble 1902 allows for blind timing synchronization and has a structure similar to the HRP PDU preamble. Figure 20 illustrates one embodiment of an LRp beamforming preamble 2000. The LRP beamforming preamble 2〇〇〇 packet length is 7.96 耄 seconds (2496 samples)' and contains two fields: frame synchronization and agc domain 2004 and channel estimation domain 2006. Frame synchronization and AGC field 2004 consists of a sequence of BPSK chips (chip rate 156 75 MHz (each chip equals 2 samples)), which are filtered by 118831.doc -35-200803236 to match 91 MHz LRP transmission mask. The chip sequence is equal to 14 repetitions of the 63-tap M-sequence specified for 936 chips, where the sequence is modulated/multiplied by [1 1-1-1 1 1 1 111-1-1111], respectively. As illustrated in the sequence 2002 of Figure 20 (where the plus and minus signs mean that the corresponding samples are multiplied by 1 or -1, respectively), the channel estimation field 2006 repeats the time domain samples of the 128 OFDM training symbols by repetition (this Constructed in Table 3 5 in the frequency domain. In LRP directional mode, the resulting signal has a similar range as in the forward channel, requiring only "reverse, hardware (ie, less iRx/Tx). In LRP directional mode, the best antenna is used. The field pattern repeats each signal a plurality of times. In one embodiment, the optimal antenna pattern is selected from the eight possible antenna patterns used in the omni mode. In one embodiment, each signal repeats 5 (= 4 + 1) or 9 (= 8 + 1) times. The optimized τχ phased array pattern can be tracked, for example, every 1 。 packet. The best TX diversified field type self-return channel receiver feedback Return channel transmitter. Line rate in LRP directional mode can be from about $ Mbps to about 10
Mbps。定向LRP封包可用作ACK以確認HRp或波束成型 LRP、具有或不具有額外有效承載之資料封包。圖21A說 明無有效承載之短的15位元之ACK標頭。圖21B說明一具 有效承載之16位元之短ACK標頭。定向LRP短ACK標頭藉 由1/2速率尾部位元迴旋碼進行編碼且藉由丨個〇FDM符號 進行傳輸。對於具有效承載(第二格式)之定向LRp封包, 杈式位儿選擇以下兩個非波束成型ρΗγ資料速率中之一 者: 118831.doc -36 - 200803236 5 Mbps :模式位元=0 10 Mbps :模式位元=1 在LRP定向模式下,資訊藉由2/3速率迴旋碼進行編碼。 若可使用尾部位元以減少OFDM符號之數目,則使用尾部 位元。否則使用至少6個連續之零以終止迴旋碼之交織。 對於此等封裝,後置項(postamble)旗標指定一後置項是 (旗標(flag)=l)否(旗標=0)依附於封包。 圖22說明一定向LRP封包前置項2200。定向封包之 LRPPDU前置項長度為2.04毫秒(040個樣本),且包含5個如 此處所展示之128樣本之OFDM訓練符號。第一符號2202用 於AGC,且以後4個符號用於頻道估計及頻偏估計2204。 此前置項允許有限(-/+150奈秒)的定時不准。 圖23說明用於定向LRP封包之天線方向追蹤。如已提 及,定向LRP封包用於HRP或波束成型(BF)LRP封包之確 認。該等封包自一組高達8個天線方向中使用最佳TX天線 方向,其中最佳化TX天線方向需要如圖23中所描述藉由 使用特殊訊框結構隨時間進行追蹤。對於每Μ個規則HRP/ 短-八(::^或波束成型丄10>/短-八(:1^,可如圖23之23 00中般形 成訊框。存在一對具有以下特殊結構之HRP/短-ACK或波 束成型-LRP/短-ACK訊框,其中HR/LR波束追蹤及LR天線 方向追蹤(ADT)如圖23之2302中所說明般發生。 如圖所示,天線方向追蹤發生於兩個階段:(1)藉由使 用專用後置項選擇最佳化ΤΧ天線方向及(2)藉由使用專用 前置項對所選擇之ΤΧ天線方向進行RX波束成型/調諧。在 118831.doc -37- 200803236 以上兩個階段之間’所選擇之天線方向索引經由一 HRP或 波束成型LRP封包自短ACK RX反饋至短ACK TX。 圖24說明一 Tx天線方向追蹤後置項2400。用於定向 LRPPDU之ΤΧ天線方向追蹤後置項依附於一具有效承載之 定向LRP封包。TX ADT後置項長度為9.24微秒(2896個樣 本),且包含三個區段2402、2404、2406。兩個後置項域 2404、2406跟隨一2.04毫秒之保護時間間隔2404且由BPSK 碼片(碼片速率為156.75 ΜΗζ(每一碼片等於2個樣本))之序 列組成,該等碼片經過濾以符合91 MHz LRP傳輸遮罩。 該碼片序列藉由重複一待指定之63 tap M-序列而產生。第 二域2404用於AGC,其長度為264個碼片。第三域2406長 度為864個碼片,且用於在8個天線中選擇最佳TX多樣化 組合。TX天線相控陣列場型按後置項之規則時間間隔而 改變。對於8個TX天線,TX相控陣列分別針對以上2個域 中之每一者每隔48及192個樣本進行改變。 圖25說明一 Tx天線方向追蹤前置項2500。將RX ADT前 置項添加至無有效承載之定向LRP封包中,且將其用於針 對所選擇之TX天線方向之RX波束成型。此附加前置項包 含兩個區段2502、2504(1152個樣本)。該兩個域由BPSK碼 片(碼片速率為156.75 MHz(每一碼片等於2個樣本))之序列 組成,該等碼片經過濾以符合91 MHz LRP傳輸遮罩。該 碼片序列藉由重複一待指定之63 tap M-序列而產生。第一 域25〇2用於AGC,其長度為128個碼片。第二域2504長度 為448個碼片且用於進行rx波束成型。 118831.doc -38- 200803236 在閱讀前述描述之後,對於一般技術者而言,本發明之 多個變更及修改係顯而易見的,應瞭解,決不意欲認為經 由說明所展示及所描述之任何實施例係限制性的。因此, 對各種實施例之細節之參考並不意欲限制申請專利範圍之 範嘴’申請專利範圍在其自身内部僅列舉認為對本發明至 關重要之特性。 【圖式簡單說明】 圖1為通信系統之一實施例的方塊圖。 圖2為通信系統之一實施例的更詳盡方塊圖。 圖3為周邊裝置之一實施例的方塊圖。 圖4為不同頻道共用頻率之一實施例的方塊圖。 圖5A為用於圖i之無線hD通信系統之實體層之一實施例 的方塊圖。 圖5 B為說明區塊交錯器碼之一實例的表格。 圖6為用於圖1之無線11〇通信系統的高速率封包(HRp)參 數之一實施例的方塊圖。 圖7為圖1之無線hd通信系統之内碼電路之一實施例的 方塊圖。 圖8為圖7之内碼電路之内碼率的表格。 圖9為圖1之無線hd通信系統之位元交錯器之一實施例 的方塊圖。 圖10為圖9之位元交錯器之規範的表格。 圖11為圖1之無線HD通信系統之载頻調交錯器之一實施 例的圖表。 118831.doc -39- 200803236 圖12為圖1之無線hd通信车續的高i穿玄+ 1口糸、、、充的冋逮率封包(HRP)標頭 之外部FEC之一實施例的方塊圖。 , 圖13為圖1之無線hd通信♦矫之高读、玄 系、、死之冋逑率封包(HRP)資料 擾碼器之一實施例的方塊圖。 圖14為圖1之無線hd通信李统之低读 之〜s # 率封包(LRP)傳輪 之只體層之一實施例的方塊圖。 圖15為圖1之無線hd通信系鲚之低请安+ 系、,死之低逮率封包(LRP)資料 速率的表格。 、^貝才十 圖16為用於全向低速率封包(LRp)資料封包之格式之一 實施例的方塊圖。 圖17為用於全向低速率封包(LRp)資料封包之長前置項 格式之一實施例的方塊圖。 、 圖18為用於全向低速率封包(LRp)資料封包之短前置項 格式之一實施例的方塊圖。 、 圖19為用於經波束成型之低速率封包(LRp)資料封包之 格式之一實施例的方塊圖。 圖20為用隸波束成型之低速率封包(LRp)資料封包之 前置項格式之一實施例的方塊圖。 圖21A為用於無有效承載之定向低速率封包(LRp)資料封 包之格式之一實施例的方塊圖。 、 圖⑽為用於具有效承載之定向低速率封包(LRp)資料封 包之格式之一實施例的方塊圖。 、 圖22為用μ向低速率封包(LRp)前置項之格式之 施例的方塊圖。 118831.doc -40. 200803236 圖23為用於天線方向追蹤之定向低速率封包(LRp)之才夂 式之一實施例的方塊圖。 圖24為用於傳輸天線方向追蹤之定向低速率封& (LRp) 之後置項格式之一實施例的方塊圖。 圖25為用於接收天線方向追蹤之定向低速率封包(LRp) 之前置項格式之一實施例的方塊圖。 【主要元件符號說明】 100 媒體接收器 101 内容 102 媒體接收器介面 103 處理器 104 可選基頻處理組件 105 相控陣列天線 106 線通信頻道介面 107 無線通信頻道/鏈路 109 無線通信頻道介面 110 相控陣列天線 111 可選基頻處理組件 112 處理器 113 媒體播放器介面 114 媒體播放器 115 顯示器 122 控制頻道 140 發射裝置 200803236 141 接收裝置 201 數位信號處理器 202 數位/類比轉換器 203 混頻器 204 本機振盪器 205〇.n 移相器 206〇-n 功率放大器 2〇7〇-n 天線元件 208 控制頻道 21 〇〇-n 天線 211 〇-N 移相器 212 中頻放大器 213 混頻器 214 本機振盪器 215 類比/數位轉換器 216 數位信號處理器 217 控制頻道 220 回返頻道 402 高速率頻道 404 低速率頻道 502 擾碼器 504 分離區塊 506 R S編碼器 508 R S編碼器 118831.doc -42- 200803236Mbps. The directional LRP packet can be used as an ACK to confirm HRp or beamforming LRP, data packets with or without additional payload. Figure 21A illustrates a short 15-bit ACK header without a valid bearer. Figure 21B illustrates a 16-bit short ACK header with a valid bearer. The directional LRP short ACK header is encoded by a 1/2 rate tail element gyro code and transmitted by a 〇 FDM symbol. For a directional LRp packet with a payload (second format), the 位 bit selects one of the following two non-beamforming ρ Η data rates: 118831.doc -36 - 200803236 5 Mbps : mode bit = 0 10 Mbps : Mode Bit = 1 In LRP Orientation mode, information is encoded by a 2/3 rate convolutional code. If the tail part element can be used to reduce the number of OFDM symbols, the tail bit is used. Otherwise use at least 6 consecutive zeros to terminate the interleaving of the whirling code. For these packages, the postamble flag specifies a post-item (flag = l) or no (flag = 0) attached to the packet. Figure 22 illustrates a certain forward LRP packet preamble 2200. The LRPPDU preamble of the directed packet is 2.04 milliseconds (040 samples) in length and contains 5 OFDM training symbols as shown here. The first symbol 2202 is for AGC and the next 4 symbols are used for channel estimation and frequency offset estimation 2204. Pre-sets allow for limited (-/+150 nanoseconds) timing inaccuracies. Figure 23 illustrates antenna direction tracking for directional LRP packets. As mentioned, directional LRP packets are used for HRP or beamforming (BF) LRP packets. The packets use the best TX antenna direction from a group of up to 8 antenna directions, wherein optimizing the TX antenna direction needs to be tracked over time using a special frame structure as described in Figure 23. For each rule HRP / short - eight (:: ^ or beamforming 丄 10 > / short - eight (: 1 ^, can be formed as shown in Figure 23, 23 00. There is a pair with the following special structure HRP/short-ACK or beamforming-LRP/short-ACK frame, where HR/LR beam tracking and LR antenna direction tracking (ADT) occur as illustrated in 2302 of Figure 23. As shown, antenna direction tracking This occurs in two phases: (1) by optimizing the ΤΧ antenna direction by using a dedicated post-term and (2) by RX beamforming/tuning the selected ΤΧ antenna direction by using a dedicated preamble. .doc -37- 200803236 The selected antenna direction index between the above two phases is fed back from short ACK RX to short ACK TX via an HRP or beamforming LRP packet. Figure 24 illustrates a Tx antenna direction tracking post item 2400. The ΤΧ antenna direction tracking post-term for directional LRPPDU is attached to a directional LRP packet with payload. The TX ADT post-term is 9.24 microseconds (2896 samples) and contains three segments 2402, 2404, 2406. Two post-term fields 2404, 2406 follow a protection time of 2.04 milliseconds 2404 and consists of a sequence of BPSK chips (chip rate of 156.75 ΜΗζ (each chip equals 2 samples)), which are filtered to conform to the 91 MHz LRP transmission mask. The chip sequence is repeated Generated by a specified 63 tap M-sequence. The second field 2404 is used for AGC and has a length of 264 chips. The third field 2406 is 864 chips long and is used to select the best among the 8 antennas. TX diversity combination. The TX antenna phased array field type changes according to the regular time interval of the post item. For 8 TX antennas, the TX phased array is for every 48 and 192 of each of the above 2 domains respectively. The sample is changed. Figure 25 illustrates a Tx antenna direction tracking preamble 2500. The RX ADT preamble is added to the directional LRP packet without payload and used for RX beamforming for the selected TX antenna direction. This additional preamble consists of two sections 2502, 2504 (1152 samples) consisting of a sequence of BPSK chips (chip rate of 156.75 MHz (each chip equals 2 samples)). The chips are filtered to match the 91 MHz LRP transmission mask. The chip sequence This is generated by repeating a 63 tap M-sequence to be specified. The first field 25〇2 is used for AGC and has a length of 128 chips. The second field 2504 is 448 chips long and is used for rx beamforming. 118831.doc -38-200803236 After reading the foregoing description, many variations and modifications of the present invention will be apparent to those skilled in the art. The examples are restrictive. Therefore, the reference to the details of the various embodiments is not intended to limit the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an embodiment of a communication system. 2 is a more detailed block diagram of one embodiment of a communication system. 3 is a block diagram of one embodiment of a peripheral device. 4 is a block diagram of one embodiment of a different channel sharing frequency. Figure 5A is a block diagram of one embodiment of a physical layer for the wireless hD communication system of Figure i. Figure 5B is a table illustrating one example of a block interleaver code. 6 is a block diagram of one embodiment of a High Rate Packet (HRp) parameter for the wireless 11-inch communication system of FIG. 1. Figure 7 is a block diagram of one embodiment of an inner code circuit of the wireless hd communication system of Figure 1. Figure 8 is a table of the code rate of the inner code circuit of Figure 7. Figure 9 is a block diagram of one embodiment of a bit interleaver of the wireless hd communication system of Figure 1. Figure 10 is a table of the specifications of the bit interleaver of Figure 9. Figure 11 is a diagram of an embodiment of a carrier interleaver of the wireless HD communication system of Figure 1. 118831.doc -39- 200803236 Figure 12 is a block diagram of an embodiment of the external FEC of the wireless hd communication vehicle of Figure 1 for the high-fidelity + 1 port, H, and HRP headers. Figure. FIG. 13 is a block diagram of an embodiment of the wireless hd communication of FIG. 1 for a high read, metaphysical, and dead rate packet (HRP) data scrambler. FIG. 14 is a block diagram of an embodiment of a physical layer of the low-reading ~s # rate packet (LRP) transmission of the wireless hd communication Li Tong of FIG. Fig. 15 is a table showing the data rate of the low-receiving rate (LRP) data of the wireless hd communication system of Fig. 1 . Figure 14 is a block diagram of one embodiment of a format for an omnidirectional low rate packet (LRp) data packet. 17 is a block diagram of one embodiment of a long preamble format for an omnidirectional low rate packet (LRp) data packet. Figure 18 is a block diagram of one embodiment of a short preamble format for an omnidirectional low rate packet (LRp) data packet. Figure 19 is a block diagram of one embodiment of a format for beamformed low rate packet (LRp) data packets. Figure 20 is a block diagram of one embodiment of a preamble format for packet-forming low rate packet (LRp) data packets. 21A is a block diagram of one embodiment of a format for a directional low rate packet (LRp) data packet without a valid bearer. Figure (10) is a block diagram of one embodiment of a format for a directional low rate packet (LRp) data packet with payload. Figure 22 is a block diagram of an embodiment of a format using μ to a low rate packet (LRp) preamble. 118831.doc -40. 200803236 Figure 23 is a block diagram of one embodiment of a directional low rate packet (LRp) for antenna direction tracking. 24 is a block diagram of one embodiment of a directional low rate seal & (LRp) post-entry format for transmission antenna direction tracking. 25 is a block diagram of one embodiment of a directional low rate packet (LRp) preamble format for receiving antenna direction tracking. [Main Component Symbol Description] 100 Media Receiver 101 Content 102 Media Receiver Interface 103 Processor 104 Optional Baseband Processing Component 105 Phased Array Antenna 106 Line Communication Channel Interface 107 Wireless Communication Channel/Link 109 Wireless Communication Channel Interface 110 Phased Array Antenna 111 Optional Baseband Processing Component 112 Processor 113 Media Player Interface 114 Media Player 115 Display 122 Control Channel 140 Transmitter 200803236 141 Receiver 201 Digital Signal Processor 202 Digital/Analog Converter 203 Mixer 204 Local oscillator 205〇.n Phase shifter 206〇-n Power amplifier 2〇7〇-n Antenna element 208 Control channel 21 〇〇-n Antenna 211 〇-N Phase shifter 212 IF amplifier 213 Mixer 214 Local Oscillator 215 Analog/Digital Converter 216 Digital Signal Processor 217 Control Channel 220 Return Channel 402 High Rate Channel 404 Low Rate Channel 502 Scrambler 504 Split Block 506 RS Encoder 508 RS Encoder 118831.doc - 42- 200803236
510 外部交錯器 512 外部交錯器 514 擊穿電路 516 資料多工器 518 位元交錯器 520 QAM映射器 522 載頻調交錯器 524 導頻/DC/空值插入 526 IFFT 602 表格 604 表格 606 表格 700 電路圖 1202 尾部位元組 1204 位元組 1206 位元組 1402 擾碼器 1404 前向糾錯 1406 交錯器 1408 映射 1410 增頻轉換 1412 符號成形 1414 循環首碼 1416 IFFT 118831.doc -43- 200803236 1700 長全向前置項 1702 自動增益控制(AGC)及信號偵測區段 1704 粗頻偏估計(FOE)及定時復原區段 1706 精細FOE及定時復原區段 1708 RX波束成型區段 1710 AGC區段 1712 頻道估計區段 1800 短全向前置項 1802 AGC區段 1804 AGC區段 1806 信號偵測及時間同步區段 1808 RX波束成型區段 1810 AGC區段 1812 頻道估計區段 1900 資料封包格式 1902 短前置項 1904 標頭 1906 有效承載 2000 LRP波束成型前置項 2002 序列 2004 訊框同步及AGC域 2006 頻道估計域 2200 定向LRP封包前置項 2202 第一符號 118831.doc -44- 200803236 2204 頻道估計及頻偏估計 2400 Tx天線方向追蹤後置項 2402 區段/後置項域 2404 區段/後置項域 2406 區段/後置項域 2500 Τ X天線方向追蹤前置項 2502 區段/前置項域 2504 區段/前置項域 118831.doc -45-510 External Interleaver 512 External Interleaver 514 Breakdown Circuit 516 Data Multiplexer 518 Bit Interleaver 520 QAM Mapper 522 Carrier Interleaver 524 Pilot/DC/NULL Insert 526 IFFT 602 Table 604 Table 606 Table 700 Circuit Diagram 1202 Tail Section Tuple 1204 Bytes 1206 Bytes 1402 Scrambler 1404 Forward Error Correction 1406 Interleaver 1408 Mapping 1410 Upconversion Conversion 1412 Symbol Shaping 1414 Cycle First Code 1416 IFFT 118831.doc -43- 200803236 1700 Long Full Forwarding 1702 Automatic Gain Control (AGC) and Signal Detection Section 1704 Thick Frequency Offset Estimation (FOE) and Timing Recovery Section 1706 Fine FOE and Timing Recovery Section 1708 RX Beamforming Section 1710 AGC Section 1712 Channel estimation section 1800 short full forward term 1802 AGC sector 1804 AGC sector 1806 signal detection and time synchronization section 1808 RX beamforming section 1810 AGC section 1812 channel estimation section 1900 data packet format 1902 short before Set item 1904 header 1906 payload 2000 LRP beamforming preamble 2002 sequence 2004 frame synchronization and AGC domain 2006 frequency Estimation Domain 2200 Directional LRP Packet Preamble 2202 First Symbol 118831.doc -44- 200803236 2204 Channel Estimation and Frequency Offset Estimation 2400 Tx Antenna Direction Tracking Post 2402 Section/Post Field 2404 Section/Post Item Domain 2406 Zone/Postfield 2500 Τ X Antenna Direction Tracking Precursor 2502 Zone/Preamble Domain 2504 Zone/Preamble Field 118831.doc -45-