TWI414625B - The transparent conductive oxides (tcos) thin films were deposited by atomic layer deposition (ald) technology - Google Patents

The transparent conductive oxides (tcos) thin films were deposited by atomic layer deposition (ald) technology Download PDF

Info

Publication number
TWI414625B
TWI414625B TW97149839A TW97149839A TWI414625B TW I414625 B TWI414625 B TW I414625B TW 97149839 A TW97149839 A TW 97149839A TW 97149839 A TW97149839 A TW 97149839A TW I414625 B TWI414625 B TW I414625B
Authority
TW
Taiwan
Prior art keywords
reactant
film
reaction chamber
metal
transparent conductive
Prior art date
Application number
TW97149839A
Other languages
Chinese (zh)
Other versions
TW201024451A (en
Inventor
Chun Yi Yu
Chiny En Yeh
Huang Wei Su
Original Assignee
Sun Well Solar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Well Solar Corp filed Critical Sun Well Solar Corp
Priority to TW97149839A priority Critical patent/TWI414625B/en
Publication of TW201024451A publication Critical patent/TW201024451A/en
Application granted granted Critical
Publication of TWI414625B publication Critical patent/TWI414625B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The transparent conductive oxides (TCOs) thin films were deposited by atomic layer deposition (ALD) technology which had a good uniformity in thickness, crystalline structure and film quality. The method can be applied to the fabrication of electrical devices, such as flat panel displays, touch panel displays, ICs, photovoltaic cells, and the other industries which use TCOs.

Description

使用原子層沉積法形成透明導電薄膜的方法Method for forming transparent conductive film by atomic layer deposition method

本發明是利用原子層沉積(atomic layer deposition;ALD)技術,以完成透明導電膜(transparent conducting oxides;TCOs)及元件(device)的製備。利用ALD技術可精準控制金屬氧化物中主要金屬、氧原子與摻雜金屬元素的比例,具有良好的鍍膜均勻度、精確的鍍膜層數以及厚度與組成控制能力。且ALD技術製程溫和,不會有離子轟擊的問題,在製作元件過程不會有傷害既有沉積薄膜之問題,而進一步該透明導電薄膜可應用於堆疊型(tandem)太陽能電池中上下電池堆疊之中間層(interlayer)。The present invention utilizes atomic layer deposition (ALD) technology to complete the preparation of transparent conducting oxides (TCOs) and devices. The ALD technology can precisely control the ratio of main metal, oxygen atom and doping metal element in metal oxide, with good coating uniformity, precise coating layer thickness and thickness and composition control ability. Moreover, the ALD technology has a mild process and does not have the problem of ion bombardment. The process of fabricating the component does not harm the problem of depositing the film, and the transparent conductive film can be applied to the stacking of the upper and lower cells in the tandem solar cell. The middle layer (interlayer).

透明導電膜在平面顯示器、觸控面板、積體電路與太陽能等產業的應用佔有重要的地位。氧化銦錫ITO(In2 O3 :SnO2 )是目前主要使用的透明導電膜,因不同產業應用需求由ITO衍生出許多的透明導電膜,例如氧化銦鈦ITiO(In2 O3 :TiO2 )、氧化銦鉬IMO(In2 O3 :MoO3 )、氧化銦鎢IWO(In2 O3 :WO3 )與氧化銦鎵IGO(In2 O3 :Ga2 O3 )。IGO在非專利文獻Appl.Phys.Lett.,65,1(1994)中使用真空直流反應性濺鍍與電射脈衝沉積法形成IGO,但沒有使用ALD的方法來形成IGO;在非專利文獻Applied Surface Science,99,91-98(1996)中使用ALD來形成ITO,但沒有使用ALD的方法形成IGO;在非專利文獻J.Mater.Chem.,6(1),27-31(1996)、Chem.Mater.,18,471-475(2006)、Integrated Ferroelectrics,80,197-206(2006)中使用ALD來形成氧化鎵Ga2 O3 ,但沒有使用ALD的方法形成IGO;在非專利文獻Integrated Ferroelectrics 85,155-164(2006)中使用ALD來形成氧化鈦鎵GaTiO2 ,但沒有使用ALD的方法形成IGO;在非專利文獻Superlattices and Micro structures 42,172-175(2007)中使用ALD的方法形成氧化鋅鎵GaZnO,但沒有使用ALD的方法形成IGO;另 外以氧化鋅(ZnO)為透明導電膜材料的另一大類,因鋅(Zn)蘊藏豐富而廉價,同時無毒性而廣受期待。但純ZnO的電阻過高,故會加入其他金屬元素進行摻雜以提高載子濃度與導電性,例如氧化鋅鋁AZO(ZnO:Al2 O3 )、氧化鋅鎵GZO(ZnO:Ga2 O3 )、氧化鋅鋯ZZO(ZnO:ZrO2 ),其中ZZO的透明導電膜在非專利文獻Appl.Phys.Lett.,83,18(2003)中使用電射脈衝沉積法製備ZZO薄膜;在非專利文獻Applied Surface Science 252,2006-2011(2005)、Applied Surface Science 252,5687-569(2006)、Applied Surface Science 254,6983-6986(2008)、Thin Solid Film 516,2017-2021(2008)中以射頻磁控濺鍍技術(RF magnetron sputtering)形成ZZO薄膜,但沒有使用ALD的方法來形成ZZO。在非專利文獻Materials Chemistry and Physics 79,71-75(2003)中以濕式化學成膜法的溶膠凝膠法(Sol-gel)形成ZZO薄膜,但沒有使用ALD的方法來形成ZZO。Transparent conductive films occupy an important position in the applications of flat panel displays, touch panels, integrated circuits and solar energy. Indium tin oxide ITO (In 2 O 3 :SnO 2 ) is a transparent conductive film mainly used at present. Many transparent conductive films are derived from ITO due to different industrial application requirements, such as indium oxide titanium ITiO (In 2 O 3 :TiO 2 ). Indium oxide molybdenum IMO (In 2 O 3 :MoO 3 ), indium oxide tungsten IWO (In 2 O 3 : WO 3 ), and indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ). IGO in the non-patent literature Appl. Phys. Lett., 65, 1 (1994) uses vacuum DC reactive sputtering and electrospray deposition to form IGO, but does not use ALD to form IGO; in the non-patented literature Applied ALD is used to form ITO in Surface Science, 99, 91-98 (1996), but IGO is not formed by the method of ALD; in Non-Patent Document J. Mater. Chem., 6(1), 27-31 (1996), . Chem.Mater, 18,471-475 (2006), Integrated Ferroelectrics, 80,197-206 (2006) using ALD 2 O 3 to form a gallium oxide Ga, but not formed using the ALD method IGO; Ferroelectrics 85,155- in Non-Patent Document Integrated ALD (2006) uses ALD to form titanium oxide gallium GaTiO 2 , but does not form IGO using ALD; in the non-patent literature Superlattices and Micro structures 42, 172-175 (2007), ALD is used to form zinc gallium oxide GaZnO, but There is no method of forming IGO by using ALD; another class of zinc oxide (ZnO) as a transparent conductive film material is widely expected because zinc (Zn) is abundant and inexpensive, and is non-toxic. However, the resistance of pure ZnO is too high, so other metal elements are added for doping to increase the carrier concentration and conductivity, such as zinc aluminum oxide AZO (ZnO: Al 2 O 3 ), zinc gallium oxide GZO (ZnO: Ga 2 O 3 ) Zinc oxide zirconium ZZO (ZnO: ZrO 2 ), wherein the transparent conductive film of ZZO is prepared by electro-electron pulse deposition method in Non-Patent Document Appl. Phys. Lett., 83, 18 (2003); Patent Document Applied Surface Science 252, 2006-2011 (2005), Applied Surface Science 252, 5687-569 (2006), Applied Surface Science 254, 6983-6986 (2008), Thin Solid Film 516, 2017-2021 (2008) The ZZO film was formed by RF magnetron sputtering, but the ALD method was not used to form the ZZO. A ZZO film is formed by a sol-gel method (Sol-gel) of a wet chemical film formation method in Non-Patent Literature Materials Chemistry and Physics 79, 71-75 (2003), but no ALD method is used to form ZZO.

在一組合式的電子元件中,元件與元件之間往往需要一導電膜以供彼此元件間的連結,該薄膜一般可利用蒸鍍(evaporation)或濺鍍(sputter)等方式製備,但濺鍍有離子轟擊的問題,所以在製作元件過程往往會傷害既有沉積薄膜,而影響元件的效能。而ALD技術製程溫和,沒有離子轟擊傷害既有沉積薄膜之問題,適合應用於堆疊元件之間導電層的沉積,且該技術沉積的薄膜品質佳、密度高、具最少缺陷與雜質,階梯披覆性亦佳。利用ALD來形成IGO及氧化鋅鋯ZZO(ZnO:ZrO2 )透明導電膜可精確的控制薄膜沉積層數以及厚度,更可精準控制透明導電膜中金屬、氧氣與摻雜金屬元素的比例,具備導電性與可見光穿透性調整彈性,可達到實際運用的水準。In a combined electronic component, a conductive film is often required between the component and the component for bonding between the components. The film can be generally prepared by evaporation or sputtering, but sputtering. There are problems with ion bombardment, so the process of making components often hurts the existing deposited film and affects the performance of the component. The ALD technology has a mild process and no ion bombardment damage. It has the problem of depositing thin films and is suitable for the deposition of conductive layers between stacked components. The deposited film has good quality, high density, minimal defects and impurities, and stepped over. Sex is also good. The use of ALD to form IGO and zinc zirconium zirconia ZZO (ZnO: ZrO 2 ) transparent conductive film can accurately control the number and thickness of thin film deposited layers, and can accurately control the ratio of metal, oxygen and doping metal elements in the transparent conductive film. Conductivity and visible light penetration adjust the elasticity to achieve the level of practical use.

本發明之主要目的在提供一種使用原子層沉積法形成透明導電膜的方法,其係可應用於太陽能電池之電子元件之電極及電性傳導物,如太陽能電池間串連傳導線及堆疊型(tandem)太陽能電池內上下電池 堆疊之中間層(interlayer)電性傳導膜。控制中間層在適當層數以及厚度下能夠增加光的反射,可以減少非晶矽薄膜(amorphous silicon)的厚度,減少光衰退現象的嚴重性,有助於提升堆疊型太陽能電池整體光能轉換效率與穩定性。The main object of the present invention is to provide a method for forming a transparent conductive film by atomic layer deposition, which can be applied to electrodes and electrical conductors of electronic components of solar cells, such as tandem conductive lines and stacked types between solar cells ( Tandem) solar battery upper and lower battery Stacked interlayer electrical conductive film. Controlling the intermediate layer can increase the reflection of light under appropriate layers and thicknesses, can reduce the thickness of amorphous silicon, reduce the severity of light decay, and help improve the overall light energy conversion efficiency of stacked solar cells. And stability.

本發明之另一目的在提供一種使用原子層沉積法形成透明導電膜的方法,此方法形成的透明導電膜可應用於平面顯示器、觸控式面板、太陽能產業、積體電路等及其他用到透明導電膜的產業。Another object of the present invention is to provide a method for forming a transparent conductive film by atomic layer deposition. The transparent conductive film formed by the method can be applied to a flat panel display, a touch panel, a solar energy industry, an integrated circuit, and the like. The industry of transparent conductive films.

本發明提出一種透明金屬氧化物導電薄膜的製造方法,係由原子層沉積技術精準控制透明導電膜的沉積層數以及厚度與薄膜中金屬、氧氣與摻雜金屬元素的比例。先將乾淨基材放於反應室中,第一循環使用第一反應物裝於容器中,反應物可為固體、液體與氣體可經由容器的加熱設備加熱,使其反應物變成氣態進入到反應室,與基材產生化學或物理反應後成膜於基材上,亦可在基材上加熱50~500℃,未反應物使用氮氣或惰性氣體將未反應物帶出反應室,以清潔反應室,再注入第二種含氧的反應物與第一反應物經化學吸附或物理吸附形成原子層的薄膜,第二種含氧的反應物與第一反應物經化學吸附或物理吸附而未吸附形成薄膜的反應物,使用氮氣或惰氣至反應室移除。第二循環使用第三反應物裝於容器中,反應物可為固體、液體與氣體可經由容器外的加熱設備加熱,使其反應物變成氣態進入到反應室,與基材產生化學或物理反應後成膜於基材上,亦可在基材上加熱50~500℃,未反應物使用氮氣或惰性氣體將未反應物帶出反應室,以清潔反應室,再注入第四種含氧的反應物與第三反應物經化學吸附或物理吸附形成原子層的薄膜,第四種含氧的反應物與第三反應物經化學吸附或物理吸附而未吸附形成薄膜的反應物,使用氮氣或惰氣至反應室移除。上述二種循環:第一循環、第二循環的製程順序可更換,且步驟第一循環、第二循環之次數不限定。The invention provides a method for manufacturing a transparent metal oxide conductive film, which is characterized in that the atomic layer deposition technology precisely controls the number of deposited layers and the thickness of the transparent conductive film and the ratio of metal, oxygen and doping metal elements in the film. First, the clean substrate is placed in the reaction chamber, and the first reactant is used in the container in the first cycle, the reactants may be solid, the liquid and the gas may be heated through the heating device of the container, and the reactants become gaseous and enter the reaction. The chamber is chemically or physically reacted with the substrate to form a film on the substrate, or may be heated on the substrate at 50 to 500 ° C, and the unreacted material is taken out of the reaction chamber by using nitrogen or an inert gas to clean the reaction. a second injection of the oxygen-containing reactant with the first reactant by chemisorption or physical adsorption to form a film of the atomic layer, and the second oxygen-containing reactant and the first reactant are chemically adsorbed or physically adsorbed. The reactants that form the film are adsorbed and removed using nitrogen or inert gas to the reaction chamber. The second cycle uses a third reactant in a vessel, the reactants can be solids, liquids and gases can be heated via heating means outside the vessel, causing the reactants to enter the reaction chamber in a gaseous state, producing a chemical or physical reaction with the substrate. After film formation on the substrate, it can also be heated on the substrate at 50-500 ° C. The unreacted material is taken out of the reaction chamber by using nitrogen or an inert gas to clean the reaction chamber and then inject a fourth oxygen-containing one. The reactant and the third reactant are chemically adsorbed or physically adsorbed to form a thin film of the atomic layer, and the fourth oxygen-containing reactant and the third reactant are chemically adsorbed or physically adsorbed without adsorbing the reactants forming the thin film, using nitrogen gas or The inert gas is removed to the reaction chamber. The above two cycles: the process sequence of the first cycle and the second cycle can be replaced, and the number of times of the first cycle and the second cycle of the step is not limited.

本發明之ALD製程所製備的透明導電膜,可應用於太陽能電池之 電子元件之電極及電性傳導物,如太陽能電池間串連傳導線及堆疊型(tandem)太陽能電池內上下電池堆疊之中間層(interlayer)電性傳導膜。堆疊型(tandem)太陽能電池元件是由上電池(top cell)與下電池(bottom cell)堆疊而成,一般矽薄膜太陽電池之上下電池分別為微晶矽薄膜(microcrystalline silicon)及非晶矽薄膜(amorphous silicon),組合架構一般為能隙寬的電池為入射光先經過的元件;兩電池中間層(interlayer)的透明導電層可以利用ALD製程所製備,用以連接上下電池。該導電膜層在ALD製程下,具有良好的鍍膜均勻度、精確的鍍膜層數以及厚度與精確組成控制能力。控制該膜層在適當層數以及厚度下能夠增加光的反射,可以減少非晶矽薄膜(amorphous silicon)的厚度,減少光衰退現象的嚴重性,有助於提升堆疊型太陽能電池整體光能轉換效率與穩定性。The transparent conductive film prepared by the ALD process of the invention can be applied to a solar cell Electrodes and electrical conductors of electronic components, such as tandem conductive lines between solar cells and interlayer electrical conductive films of stacked upper and lower cells in tandem solar cells. The tandem solar cell element is formed by stacking a top cell and a bottom cell. Generally, the upper and lower cells of the thin film solar cell are respectively microcrystalline silicon and amorphous germanium film. (amorphous silicon), the combined structure is generally a cell with a wide energy gap for the incident light first; the transparent conductive layer of the two battery interlayer can be prepared by an ALD process for connecting the upper and lower cells. The conductive film layer has good coating uniformity, precise coating layer number, thickness and precise composition control ability under the ALD process. Controlling the film layer can increase the reflection of light at a suitable number of layers and thickness, can reduce the thickness of the amorphous silicon film, reduce the severity of the light decay phenomenon, and help to improve the overall light energy conversion of the stacked solar cell. Efficiency and stability.

本發明之透明金屬氧化物導電薄膜的製造方法,以ZZO(ZnO:ZrO2 )的實施方法為例,請參照第1A圖~第1H圖及第2圖。製作ZZO的第一反應物、第二反應物、第三反應物、第四反應物包括,H2 O2 、H2 O、O2 、O2 電漿、O3 或電漿O3 其中之一;以及金屬鹵化物、金屬烷化合物、烷基的金屬鹵化物、金屬的乙醯丙酮化合物、金屬的烷基氮化物其中之一,上述之金屬係鋅、鋯或是其組合所組成之族群。In the method for producing a transparent metal oxide conductive film of the present invention, a method of implementing ZZO (ZnO: ZrO 2 ) is taken as an example, and reference is made to FIGS. 1A to 1H and 2 . The first reactant, the second reactant, the third reactant, and the fourth reactant for producing the ZZO include H 2 O 2 , H 2 O, O 2 , O 2 plasma, O 3 or plasma O 3 And one of a metal halide, a metal alkane compound, an alkyl metal halide, a metal acetoacetone compound, a metal alkyl nitride, and the above-mentioned metal group consisting of zinc, zirconium or a combination thereof .

首先將基材111諸如玻璃置於反應室201中,然後將反應室抽真空約0.1托爾之壓力。將基材111加熱至50~500℃,本實施例係加熱至180℃,然後將於氮氣(N2 )遞送氣體中之20 sccm之二乙基鋅(Diethylzinc;DEZ)之氣流(第一反應物氣流)112引入至反應室201中0.06秒(詳見第1A圖)。在此期間中,第一部分之DEZ化學吸附於基材111之表面上並形成化學吸附層121。第二部分之DEZ分子吸附,並鬆散地固定至基材111之化學吸附層上。然後將反應室201以 N2 淨洗5秒。在此等淨洗步驟中,DEZ之非經化學吸附的部分自反應室201移除而留下DEZ之化學吸附層121在基材111上(詳見第1B圖)。A substrate 111 such as glass is first placed in the reaction chamber 201, and then the reaction chamber is evacuated to a pressure of about 0.1 Torr. The substrate 111 is heated to 50 to 500 ° C, and this embodiment is heated to 180 ° C, and then a gas stream of 20 sccm of diethylzinc (DEZ) in a nitrogen (N 2 ) delivery gas (first reaction) The gas stream 112 was introduced into the reaction chamber 201 for 0.06 seconds (see Figure 1A for details). During this period, the first portion of the DEZ is chemically adsorbed on the surface of the substrate 111 and forms the chemisorption layer 121. The second portion of the DEZ molecule is adsorbed and loosely fixed to the chemisorbed layer of the substrate 111. The reaction chamber 201 was then washed with N 2 for 5 seconds. In such a purge step, the non-chemically adsorbed portion of DEZ is removed from reaction chamber 201 leaving the chemical adsorption layer 121 of DEZ on substrate 111 (see Figure 1B for details).

接著將含有H2 O之20sccm之N2 的氣流(第二反應物氣流)131引入至反應室201中0.03秒,同時並維持0.5托爾的壓力及180℃之基材溫度。第一部分的H2 O蒸氣與基材上之化學吸附層121經化學吸附的反應(詳見第1C圖),而生成ZnO之膜層(詳見第1D圖)。第二部分之H2 O分子附著,並鬆散地固定至Zn之化學吸附層上。然後以N2 淨洗5秒。在此等淨洗步驟中,H2 O之非經化學吸附的部分自反應室201移除,而留下氧(O)之化學吸附層(第一原子層薄膜)141原封不動地在基材111上(詳見第1D圖)。Next, a 20 sccm N 2 gas stream (second reactant gas stream) 131 containing H 2 O was introduced into the reaction chamber 201 for 0.03 seconds while maintaining a pressure of 0.5 Torr and a substrate temperature of 180 ° C. The first portion of the H 2 O vapor is chemically adsorbed with the chemisorbed layer 121 on the substrate (see Figure 1C for details) to form a film layer of ZnO (see Figure 1D for details). The second part of the H 2 O molecule adheres and is loosely fixed to the chemical adsorption layer of Zn. It was then washed with N 2 for 5 seconds. In the purging step, the non-chemically adsorbed portion of H 2 O is removed from the reaction chamber 201, and the chemical adsorption layer (first atomic layer film) 141 leaving oxygen (O) is intact in the substrate. 111 (see Figure 1D for details).

接著將含有[(CH3 )2 N]4 Zr(Tetrakisdimhylaminozirconium)之20sccm之N2 的氣流(第三反應物氣流)151引入至反應室201中0.6秒,同時並維持0.5托爾的壓力及180℃之基材溫度。第一部分[(CH3 )2 N]4 Zr與基材111上之化學吸附層141進行表面化學吸附的反應(詳見第1E圖),而生成ZZO(ZnO:ZrO2 )中之Zr(詳見第1F圖)。[(CH3 )2 N]4 Zr分子附著,並鬆散地固定至ZnO之化學吸附層141上。然後以N2 淨洗5秒,在此等淨洗步驟中,[(CH3 )2 N]4 Zr之非經化學吸附的部分自反應室201移除,而留下[(CH3 )2 N]2 Zr之化學吸附層161原封不動地在基材111上(詳見第1F圖)。Next, a 20 sccm N 2 gas stream (third reactant gas stream) 151 containing [(CH 3 ) 2 N] 4 Zr (Tetrakisdimhylaminozirconium) was introduced into the reaction chamber 201 for 0.6 seconds while maintaining a pressure of 0.5 Torr and 180 The substrate temperature of °C. The first part of [(CH 3 ) 2 N] 4 Zr reacts with the chemical adsorption layer 141 on the substrate 111 by surface chemisorption (see FIG. 1E for details), and generates Zr in ZZO (ZnO: ZrO 2 ) (detailed) See Figure 1F). The [(CH 3 ) 2 N] 4 Zr molecule adheres and is loosely fixed to the chemisorption layer 141 of ZnO. Then, it was washed with N 2 for 5 seconds. In the purification step, the non-chemically adsorbed portion of [(CH 3 ) 2 N] 4 Zr was removed from the reaction chamber 201, leaving [(CH 3 ) 2 The chemical adsorption layer 161 of N] 2 Zr is intact on the substrate 111 (see Fig. 1F for details).

接著將含有H2 O之20sccm之N2 的氣流(第四反應物氣流)171引入至反應室201中0.03秒,同時並維持0.5托爾的壓力及180℃之基材溫度。第一部分的H2 O蒸氣與基材上之化學吸附層161經化學吸附的反應(詳見第1G圖),而生成ZZO之ZrO2 之膜層。第二部分之H2 O分子附著,並鬆散地固定至化學吸附層161上。然後以N2 淨洗5秒,在此等淨洗步驟中,H2 O之非經化學吸附的部分自反應室201移除,而留下氧之化學吸附層(第二原子層薄膜)181原封不動地在第一原子 層薄膜141上(詳見第1H圖)。Next, a 20 sccm N 2 gas stream (fourth reactant gas stream) 171 containing H 2 O was introduced into the reaction chamber 201 for 0.03 seconds while maintaining a pressure of 0.5 Torr and a substrate temperature of 180 ° C. The first portion of the H 2 O vapor is chemically adsorbed with the chemisorbed layer 161 on the substrate (see Figure 1G for details) to form a ZrO 2 film layer of ZZO. The second portion of the H 2 O molecule adheres and is loosely fixed to the chemisorption layer 161. Then, it is washed with N 2 for 5 seconds. In the cleaning step, the non-chemically adsorbed portion of H 2 O is removed from the reaction chamber 201, leaving a chemical adsorption layer of oxygen (second atomic layer film) 181 The first atomic layer film 141 is intact (see Figure 1H for details).

第2圖係使用於根據本發明之薄膜製造方法之薄膜製造裝置的示意圖。現將參照第2圖與第3圖流程圖說明前述的具體實施例。首先進行步驟S12,開始製作透明導電薄膜;將基材111(例如:玻璃基材)載入至反應室201中之後,使反應室201達到約0.1托爾的壓力,及使用加熱器203使其達到約180℃之溫度。再來進行步驟S14及步驟S16,將含有DEZ之第一反應物氣流112注入至反應室201中0.06秒,同時並將基材維持於180℃及約0.5托爾下。經由氣體源218將20sccm之N2 與第一反應物材料提供處209中第一反應物210(DEZ氣體)混合,形成第一反應物氣流112。如前所述,然後經由第一氣體管線204及蓮蓬頭202將混合的DEZ及N2 氣體流注入至反應室201中約0.06秒之時間。接著泵208將反應室201中未反應DEZ以N2 氣體管線217注入純N2 淨洗5秒。Fig. 2 is a schematic view showing a film manufacturing apparatus used in the film manufacturing method according to the present invention. The foregoing specific embodiments will now be described with reference to the flowcharts of Figs. 2 and 3. First, in step S12, a transparent conductive film is formed; after the substrate 111 (for example, a glass substrate) is loaded into the reaction chamber 201, the reaction chamber 201 is brought to a pressure of about 0.1 Torr, and the heater 203 is used. A temperature of about 180 ° C is reached. Further, in step S14 and step S16, the first reactant gas stream 112 containing DEZ is injected into the reaction chamber 201 for 0.06 seconds while maintaining the substrate at 180 ° C and about 0.5 Torr. 20 sccm of N 2 is mixed with first reactant 210 (DEZ gas) in first reactant material supply 209 via gas source 218 to form first reactant gas stream 112. As described above, then N 2 gas and DEZ via a first gas line 204 and the showerhead 202 the mixed stream into the reaction chamber 201 to about 0.06 seconds time. Then the reaction chamber 208 of the pump 201 DEZ unreacted N 2 gas line 217 to injection of pure N 2 washing five seconds.

接續進行步驟S18及步驟S20,然後第二反應物氣流131由20sccm之N2 與H2 O之氣體混合下注入至反應室201中約0.03秒。在此步驟中,將基材111維持於180℃,及將反應室201壓力維持於約0.5托爾下。經由氣體源218將20sccm之N2 與第二反應物材料提供處213中第二反應物214(H2 O氣體)混合,形成第二反應物氣流131,接著再經由氣體管線206及蓮蓬頭202將混合的H2 O及N2 氣體流注入至反應室201中約0.03秒。Step S18 and step S20 are continued, and then the second reactant gas stream 131 is injected into the reaction chamber 201 by mixing with 20 sccm of N 2 and H 2 O gas for about 0.03 seconds. In this step, the substrate 111 was maintained at 180 ° C and the pressure in the reaction chamber 201 was maintained at about 0.5 Torr. 20 sccm of N 2 is mixed with a second reactant 214 (H 2 O gas) in the second reactant material supply 213 via gas source 218 to form a second reactant gas stream 131, which in turn is passed through gas line 206 and showerhead 202 The mixed H 2 O and N 2 gas streams were injected into the reaction chamber 201 for about 0.03 seconds.

第二反應物氣流131中之第一部分的H2 O化學吸附於基材111上之Zn反應,而生成一層ZnO。當ZnO之薄膜生成於基材111上時,第二反應物氣流131中之第二部分的H2 O鬆散地固定於Zn層上(未反應的H2 O)。接著泵208將反應室201以N2 氣體管線217注入純N2 淨洗5秒,或亦可使用惰性氣體淨洗而移除。The first portion of H 2 O in the second reactant gas stream 131 is chemically adsorbed to the Zn reaction on the substrate 111 to form a layer of ZnO. When a film of ZnO is formed on the substrate 111, the second portion of the H 2 O in the second reactant gas stream 131 is loosely fixed to the Zn layer (unreacted H 2 O). Then the reaction chamber 208 of the pump 201 with N 2 gas injection line 217 pure N 2 washing five seconds, or may use an inert gas washing removed.

然後進行步驟S21,判斷第一原子層薄膜141的層數以及厚度是否符合需求,如否,可重覆進行步驟S14~步驟S20(第一循環),如果 符合需求,則繼續進行步驟S22以及後續的實施步驟。Then, in step S21, it is determined whether the number of layers and the thickness of the first atomic layer film 141 meet the requirements. If not, step S14 to step S20 (first cycle) may be repeated. If the requirements are met, step S22 and subsequent implementation steps are continued.

接續進行步驟S22及步驟S24,將未反應的H2 O自反應室201淨洗之後,將含有[(CH3 )2 N]4 Zr之第三反應物氣流151注入至反應室201中0.6秒,同時並將基材維持於180℃及約0.5托爾下。經由氣體源218將20sccm之N2 氣體與第三反應物材料提供處211中第三反應物212([(CH3 )2 N]4 Zr氣體)混合,形成第三反應物氣流151。如前所述,然後經由第三氣體管線205及蓮蓬頭202將混合的[(CH3 )2 N]4 Zr及N2 氣體流注入至反應室201中約0.6秒之時間。接著再利用泵208將反應室201中未反應[(CH3 )2 N]4 Zr以N2 氣體管線217注入純N2 淨洗5秒。Step S22 and step S24 are continued, after the unreacted H 2 O is cleaned from the reaction chamber 201, the third reactant gas stream 151 containing [(CH 3 ) 2 N] 4 Zr is injected into the reaction chamber 201 for 0.6 seconds. While maintaining the substrate at 180 ° C and about 0.5 Torr. The gas source 218 via 20sccm of N 2 gas and the third reactant materials to provide a third reaction mixture at 211 was 212 ([(CH 3) 2 N] 4 Zr gas), a third reactant gas stream 151 is formed. As previously described, the mixed [(CH 3 ) 2 N] 4 Zr and N 2 gas streams are then injected into the reaction chamber 201 via the third gas line 205 and the showerhead 202 for a period of about 0.6 seconds. Next, the unreacted [(CH 3 ) 2 N] 4 Zr in the reaction chamber 201 was injected into the pure N 2 purge by the N 2 gas line 217 for 5 seconds using the pump 208.

接著進行步驟S26及步驟S28,然後第四反應物氣流171由20sccm之N2 與H2 O之氣體混合下注入至反應室201中約0.03秒。在此步驟中,將基材111維持於180℃,及將反應室201壓力維持於約0.5托爾下。經由氣體源218將20sccm之N2 與第四反應物材料提供處215中第四反應物216(H2 O氣體)混合,形成第四反應物氣流171,接著再經由氣體管線207及蓮蓬頭202將混合的H2 O及N2 氣體流注入至反應室201中約0.03秒。第四反應物氣流171之第一部分的H2 O與吸附於基材111上之Zr反應,而生成一層ZrO2 。當ZrO2 之薄膜生成於基材上時,第四反應物氣流中之第二部分的H2 O鬆散地固定於Zr層上(未反應的H2 O)。然後用泵208將反應室201以N2 氣體管線217注入純N2 淨洗5秒,或亦可使用惰性氣體淨洗而移除。Next, step S26 and step S28 are performed, and then the fourth reactant gas stream 171 is injected into the reaction chamber 201 by mixing with 20 sccm of N 2 and H 2 O gas for about 0.03 seconds. In this step, the substrate 111 was maintained at 180 ° C and the pressure in the reaction chamber 201 was maintained at about 0.5 Torr. 20 sccm of N 2 is mixed with a fourth reactant 216 (H 2 O gas) in the fourth reactant material supply 215 via gas source 218 to form a fourth reactant gas stream 171, which is then passed via gas line 207 and showerhead 202 The mixed H 2 O and N 2 gas streams were injected into the reaction chamber 201 for about 0.03 seconds. H 2 O The reaction of the first portion 171 of the fourth gas stream react with the adsorbed on the substrate 111 of Zr, generating layer ZrO 2. When a film of ZrO 2 is formed on the substrate, the second portion of the H 2 O in the fourth reactant gas stream is loosely immobilized on the Zr layer (unreacted H 2 O). The reaction chamber 201 is then pumped into the pure N 2 purge with the N 2 gas line 217 for 5 seconds using a pump 208, or may be removed by purging with an inert gas.

然後進行步驟S30,判斷ZZO的透明導電薄膜的層數以及厚度是否符合需求,如否,可重覆進行步驟S14~步驟S20(第一循環)、或是步驟S22~步驟S28(第二循環)以形成各種不同的結構的透明導電薄膜,如多層的第一原子層薄膜141搭配一層的第二原子層薄膜181的透明導電薄膜、如多層的第一原子層薄膜141搭配多層的第二原子層薄膜181的透明導電薄膜、如一層的第一原子層薄膜141搭配多層的 第二原子層薄膜181的透明導電薄膜,或是任意數量比例的第一原子層薄膜141及第二原子層薄膜181交錯搭配所形的透明導電薄膜。如是,則進行步驟S32及步驟S34,使反應室達到室溫及1大氣壓的狀態下,結束整個製程。Then, in step S30, it is determined whether the number and thickness of the transparent conductive film of the ZZO meet the requirements. If not, the steps S14 to S20 (first cycle) or steps S22 to S28 (second cycle) may be repeated. A transparent conductive film having various structures, such as a plurality of layers of the first atomic layer film 141, a transparent conductive film of the second atomic layer film 181, and a plurality of layers of the first atomic layer film 141 are combined with the second atomic layer of the plurality of layers. The transparent conductive film of the film 181, such as a layer of the first atomic layer film 141, is multi-layered The transparent conductive film of the second atomic layer film 181, or any number of the first atomic layer film 141 and the second atomic layer film 181 are alternately arranged to form a transparent conductive film. If so, the process proceeds to step S32 and step S34, and the entire process is terminated with the reaction chamber at room temperature and 1 atm.

為改良成膜品質與成膜速度問題,可經由使用DEZ、[(CH3 )2 N]4 Zr與H2 O、H2 O2 、O2 、O3 以電漿輔助方式或照光輔助方式(為紫外光、紅外光、遠紅光)實施,或進行退火(annealing)處理改善薄膜品質與電性表現。上述電漿方式、照光輔助方式與反應物材料提供處加熱方式未顯示於圖示之中,但可由第2圖中之設備加以改良即可實施,其中,照光方式所採用的光線係紫外光、紅外光或遠紅外光。本發明實施所得之薄膜性質結果呈現於第4圖之列表,在第4圖中所提出之透明導電薄膜有三種,第一種透明導電薄膜係先實施S14~步驟S20(第一循環)一共12次後,實施S22~步驟S28(第二循環)1次,再依此反覆循環以形成ZZO透明導電薄膜。第二種透明導電薄膜係先實施S14~步驟S20(第一循環)一共19次後,實施S22~步驟S28(第二循環)1次,再依此反覆循環以形成ZZO透明導電薄膜。第三種透明導電薄膜係先實施S14~步驟S20(第一循環)一共32次後,實施S22~步驟S28(第二循環)1次,再依此反覆循環以形成ZZO透明導電薄膜。In order to improve the film formation quality and film formation speed, it can be plasma-assisted or photo-assisted by using DEZ, [(CH 3 ) 2 N] 4 Zr and H 2 O, H 2 O 2 , O 2 , O 3 (for ultraviolet light, infrared light, far red light), or annealing (annealing) to improve film quality and electrical performance. The above-mentioned plasma method, illumination assisting method and heating method of the reactant material supply are not shown in the drawings, but can be implemented by the improvement of the apparatus in Fig. 2, wherein the light used in the illumination mode is ultraviolet light, Infrared or far infrared. The results of the film properties obtained by the practice of the present invention are shown in the list of FIG. 4, and there are three kinds of transparent conductive films proposed in FIG. 4, and the first transparent conductive film is first implemented in S14 to S20 (first cycle). After that, S22 to step S28 (second cycle) are carried out once, and then cyclically repeated to form a ZZO transparent conductive film. The second transparent conductive film is subjected to S14 to S20 (first cycle) for a total of 19 times, and then S22 to S28 (second cycle) is performed once, and then cyclically repeated to form a ZZO transparent conductive film. The third transparent conductive film is subjected to S14 to S20 (first cycle) for a total of 32 times, and then S22 to S28 (second cycle) is performed once, and then cyclically repeated to form a ZZO transparent conductive film.

其中,本發明在形成透明導電薄膜時,第一循環與第二循環的次數是不受限制的,可依照實際上的需求,加以製作。另外,本發明之透明導電薄膜的形成方式,亦可以是第一循環與第二循環交錯實施的。此等實施方式均應被保護在專利範圍中。In the present invention, when the transparent conductive film is formed, the number of times of the first cycle and the second cycle is not limited, and can be produced according to actual needs. Further, the transparent conductive film of the present invention may be formed by interleaving the first cycle and the second cycle. These implementations should all be protected by patents.

本發明的另一種實施例係原子層沉積法形成氧化銦鎵IGO(In2 O3 :Ga2 O3 ),IGO係另一種透明導電薄膜,本實施例與上一實施例不同之處在於,製作IGO時第一反應物、第二反應物、第三反應物、第四反應物的組成成分。製作IGO的第一反應物、第二反應物、第三反應物、第四反應物包括H2 O2 、H2 O、O2 、O2 電漿、O3 或電漿O3 其中之一; 以及金屬鹵化物、金屬烷化合物、烷基的金屬鹵化物、金屬的乙醯丙酮化合物、金屬的烷基氮化物其中之一,上述之金屬係銦、鎵或是其組合所組成之族群。Another embodiment of the present invention forms indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ) by atomic layer deposition, and IGO is another transparent conductive film. This embodiment differs from the previous embodiment in that The composition of the first reactant, the second reactant, the third reactant, and the fourth reactant in the production of IGO. The first reactant, the second reactant, the third reactant, and the fourth reactant for producing the IGO include one of H 2 O 2 , H 2 O, O 2 , O 2 plasma, O 3 or plasma O 3 . And one of a metal halide, a metal alkane compound, an alkyl metal halide, a metal acetoacetone compound, a metal alkyl nitride, and the above-mentioned metal is indium, gallium or a combination thereof.

本發明之透明金屬氧化物導電薄膜可廣泛應用於太陽能電池中電子元件之電性傳導物,如堆疊型(tandem)太陽能電池內上下電池堆疊之中間層(interlayer)電性傳導膜。請參照第5圖之元件標號51與52,分別為雙接面(double-junction)太陽能電池元件51與三接面(triple-junction)堆疊型(tandem)太陽能電池元件52,其中雙接面太陽能電池元件51中,元件標號511為元件之上電池(top cell),如非晶矽(amorphous silicon)薄膜,元件標號512為元件之下電池(bottom cell),如微晶矽(microcrystalline silicon)薄膜,可分別以不同製程參數的PECVD沉積方式進行製備;而元件標號513為連接太陽能電池元件上下電池之中間層(interlayer)513,該膜層(中間層513)可利用先前實施方法所述,以ALD技術來進行氧化銦鎵IGO(In2 O3 :Ga2 O3 )或氧化鋅鋯ZZO(ZnO:ZrO2 )透明導電膜的沉積,該技術膜層披覆性佳,且製程溫和不會傷害原有薄膜而影響元件效能;元件標號514與元件標號515則分別為上電池及下電池與外部電路連結之上電極514與下電極515;上電極514或下電極515至少有其中之一為透明導電薄膜材,作為光線的入射面,製程上可利用物理性或化學性氣相沉積方式製備,亦可利用上述ALD技術來進行氧化銦鎵IGO(In2 O3 :Ga2 O3 )或氧化鋅鋯ZZO(ZnO:ZrO2 )透明導電膜的沉積。同樣於三接面堆疊型太陽能電池元件52中,元件是由三個設計為吸收不同波長而具不同能隙的電池單元511、512、521所堆疊而成,其中元件標號522為連接各太陽能電池之中間層(interlayer)522,該膜層(中間層522)可利用先前實施方法所述,以ALD技術來進行氧化銦鎵IGO(In2 O3 :Ga2 O3 )或氧化鋅鋯ZZO(ZnO:ZrO2 )透明導電膜的沉積,而上電池、下電池與外部電路連結之電極514、電極515亦可利用上述ALD技術來進行氧化銦鎵 IGO(In2 O3 :Ga2 O3 )或氧化鋅鋯ZZO(ZnO:ZrO2 )透明導電膜的沉積。The transparent metal oxide conductive film of the present invention can be widely applied to an electrical conductor of an electronic component in a solar cell, such as an interlayer electrically conductive film of a stack of upper and lower cells in a tandem solar cell. Referring to the component numbers 51 and 52 of FIG. 5, respectively, a double-junction solar cell element 51 and a triple-junction tandem solar cell element 52, wherein the double junction solar energy In the battery element 51, the component number 511 is a top cell of the component, such as an amorphous silicon film, and the component number 512 is a bottom cell such as a microcrystalline silicon film. , can be separately prepared by PECVD deposition method with different process parameters; and the component number 513 is an interlayer 513 connecting the upper and lower cells of the solar cell element, and the film layer (intermediate layer 513) can be described by the prior implementation method. ALD technology is used to deposit the indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ) or zinc zirconium ZOO (ZnO:ZrO 2 ) transparent conductive film, which has excellent film coverage and mild process. The original film is damaged to affect the component performance; the component number 514 and the component number 515 are respectively connected to the upper battery and the lower battery and the external circuit to the upper electrode 514 and the lower electrode 515; at least one of the upper electrode 514 or the lower electrode 515 For the transparent conductive film, as the incident surface of the light, the process can be prepared by physical or chemical vapor deposition, or the above ALD technology can be used for indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ) Or deposition of a zinc oxide zirconium ZZO (ZnO: ZrO 2 ) transparent conductive film. Also in the three-junction stacked solar cell element 52, the elements are stacked by three battery cells 511, 512, 521 designed to absorb different wavelengths and having different energy gaps, wherein the component number 522 is to connect the solar cells. An interlayer 522, which may be indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ) or zinc zirconium zirconium ZOO by ALD technique, as described in the previous embodiment. ZnO:ZrO 2 ) deposition of a transparent conductive film, and the electrode 514 and the electrode 515 of the upper battery and the lower battery connected to the external circuit can also perform indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ) by the above ALD technique. Or deposition of a zinc oxide zirconium ZZO (ZnO: ZrO 2 ) transparent conductive film.

本發明之透明金屬氧化物導電薄膜可廣泛應用於太陽能電池之電子元件之電極及電性傳導體,如太陽能電池模組(solar module)中相鄰的電池(solar cell)單元串連之導電膜。第6圖中,元件標號53為三個太陽能電池所組成的串連式太陽能電池元件,元件標號531為作為電極之導電薄膜,該膜層可利用先前實施方法所述,以ALD技術來進行氧化銦鎵IGO(In2 O3 :Ga2 O3 )或氧化鋅鋯ZZO(Zno:ZrO2 )透明導電膜的沉積。元件標號532為個別單一太陽能電池(solar cell),該元件製程上可利用物理性或化學性氣相沉積、或溶劑塗佈等多種方式製備;元件標號533則為太陽能電池間串連傳導體,該膜層同樣可利用上述ALD技術沉積氧化銦鎵IGO(In2 O3 :Ga2 O3 )或氧化鋅鋯ZZO(ZnO:ZrO2 )薄膜作為與其他元件連結之導電膜。以ALD技術來進行氧化銦鎵IGO(In2 O3 :Ga2 O3 )或氧化鋅鋯ZZO(ZnO:ZrO2 )透明導電膜的沉積,該技術膜層披覆性佳,且製程溫和不會傷害原有薄膜,針對形成太陽能電池模組可利用微影蝕刻、機械式刮銷或雷射刮銷等技術配合對已沉積的薄膜進行圖樣化以形成太陽能相鄰電池單元間電性傳導串連。The transparent metal oxide conductive film of the invention can be widely applied to electrodes and electrical conductors of electronic components of solar cells, such as conductive films in which solar cells are connected in series in a solar module. . In Fig. 6, the component number 53 is a tandem solar cell element composed of three solar cells, and the component number 531 is a conductive film as an electrode, which can be oxidized by ALD technique as described in the prior embodiment. Deposition of indium gallium IGO (In 2 O 3 :Ga 2 O 3 ) or zinc zirconium zirconium ZOO (Zno:ZrO 2 ) transparent conductive film. The component number 532 is an individual single solar cell, and the component process can be prepared by various methods such as physical or chemical vapor deposition or solvent coating; and the component number 533 is a tandem conductor between solar cells. The film layer can also be deposited by using the above ALD technique as a film of indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ) or a zinc zirconium zirconium ZOO (ZnO:ZrO 2 ) film as a conductive film bonded to other elements. The deposition of indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ) or zinc zirconium ZOO (ZnO:ZrO 2 ) transparent conductive film is performed by ALD technology, and the film has good coverage and mild process. It will damage the original film. For the formation of the solar cell module, the deposited film can be patterned by using techniques such as lithography etching, mechanical scraping or laser scratching to form an electrically conductive string between adjacent solar cells. even.

111‧‧‧基材111‧‧‧Substrate

112‧‧‧第一反應物氣流112‧‧‧First reactant gas flow

121‧‧‧第一反應物之薄膜層(化學吸附層)121‧‧‧film layer of the first reactant (chemical adsorption layer)

131‧‧‧第二反應物氣流131‧‧‧Second reactant gas flow

141‧‧‧第二反應物之薄膜層(化學吸附層/第一原子層薄膜)141‧‧‧ Thin film layer of the second reactant (chemical adsorption layer / first atomic layer film)

151‧‧‧第三反應物氣流151‧‧‧ Third reactant gas flow

161‧‧‧第三反應物之薄膜層(化學吸附層)161‧‧‧film layer of the third reactant (chemical adsorption layer)

171‧‧‧第四反應物氣流171‧‧‧ fourth reactant gas flow

181‧‧‧第四反應物之薄膜層(化學吸附層/第二原子層薄膜)181‧‧‧film layer of the fourth reactant (chemical adsorption layer / second atomic layer film)

201‧‧‧反應室201‧‧‧Reaction room

202‧‧‧蓮蓬頭202‧‧‧ shower head

203‧‧‧加熱器203‧‧‧heater

204‧‧‧第一氣體管線204‧‧‧First gas pipeline

205‧‧‧第三反應物管線205‧‧‧ third reactant pipeline

206‧‧‧第二反應物管線206‧‧‧Second reactant pipeline

207‧‧‧第四反應物管線207‧‧‧ fourth reactant pipeline

208‧‧‧泵208‧‧‧ pump

209‧‧‧第一反應物材料提供處209‧‧‧ First Reagent Materials Supply Office

210‧‧‧第一反應物210‧‧‧First reactant

211‧‧‧第三反應物材料提供處211‧‧‧ Third Reactant Materials Supply Office

212‧‧‧第三反應物212‧‧‧ Third reactant

213‧‧‧第二反應物材料提供處213‧‧‧Second reactant material supply office

214‧‧‧第二反應物214‧‧‧Second reactant

215‧‧‧第四反應物材料提供處215‧‧‧ Fourth Reagent Materials Supply Office

216‧‧‧第四反應物216‧‧‧ fourth reactant

217‧‧‧N2 氣或惰性氣體管線217‧‧‧N 2 gas or inert gas pipeline

218‧‧‧N2 氣或惰性氣體源218‧‧‧N 2 gas or inert gas source

51‧‧‧雙接面堆疊型太陽能電池組合元件51‧‧‧Double junction stacked solar cell composite components

511‧‧‧上電池(top cell)511‧‧‧Upper battery

512‧‧‧下電池(bottom cell)512‧‧‧Battery cell

513‧‧‧以ALD形成之透明導電薄膜513‧‧‧Transparent conductive film formed by ALD

514‧‧‧上電極514‧‧‧Upper electrode

515‧‧‧下電極515‧‧‧ lower electrode

52‧‧‧三接面堆疊型太陽能電池組合元件52‧‧‧Three junction stacked solar cell composite components

521‧‧‧中間層電池(middle cell)521‧‧‧ Middle cell (middle cell)

53‧‧‧以串連式組合之太陽電池(即太陽能電池模組)53‧‧‧Solar cells in series (ie solar cell modules)

531‧‧‧以ALD形成之透明導電薄膜531‧‧‧Transparent conductive film formed by ALD

532‧‧‧太陽能電池(solar cell)單元532‧‧‧Solar cell unit

533‧‧‧串連相鄰電池單元之導電薄膜533‧‧‧Electrical film in series with adjacent battery cells

第1A圖~第1H圖係說明根據本發明之具體實施例使用原子層沈積形成薄膜方法的步驟。1A to 1H illustrate steps of a method of forming a thin film using atomic layer deposition according to a specific embodiment of the present invention.

第2圖係使用於根據本發明薄膜製造方法的製造裝置示意圖。Fig. 2 is a schematic view showing a manufacturing apparatus used in the method for producing a film according to the present invention.

第3圖係本發明之實施流程圖說明根據本發明薄膜製造方法。Fig. 3 is a flow chart showing the method of producing a film according to the present invention.

第4圖係為使用本發明實施所得之氧化鋅鋯ZZO(ZnO:ZrO2 )薄膜性質。Fig. 4 is a graph showing the properties of a zinc zirconium oxide ZOO (ZnO:ZrO 2 ) film obtained by the practice of the present invention.

第5圖及第6圖係為使用本發明實施所得之電子元件。Fig. 5 and Fig. 6 are electronic components obtained by using the present invention.

Claims (4)

一種使用原子層沉積法形成透明導電薄膜的方法,包括下列步驟:(A)於一反應室中注入一第一反應物與一基材反應,反應後,使用氮氣或惰氣將未進行反應的第一反應物從該反應室中移除;(B)於該反應室中注入一第二反應物與該第一反應物反應,並於該基板上形成一第一原子層薄膜,反應後,使用氮氣或惰氣將未進行反應的第二反應物從該反應室中移除;(C)於該反應室中注入一第三反應物,該第三反應物係吸附於該第一原子層薄膜上,反應後,使用氮氣或惰氣將未進行反應的第三反應物從該反應室中移除;(D)於該反應室中注入一第四反應物與該第三反應物反應,並於該基板上形成一第二原子層薄膜,反應後,使用氮氣或惰氣將未進行反應的第四反應物從該反應室中移除,並形成由該第一原子層薄膜及該第二原子層薄膜組成之一透明導電薄膜;其特徵在於,該第一反應物/該第二反應物係H2 O2 、H2 O、O2 、O2 電漿、O3 或O3 電漿,該第二反應物/該第一反應物係金屬鹵化物、金屬烷化合物、烷基的金屬鹵化物、金屬的乙醯丙酮化合物、金屬的烷基氮化物其中之一,上述之金屬係鋅/鋯或是其組合所組成之族群,該第三反應物/該第四反應物係H2 O2 、H2 O、O2 、O2 電漿、O3 或O3 電漿,該第四反應物/該第三反應物係金屬鹵化物、金屬烷化合物、烷基的金屬鹵化物、金屬的乙醯丙酮化合物、金屬的烷基氮化物其中之一,上述之金屬係鋯/鋅或是其組合所組成之族群,且該透明導電薄膜係一氧化鋅鋯ZZO(ZnO:ZrO2 )。A method for forming a transparent conductive film by atomic layer deposition comprises the steps of: (A) injecting a first reactant into a reaction chamber to react with a substrate, and after reacting, using nitrogen or inert gas to react unreacted The first reactant is removed from the reaction chamber; (B) a second reactant is injected into the reaction chamber to react with the first reactant, and a first atomic layer film is formed on the substrate. After the reaction, The unreacted second reactant is removed from the reaction chamber using nitrogen or inert gas; (C) a third reactant is injected into the reaction chamber, and the third reactant is adsorbed to the first atomic layer On the film, after the reaction, the unreacted third reactant is removed from the reaction chamber using nitrogen or inert gas; (D) injecting a fourth reactant into the reaction chamber to react with the third reactant, Forming a second atomic layer film on the substrate, and after the reaction, removing the unreacted fourth reactant from the reaction chamber using nitrogen or inert gas, and forming the first atomic layer film and the first a transparent conductive film composed of a diatomic layer film; Wherein the first reactant / reaction system of the second H 2 O 2, H 2 O , O 2, O 2 plasma, plasma O 3, or O 3, the second reactant / reaction product of the first a metal halide, a metal alkane compound, a metal halide of an alkyl group, a metal acetoacetone compound, a metal alkyl nitride, one of the above-mentioned metal zinc/zirconium or a combination thereof, a third reactant / the fourth reactant is H 2 O 2 , H 2 O, O 2 , O 2 plasma, O 3 or O 3 plasma, the fourth reactant / the third reactant metal halide a metal halide, a metal halide of an alkyl group, a metal acetoacetone compound, a metal alkyl nitride, one of the above-mentioned metal zirconium/zinc or a combination thereof, and the transparent conductive The film is zinc zirconium oxide ZOO (ZnO: ZrO 2 ). 如申請專利範圍第1項所述之方法,其中該氧化鋅鋯透明導電薄膜係作為堆疊型太陽能電池內部組成電池間之中間層電性傳導膜。 The method of claim 1, wherein the zinc zirconium transparent conductive film is used as an intermediate layer electrically conductive film between the cells in the stacked solar cell. 一種使用原子層沉積法形成透明導電薄膜的方法,包括下列步驟:(A)於一反應室中注入一第一反應物與一基材反應,反應後,使用 氮氣或惰氣將未進行反應的第一反應物從該反應室中移除;(B)於該反應室中注入一第二反應物與該第一反應物反應,並於該基板上形成一第一原子層薄膜,反應後,使用氮氣或惰氣將未進行反應的第二反應物從該反應室中移除;(C)於該反應室中注入一第三反應物,該第三反應物係吸附於該第一原子層薄膜上,反應後,使用氮氣或惰氣將未進行反應的第三反應物從該反應室中移除;(D)於該反應室中注入一第四反應物與該第三反應物反應,並於該基板上形成一第二原子層薄膜,反應後,使用氮氣或惰氣將未進行反應的第四反應物從該反應室中移除,並形成由該第一原子層薄膜及該第二原子層薄膜組成之一透明導電薄膜;其特徵在於,該第一反應物/該第二反應物係H2 O2 、H2 O、O2 、O2 電漿、O3 或O3 電漿,該第二反應物/該第一反應物係金屬鹵化物、金屬烷化合物、烷基的金屬鹵化物、金屬的乙醯丙酮化合物、金屬的烷基氮化物其中之一,上述之金屬係銦/鎵或是其組合所組成之族群,該第三反應物/該第四反應物係H2 O2 、H2 O、O2 、O2 電漿、O3 或O3 電漿,該第四反應物/該第三反應物係金屬鹵化物、金屬烷化合物、烷基的金屬鹵化物、金屬的乙醯丙酮化合物、金屬的烷基氮化物其中之一,上述之金屬係鎵/銦或是其組合所組成之族群,且該透明導電薄膜係一氧化銦鎵IGO(In2 O3 :Ga2 O3 )。A method for forming a transparent conductive film by atomic layer deposition comprises the steps of: (A) injecting a first reactant into a reaction chamber to react with a substrate, and after reacting, using nitrogen or inert gas to react unreacted The first reactant is removed from the reaction chamber; (B) a second reactant is injected into the reaction chamber to react with the first reactant, and a first atomic layer film is formed on the substrate. After the reaction, The unreacted second reactant is removed from the reaction chamber using nitrogen or inert gas; (C) a third reactant is injected into the reaction chamber, and the third reactant is adsorbed to the first atomic layer On the film, after the reaction, the unreacted third reactant is removed from the reaction chamber using nitrogen or inert gas; (D) injecting a fourth reactant into the reaction chamber to react with the third reactant, Forming a second atomic layer film on the substrate, and after the reaction, removing the unreacted fourth reactant from the reaction chamber using nitrogen or inert gas, and forming the first atomic layer film and the first a transparent conductive film composed of a diatomic layer film; Wherein the first reactant / reaction system of the second H 2 O 2, H 2 O , O 2, O 2 plasma, plasma O 3, or O 3, the second reactant / reaction product of the first a metal halide, a metal alkane compound, a metal halide of an alkyl group, a metal acetoacetone compound, a metal alkyl nitride, one of the above-mentioned metal indium/gallium or a combination thereof, a third reactant / the fourth reactant is H 2 O 2 , H 2 O, O 2 , O 2 plasma, O 3 or O 3 plasma, the fourth reactant / the third reactant metal halide a metal halide, a metal halide of an alkyl group, a metal acetoacetone compound, a metal alkyl nitride, one of the above-mentioned metal-based gallium/indium or a combination thereof, and the transparent conductive The film is indium gallium oxide IGO (In 2 O 3 :Ga 2 O 3 ). 如申請專利範圍第3項所述之方法,其中該氧化銦鎵透明導電薄膜係作為堆疊型太陽能電池內部組成電池間之中間層電性傳導膜。 The method of claim 3, wherein the indium gallium oxide transparent conductive film is used as an intermediate layer electrically conductive film between the cells in the stacked solar cell.
TW97149839A 2008-12-19 2008-12-19 The transparent conductive oxides (tcos) thin films were deposited by atomic layer deposition (ald) technology TWI414625B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97149839A TWI414625B (en) 2008-12-19 2008-12-19 The transparent conductive oxides (tcos) thin films were deposited by atomic layer deposition (ald) technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97149839A TWI414625B (en) 2008-12-19 2008-12-19 The transparent conductive oxides (tcos) thin films were deposited by atomic layer deposition (ald) technology

Publications (2)

Publication Number Publication Date
TW201024451A TW201024451A (en) 2010-07-01
TWI414625B true TWI414625B (en) 2013-11-11

Family

ID=44852094

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97149839A TWI414625B (en) 2008-12-19 2008-12-19 The transparent conductive oxides (tcos) thin films were deposited by atomic layer deposition (ald) technology

Country Status (1)

Country Link
TW (1) TWI414625B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808315A (en) * 1992-07-21 1998-09-15 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having transparent conductive film
US5843341A (en) * 1994-06-10 1998-12-01 Hoya Corporation Electro-conductive oxide electrodes and devices using the same
TW200816500A (en) * 2006-09-27 2008-04-01 Sino American Silicon Prod Inc Solar cell and method of fabricating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808315A (en) * 1992-07-21 1998-09-15 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having transparent conductive film
US5843341A (en) * 1994-06-10 1998-12-01 Hoya Corporation Electro-conductive oxide electrodes and devices using the same
TW200816500A (en) * 2006-09-27 2008-04-01 Sino American Silicon Prod Inc Solar cell and method of fabricating the same

Also Published As

Publication number Publication date
TW201024451A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
TWI427811B (en) Semiconductor structure combination for thin-film solar cell and manufacture thereof
US9831466B2 (en) Method for depositing a multi-layer moisture barrier on electronic devices and electronic devices protected by a multi-layer moisture barrier
KR102197243B1 (en) Laminate and gas barrier film
JP2013502745A5 (en)
TWI392759B (en) Transparent conductive film and fabrication method thereof
CN109309162A (en) A kind of perovskite-based thin-film solar cells and preparation method thereof
CN101582460A (en) Multilayer transparent conductive film of thin film solar cell and manufacturing method thereof
CN113785408A (en) Preparation method of perovskite solar cell absorption layer based on chemical vapor deposition method
Nguyen et al. Atmospheric atomic layer deposition of SnO 2 thin films with tin (ii) acetylacetonate and water
Kannan Selvaraj et al. Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin (II) acetylacetonate precursor and ozone
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
CN114242897A (en) Method for packaging perovskite photoelectric device
TWI414625B (en) The transparent conductive oxides (tcos) thin films were deposited by atomic layer deposition (ald) technology
CN105449103B (en) A kind of film crystal silicon perovskite heterojunction solar battery and preparation method thereof
TW201308633A (en) A method and a structure for protecting a passivating layer
CN107710422A (en) The method that gradient film is formed by spray pyrolysis
US20120107491A1 (en) High Permittivity Transparent Films
KR20200139090A (en) Fabrication method of perovskite solar cell absorbing layer by chemical vapor deposition
CN106637204A (en) Depositing method for Ag/ZnO/Mg photoelectric transparent conducting thin film
TWI427184B (en) Apparatus for conductive film coating and method for processing substrates therein
JP6899731B2 (en) Manufacturing method of photoelectric conversion element
TWI733229B (en) Method of forming a semiconductor structure and semiconductor structure
JP6994866B2 (en) Manufacturing method of photoelectric conversion element
US20150140321A1 (en) Methodology for improved adhesion for deposited fluorinated transparent conducting oxide films on a substrate
KR100627633B1 (en) Preparation of nickel oxide thin films by atomic layer deposition for non-volatile resistance random access memory devices