TWI412487B - Method of forming nanowire structure - Google Patents

Method of forming nanowire structure Download PDF

Info

Publication number
TWI412487B
TWI412487B TW98146183A TW98146183A TWI412487B TW I412487 B TWI412487 B TW I412487B TW 98146183 A TW98146183 A TW 98146183A TW 98146183 A TW98146183 A TW 98146183A TW I412487 B TWI412487 B TW I412487B
Authority
TW
Taiwan
Prior art keywords
single crystal
nanowire structure
dielectric pattern
structure according
semiconductor film
Prior art date
Application number
TW98146183A
Other languages
Chinese (zh)
Other versions
TW201121881A (en
Inventor
Huang Chung Cheng
Ta Chuan Liao
Original Assignee
Huang Chung Cheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Chung Cheng filed Critical Huang Chung Cheng
Priority to TW98146183A priority Critical patent/TWI412487B/en
Publication of TW201121881A publication Critical patent/TW201121881A/en
Application granted granted Critical
Publication of TWI412487B publication Critical patent/TWI412487B/en

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A method of forming a nanowire structure is provided. First, a monocrystalline sacrificial layer and a dielectric pattern are sequentially formed on a substrate. Thereafter, a monocrystalline semiconductor film is formed on the substrate covering the monocrystalline sacrificial layer and the dielectric pattern. Then, a portion of the monocrystalline semiconductor film is removed, so as to form a nanowire structure in the form of a spacer on the sidewall of the dielectric pattern.

Description

奈米線結構的製造方法Method for manufacturing nanowire structure

本發明是有關於一種奈米技術,且特別是有關於一種奈米線結構的製造方法。This invention relates to a nanotechnology, and more particularly to a method of making a nanowire structure.

隨著對各種產品之微小化的需求,科技的發展已由微米時代逐步進入所謂的奈米時代。奈米材料的種類相當多,包括金屬奈米材料、半導體奈米材料、結構奈米陶瓷及奈米高分子材料等。With the demand for miniaturization of various products, the development of science and technology has gradually entered the so-called nano era from the micron era. There are quite a variety of nanomaterials, including metal nanomaterials, semiconductor nanomaterials, structural nanoceramics, and nanopolymer materials.

雖然奈米技術為國內外科技發展之重點,唯奈米線之製作不易且再現性低。目前於玻璃基板上利用傳統雷射結晶法所製作出之多晶態半導體薄膜的結晶性差,有多種任意的晶格方向,使得製作於此多晶態半導體薄膜之元件或電路之電特性與均勻性皆很差。Although nanotechnology is the focus of technology development at home and abroad, the production of the nano-line is not easy and the reproducibility is low. At present, the polycrystalline semiconductor film produced by the conventional laser crystallization method on the glass substrate has poor crystallinity, and has various arbitrary lattice directions, so that the electrical characteristics and uniformity of the elements or circuits fabricated in the polycrystalline semiconductor film are obtained. Sex is very poor.

因此,需要製作出結晶性佳之半導體薄膜(例如單晶態之奈米線結構),且能控制其晶格方向,進而有效改善元件或電路之電特性與均勻性。Therefore, it is necessary to produce a semiconductor film having good crystallinity (for example, a nanowire structure in a single crystal state), and to control its lattice direction, thereby effectively improving electrical characteristics and uniformity of components or circuits.

有鑑於此,本發明提供一種奈米線結構的製造方法,其製程簡單、快速且可以製作出高結晶性質之奈米線,以有效改善元件或電路之電特性與均勻性。In view of the above, the present invention provides a method for fabricating a nanowire structure, which has a simple and rapid process and can produce a nanowire with high crystalline properties to effectively improve the electrical characteristics and uniformity of components or circuits.

本發明提供一種奈米線結構的製造方法。首先,於基板上依序形成單晶態犧牲層及介電圖案。然後,於基板上形成單晶態半導體薄膜以覆蓋單晶態犧牲層及介電圖案。接著,移除部份單晶態半導體薄膜,以於介電圖案的側壁上形成間隙壁形式之奈米線結構。The present invention provides a method of manufacturing a nanowire structure. First, a single crystal sacrificial layer and a dielectric pattern are sequentially formed on the substrate. Then, a single crystal semiconductor film is formed on the substrate to cover the single crystal sacrificial layer and the dielectric pattern. Next, a portion of the single crystal semiconductor film is removed to form a nanowire structure in the form of a spacer on the sidewall of the dielectric pattern.

在本發明之一實施例中,形成上述單晶態半導體薄膜的方法包括以單晶態犧牲層為晶種層磊晶成長單晶態半導體薄膜。In an embodiment of the invention, the method of forming the above-described single crystal semiconductor film comprises epitaxially growing a single crystal semiconductor film with a single crystal sacrificial layer as a seed layer.

在本發明之一實施例中,形成上述單晶態半導體薄膜的方法描述如下。首先,於基板上形成非晶態半導體薄膜以覆蓋單晶態犧牲層及介電圖案。於基板上形成非晶態半導體薄膜的方法包括進行化學氣相沉積製程。然後,以單晶態犧牲層為晶種層,使非晶態半導體薄膜再結晶為單晶態半導體薄膜。In an embodiment of the present invention, a method of forming the above-described single crystal semiconductor film is described below. First, an amorphous semiconductor film is formed on the substrate to cover the single crystal sacrificial layer and the dielectric pattern. A method of forming an amorphous semiconductor film on a substrate includes performing a chemical vapor deposition process. Then, the amorphous semiconductor film is recrystallized into a single crystal semiconductor film by using a single crystal sacrificial layer as a seed layer.

在本發明之一實施例中,使上述非晶態半導體薄膜再結晶為單晶態半導體薄膜的方法包括固態再結晶法。固態再結晶法的製程條件包括以約600℃的溫度加熱約24小時。In one embodiment of the present invention, a method of recrystallizing the amorphous semiconductor film into a single crystal semiconductor film includes solid state recrystallization. The process conditions of the solid state recrystallization process include heating at a temperature of about 600 ° C for about 24 hours.

在本發明之一實施例中,使上述非晶態半導體薄膜再結晶為單晶態半導體薄膜的方法包括雷射再結晶法。In one embodiment of the present invention, a method of recrystallizing the amorphous semiconductor film into a single crystal semiconductor film includes a laser recrystallization method.

在本發明之一實施例中,上述單晶態犧牲層包括單晶鍺薄膜或單晶矽鍺薄膜。In an embodiment of the invention, the single crystal sacrificial layer comprises a single crystal germanium film or a single crystal germanium film.

在本發明之一實施例中,上述單晶態半導體薄膜包括單晶矽薄膜、單晶鍺薄膜、單晶矽鍺合金薄膜或單晶矽碳合金薄膜。In an embodiment of the invention, the single crystal semiconductor film comprises a single crystal germanium film, a single crystal germanium film, a single crystal germanium alloy film or a single crystal germanium carbon alloy film.

在本發明之一實施例中,於形成奈米線結構的步驟之後,上述方法更包括以奈米線結構為通道區製作第一元件。In an embodiment of the invention, after the step of forming the nanowire structure, the method further comprises fabricating the first component with the nanowire structure as the channel region.

在本發明之一實施例中,於以奈米線結構為通道區製作第一元件的步驟之後,上述方法更包括移除單晶態犧牲層。移除單晶態犧牲層的方法包括進行乾蝕刻製程或濕蝕刻製程。乾蝕刻製程的蝕刻氣體包括氨水(NH4 OH)氣體或雙氧水(H2 O2 )氣體。濕蝕刻製程的蝕刻劑包括氨水溶液或雙氧水溶液。然後,將包括奈米線結構之第一元件轉移到目標基板。目標基板包括軟性塑膠基板、金屬基板、玻璃基板或半導體基板。In an embodiment of the invention, after the step of fabricating the first component with the nanowire structure as the channel region, the method further includes removing the single crystal sacrificial layer. The method of removing the single crystal sacrificial layer includes performing a dry etching process or a wet etching process. Dry etching process the etching gas comprises ammonia (NH 4 OH) gas or hydrogen peroxide (H 2 O 2) gas. The etchant of the wet etching process includes an aqueous ammonia solution or an aqueous hydrogen peroxide solution. Then, the first component including the nanowire structure is transferred to the target substrate. The target substrate includes a flexible plastic substrate, a metal substrate, a glass substrate, or a semiconductor substrate.

在本發明之一實施例中,於以奈米線結構為通道區製作第一元件的步驟之後,上述方法更包括於第一元件上形成至少一第二元件。In an embodiment of the invention, after the step of fabricating the first component with the nanowire structure as the channel region, the method further includes forming at least one second component on the first component.

在本發明之一實施例中,移除部份上述單晶態半導體薄膜的方法包括進行乾蝕刻製程。In one embodiment of the invention, a method of removing a portion of the above-described single crystal semiconductor film includes performing a dry etching process.

在本發明之一實施例中,上述介電圖案的材料包括氮化矽貨氧化矽。In an embodiment of the invention, the material of the dielectric pattern comprises tantalum nitride.

在本發明之一實施例中,上述介電圖案為單一層結構。In an embodiment of the invention, the dielectric pattern is a single layer structure.

在本發明之一實施例中,上述介電圖案為包括頂介電圖案與底介電圖案的雙層結構,且頂介電圖案與底介電圖案的剖面構成倒T形。頂介電圖案與底介電圖案的材料可以相同或不同。In an embodiment of the invention, the dielectric pattern is a two-layer structure including a top dielectric pattern and a bottom dielectric pattern, and a cross section of the top dielectric pattern and the bottom dielectric pattern forms an inverted T shape. The material of the top dielectric pattern and the bottom dielectric pattern may be the same or different.

在本發明之一實施例中,上述介電圖案為呈多階梯狀之多層結構,且呈多階梯狀之多層結構的頂部寬度小於其底部寬度。In an embodiment of the invention, the dielectric pattern is a multi-step multilayer structure, and the multi-step multilayer structure has a top width smaller than a bottom width thereof.

基於上述,本發明是以基板上的單晶態犧牲層為晶種層,來誘導再結晶或磊晶成長單晶態半導體薄膜於介電圖案上。然後,利用乾蝕刻製程移除部份單晶態半導體薄膜,以於介電圖案的側壁上形成間隙壁形式之奈米線結構。上述間隙壁形式之奈米線結構可作為通道區以製作所需的元件。本發明的製程簡單、快速且可以製作出高結晶性質之奈米線,以有效改善元件或電路之電特性與均勻性。Based on the above, the present invention uses a single crystal sacrificial layer on a substrate as a seed layer to induce recrystallization or epitaxial growth of a single crystal semiconductor film on a dielectric pattern. Then, a part of the single crystal semiconductor film is removed by a dry etching process to form a nanowire structure in the form of a spacer on the sidewall of the dielectric pattern. The nanowire structure in the form of the above-mentioned spacers can be used as a channel region to fabricate desired components. The process of the invention is simple, rapid and can produce nanowires with high crystalline properties to effectively improve the electrical characteristics and uniformity of components or circuits.

此外,本發明之奈米線結構的應用性廣,包含本發明之奈米線結構之元件可以轉移到目標基板如軟性塑膠基板;或者在包含本發明之奈米線結構之元件的上方可以形成另一元件,以形成三維堆疊之積體電路。Further, the nanowire structure of the present invention has wide applicability, and the element including the nanowire structure of the present invention can be transferred to a target substrate such as a soft plastic substrate; or can be formed over the element including the nanowire structure of the present invention. Another component is to form a three-dimensional stacked integrated circuit.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

第一實施例First embodiment

圖1A至1E為依照本發明第一實施例所繪示之奈米線結構之製造方法的剖面示意圖。1A to 1E are schematic cross-sectional views showing a method of fabricating a nanowire structure according to a first embodiment of the present invention.

首先,請參照圖1A,於基板100上依序形成單晶態犧牲層102及介電圖案104。基板100例如是半導體基板如矽基板。單晶態犧牲層102例如為單晶矽薄膜或單晶矽鍺薄膜。介電圖案104例如為單一層結構,其材料例如是氮化矽或氧化矽。First, referring to FIG. 1A, a single crystal sacrificial layer 102 and a dielectric pattern 104 are sequentially formed on the substrate 100. The substrate 100 is, for example, a semiconductor substrate such as a germanium substrate. The single crystal sacrificial layer 102 is, for example, a single crystal germanium film or a single crystal germanium film. The dielectric pattern 104 is, for example, a single layer structure, and the material thereof is, for example, tantalum nitride or hafnium oxide.

然後,於基板100上形成單晶態半導體薄膜106以覆蓋單晶態犧牲層102及介電圖案104。單晶態半導體薄膜106例如是單晶矽薄膜、單晶鍺薄膜、單晶矽鍺合金薄膜或單晶矽碳合金薄膜。在一實施例中,形成單晶態半導體薄膜106的方法包括以單晶態犧牲層102為晶種層來磊晶成長單晶態半導體薄膜106。在另一實施例中,形成單晶態半導體薄膜106的方法包括於基板100上形成非晶態半導體薄膜(未繪示)以覆蓋單晶態犧牲層102及介電圖案104。於基板100上形成非晶態半導體薄膜的方法例如是進行化學氣相沉積(CVD)製程。然後,以單晶態犧牲層102為晶種層,使非晶態半導體薄膜再結晶為單晶態半導體薄膜106。使非晶態半導體薄膜再結晶為單晶態半導體薄膜106的方法例如是固態再結晶法,其製程條件包括以約600℃的溫度加熱約24小時。使非晶態半導體薄膜再結晶為單晶態半導體薄膜106的方法也可以是雷射再結晶法。Then, a single crystal semiconductor film 106 is formed on the substrate 100 to cover the single crystal sacrificial layer 102 and the dielectric pattern 104. The single crystal semiconductor film 106 is, for example, a single crystal germanium film, a single crystal germanium film, a single crystal germanium alloy film, or a single crystal germanium carbon alloy film. In one embodiment, the method of forming the single crystal semiconductor film 106 includes epitaxially growing the single crystal semiconductor film 106 with the single crystal sacrificial layer 102 as a seed layer. In another embodiment, the method of forming the single crystal semiconductor film 106 includes forming an amorphous semiconductor film (not shown) on the substrate 100 to cover the single crystal sacrificial layer 102 and the dielectric pattern 104. A method of forming an amorphous semiconductor film on the substrate 100 is, for example, a chemical vapor deposition (CVD) process. Then, the amorphous semiconductor film is recrystallized into the single crystal semiconductor film 106 by using the single crystal sacrificial layer 102 as a seed layer. The method of recrystallizing the amorphous semiconductor film into the single crystal semiconductor film 106 is, for example, a solid state recrystallization method, and the process conditions include heating at a temperature of about 600 ° C for about 24 hours. The method of recrystallizing the amorphous semiconductor film into the single crystal semiconductor film 106 may also be a laser recrystallization method.

接著,請參照圖1C,移除部份單晶態半導體薄膜106,以於介電圖案104的側壁上形成間隙壁形式之奈米線結構108。移除部份單晶態半導體薄膜106的方法包括進行乾蝕刻製程,例如是非等向性乾蝕刻製程。特別要注意的是,上述間隙壁形式之奈米線結構108即為後續元件如積體電路(IC)、薄膜電晶體(TFT)或測感器(sensor)的通道區(或主動區)。之後,可以在奈米線結構108上堆疊閘氧化層、閘極、源極/汲極等額外構件(未繪示)以製作所需的元件。這些構件及其形成方法均為本領域具有通常知識者所熟知,故於此不再贅述。Next, referring to FIG. 1C, a portion of the single crystal semiconductor film 106 is removed to form a nanowire structure 108 in the form of a spacer on the sidewall of the dielectric pattern 104. The method of removing a portion of the single crystal semiconductor film 106 includes performing a dry etching process, such as an anisotropic dry etching process. It is particularly noted that the nanowire structure 108 in the form of a spacer is a channel region (or active region) of a subsequent component such as an integrated circuit (IC), a thin film transistor (TFT), or a sensor. Thereafter, additional features (not shown) such as a gate oxide layer, a gate, a source/drain, etc., may be stacked on the nanowire structure 108 to fabricate the desired components. These components and methods of forming the same are well known to those of ordinary skill in the art and will not be described again.

於形成所需的元件之後,可以移除單晶態犧牲層102,如圖1D所示。在一實施例中,移除單晶態犧牲層102的方法例如是進行乾蝕刻製程,其蝕刻氣體包括氨水氣體或雙氧水氣體。在另一實施例中,移除單晶態犧牲層102的方法例如是進行濕蝕刻製程,其蝕刻劑包括氨水溶液或雙氧水溶液。在此步驟中,與介電圖案104及奈米線結構108分開的基板100可以回收再利用,再次重複圖1A至1D的步驟。接下來,可以將包括奈米線結構108之元件轉移到目標基板110上,如圖1E所示。目標基板110包括軟性塑膠基板、金屬基板、玻璃基板或半導體基板等。After the desired elements are formed, the single crystal sacrificial layer 102 can be removed, as shown in FIG. 1D. In one embodiment, the method of removing the single crystal sacrificial layer 102 is, for example, a dry etching process, and the etching gas includes ammonia water or hydrogen peroxide gas. In another embodiment, the method of removing the single crystal sacrificial layer 102 is, for example, a wet etching process, and the etchant thereof includes an aqueous ammonia solution or an aqueous hydrogen peroxide solution. In this step, the substrate 100 separated from the dielectric pattern 104 and the nanowire structure 108 can be recycled and reused, and the steps of FIGS. 1A to 1D are repeated again. Next, the component including the nanowire structure 108 can be transferred onto the target substrate 110 as shown in FIG. 1E. The target substrate 110 includes a flexible plastic substrate, a metal substrate, a glass substrate, a semiconductor substrate, or the like.

當然,在形成所需的元件(第一元件)之後,也可以繼續往上堆疊,以形成三維堆疊之積體電路,其形成方法描述如下。首先,於基板100上形成保護層(passivation layer)(未繪示)以保護第一元件。然後,於保護層中形成連接至單晶態犧牲層102之開口。然後,於保護層上形成另一介電圖案,接著利用單晶態犧牲層104為晶種層,沿著開口於另一介電圖案上形成單晶態半導體薄膜。之後,依照圖1C的步驟,於前述第一元件的上方形成第二元件。上述步驟可以重複多次以形成三維堆疊之積體電路。Of course, after forming the desired elements (first elements), it is also possible to continue stacking upwards to form a three-dimensionally stacked integrated circuit, the method of which is described below. First, a passivation layer (not shown) is formed on the substrate 100 to protect the first component. Then, an opening connected to the sacrificial layer 102 of the single crystal state is formed in the protective layer. Then, another dielectric pattern is formed on the protective layer, and then the single crystal sacrificial layer 104 is used as the seed layer, and the single crystal semiconductor film is formed along the opening on the other dielectric pattern. Thereafter, a second element is formed over the aforementioned first element in accordance with the steps of FIG. 1C. The above steps can be repeated multiple times to form a three-dimensional stacked integrated circuit.

在上述的實施例中,是以介電圖案104為單一層結構為例來說明之,但本發明並不以此為限。本領域具有通常知識者應了解,介電圖案104也可以為倒T形之雙層結構或呈多階梯狀之多層結構,且其頂部寬度小於其底部寬度。以下,將說明介電圖案104為倒T形雙層結構時的製造方法。In the above embodiment, the dielectric pattern 104 is exemplified as a single layer structure, but the invention is not limited thereto. It should be understood by those of ordinary skill in the art that the dielectric pattern 104 can also be an inverted T-shaped two-layer structure or a multi-stepped multilayer structure with a top width that is less than its bottom width. Hereinafter, a manufacturing method in the case where the dielectric pattern 104 is an inverted T-shaped double layer structure will be described.

第二實施例Second embodiment

圖2A至2C為依照本發明第二實施例所繪示之奈米線結構之製造方法的剖面示意圖。第二實施例與第一實施例類似,以下將說明不同處,相同處則不再贅述。2A to 2C are schematic cross-sectional views showing a method of fabricating a nanowire structure according to a second embodiment of the present invention. The second embodiment is similar to the first embodiment, and the differences will be described below, and the same portions will not be described again.

首先,請參照圖2A,於基板100上依序形成單晶態犧牲層102及介電圖案104。基板100例如是半導體基板如矽基板。單晶態犧牲層102例如為單晶矽薄膜或單晶矽鍺薄膜。介電圖案104例如為包括頂介電圖案104a及底介電圖案104b的雙層結構,且頂介電圖案104a與底介電圖案104b的剖面構成倒T形,也就是說,其頂部寬度小於其底部寬度。頂介電圖案104a與底介電圖案104b的材料例如是氮化矽或氧化矽,且頂介電圖案104a與底介電圖案104b的材料可以相同或不同。在一實施例中,頂介電圖案104a的材料例如是氧化矽,而底介電圖案104b的材料例如是氮化矽。First, referring to FIG. 2A, a single crystal sacrificial layer 102 and a dielectric pattern 104 are sequentially formed on the substrate 100. The substrate 100 is, for example, a semiconductor substrate such as a germanium substrate. The single crystal sacrificial layer 102 is, for example, a single crystal germanium film or a single crystal germanium film. The dielectric pattern 104 is, for example, a two-layer structure including a top dielectric pattern 104a and a bottom dielectric pattern 104b, and the cross sections of the top dielectric pattern 104a and the bottom dielectric pattern 104b form an inverted T shape, that is, the top width thereof is smaller than Its bottom width. The material of the top dielectric pattern 104a and the bottom dielectric pattern 104b is, for example, tantalum nitride or tantalum oxide, and the materials of the top dielectric pattern 104a and the bottom dielectric pattern 104b may be the same or different. In one embodiment, the material of the top dielectric pattern 104a is, for example, tantalum oxide, and the material of the bottom dielectric pattern 104b is, for example, tantalum nitride.

然後,請參照圖2B,於基板100上形成單晶態半導體薄膜106以覆蓋單晶態犧牲層102及介電圖案104。單晶態半導體薄膜106例如是單晶矽薄膜、單晶鍺薄膜、單晶矽鍺合金薄膜或單晶矽碳合金薄膜。在一實施例中,形成單晶態半導體薄膜106的方法包括以單晶態犧牲層102為晶種層來磊晶成長單晶態半導體薄膜106。在另一實施例中,形成單晶態半導體薄膜106的方法包括於基板100上形成非晶態半導體薄膜(未繪示)以覆蓋單晶態犧牲層102及介電圖案104。然後,以單晶態犧牲層102為晶種層,使非晶態半導體薄膜再結晶為單晶態半導體薄膜106。使非晶態半導體薄膜再結晶為單晶態半導體薄膜106的方法例如是固態再結晶法或雷射再結晶法。Then, referring to FIG. 2B, a single crystal semiconductor film 106 is formed on the substrate 100 to cover the single crystal sacrificial layer 102 and the dielectric pattern 104. The single crystal semiconductor film 106 is, for example, a single crystal germanium film, a single crystal germanium film, a single crystal germanium alloy film, or a single crystal germanium carbon alloy film. In one embodiment, the method of forming the single crystal semiconductor film 106 includes epitaxially growing the single crystal semiconductor film 106 with the single crystal sacrificial layer 102 as a seed layer. In another embodiment, the method of forming the single crystal semiconductor film 106 includes forming an amorphous semiconductor film (not shown) on the substrate 100 to cover the single crystal sacrificial layer 102 and the dielectric pattern 104. Then, the amorphous semiconductor film is recrystallized into the single crystal semiconductor film 106 by using the single crystal sacrificial layer 102 as a seed layer. The method of recrystallizing the amorphous semiconductor film into the single crystal semiconductor film 106 is, for example, a solid state recrystallization method or a laser recrystallization method.

接著,請參照圖2C,移除部份單晶態半導體薄膜106,以於介電圖案104的側壁上形成間隙壁形式之奈米線結構108。在此實施例中,由於介電圖案104為包括頂介電圖案104a及底介電圖案104b的倒T形雙層結構,因此間隙壁形式之奈米線結構108a、108b會分別形成在頂介電圖案104a及底介電圖案104b的側壁上。移除部份單晶態半導體薄膜106的方法包括進行乾蝕刻製程,例如是非等向性乾蝕刻製程。特別注意的是,當奈米線結構108的材料例如是矽時,在頂介電圖案104a之側壁上的奈米線結構108a以及其下的底介電圖案104b可以視為絕緣體上有矽(silicon-on-insulator;SOI)的結構。之後,以間隙壁形式之奈米線結構108為通道區製作所需的元件。Next, referring to FIG. 2C, a portion of the single crystal semiconductor film 106 is removed to form a nanowire structure 108 in the form of a spacer on the sidewall of the dielectric pattern 104. In this embodiment, since the dielectric pattern 104 is an inverted T-shaped double layer structure including the top dielectric pattern 104a and the bottom dielectric pattern 104b, the nanowire structures 108a, 108b in the form of spacers are respectively formed in the top dielectric layer. The sidewalls of the electrical pattern 104a and the bottom dielectric pattern 104b. The method of removing a portion of the single crystal semiconductor film 106 includes performing a dry etching process, such as an anisotropic dry etching process. It is particularly noted that when the material of the nanowire structure 108 is, for example, germanium, the nanowire structure 108a on the sidewall of the top dielectric pattern 104a and the underlying dielectric pattern 104b thereunder can be considered to be flawed on the insulator ( The structure of silicon-on-insulator; SOI). Thereafter, the nanowire structure 108 in the form of a spacer is used to fabricate the desired components for the channel region.

繼之,可以移除單晶態犧牲層102,並將包含此奈米線結構108之元件轉移到目標基板上;或者,可以在包含此奈米線結構108之元件上方形成另一元件以形成三維堆疊之積體電路。Next, the single crystal sacrificial layer 102 can be removed and the component comprising the nanowire structure 108 can be transferred onto the target substrate; alternatively, another component can be formed over the component comprising the nanowire structure 108 to form a three-dimensional stack. The integrated circuit.

綜上所述,本發明是以基板上的單晶態犧牲層為晶種層,來誘導再結晶或磊晶成長單晶態半導體薄膜於介電圖案上。然後,利用乾蝕刻製程移除部份單晶態半導體薄膜,以於介電圖案的側壁上形成間隙壁形式之奈米線結構。本發明之奈米線結構的製造方法至少具有下列優點:In summary, the present invention uses a single crystal sacrificial layer on a substrate as a seed layer to induce recrystallization or epitaxial growth of a single crystal semiconductor film on a dielectric pattern. Then, a part of the single crystal semiconductor film is removed by a dry etching process to form a nanowire structure in the form of a spacer on the sidewall of the dielectric pattern. The method of manufacturing a nanowire structure of the present invention has at least the following advantages:

1.本發明可供軟性塑膠基板、金屬基板、玻璃基板或半導體基板等使用。1. The present invention can be used for a flexible plastic substrate, a metal substrate, a glass substrate, a semiconductor substrate or the like.

2.本發明可供三維堆疊式積體電路製程技術使用。2. The invention can be used in a three-dimensional stacked integrated circuit process technology.

3.本發明可在低熔點之基板上製作出高結晶性(或單晶性)之半導體通道。3. The present invention can produce a semiconductor channel having high crystallinity (or single crystal property) on a substrate having a low melting point.

4.利用本發明所製作出之單晶態半導體薄膜的結晶性佳,且能控制其晶格方向,進而有效改善元件或電路之電特性與均勻性。4. The single crystal semiconductor film produced by the present invention has good crystallinity and can control its lattice direction, thereby effectively improving electrical characteristics and uniformity of components or circuits.

5.本技術可大大推進系統面板(system-on-panel)的發展。5. This technology can greatly advance the development of system-on-panel.

6.本技術可用低成本的方式製作絕緣體上有矽(silicon-on-insulator;SOI),因此有機會取代目前高成本SOI的製作方式。6. This technology can be used to fabricate silicon-on-insulator (SOI) on a low-cost basis, thus providing an opportunity to replace the current high-cost SOI production.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...基板100. . . Substrate

102...單晶態犧牲層102. . . Single crystal sacrificial layer

104...介電圖案104. . . Dielectric pattern

104a...頂介電圖案104a. . . Top dielectric pattern

104b...底介電圖案104b. . . Bottom dielectric pattern

106...單晶態半導體薄膜106. . . Single crystal semiconductor film

108、108a、108b...奈米線結構108, 108a, 108b. . . Nanowire structure

110...目標基板110. . . Target substrate

圖1A至1E為依照本發明第一實施例所繪示之奈米線結構之製造方法的剖面示意圖。1A to 1E are schematic cross-sectional views showing a method of fabricating a nanowire structure according to a first embodiment of the present invention.

圖2A至2C為依照本發明第二實施例所繪示之奈米線結構之製造方法的剖面示意圖。2A to 2C are schematic cross-sectional views showing a method of fabricating a nanowire structure according to a second embodiment of the present invention.

100...基板100. . . Substrate

102...單晶態犧牲層102. . . Single crystal sacrificial layer

104...介電圖案104. . . Dielectric pattern

104a...頂介電圖案104a. . . Top dielectric pattern

104b...底介電圖案104b. . . Bottom dielectric pattern

108a、108b、108...奈米線結構108a, 108b, 108. . . Nanowire structure

Claims (21)

一種奈米線結構的製造方法,包括:於一基板上依序形成一單晶態犧牲層及一介電圖案;於該基板上形成一單晶態半導體薄膜以覆蓋該單晶態犧牲層及該介電圖案;以及移除部份該單晶態半導體薄膜,以於該介電圖案的側壁上形成間隙壁形式之一奈米線結構,其中該單晶態犧牲層包括單晶鍺薄膜或單晶矽鍺薄膜,且該單晶態半導體薄膜包括單晶矽薄膜、單晶鍺薄膜、單晶矽鍺合金薄膜或單晶矽碳合金薄膜。 A method for fabricating a nanowire structure comprises: sequentially forming a single crystal sacrificial layer and a dielectric pattern on a substrate; forming a single crystal semiconductor film on the substrate to cover the single crystal sacrificial layer and a dielectric pattern; and removing a portion of the single crystal semiconductor film to form a nanowire structure in the form of a spacer on the sidewall of the dielectric pattern, wherein the single crystal sacrificial layer comprises a single crystal germanium film or The single crystal germanium film includes a single crystal germanium film, a single crystal germanium film, a single crystal germanium alloy film or a single crystal germanium carbon alloy film. 如申請專利範圍第1項所述之奈米線結構的製造方法,其中形成該單晶態半導體薄膜的方法包括以該單晶態犧牲層為晶種層磊晶成長該單晶態半導體薄膜。 The method for producing a nanowire structure according to claim 1, wherein the method of forming the single crystal semiconductor film comprises epitaxially growing the single crystal semiconductor film with the single crystal sacrificial layer as a seed layer. 如申請專利範圍第1項所述之奈米線結構的製造方法,其中形成該單晶態半導體薄膜的方法包括:於該基板上形成一非晶態半導體薄膜以覆蓋該單晶態犧牲層及該介電圖案;以及以該單晶態犧牲層為晶種層,使該非晶態半導體薄膜再結晶為該單晶態半導體薄膜。 The method for fabricating a nanowire structure according to claim 1, wherein the method for forming the single crystal semiconductor film comprises: forming an amorphous semiconductor film on the substrate to cover the single crystal sacrificial layer; The dielectric pattern; and the single crystal sacrificial layer is a seed layer, and the amorphous semiconductor film is recrystallized into the single crystal semiconductor film. 如申請專利範圍第3項所述之奈米線結構的製造方法,其中於該基板上形成該非晶態半導體薄膜的方法包括進行化學氣相沉積製程。 The method for fabricating a nanowire structure according to claim 3, wherein the method of forming the amorphous semiconductor film on the substrate comprises performing a chemical vapor deposition process. 如申請專利範圍第3項所述之奈米線結構的製造方法,其中使該非晶態半導體薄膜再結晶為該單晶態半導 體薄膜的方法包括一固態再結晶法。 The method for fabricating a nanowire structure according to claim 3, wherein the amorphous semiconductor film is recrystallized into the single crystal state semiconductor The method of bulk film includes a solid state recrystallization method. 如申請專利範圍第5項所述之奈米線結構的製造方法,其中該固態再結晶法的製程條件包括以600℃的溫度加熱24小時。 The method for producing a nanowire structure according to claim 5, wherein the process conditions of the solid state recrystallization method comprise heating at a temperature of 600 ° C for 24 hours. 如申請專利範圍第3項所述之奈米線結構的製造方法,其中使該非晶態半導體薄膜再結晶為該單晶態半導體薄膜的方法包括一雷射再結晶法。 The method for producing a nanowire structure according to claim 3, wherein the method of recrystallizing the amorphous semiconductor film into the single crystal semiconductor film comprises a laser recrystallization method. 如申請專利範圍第1項所述之奈米線結構的製造方法,於形成該奈米線結構的步驟之後,更包括以該奈米線結構為通道區製作一第一元件。 The method for manufacturing a nanowire structure according to claim 1, wherein after the step of forming the nanowire structure, the method further comprises: fabricating a first component by using the nanowire structure as a channel region. 如申請專利範圍第8項所述之奈米線結構的製造方法,於以該奈米線結構為通道區製作該第一元件的步驟之後,更包括:移除該單晶態犧牲層;以及將包括該奈米線結構之該第一元件轉移到一目標基板。 The method for manufacturing a nanowire structure according to the eighth aspect of the invention, after the step of fabricating the first component by using the nanowire structure as a channel region, further comprising: removing the single crystal sacrificial layer; The first component including the nanowire structure is transferred to a target substrate. 如申請專利範圍第9項所述之奈米線結構的製造方法,其中移除該單晶態犧牲層的方法包括進行一乾蝕刻製程或一濕蝕刻製程。 The method for manufacturing a nanowire structure according to claim 9, wherein the method of removing the single crystal sacrificial layer comprises performing a dry etching process or a wet etching process. 如申請專利範圍第10項所述之奈米線結構的製造方法,其中該乾蝕刻製程的蝕刻氣體包括氨水氣體或雙氧水氣體。 The method for manufacturing a nanowire structure according to claim 10, wherein the etching gas of the dry etching process comprises ammonia gas or hydrogen peroxide gas. 如申請專利範圍第10項所述之奈米線結構的製造方法,其中該濕蝕刻製程的蝕刻劑包括氨水溶液或雙氧 水溶液。 The method for manufacturing a nanowire structure according to claim 10, wherein the wet etching process etchant comprises an aqueous ammonia solution or a double oxygen solution. Aqueous solution. 如申請專利範圍第9項所述之奈米線結構的製造方法,其中該目標基板包括軟性塑膠基板、金屬基板、玻璃基板或半導體基板。 The method for manufacturing a nanowire structure according to claim 9, wherein the target substrate comprises a flexible plastic substrate, a metal substrate, a glass substrate or a semiconductor substrate. 如申請專利範圍第8項所述之奈米線結構的製造方法,於以該奈米線結構為通道區製作該第一元件的步驟之後,更包括於該第一元件上形成至少一第二元件。 The method for manufacturing a nanowire structure according to claim 8, wherein after the step of fabricating the first component by using the nanowire structure as a channel region, further comprising forming at least one second on the first component element. 如申請專利範圍第1項所述之奈米線結構的製造方法,其中移除部份該單晶態半導體薄膜的方法包括進行乾蝕刻製程。 The method for fabricating a nanowire structure according to claim 1, wherein the method of removing a portion of the single crystal semiconductor film comprises performing a dry etching process. 如申請專利範圍第1項所述之奈米線結構的製造方法,其中該介電圖案的材料包括氮化矽或氧化矽。 The method for fabricating a nanowire structure according to claim 1, wherein the material of the dielectric pattern comprises tantalum nitride or hafnium oxide. 如申請專利範圍第1項所述之奈米線結構的製造方法,其中該介電圖案為單一層結構。 The method of manufacturing a nanowire structure according to claim 1, wherein the dielectric pattern is a single layer structure. 如申請專利範圍第1項所述之奈米線結構的製造方法,其中該介電圖案為包括一頂介電圖案與一底介電圖案的一雙層結構,且該頂介電圖案與該底介電圖案的剖面構成倒T形。 The method for fabricating a nanowire structure according to claim 1, wherein the dielectric pattern is a two-layer structure including a top dielectric pattern and a bottom dielectric pattern, and the top dielectric pattern and the The cross section of the bottom dielectric pattern constitutes an inverted T shape. 如申請專利範圍第18項所述之奈米線結構的製造方法,其中該頂介電圖案與該底介電圖案的材料相同。 The method for fabricating a nanowire structure according to claim 18, wherein the top dielectric pattern is the same material as the bottom dielectric pattern. 如申請專利範圍第18項所述之奈米線結構的製造方法,其中該頂介電圖案與該底介電圖案的材料不同。 The method for fabricating a nanowire structure according to claim 18, wherein the top dielectric pattern is different from the material of the bottom dielectric pattern. 如申請專利範圍第1項所述之奈米線結構的製造方法,其中該介電圖案為一呈多階梯狀之多層結構,且該 呈多階梯狀之多層結構的頂部寬度小於其底部寬度。The method for manufacturing a nanowire structure according to claim 1, wherein the dielectric pattern is a multi-stepped multi-layer structure, and The multi-stepped multilayer structure has a top width that is less than its bottom width.
TW98146183A 2009-12-31 2009-12-31 Method of forming nanowire structure TWI412487B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98146183A TWI412487B (en) 2009-12-31 2009-12-31 Method of forming nanowire structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98146183A TWI412487B (en) 2009-12-31 2009-12-31 Method of forming nanowire structure

Publications (2)

Publication Number Publication Date
TW201121881A TW201121881A (en) 2011-07-01
TWI412487B true TWI412487B (en) 2013-10-21

Family

ID=45045854

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98146183A TWI412487B (en) 2009-12-31 2009-12-31 Method of forming nanowire structure

Country Status (1)

Country Link
TW (1) TWI412487B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW521405B (en) * 2001-12-10 2003-02-21 Winbond Electronics Corp Flash memory cell structure and its manufacturing method
TW593797B (en) * 2001-09-05 2004-06-21 Advanced Tech Materials Free-standing (Al, Ga, In)N and parting method for forming same
TW200834660A (en) * 2006-11-29 2008-08-16 Micron Technology Inc Methods to reduce the critical dimension of semiconductor devices and partially fabricated semiconductor devices having reduced critical dimensions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593797B (en) * 2001-09-05 2004-06-21 Advanced Tech Materials Free-standing (Al, Ga, In)N and parting method for forming same
TW521405B (en) * 2001-12-10 2003-02-21 Winbond Electronics Corp Flash memory cell structure and its manufacturing method
TW200834660A (en) * 2006-11-29 2008-08-16 Micron Technology Inc Methods to reduce the critical dimension of semiconductor devices and partially fabricated semiconductor devices having reduced critical dimensions

Also Published As

Publication number Publication date
TW201121881A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
KR100785020B1 (en) Bottom gate thin film transistor and method of manufacturing thereof
JP5109648B2 (en) Method for manufacturing layered carbon structure and method for manufacturing semiconductor device
US8680511B2 (en) Bilayer gate dielectric with low equivalent oxide thickness for graphene devices
KR101401893B1 (en) Carbon Layer and Method of Manufacture
US8759205B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2012516555A5 (en)
US11342179B2 (en) Semiconductor structure having a Si substrate heterointegrated with GaN and method for fabricating the same
JP2007329200A (en) Method of manufacturing semiconductor device
US20120252174A1 (en) Process for forming an epitaxial layer, in particular on the source and drain regions of fully-depleted transistors
TWI227362B (en) Liquid crystal display manufacturing process and polysilicon layer forming process
US9378950B1 (en) Methods for removing nuclei formed during epitaxial growth
US9773670B2 (en) Method of preparation of III-V compound layer on large area Si insulating substrate
CN104037066A (en) Method for defining growth direction of polycrystalline silicon
WO2015100827A1 (en) Method for defining growth direction of polysilicon
TW200933892A (en) Microcrystalline silicon thin film transistor and method for manufacturing the same
KR100785019B1 (en) A bottom gate thin film transistor and method of manufacturing thereof
TWI412487B (en) Method of forming nanowire structure
JP2006140503A (en) Semiconductor substrate and method of fabricating same
JP2007067399A (en) Method of forming single-crystal silicon layer, and method of manufacturing thin-film transistor using the same
US9209022B2 (en) Semiconductor structure including laterally disposed layers having different crystal orientations and method of fabricating the same
CN104241128B (en) A kind of preparation method of vertical SiGe FinFET
CN105655398A (en) Semiconductor structure and forming method thereof
US20120080777A1 (en) Triple oxidation on dsb substrate
CN103403883A (en) Semiconductor substrate, semiconductor device, and method for producing semiconductor substrate
JP4943172B2 (en) Method for forming SOS substrate having silicon epitaxial film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees