TWI411595B - 以溫感水膠製備含多孔性陶瓷組合物的方法 - Google Patents

以溫感水膠製備含多孔性陶瓷組合物的方法 Download PDF

Info

Publication number
TWI411595B
TWI411595B TW99110691A TW99110691A TWI411595B TW I411595 B TWI411595 B TW I411595B TW 99110691 A TW99110691 A TW 99110691A TW 99110691 A TW99110691 A TW 99110691A TW I411595 B TWI411595 B TW I411595B
Authority
TW
Taiwan
Prior art keywords
temperature
slurry
porous ceramic
bone
methacrylic acid
Prior art date
Application number
TW99110691A
Other languages
English (en)
Other versions
TW201134783A (en
Inventor
Chih Kuang Wang
Mei Ling Ho
Yin Chih Fu
Gwo Jaw Wang
Je Ken Chang
Original Assignee
Univ Kaohsiung Medical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kaohsiung Medical filed Critical Univ Kaohsiung Medical
Priority to TW99110691A priority Critical patent/TWI411595B/zh
Priority to US13/080,960 priority patent/US8940203B2/en
Publication of TW201134783A publication Critical patent/TW201134783A/zh
Application granted granted Critical
Publication of TWI411595B publication Critical patent/TWI411595B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • C04B28/344Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition solely as one or more phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Description

以溫感水膠製備含多孔性陶瓷組合物的方法
本發明關於一種製備含多孔性陶瓷組合物的方法。
先天或後天之骨骼缺損為骨科手術上之一大難題。為了促進骨骼缺損之癒合,大約15%之病患須殖入骨頭(Urist 1994)。自體骨移植由於可以避免傳染疾病及有較高的癒合率,因此為骨頭移殖中最為常用之方式。但自體骨移植亦有其潛在的缺點,如:取骨處之疼痛、可取量較少、尤其是在小孩更是如此(Glowwacki et al 1981,Grob 1986,Dutting et al 1988)。異體骨移植其潛在的缺點如:骨銀行之高成本負擔、較高的疾病傳染率、異體骨斷裂、以及高比率的未癒合,均限制異體骨移植的實用性(Kotani et al 1992)。於1960年代,去蛋白質小牛骨材料被發展出,且被證實是一極具前瞻性之骨頭取代物質(Katthgen and Mittelmeier 1983)。當時所使用之模式為兔子股骨遠端骨踝。而骼崤(iliac crest)與股骨遠端骨踝特點均是富含海綿骨及骨母細胞。此外許多研究表明多孔材料的成骨效果明顯高於緻密材料。孔隙的大小也影響材料的成骨作用,有研究證實,至少100μm的孔隙才有可能使新骨長入。1994年Kuhne等人將不同孔隙的珊瑚HAp植入兔股骨髁,12和26周發現200μm孔隙的材料無新骨長入,500μm孔隙的材料則有新骨長入,說明孔隙的大小可影響材料的成骨作用。對於可降解材料,多孔形態可以增加材料的總面積,促進材料的降解。植入材料中血管長入的速度是影響骨長入和植入材料成功與否的關鍵因素,多孔材料還為血管長入提供了基礎。血管長入帶來了成骨所需的各種因數、間充質細胞、及其它骨生長所需的營養。但將植入材料製成多孔狀,可明顯削弱材料的強度。多孔材料的力學性能遠不及緻密材料,由於這種原因,使用時需考慮移植的位置。
一個良好的骨頭取代物質之先決條件為必須能支撐並促進骨細胞之生長(Doherty et al 1987)。近十幾年來,陸續有許多商品級磷酸鹽類生物陶瓷塊在不同之骨頭缺損處進行臨床應用,市場價值極高。但是對台灣而言目前都仰賴進口,價格一直居高不下。
近來關於不癒合骨缺損、壞死等手術與人工植牙在臨床上已逐漸重要,然欲達到良好的治療效果,則其對於骨組織再生接合或齒槽骨是否足夠便成為關鍵。唯此類手術常需自體骨移植來達成,幸賴生物與材料科技的發展與改進,以骨移植填充材(bone graft fillers)及引導骨組織再生(guided bone regeneration;GBR)的技術等已可助病患重建骨組織的希望。目前使用在人工骨填補材料主要有具生物相容性的生物陶瓷材料、天然或合成的生物高分子材料或其複合材料。
目前已知的多孔性陶瓷生產技術一般為聚合物海绵與陶瓷漿料混合後燒結,其優點是微結構容易控制,但機械強度低且結構較不均勻。另一種技術為凝膠注模成型(Gel casting),其將陶瓷懸浮體加入單體、引發劑與成形劑的混合物以形成多孔性陶瓷,其優點是具有較高的機械強度,但微結構較差。
本發明欲發展具奈/微米孔隙之多孔性磷酸鈣鹽生物陶瓷複合材料支架(scaffold),使得體液中養分與新生血管能適時進入此多孔性磷酸鈣鹽生物陶瓷支架中,並達到良好多孔性、製程簡易性且在體內具有部分可吸收性,將來並可與抗發炎或促進骨生長的藥物進行包埋或接枝。故本發明以溫感水膠模板進行多孔性與製程簡易開發,並以雙相磷酸鹽生物陶瓷結構成份來增加生物吸收性。此生物材料使用時尚可與骨髓混合以利用骨髓之骨誘導(osteo-induction)與骨生成(osteo-genesis)之效果而促進骨再生。此可吸收式複合材料更可進而應用於前瞻性的研究,例如:骨科組織工程領域-用以包覆、固定各種不同具骨誘導性的BMP生長因子、血管新生促進因子(VEGF)等或促進骨再生之藥物,如史塔丁(statin)、雙磷酸鹽類(bisphosphanate)等,也可於體外先種入骨細胞、幹細胞,以達到最佳的骨修補效果,或作為抗生素等治療劑之載體,配合釋藥控制技術,治療骨髓炎等骨骼病症。
發明人發現到使用溫感水膠製備多孔性陶瓷有許多優點,如(1)溫感水膠在溫度上升時會有收縮的能力,讓燒結粉體能構緻密化;(2)室溫時溫感水膠為液狀,可進行室溫攪拌製程;(3)溫感水膠不會對羥基磷灰石(HAp)燒結產生相轉變或是細胞毒性;(4)溫感水膠有器孔殘留與微小孔的模板功能;及(5)可再添加第二類成孔劑來製備多孔性。
本發明中所使用的術語『溫感』意指具有能感知冷及熱的能力,以及能感知外部對象的溫度差異。
本發明中所使用的術語『水膠』意指其中液體成分為水的凝膠。水膠在製程上,可以避免化學溶劑而使用大量的水,使其富含水的特性並與活體組織相近,因此可應用在低分子量親油性藥物、親水性藥物的藥物傳輸及不穩定生物分子的傳輸如蛋白質、基因、細胞固定與組織工程上。另外水膠在材質上可同時具備生物相容性與生物可分解性,可進一步應用於體內實驗上。
本發明中所使用的術語『多孔』或『多孔性』意指具有許多可使空氣或水緩慢流通的小洞。
本發明中所使用的術語『陶瓷』意指需高溫處理或致密化的非金屬無機材料,包括矽酸鹽、氧化物、碳化物、氮化物、硫化物、硼化物等等。
本發明中所使用的術語『分散劑』意指促使物料顆粒均勻分散於介質中,形成穩定懸浮體的藥劑。分散劑一般分為無機分散劑和有機分散劑兩大類。常用的無機分散劑有矽酸鹽類(例如水玻璃)和鹼金屬磷酸鹽類(例如三聚磷酸鈉、六偏磷酸鈉和焦磷酸鈉等)。有機分散劑包括三乙基己基磷酸、十二烷基硫酸鈉、甲基戊醇、纖維素衍生物、聚丙烯醯胺、古爾膠、脂肪酸聚乙二醇酯等。
本發明中所使用的術語『高分子』意指通過一定形式的聚合反應而生成的、具有相當高的分子量的大分子。
本發明中所使用的術語『生物材料』意指一种用於醫藥設備的、與生物系統相互作用的非存活性材料。
本發明所使用之詞語『一』或『一種』,其可意指『一個』,但其亦與『一或多個』、『至少一個』及『一個或一個以上』之涵義一致。
本發明所使用之詞語『或』係用以意指『及/或』。
因此,本發明提供一種製備含多孔性陶瓷組合物的方法,其包含步驟如下:
a. 合成氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物(poly(N-isopropylacrylamide-co-methacrylic acid);p(NIPAAM-MAA))或其類似溫感化合物;
b. 將羥基磷灰石或磷酸鈣鹽類與分散劑混合;
c. 混合步驟a之p(NIPAAM-MAA)或其類似溫感化合物與水以得出膠體溶液;
d. 混合步驟c之膠體溶液與步驟b之產物以得出混合物;
e. 加入高分子顆粒至步驟d之混合物中並攪拌以得出漿體;
f. 將步驟e之漿體填入模板槽中;及
g. 將步驟f之填入漿體的模板槽裝載於陶瓷坩堝中,然後送入高溫爐內進行燒結,以得出含多孔性陶瓷組合物
在較佳實施例中,步驟b之羥基磷灰石或磷酸鈣鹽類與分散劑之重量百分比的範圍係從25:1到25:5;步驟b之分散劑可以為聚丙烯酸鈉鹽(polyacrylic acid;PAA)、聚甲基丙烯酸鈉(polymethacrylic acid;PMA)或聚乙烯醇(poly-vinyl-alcohol;PVA)及其類似物;步驟b之羥基磷灰石或磷酸鈣鹽類係於混合前先由高溫爐燒結至800℃到900℃;步驟c之p(NIPAAM-MAA)水的體積比的範圍係從1:2到2:1;步驟e之高分子顆粒體積係步驟d之混合物總體積之5%到20%;步驟f之模板槽係聚酯纖維多孔模板槽或氧化鋁陶瓷模板槽;步驟g之陶瓷坩堝係氧化鋁材質;步驟g之高溫爐設定為如下之四階段:第一階段:2小時緩慢升溫至600℃到650℃(3到6℃/min),且持溫30到60分鐘;第二階段:20到30分鐘快速升溫至1150到1250℃(15到25℃/min),且持溫10到30分鐘;第三階段:10到15分鐘緩慢升溫至1250到1350℃(3到6℃/min),且持溫1到3小時;及第四階段:利用爐冷使之緩慢降溫至25℃。
在更佳實施例中,上述步驟e之高分子係聚乙烯。
在較佳實施例中,該多孔性陶瓷組合物具有奈米或微米孔隙,可作為生物材料支架,該生物材料支架具有部份生物可吸收性。在更佳實施例中,該生物材料支架係作為人工骨使用,並可與可促進骨再生的物質混合,其中該促進骨再生的物質係選自由骨髓、BMP生長因子、血管新生促進因子、史塔丁(statin)類藥物、雙磷酸鹽(bisphosphanate)類藥物、骨細胞及幹細胞所組成之群組。在另一較佳實施例中,該生物材料支架係作為治療劑之載體。在更佳實施例中,該治療劑係抗生素類藥物。
本發明可能以不同的形式來實施,並不僅限於下列文中所提及的實例。下列實施例僅作為本發明不同面向及特點中的代表。
實施例1 氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物之溫感水膠合成
氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物的化學式如下所示:
將5g(44.2mmole)的氮-異丙基丙烯醯胺(簡稱NIPAM,購自Aldrich)與40μl(0.4mmole)的甲基丙烯酸(簡稱MAA,購自Fluka)置於100毫升的圓底燒瓶中,與30毫升的二次蒸馏水混合攪拌,並置於32℃的水浴環境下。逐一添加0.05g過硫酸銨(Ammoniumpersulfat,簡稱APS,購自Riedel-de Han)與500μl的N,N,N’,N’,-四亞甲二胺(簡稱TEMED,購自Fluka)於圓底燒瓶中均勻攪拌4小時後移除水浴至室溫環境下持續攪拌24小時,之後利用吸量管(pipette)吸取至透析模(Mw:1000)以每隔兩小時替換二次蒸餾水進行為時8小時透析以利將單體排除,進行冷凍乾燥24小時,得粉末產物氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物,室溫保存,產率約為70%到80%。
漿體調配
將先用高溫爐燒結至800℃的羥基磷灰石(簡稱HAp,購自Plasma Biotal Limited)取1.25g,與0.05g分散劑(聚丙烯酸鈉鹽)(簡稱PAA,購自Aldrich)均勻混合於50ml的燒杯中,並將事先調配的氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物與二次蒸餾水體積比為1:1的膠體溶液取1ml至燒杯中,使用均質機混合。最後再取以總體積比5%的聚乙烯顆粒(1000μm)(簡稱PE,購自AJohnson Mathery(Alfa Aesar))約0.12g至燒杯中以手動均勻攪拌。
填模
將調配好的漿體填入聚酯纖維或氧化鋁陶瓷的多孔模板槽中。
高溫燒結
先將高溫爐燒結曲線設定為四階段:第一階段:2小時緩慢升溫至650℃(約5℃/min),且持溫30分鐘;第二階段:30分鐘快速升溫至1250℃(約20℃/min),且持溫10分鐘;第三階段:10分鐘緩慢升溫至1300℃(約5℃/min),且持溫2小時;及第四階段:利用爐冷使之緩慢降溫至25℃。
高溫爐設定完畢後將漿體與模具裝載於氧化鋁材質的陶瓷中送入高溫爐內執行燒結步驟。
氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物之合成與分析如圖1到圖4所示。多孔羥基磷灰石燒結過後的成像與分析則如圖5到圖8所示。
一個熟知此領域技藝者能很快體會到本發明可很容易達成目標,並獲得所提到之結果及優點,以及那些存在於其中的東西。本發明中之化合物、組合物、混合物及其製造程序與方法乃較佳實施例的代表,其為示範性且不僅侷限於本發明領域。熟知此技藝者將會想到其中可修改之處及其他用途。這些修改都蘊含在本發明的精神中,並在申請專利範圍中界定。
本發明的內容敘述與實施例均揭示詳細,得使任何熟習此技藝者能夠製造及使用本發明,即使其中有各種不同的改變、修飾、及進步之處,仍應視為不脫離本發明之精神及範圍。
說明書中提及之所有專利及出版品,都以和發明有關領域之一般技藝為準。所有專利和出版品都在此被納入相同的參考程度,就如同每一個個別出版品都被具體且個別地指出納入參考。
在此所適當地舉例說明之發明,可能得以在缺乏任何要件,或許多要件、限制條件或並非特定為本文中所揭示的限制情況下實施。所使用的名詞及表達是作為說明書之描述而非限制,同時並無意圖使用這類排除任何等同於所示及說明之特點或其部份之名詞及表達,但需認清的是,在本發明的專利申請範圍內有可能出現各種不同的改變。因此,應了解到雖然已根據較佳實施例及任意的特點來具體揭示本發明,但是熟知此技藝者仍會修改和改變其中所揭示的內容,諸如此類的修改和變化仍在本發明之申請專利範圍內。
圖1顯示溫感水膠p(NIPAAM-MAA)之合成示意圖。
圖2顯示溫感水膠p(NIPAAM-MAA)於37℃從溶膠轉換成凝膠的示意圖。
圖3顯示NIPAAM單體與p(NIPAAM-MAA)共聚高分子之1 H NMR光譜圖分析。證明出NIPAAM單體上雙鍵被加成聚合後已消失。
圖4顯示NIPAAM單體(上)與p(NIPAAM-MAA)共聚高分子(下)之FTIR光譜圖分析。證明出p(NIPAAM-MAA)共聚高分子之COOH是MAA上的官能基。
圖5顯示以溫感水膠p(NIPAAM-MAA)共聚高分子模板製成之多孔性羥基磷灰石生物陶瓷的巨觀相片。
圖6顯示以溫感水膠p(NIPAAM-MAA)共聚高分子模板製成之多孔性羥基磷灰石生物陶瓷的微觀SEM相片(上下圖呈現出大小微孔,顯示其具有微奈米孔洞)。
圖7顯示以溫感水膠p(NIPAAM-MAA)共聚高分子模板製成之多孔性羥基磷灰石生物陶瓷之FTIR分析。從圖中可看出OH官能基已損失。
圖8顯示以溫感水膠p(NIPAAM-MAA)共聚高分子模板製成之多孔性羥基磷灰石生物陶瓷(產品)與純羥基磷灰石(純的)之XRD分析比較。圖中可看出相結構主要是磷灰石結構,但少部分有β-TCP結構(主要峰Hap;次要峰β-TCP)。

Claims (6)

  1. 一種製備含多孔性陶瓷組合物的方法,其包含步驟如下:a.合成氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物(poly(N-isopropylacrylamide-co-methacrylic acid);b.將羥基磷灰石或磷酸鈣鹽類與分散劑以重量百分比範圍從25:1到25:5的比例混合,其中該分散劑為聚丙烯酸鈉鹽(polyacrylic acid;PAA)、聚甲基丙烯酸鈉(polymethacrylic acid;PMA)或聚乙烯醇(poly-vinyl-alcohol;PVA);c.混合步驟a之氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物與水以得出膠體溶液,其中氮-異丙基丙烯醯胺-甲基丙烯酸共聚合物與水的體積比的範圍係從1:2到1:1;d.混合步驟c之膠體溶液與步驟b之產物以得出混合物;e.加入高分子顆粒至步驟d之混合物中並攪拌以得出漿體,其中該高分子係聚乙烯,其顆粒體積係步驟d之混合物總體積之5%到20%;f.將步驟e之漿體填入模板槽中;及g.將步驟f之填入漿體的模板槽裝載於陶瓷坩堝中,然後送入高 溫爐內以600℃至1350℃進行燒結,以得出含多孔性陶瓷組合物。
  2. 根據申請專利範圍第1項之方法,其中步驟b之羥基磷灰石或磷酸鈣鹽類係於混合前先由高溫爐燒結至800℃到900℃。
  3. 根據申請專利範圍第1項之方法,其中步驟f之模板槽係聚酯纖維多孔模板槽或氧化鋁陶瓷模板槽。
  4. 根據申請專利範圍第1項之方法,其中步驟g之陶瓷坩堝係氧化鋁材質。
  5. 根據申請專利範圍第1項之方法,其中步驟g之高溫爐設定為如下之四階段:第一階段:2小時緩慢升溫至600℃到650℃(3到6℃/min),且持溫30到60分鐘;第二階段:20到30分鐘快速升溫至1150到1250℃(15到25℃/min),且持溫10到30分鐘;第三階段:10到15分鐘緩慢升溫至1250到1350℃(3到6℃/min),且持溫1到3小時;及第四階段:利用爐冷使之緩慢降溫至25℃。
  6. 根據申請專利範圍第1項之方法,其中該多孔性陶瓷組合物具有奈米或微米孔隙。
TW99110691A 2010-04-07 2010-04-07 以溫感水膠製備含多孔性陶瓷組合物的方法 TWI411595B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99110691A TWI411595B (zh) 2010-04-07 2010-04-07 以溫感水膠製備含多孔性陶瓷組合物的方法
US13/080,960 US8940203B2 (en) 2010-04-07 2011-04-06 Method for preparing composition comprising porous ceramic with thermo-response hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99110691A TWI411595B (zh) 2010-04-07 2010-04-07 以溫感水膠製備含多孔性陶瓷組合物的方法

Publications (2)

Publication Number Publication Date
TW201134783A TW201134783A (en) 2011-10-16
TWI411595B true TWI411595B (zh) 2013-10-11

Family

ID=44760345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99110691A TWI411595B (zh) 2010-04-07 2010-04-07 以溫感水膠製備含多孔性陶瓷組合物的方法

Country Status (2)

Country Link
US (1) US8940203B2 (zh)
TW (1) TWI411595B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641523A (zh) * 2012-03-07 2012-08-22 中南大学 一种多孔羟基磷灰石生物陶瓷及其制备方法
US10388975B2 (en) * 2013-01-31 2019-08-20 Board Of Trustees Of Michigan State University Template-based methods of making and using ceramic solids
KR101730786B1 (ko) 2014-04-30 2017-04-27 킴벌리-클라크 월드와이드, 인크. 유체 분배 구조물을 포함하는 흡수 용품
US11111184B2 (en) * 2015-12-04 2021-09-07 Kaohsiung Medical University Method for additive manufacturing of 3D-printed articles
WO2018188582A1 (zh) * 2017-04-10 2018-10-18 高雄医学大学 制备色阶陶瓷的方法及渐层浆料混合装置
CN109369929B (zh) * 2018-11-05 2021-05-25 安徽工业大学 一种矿化水凝胶及其制备方法和应用
TWI712486B (zh) * 2019-01-30 2020-12-11 高雄醫學大學 用於光固化3d列印的漿料、其製備方法及其使用方法
EP4284347A1 (en) 2021-01-28 2023-12-06 Galvita AG Solid pharmaceutical compositions and methods of producing the same
WO2024023261A1 (en) * 2022-07-27 2024-02-01 Universität Zürich Dexmedetomidine for the treatment of sleep disorders
EP4311543A1 (en) 2022-07-27 2024-01-31 Galvita AG Methods for loading template inverted carriers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439618A (zh) * 2003-03-21 2003-09-03 中国科学院上海硅酸盐研究所 多孔硅酸钙/β-磷酸三钙复相生物陶瓷材料的制备方法
CN2737357Y (zh) * 2004-09-28 2005-11-02 张琳 外科用多孔高分子复合材料植入体
US20090196826A1 (en) * 2007-12-18 2009-08-06 Board Of Regents, The University Of Texas System Compositions and methods of making non-spherical micro- and nano-particles

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905047A (en) * 1973-06-27 1975-09-16 Posta Jr John J Implantable ceramic bone prosthesis
DK154260C (da) * 1981-02-20 1989-05-22 Mundipharma Gmbh Fremgangsmaade til fremstilling af et knogleimplantat af braendt tricalciumphosphat, specielt til udfyldning af hulrum eller til sammensaetning af knogledele efter fraktur.
FR2758988B1 (fr) * 1997-02-05 2000-01-21 S H Ind Procede d'elaboration de substituts osseux synthetiques d'architecture poreuse parfaitement maitrisee
US6066279A (en) * 1997-09-16 2000-05-23 Lockheed Martin Energy Research Corp. Gelcasting methods
JP4358374B2 (ja) * 1999-08-10 2009-11-04 日本特殊陶業株式会社 生体インプラント材の製造方法
JP4070951B2 (ja) * 2000-12-07 2008-04-02 ペンタックス株式会社 多孔質リン酸カルシウム系セラミックス焼結体の製造方法
WO2003000480A1 (en) * 2001-06-22 2003-01-03 The Regents Of The University Of Michigan Methods of designing and fabricating molds
AU2002365091A1 (en) * 2001-11-01 2003-06-30 Regents Of The University Of Minnesota Hydrogel compositions, devices, and microscale components
TW200400062A (en) 2002-04-03 2004-01-01 Mathys Medizinaltechnik Ag Kneadable, pliable bone replacement material
AU2003246482A1 (en) * 2002-07-12 2004-02-02 Jenshong Hong Method of manufacture of porous inorganic structures and infiltration with organic polymers
US7163651B2 (en) * 2004-02-19 2007-01-16 Calcitec, Inc. Method for making a porous calcium phosphate article
US20070178309A1 (en) 2006-02-01 2007-08-02 Sidney Omelon Polyphosphate ceramic and method of making same
ES2475966T3 (es) * 2007-08-09 2014-07-11 The Board Of Regents Of The University Of Texas System Soportes de tipo óseo de dos capas
US20090252795A1 (en) 2008-04-07 2009-10-08 Smyth Stuart K J Bioceramic scaffolds for tissue engineering
US8871167B2 (en) * 2008-12-16 2014-10-28 Meiji University Biocompatible ceramic-polymer hybrids and calcium phosphate porous body
US9399086B2 (en) * 2009-07-24 2016-07-26 Warsaw Orthopedic, Inc Implantable medical devices
US8702645B2 (en) * 2010-05-05 2014-04-22 The Governing Council Of The University Of Toronto Implantable-glucose responsive insulin delivery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439618A (zh) * 2003-03-21 2003-09-03 中国科学院上海硅酸盐研究所 多孔硅酸钙/β-磷酸三钙复相生物陶瓷材料的制备方法
CN2737357Y (zh) * 2004-09-28 2005-11-02 张琳 外科用多孔高分子复合材料植入体
US20090196826A1 (en) * 2007-12-18 2009-08-06 Board Of Regents, The University Of Texas System Compositions and methods of making non-spherical micro- and nano-particles

Also Published As

Publication number Publication date
TW201134783A (en) 2011-10-16
US8940203B2 (en) 2015-01-27
US20110248417A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
TWI411595B (zh) 以溫感水膠製備含多孔性陶瓷組合物的方法
Fahimipour et al. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering
Sun et al. 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration
CN108853577B (zh) 一种3D打印Ti-PDA-PLGA微球骨缺损修复支架
Sun et al. Hydroxyapatite nanowire@ magnesium silicate core–shell hierarchical nanocomposite: Synthesis and application in bone regeneration
Tarafder et al. Microwave‐sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
Bose et al. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review
US9925299B2 (en) Silk-based fabrication techniques to prepare high strength calcium phosphate ceramic scaffolds
Kinoshita et al. Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications
Gu et al. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses
JP5154729B2 (ja) 多孔質人工骨移植片およびその製造方法
Li et al. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials
CN108939156B (zh) 3D打印Ti-PDA-BMP-2骨缺损修复组织工程支架及其制备方法
WO2021173575A1 (en) Three-dimensional printed calcium phosphate bone cement composite scaffolds for bone regeneration, precusor compositions and methods of printing
AU2003205004A1 (en) Polymer-bioceramic composite for orthopaedic applications and method of manufacture thereof
Roy et al. Ceramics in bone grafts and coated implants
AU2009251989A1 (en) Osteoinductive nanocomposites
CN109172865B (zh) 梯度化3D打印Ti-PDA-BMP-2骨缺损修复支架及其制备方法
Kucko et al. Calcium phosphate bioceramics and cements
Jadidi et al. Mechanical strength and biocompatibility of bredigite (Ca7MgSi4O16) tissue-engineering scaffolds modified by aliphatic polyester coatings
US8871167B2 (en) Biocompatible ceramic-polymer hybrids and calcium phosphate porous body
Liu et al. Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration
Ingole et al. Bioactive ceramic composite material stability, characterization
Lee et al. Whitlockite granules on bone regeneration in defect of rat calvaria
Ghomi et al. Fabrication and characterization of bioactive glass/hydroxyapatite nanocomposite foam by gelcasting method