TWI411108B - 具有低注入二極體的mos元件 - Google Patents

具有低注入二極體的mos元件 Download PDF

Info

Publication number
TWI411108B
TWI411108B TW97145539A TW97145539A TWI411108B TW I411108 B TWI411108 B TW I411108B TW 97145539 A TW97145539 A TW 97145539A TW 97145539 A TW97145539 A TW 97145539A TW I411108 B TWI411108 B TW I411108B
Authority
TW
Taiwan
Prior art keywords
gate
trench
active region
contact
epitaxial layer
Prior art date
Application number
TW97145539A
Other languages
English (en)
Other versions
TW200929542A (en
Inventor
Bhalla Anup
Wang Xiaobin
Pan Ji
Wei Sung-Po
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/005,130 external-priority patent/US8283723B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW200929542A publication Critical patent/TW200929542A/zh
Application granted granted Critical
Publication of TWI411108B publication Critical patent/TWI411108B/zh

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

具有低注入二極體的MOS元件 相關申請的交叉引用
本申請是2007年9片11日提交的、共同申請的美國專利申請No.11/900,616、名稱為POWER MOS DEVICE的部分繼續申請,也是2005年2片11日提交的、美國專利申請No.11/056,346(現在的專利號為7,285,822)、名稱為POWER MOS DEVICE的繼續申請,出於所有目的,將上述兩個文獻在此引入。
本發明係有關一種金屬氧化物半導體(MOS)元件及其製造方法。
功率MOS元件通常在電子電路中使用。取決於應用,可能期待不同的元件特性。一個範例應用是DC-DC轉換器,其包括一個功率MOS元件作為同步整流器(也稱為低端FET),和另一個功率MOS元件作為控制開關(也稱為高端FET)。低端FET通常要求較小的導通電阻,以便獲得較好的功率開關效率。高端FET通常要求較小的閘極電容,以獲得快速開關和良好性能。
電晶體的導通電阻(Rdson )值通常與通道長度(L)成正比,與每單位面積(W)上的主動單元數量成反比。當選擇Rdson 的值時,應當考慮性能和擊穿電壓之間的權衡。為了減小Rdson 的值,可以通過使用較淺的源極和本體來減小通道長度,以及可以通過減小單元尺寸來增大每單位面積的單元數量。然而,由於擊穿現象,通道長度L通常受到限制。每單位面積的單元數量也由於製造技術以及由於需要使單元的源極區和本體區良好接觸而受到限制。隨著通道長度和單元密度的增大,閘極電容也增大。為了減小開關的損耗,較低的元件電容是優選的。在某些應用(諸如,同步整流)中,存儲的電荷以及本體二極體的正向壓降也會導致效率損耗。這些因素一起便限制了DMOS功率元件的性能。
值得期待的是,如果DMOS功率元件的導通電阻和閘極電容能夠低於當前可達的水準,功率開關的可靠性和功率消耗都會改善。還可能有用的是,開發出實用的製程,該製程能夠可靠地製造出改進的DMOS功率元件。
為此,本發明提供了一種半導體元件及其製造方法,使得改善功率開關的可靠性和功率消耗。
本發明提供一種形成在半導體基底上的半導體元件,包括:汲極;覆蓋所述汲極的磊晶層;以及主動區,包括:本體,所述本體置於所述磊晶層中,並具有本體頂表面;源極嵌入在所述本體中,並從所述本體頂表面延伸至所述本體中;閘極溝槽延伸至所述磊晶層中;閘極置於所述閘極溝槽中;主動區接觸溝槽係延伸通過所述源極並延伸到所述本體中;主動區接觸電極則置於所述主動區接觸溝槽內;其中本體區的薄層將所述主動區接觸電極與所述汲極分開。
另一方面,本發明提供一種製造半導體元件的方法,包括:在覆蓋半導體基底的磊晶層中形成閘極溝槽;在所述閘極溝槽中沉積閘極材料;形成本體;形成源極;形成主動區接觸溝槽,所述主動區接觸溝槽延伸通過所述源極並延伸至所述本體中;以及在所述主動區接觸溝槽內沉積接觸電極;其中,本體區的薄層將所述主動區接觸電極與所述汲極分開。
底下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
本發明可以用多種方式實現,包括實現為製程、裝置、系統、物的組合、電腦可讀媒介,諸如,電腦可讀存儲媒介,或者電腦網路,其中,程式指令被通過光鏈結或者通信鏈結發送。在本說明書中,這些實現,或者本發明可以採用的任何其他形式,都可以稱為技術。被描述成“被 配置為執行任務的元件”(諸如處理器或者記憶體)既包括通用元件(其被臨時配置為在給定時間執行任務)也包括專用元件(其被製造以執行任務)。通常,在本發明範圍內,所公開的製程步驟的順序可以改變。
本發明的一個或多個實施例的具體描述在以下與表示本發明原理的附圖一起提供。雖然結合這樣的實施例描述了本發明,但是本發明並不限於任何實施例。本發明的範圍僅由申請專利範圍來限定,並且本發明涵蓋了多種替代方式、改進以及等效物。在以下描述中提供多種具體的細節是為了提供本發明的全面理解。這些細節是處於範例的目的而提供的,並且本發明可以根據權利要求來實現,而無需這些具體細節的某些或者全部。為了清楚的目的,在有關本發明的技術領域中公知的技術材料並沒有詳細描述,以避免本發明被不必要地混淆。
對金屬氧化物半導體(MOS)元件及其製造進行描述。出於範例的目的,在本說明書中詳細討論N通道元件,其具有N型材料製成的源極和汲極以及P型材料製成的本體。在此公開的技術和結構也適用於P通道元件。
第1A-1F圖示出了若干雙擴散金屬氧化物半導體(DMOS)元件的實施例。第1A圖是DMOS元件的實施例的橫截面視圖。在此範例中,元件100包括汲極,其形成在N 型半導體基底103的背面。汲極區延伸到覆蓋了基底103的、N 型半導體的磊晶(epi)層104中。在磊晶層104中蝕刻出閘極溝槽(諸如111、113和115)。閘極氧化物層121形成在閘極溝槽內。閘極131、133和135分別佈置在閘極溝槽111、113和115內,並且通過氧化物層而與磊晶層絕緣。閘極是由諸如多晶矽(poly)的導電材料製成的,而氧化物層是由諸如熱氧化物的絕緣材料製成的。具體地,閘極溝槽111位於端接區(termination region)中,該端接區佈置有用來連接至閘極接觸金屬的閘極導線(gate runner)131。出於該目的,與主動閘極溝槽113和115相比,閘極導線溝槽111可以更寬且更深。進一步地,閘極導線溝槽111和其相鄰 的主動溝槽(在此情況下為溝槽113)之間的間距可以比主動閘極溝槽113和115之間的間距大。
源極區150a-150d分別嵌入本體區140a-140d中。源極區從本體的頂表面向下延伸到本體本身中。儘管本體區沿著所有閘極溝槽的側部被植入,但是源極區僅僅在鄰近主動閘極溝槽處被植入,而不在閘極導線溝槽處被植入。在所示實施例中,諸如133的閘極具有閘極頂表面,該閘極頂表面基本上在嵌入有源極的本體的頂表面之上延伸。這樣的配置保證了閘極和源極的重疊,從而允許源極區比具有凹陷閘極的元件的源極區淺,並且這樣的配置增大了元件的效率和性能。閘極多晶矽頂表面在源極-本體接面之上延伸的量可以針對不同實施例而改變。在某些實施例中,元件的閘極不在源極區/本體區的頂表面上延伸,而是從源極區/本體區的頂表面凹陷。
在操作期間,汲極區和本體區一起作為二極體的作用,稱為本體二極體。介電材料層160被佈置於閘極的上面,以便將閘極與源極-本體接觸絕緣。介電材料在閘極的頂上以及在本體區和源極區的頂上形成了絕緣區,諸如160a-160c。適當的介電材料包括熱氧化物、低溫氧化物(LTO)、硼磷矽玻璃(BPSG)等。
大量的接觸溝槽112a-112b形成在源極區和本體區附近的主動閘極溝槽之間。這些溝槽被稱為主動區接觸溝槽,因為這些溝槽鄰近元件的主動區(由源極區和本體區形成的)。例如,接觸溝槽112a延伸通過源極和本體,形成了鄰近溝槽的源極區150a-150b和本體區140a-140b。相反,形成在閘極導線131頂上的溝槽117並不位於主動區附近,因此,溝槽117不是主動區接觸溝槽。溝槽117被稱為閘極接觸溝槽或者閘極導線溝槽,因為連接至閘極信號的金屬層172a沉積在溝槽內。通過溝槽111、113和115之間在第三維度(未示出)中的互連,將閘極信號饋送給有源閘極133和135。金屬層172a與金屬層172b分離,金屬層172b通過接觸溝槽112a-112b連接至源極區和 本體區,以提供電源。在所示範例中,主動區接觸溝槽和閘極接觸溝槽具有基本上相同的深度。
元件100具有主動區接觸溝槽112a-112b,它們都比本體淺。此配置提供了良好的擊穿性能、更低的電阻和更低的洩漏電流。另外,由於主動接觸溝槽和閘極接觸溝槽是使用一步製程形成的,由此它們具有相同的深度,所以具有比本體淺的主動接觸溝槽可以避免閘極接觸溝槽穿過諸如131的閘極導線。
在所示範例中,FET通道沿著源極/本體接面和本體/汲極接面之間的主動區閘極溝槽側壁形成。在具有短通道區的元件中,隨著源極和汲極之間電壓的增大,空乏區擴大,並且可能最終到達源極接面。這種現象,稱為擊穿,限制了通道可被縮短的程度。在某些實施例中,為了避免擊穿,利用P型材料來對諸如沿著主動區接觸溝槽壁的區域170a-170d的區域進行重摻雜以形成P 型區。P 型區避免了空乏區侵佔源極區。這樣,這些植入有時稱為抗擊穿植入或者避免擊穿植入。在某些實施例中,為了實現聲稱的抗擊穿效果,P 區盡可能地離通道區近和/或如製造對準能力和P 側壁摻雜滲透控制所允許的那樣近。在某些實施例中,溝槽接觸和溝槽之間的不對準通過對接觸進行自行對準來最小化,以及將溝槽接觸盡可能置於接近溝槽之間的中心處。這些結構上的增強允許通道被縮短,使得通道每單位面積中的淨電荷適當地低於在理想的未受保護結構中避免擊穿所需的最小電荷。除了改善本體接觸電阻外,抗擊穿植入還使得構建非常淺溝槽的短通道元件成為可能。在所示實施例中,接觸溝槽112a-112b比本體區140a-140d淺,並且不會在本體區中一直延伸。元件的導通電阻Rdson 和閘極電容被減小。
在接觸溝槽112a-112b和閘極溝槽117中佈置導電材料以形成接觸電極。在主動區中,由於擊穿植入沿著接觸溝槽的側壁設置,而不沿著接觸溝槽的底部設置,所以接觸電極與N 汲極區104相接觸。接觸電極和汲極區一起形成了蕭特基二極體(與本體二極體並行)。蕭特基 二極體減小了本體二極體正向壓降並將存儲的電荷最小化,使得MOSFET更加有效率。能夠同時形成到N 汲極的蕭特基接觸和到P 本體和N 源極的良好的歐姆接觸的一種金屬被用來形成電極180a-180b。諸如鈦(Ti)、鉑(Pt)、鈀(Pd)、鎢(W)或者任何其他適當的金屬都可以使用。在某些實施例中,金屬層172由鋁(Al)或者由Ti/TiN/Al疊層製成。
蕭特基二極體的洩漏電流與蕭特基能障高度有關。隨著能障高度的增大,洩漏電流減小,以及正向壓降也增大。在所示範例中,通過在主動區溝槽112a-112b的底部周圍植入薄的摻雜物層,將可選的蕭特基能障控制層190a-190b(也稱為香農(Shannon)層)形成在接觸電極之下。在此範例中,摻雜物具有與磊晶層相反的極性,並且屬於P型。香農植入比較淺並且是低劑量的;因此,完全被耗盡而與偏壓無關。蕭特基能障控制層用來控制蕭特基能障高度,從而允許對洩漏電流進行更好的控制,以及改進蕭特基二極體的反向恢復特性。以下描述形成蕭特基能障控制層的細節。
第1B圖是DMOS元件的另一實施例的橫截面視圖。元件102也包括蕭特基能障控制層190a-190b,位於主動區接觸溝槽的底部周圍。在此範例中,閘極接觸溝槽117的深度與主動區接觸溝槽112a-112b的深度不同。主動區接觸溝槽比本體區140a-140d深,並且主動區接觸溝槽延伸超過了本體區。由於主動接觸溝槽較深,所以主動接觸溝槽為沿著側壁製作歐姆接觸提供了更多區域,並且帶來了更好的非箝位元感應開關(UIS)能力。而且,通過使閘極接觸溝槽比主動接觸溝槽淺,閘極接觸溝槽將不太可能在蝕刻製程期間穿透閘極導線多晶矽,而這對於具有相對淺的閘極多晶矽的元件(諸如,使用這樣製程製造的元件,即,該製程會導致閘極多晶矽不會在本體的頂表面之上延伸)是有用的。
第1C圖是DMOS元件的另一實施例。在此範例中,閘極接觸溝槽117和主動區接觸溝槽112a-112b具有不同的深度。另外,每個主 動區接觸溝槽的深度並不一致,因為溝槽深度在平行於基底表面的方向上會變化。如以下更詳細所述,主動區接觸溝槽是使用兩步製程形成的,導致第一接觸開口(例如,120a-120b)比第二接觸開口(例如,119a-119b)寬。主動區接觸溝槽的輪廓形狀允許更大的歐姆接觸區域並且通過抗擊穿植入170a-170d更好的避免擊穿,並且改進了元件的UIS能力。香農植入沿著第二接觸開口的側壁和底部分佈,形成了蕭特基能障控制層190a-190b。
第1D-1F圖示出了整合低注入本體二極體的DMOS元件的實施例。元件106、108和110具有比本體區淺的主動區接觸溝槽。在某些實施例中厚度約為0.01~0.5μm的本體層將主動區溝槽的底部與磊晶層分開,形成了本體/汲極接面之下的低注入二極體。薄體層的厚度和摻雜水準(該薄體層位於主動區接觸溝槽和汲極之間)被調整,以使得在反向偏壓中,此薄體層幾乎完全耗盡,而在正向偏壓中,薄體層不會耗盡。由於載子已經極大減少,所以整合低注入二極體的元件106、108和110相比於常規的本體二極體提供了性能上的改進。在適當控制薄體層的情況下,低注入本體二極體可以提供與蕭特基二極體相當的性能,帶來的優勢在於:由於可以省去蕭特基能障控制層的形成,而帶來的簡化製程。
第2圖是示出了降壓型(buck)轉換器電路範例的示意圖。在此範例中,所示電路200使用了高端FET元件201和低端FET元件207。高端元件201包括電晶體202和本體二極體204。低端元件207可以使用諸如第1A-1F圖中示出的100、102或者104的元件來實現。元件207包括電晶體208、本體二極體210和蕭特基二極體212。負載包括電感器214、電容器216和電阻器218。在正常操作期間,元件201被導通以將功率從輸入源傳送到負載。這會引起電流在電感器中上升。當元件201被截止時,電感器電流仍然流動,並轉換方向至元件207的本體二極體210。在短暫的延遲後,控制電路使元件207導通, 其導通電晶體208的通道,並大幅度地降低沿著元件208的汲極-源極端子的正向壓降。在沒有蕭特基二極體212的情況下,本體二極體傳導損耗以及移除元件207的本體二極體210中存儲的電荷帶來的損耗可能較大。然而,如果蕭特基二極體212構建在元件207中,並且如果蕭特基二極體具有低的正向壓降,傳導損耗會極大減小。由於沿著蕭特基二極體的低的正向壓降低於本體二極體的接面壓降,所以在蕭特基二極體傳導時,沒有存儲的電荷植入,進一步改善了二極體恢復所涉及的損失。
第3圖是示出了用於構建DMOS元件的製程的實施例的流程圖。在步驟302,在覆蓋半導體基底的磊晶層中形成閘極溝槽。在步驟304,將閘極材料沉積於閘極溝槽中。在步驟306和308,形成本體和源極。在步驟310,形成接觸溝槽。如下面更詳細所述,在某些實施例中,在一個步驟中形成主動區接觸溝槽和閘極區溝槽;在某些實施例中,溝槽在多個步驟中形成,以獲得不同的深度。在步驟312,將接觸電極佈置於接觸溝槽內。製程300及其步驟可以修改,以產生MOS元件的不同實施例,諸如第1A-1F圖中示出的102-110。
第4A-4U圖是元件的橫截面視圖,詳細示出了用於製造MOS元件的範例製程。在此範例中,N型基底(即,其上生長有N 磊晶層的N 矽片)被用作元件的汲極。
第4A-4J圖示出了閘極的形成。在第4A圖中,通過沉積或熱氧化,在N型基底400上形成二氧化矽(SiO2 )層402。在各種實施例中,氧化矽的厚度在100-30000的範圍。其他厚度也可以使用。該厚度可以取決於期待的閘極高度而進行調整。將光阻層404旋塗在氧化物層的頂上,並且使用溝槽罩幕來圖案化。
在第4B圖中,暴露區域中的SiO2 被移除,留下了用於矽蝕刻的SiO2 硬罩幕410。在第4C圖中,異向性地蝕刻矽,留下了諸如420的溝槽。將閘極材料沉積在溝槽中。之後形成在溝槽中的閘極具有基本 上與基底的頂表面垂直的側面。在第4D圖中,對SiO2 硬罩幕410進行一定量的回蝕刻,使得溝槽壁在稍後的蝕刻步驟之後基本上與硬罩幕的邊保持對準。SiO2 是在本實施例中使用的罩幕材料,因為使用SiO2 硬罩幕的蝕刻會留下與罩幕的側部相互對準的相對直的溝槽壁。如果合適,也可以使用其他材料。傳統上用於硬罩幕蝕刻的某些其他類型的材料,諸如Si3 N4 ,會留下帶有曲率的蝕刻後的溝槽壁,這對於在下述步驟中形成閘極而言欠佳。
在第4E圖中,等向性地蝕刻基底以將溝槽的底部圓化。在某些實施例中,溝槽約為0.5-2.5μm深,約為0.2-1.5μm寬;其他尺寸也可以使用。為了給生長閘極介電材料提供光滑的表面,在溝槽中生長SiO2 的犧牲層430。然後,通過濕蝕刻製程移除該犧牲層。在第4G圖中,在溝槽中熱生長SiO2 的層432作為介電材料。
在第4H圖中,沉積多晶矽440以填充溝槽。在這種情況下,多晶矽被摻雜以獲取適當的閘極電阻。在某些實施例中,在(原位)沉積多晶矽層時進行摻雜。在某些實施例中,在沉積後對多晶矽進行摻雜。在第4I圖中,對SiO2 頂上的多晶矽層進行回蝕刻以形成諸如442的閘極。在這點上,閘極的頂表面444相對於SiO2 的頂表面448而言仍然是凹陷的;然而,取決於硬罩幕層410的厚度,閘極的頂表面444可以高於矽的頂層446。在某些實施例中,在多晶矽回蝕刻中不使用罩幕。在某些實施例中,在多晶矽回蝕刻中使用罩幕來避免在下述的本體植入製程中使用附加的罩幕。在第4J圖中,移除SiO2 硬罩幕。在某些實施例中,使用幹蝕刻來移除硬罩幕。在遇到頂部矽表面時蝕刻製程停止,從而使多晶矽閘極在基底表面(其中將會植入源極摻雜物和本體摻雜物)上延伸。在某些實施例中,閘極在基底表面之上延伸約300-20000。其他值也可以使用。在這些實施例中使用SiO2 硬罩幕,因為它以可控制的方式在矽表面上提供了期待量的閘極延伸。隨後,可以在晶圓上生長遮罩氧化物。以上的製程步驟可以針對製造具有凹陷的 閘極多晶矽的元件而簡化。例如,在某些實施例中,在形成溝槽期間使用光阻罩幕或者非常薄的SiO2 硬罩幕,並且因此所得到的閘極多晶矽不會在矽表面上延伸。
第4K-4N圖示出了源極和本體的形成。在第4K圖中,使用本體罩幕在本體表面上對光阻層450進行圖案化。未遮蔽的區域植入有本體摻雜物。諸如硼離子的摻雜物被植入。在此處未示出的某些實施例中,在沒有本體阻擋物450的情況下執行本體植入,從而在主動溝槽之間形成了連續的本體區。在第4L圖中,移除光阻,並且加熱晶圓以通過有時稱為本體驅動(body drive)的製程來將植入的本體摻雜物熱擴散。隨後,形成了本體區460a-460d。在某些實施例中,用來植入本體摻雜物的能量約在30~600keV之間,劑量約在5e12-4e13離子/cm2 ,並且所得到的最終本體深度約在0.3-2.4μm之間。通過改變因數,包括植入能量、劑量和擴散溫度,可以獲得不同的深度。在擴散製程期間,形成了氧化物層462。
在第4M圖中,使用源極罩幕對光阻層464進行圖案化。在所示實施例中,源極罩幕464不會阻擋主動溝槽之間的任何區域。在某些實施例中,源極罩幕464也對主動溝槽之間的中央區域(未示出)進行阻擋。將源極摻雜物植入未遮蔽區域466。在此範例中,砷離子滲入未遮蔽區域中的矽,以形成N 型源極。在某些實施例中,用於植入源極摻雜物的能量約在10~100keV之間,劑量約在1e15-1e16離子/cm2 之間,以及所得到的源極深度約在0.05-0.5μm之間。可以通過改變因數,諸如摻雜能量和劑量,來實現進一步的深度減小。適當的話,其他植入製程也可以使用。在第4N圖中,移除光阻,並且加熱晶圓以通過源極驅動製程來對植入的源極摻雜物進行熱擴散。在源極驅動後,將介電(例如,BPSG)層465佈置於元件的頂表面上,並且可選地,在某些實施例中可以將其緻密化。
第4O-4T圖示出了接觸溝槽的形成以及沿著接觸溝槽的各種植 入。在第4O圖中,光阻層472沉積在介電層上,並且使用接觸罩幕來圖案化。執行第一接觸蝕刻來形成溝槽468和470。在某些實施例中,第一接觸溝槽的深度在0.2-2.5μm之間。
在第4P圖中,移除光阻層,利用植入的離子來轟擊溝槽470底部周圍區域以形成擊穿防止層。在某些實施例中,使用劑量約為1-5e15離子/cm2 的硼離子。植入能量約為10-60keV。在某些實施例中,使用劑量約為1-5e15離子/cm2 、植入能量為40-100keV的BF2 離子。在某些實施例中,植入BF2 和硼以形成擊穿防止層。植入傾角約在0-45度之間。在第4Q圖中,對植入物進行熱擴散。
在第4R圖中,進行第二接觸蝕刻。由於蝕刻製程不會影響介電層,所以第二接觸蝕刻不需要額外的罩幕。在某些實施例中,溝槽的深度增大了0.2-0.5μm。將擊穿防止層刻蝕穿,沿著溝槽壁留下抗擊穿植入物474a-474b。在第4S圖中,使用離子植入來形成低劑量淺P型蕭特基能障控制層476。在某些實施例中,使用劑量在2e11-3e13離子/cm2 之間、植入能量在10-100keV之間的硼或BF2 。在第4T圖中,通過熱擴散啟動蕭特基能障控制層。與抗擊穿植入相比,蕭特基能障控制層需要較低劑量,並且由此產生了較低摻雜和較薄的植入層。在某些實施例中,蕭特基能障控制層約為0.01-0.05μm厚。蕭特基能障控制層可以調整能障高度,因為植入物調整在接觸電極和半導體之間的表面能量。
在第4U圖中,示出了完整的元件490。金屬層478被沉積、在適當情況下蝕刻以及退火。在沉積保護層(passivation layer)480之後製作保護開口。還可以執行需要用來完成製造的附加步驟,諸如晶圓研磨以及後端金屬沉積。
可以使用選擇性的製程。例如,為了製造第1D-1F圖中示出的元件106-110,對第4K圖中示出的本體植入製程進行修改,並且在主動區中沒有本體阻擋物。本體摻雜物被直接植入、覆蓋暴露的區域以及在閘極之間形成連續的本體區。在接觸蝕刻期間,將溝槽蝕刻到比本體區 底部淺的深度,使本體層低於接觸溝槽。選擇性地,可以將主動接觸溝槽僅刻蝕穿過本體,以暴露外延汲極區,隨後是利用良好控制的能量和摻雜物的附加本體摻雜植入來穿過接觸溝槽側壁和底部形成薄的本體層。
在某些實施例中,為了形成蕭特基能障控制層,通過化學氣相沉積(CVD)來沉積諸如SiGe的窄能隙材料,以在磊晶層的頂表面上形成層。在某些實施例中,窄能隙材料層的厚度在從100到1000的範圍內。例如,在某些實施例中使用200的富矽SiGe層。在某些實施例中,富矽SiGe層包括80%的Si和20%的Ge。在某些實施例中,利用N型摻雜物以2e17-2e18/cm3 的濃度來對窄能隙材料層進行原位摻雜。隨後,在窄能隙層之上沉積低溫氧化物層,然後對該低溫氧化物層進行圖案化以形成硬罩幕,用於將溝槽乾蝕刻到磊晶層中。在乾蝕刻製程期間,硬罩幕保護下面的窄能隙層的部分。
第5A-6B圖示出了製造步驟的附加可選實施例。例如,第5A圖進行擊穿防止層擴散(參見第4Q圖)。使用第二接觸罩幕來對光阻層502進行圖案化,以阻擋閘極溝槽504。在第5B圖中,發生第二蝕刻以增大主動區接觸溝槽506的深度。然後移除光阻,並以類似於第4S圖和第4T圖中的方式對蕭特基能障控制層進行植入。包括金屬沉積和保護的附加完成步驟仍然實施(參見第4U圖)。所得到的元件類似於第1B圖所示的元件102,其中閘極溝槽具有與主動區接觸溝槽不同的深度。通過使用針對第二接觸溝槽蝕刻的單獨的罩幕,以實現不同的閘極溝槽和主動區接觸溝槽的深度,可以使閘極溝槽接觸制得更淺,並且可以緩和對於在蝕刻期間擊穿閘極多晶矽的擔心。這樣,通常使用該製程來製造具有短閘極多晶矽的元件,包括具有不在基底表面之上延伸的閘極多晶矽的實施例。
第6A圖也進行了擊穿防止層擴散(參見第4Q圖)。使用第二接觸罩幕來對光阻層602進行圖案化以阻擋閘極溝槽604,以及以便在主動 區接觸溝槽606之上形成比第一蝕刻的接觸開口小的接觸開口。在第6B圖中,進行第二接觸蝕刻,以形成更深的、更窄的溝槽部分608。移除光阻,並且實施從第4S-4U圖的剩餘步驟。所得到的元件類似於第1C圖所示的103。
第7-10圖示出了製程的選擇性改進,這些改進可以在某些實施例中使用以進一步增強元件性能。
第7圖中所示選擇性改進可以在形成閘極(第4G圖)之後且在使用本體阻擋罩幕(圖4K)之前進行。遍及磊晶層,沉積具有與磊晶層相反極性的全面性植入702。在某些實施例中,高能量、低劑量(5e11-1e13,200-600keV)的硼被用來在形成主本體植入之前形成全面性植入702。全面性植入用來調整磊晶層輪廓,而不會導致磊晶層中極性的改變。全面性植入改變了本體底部區域中的本體輪廓,並且在不明顯增大Rdson 的情況下增強了擊穿電壓。
第8圖中所示可選改進可以在沉積香農植入(第4S圖)之後、但是在其啟動(第4T圖)之前進行。磊晶層輪廓調諧植入被植入到主動區接觸溝槽之下。磊晶層輪廓調諧植入具有與磊晶層相反的極性。在某些實施例中,高能量、低劑量的硼或者BF2 (例如,5e11-1e13,60-300keV)被用來植入。該植入調諧磊晶層輪廓而不改變磊晶層極性,並且增強了擊穿電壓。
第9圖中所示可選改進可以在沉積香農植入(圖4S)之後、但是在其啟動之前(第4T圖)進行。高能量、中劑量(1e12-5e13,60-300keV)的硼被植入以形成P型島902,該P型島902位於接觸溝槽之下的N型磊晶層中,並且與本體區斷開連接。浮動的P型島也增強了擊穿電壓。
第10圖中所示的可選改進可以在形成接觸溝槽(第4O圖)之後且在進行香農植入(第4P圖)之前進行。由於尖銳的角會積累電荷、產生高電場和較低的擊穿電壓,所以使溝槽底部的角1002a-1002b圓 化以減少電荷的積累並改善擊穿電壓。
儘管出於清楚的理解這一目的,在某些細節中描述了前述實施例,但是本發明並不限於所提供的細節。可以存在可選的方式來實現本發明。所公開的實施例僅是範例的說明而不是限制性的。
100‧‧‧元件
103‧‧‧基底
104‧‧‧磊晶層
111、113、115、117‧‧‧閘極溝槽
112a-112b‧‧‧接觸溝槽
119a-119b‧‧‧第二接觸開口
120a-120b‧‧‧第一接觸開口
121‧‧‧閘極氧化物層
131、133、135‧‧‧閘極
131‧‧‧閘極導線
133、135‧‧‧主動閘極
150a-150d‧‧‧源極區
140a-140d‧‧‧本體區
160‧‧‧介電材料層
160a-160c‧‧‧絕緣區
170a-170d‧‧‧區域
172a-172b‧‧‧金屬層
180a-180b‧‧‧電極
190a-190b‧‧‧蕭特基能障控制層
102、106、108、110‧‧‧元件
200‧‧‧電路
201‧‧‧高端FET元件
202‧‧‧電晶體
204‧‧‧本體二極體
207‧‧‧低端FET元件
208‧‧‧電晶體
210‧‧‧本體二極體
212‧‧‧蕭特基二極體
214‧‧‧電感器
216‧‧‧電容器
218‧‧‧電阻器
400‧‧‧N型基底
402‧‧‧SiO2
404‧‧‧光阻層
410‧‧‧SiO2 硬罩幕
420‧‧‧溝槽
430‧‧‧犧牲層
432‧‧‧SiO2
440‧‧‧多晶矽
442‧‧‧閘極
444‧‧‧閘極的頂表面
446‧‧‧矽的頂層
448‧‧‧SiO2 的頂表面
450‧‧‧光阻層
460a-460d‧‧‧本體區
462‧‧‧氧化物層
464‧‧‧光阻層
465‧‧‧介電層
466‧‧‧未掩蔽區域
468、470‧‧‧溝槽
472‧‧‧光阻層
474a-474b‧‧‧抗擊穿注入物
478‧‧‧金屬層
480‧‧‧鈍化層
490‧‧‧元件
502‧‧‧光阻層
504‧‧‧閘極溝槽
506‧‧‧接觸溝槽
602‧‧‧光阻層
604‧‧‧閘極溝槽
606‧‧‧接觸溝槽
608‧‧‧溝槽部分
702‧‧‧全面性注入
902‧‧‧P型島
1002a-1002b‧‧‧角
第1A-1F圖顯示若干雙擴散金屬氧化物半導體(DMOS)元件的實施例。
第2圖降壓型(buck)轉換器電路範例的示意圖。
第3圖顯示用於構造DMOS元件的製程的實施例的流程圖。
第4A-4U圖是具體顯示用於製造MOS元件的範例製程的元件橫截面視圖。
第5A-6B圖顯示製造步驟的附加可選實施例。
第7-10圖顯示本製程的選擇性改進,其中這些改進在某些實施例中使用以進一步增強元件性能。
100‧‧‧元件
103‧‧‧基底
104‧‧‧磊晶層
111、113、115、117‧‧‧閘極溝槽
112a-112b‧‧‧接觸溝槽
121‧‧‧閘極氧化物層
131、133、135‧‧‧閘極
131‧‧‧閘極導線
150a-150d‧‧‧源極區
140a-140d‧‧‧本體區
160a-160c‧‧‧絕緣區
170a-170d‧‧‧區域
172a-172b‧‧‧金屬層
180a-180b‧‧‧電極
190a-190b‧‧‧蕭特基能障控制層

Claims (20)

  1. 一種形成在半導體基底上的半導體元件,包括:一汲極;一覆蓋該汲極的磊晶層;以及一主動區,包括:一本體,係置於該磊晶層中,並具有本體頂表面;一源極,嵌入在該本體中,並從該本體頂表面延伸至該本體中;一閘極溝槽,延伸至該磊晶層中;一閘極,置於該閘極溝槽中;一主動區接觸溝槽,係延伸通過該源極並延伸到該本體中;一主動區接觸電極,係設置於該主動區接觸溝槽內;其中,在該主動區接觸溝槽之下的本體區的薄層將該主動區接觸電極與該汲極分開,並將該主動區接觸溝槽的底部與該磊晶層分開,該薄層與該汲極形成低注入二極體,該薄層的厚度和摻雜水準被調整,以使得該低注入二極體在反向偏壓中,該薄層幾乎完全耗盡,而在正向偏壓中,該薄層不會耗盡。
  2. 如申請專利範圍第1項所述之半導體元件,其中該本體區的該薄層的厚度範圍約在0.01 0.5 m。
  3. 如申請專利範圍第1項所述之半導體元件,其中該閘極溝槽是第一閘極溝槽;以及該元件進一步包括一端接區,該端接區包括:一第二閘極溝槽,係延伸至該磊晶層中;一第二閘極,係設置於該第二閘極溝槽中;以及一閘極接觸溝槽,係形成在該第二閘極內。
  4. 如申請專利範圍第3項所述之半導體元件,其中該閘極接觸溝槽和該主動區接觸溝槽具有近似相同的深度。
  5. 如申請專利範圍第3項所述之半導體元件,其中該主動區接觸溝槽 具有與該閘極接觸溝槽不同的深度。
  6. 如申請專利範圍第1項所述之半導體元件,其中該主動區接觸溝槽具有變動的深度。
  7. 如申請專利範圍第1項所述之半導體元件,其中:該主動區接觸溝槽具有第一深度和第二深度;該第一深度比該第二深度淺;以及對應於該第一深度的第一接觸開口比對應於該第二深度的第二接觸開口寬。
  8. 如申請專利範圍第1項所述之半導體元件,更包括一抗擊穿植入,該抗擊穿植入置於該主動區接觸溝槽的側壁上。
  9. 如申請專利範圍第1項所述之半導體元件,更包括一全面性植入,該全面性植入沉積在整個該磊晶層中,其中該全面性植入具有與該磊晶層相反的極性。
  10. 如申請專利範圍第1項所述之半導體元件,更包括一磊晶層輪廓調諧植入,係沉積在該主動區接觸溝槽下。
  11. 如申請專利範圍第1項所述之半導體元件,其中該閘極在該本體頂表面上延伸。
  12. 一種製造半導體元件的方法,包括:在覆蓋半導體基底的磊晶層中形成閘極溝槽;在該閘極溝槽中沉積閘極材料;形成本體;形成源極;形成主動區接觸溝槽,該主動區接觸溝槽延伸通過該源極並延伸至該本體中;以及在該主動區接觸溝槽內沉積接觸電極;其中,在該接觸電極下的本體區的薄層將該主動區接觸電極與該汲極分開,並將該主動區接觸溝槽的底部與該磊晶層分開,該薄層 和該汲極形成低注入二極體,該薄層的厚度和摻雜水準被調整,以使得該低注入二極體在反向偏壓中,該薄層幾乎完全耗盡,而在正向偏壓中,該薄層不會耗盡。
  13. 如申請專利範圍第12項所述之方法,其中該閘極溝槽是第一閘極溝槽,以及該方法進一步包括:形成第二閘極溝槽,係延伸至該磊晶層中;在該第二閘極溝槽中沉積閘極材料,以作為閘極;以及在該閘極內形成閘極接觸溝槽。
  14. 如申請專利範圍第13項所述之方法,其中該閘極接觸溝槽和該主動區接觸溝槽具有近似相同的深度。
  15. 如申請專利範圍第13項所述之方法,其中該主動區接觸溝槽具有與該閘極接觸溝槽不同的深度。
  16. 如申請專利範圍第13項所述之方法,其中該主動區接觸溝槽具有變動的深度。
  17. 如申請專利範圍第12項所述之方法,更包括在該主動區接觸溝槽的側壁上沉積一抗擊穿植入。
  18. 如申請專利範圍第12項所述之方法,更包括在整個該磊晶層中沉積一全面性植入,其中該全面性植入具有與該磊晶層相反的極性。
  19. 如申請專利範圍第12項所述之方法,更包括在該主動區接觸溝槽下沉積一磊晶層輪廓調諧植入,其中該磊晶層輪廓調諧植入不改變該磊晶層的極性。
  20. 如申請專利範圍第12項所述之方法,更包括:在形成該閘極溝槽之前,在該基底上形成硬罩幕;移除該硬罩幕,以留下在該本體頂表面上延伸的閘極結構。
TW97145539A 2007-12-21 2008-11-25 具有低注入二極體的mos元件 TWI411108B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/005,130 US8283723B2 (en) 2005-02-11 2007-12-21 MOS device with low injection diode

Publications (2)

Publication Number Publication Date
TW200929542A TW200929542A (en) 2009-07-01
TWI411108B true TWI411108B (zh) 2013-10-01

Family

ID=40805835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97145539A TWI411108B (zh) 2007-12-21 2008-11-25 具有低注入二極體的mos元件

Country Status (2)

Country Link
CN (1) CN101465376B (zh)
TW (1) TWI411108B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466294B (zh) * 2012-01-12 2014-12-21 Pfc Device Corp 用於半導體元件之多溝渠終端結構及其製作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433396B1 (en) * 1999-10-05 2002-08-13 International Rectifier Corporation Trench MOSFET with integrated schottky device and process for its manufacture
US20050029584A1 (en) * 2003-08-04 2005-02-10 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same
US20050167742A1 (en) * 2001-01-30 2005-08-04 Fairchild Semiconductor Corp. Power semiconductor devices and methods of manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285822B2 (en) * 2005-02-11 2007-10-23 Alpha & Omega Semiconductor, Inc. Power MOS device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433396B1 (en) * 1999-10-05 2002-08-13 International Rectifier Corporation Trench MOSFET with integrated schottky device and process for its manufacture
US20050167742A1 (en) * 2001-01-30 2005-08-04 Fairchild Semiconductor Corp. Power semiconductor devices and methods of manufacture
US20050029584A1 (en) * 2003-08-04 2005-02-10 Renesas Technology Corp. Semiconductor device and a method of manufacturing the same

Also Published As

Publication number Publication date
CN101465376A (zh) 2009-06-24
TW200929542A (en) 2009-07-01
CN101465376B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
TWI384561B (zh) 在主動區接觸溝槽中整合蕭特基二極體的mos元件
US10978585B2 (en) MOS device with island region
US8928079B2 (en) MOS device with low injection diode
US7285822B2 (en) Power MOS device
US9564516B2 (en) Method of making integrated MOSFET-schottky diode device with reduced source and body kelvin contact impedance and breakdown voltage
US20150028414A1 (en) Insulated gate semiconductor device structure
CN115863438A (zh) 具有分离平面栅结构的金属氧化物半导体场效应晶体管
US20110042727A1 (en) MOSFET device with reduced breakdown voltage
TW200929551A (en) MOS device with schottky barrier controlling layer
TWI411108B (zh) 具有低注入二極體的mos元件
CN115188812A (zh) 具有分离平面栅结构的金属氧化物半导体场效应晶体管