TWI410833B - Electronic device using phase-tagged capacitance sensing circuit and related method for the same - Google Patents
Electronic device using phase-tagged capacitance sensing circuit and related method for the same Download PDFInfo
- Publication number
- TWI410833B TWI410833B TW98134626A TW98134626A TWI410833B TW I410833 B TWI410833 B TW I410833B TW 98134626 A TW98134626 A TW 98134626A TW 98134626 A TW98134626 A TW 98134626A TW I410833 B TWI410833 B TW I410833B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- sensing
- driving signal
- phase information
- electronic device
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
Abstract
Description
本發明係關於一種具有觸控面板之電子裝置以及處理該電子裝置之資訊之方法,尤指一種不需相位補償即能利用解調訊號處理類比訊號以決定觸控位置的電子裝置以及方法。The present invention relates to an electronic device having a touch panel and a method for processing the information of the electronic device, and more particularly to an electronic device and method for processing a analog signal using a demodulated signal to determine a touch position without phase compensation.
為了方便攜帶與使用的考量,使用者可直接觸碰的觸控面板(touch-panel)已逐漸成為市場開發的方向。用於個人數位助理之液晶顯示器通常與觸控面板相結合以省略按鍵或功能按鈕。觸控面板通過觸控產生電訊號用於控制液晶顯示器之圖像顯示並實現功能控制。In order to facilitate the carrying and use considerations, the touch-panel that the user can directly touch has gradually become the direction of market development. Liquid crystal displays for personal digital assistants are often combined with touch panels to omit buttons or function buttons. The touch panel generates an electrical signal through touch for controlling the image display of the liquid crystal display and implementing function control.
請參閱第1圖,第1圖係傳統具有觸控面板11之電子裝置10之示意圖。電子裝置10的觸控面板11具有一感應元件陣列(sensor array)12用來偵測手指或筆的觸控位置與力道。當手指或筆觸控時,由電阻或電容所組成的感應元件陣列12的電阻值或電容值會改變,比如說,當手指壓在彈性材質的電阻式觸控面板11上時,會使上、下兩電極(electrode)的距離縮短,而改變兩電極之間的電阻值;或是當手指壓在電容式觸控面板11上,人體的導電特性會影響兩電極之間的電容,而改變兩電極之間的電容值。所以利用偵測電阻值或電容值的變化,來偵測手指或筆的觸控與力道。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of a conventional electronic device 10 having a touch panel 11 . The touch panel 11 of the electronic device 10 has a sensor array 12 for detecting a touch position and a force path of a finger or a pen. When the finger or the pen touches, the resistance value or the capacitance value of the sensing element array 12 composed of a resistor or a capacitor changes, for example, when the finger is pressed against the resistive touch panel 11 of the elastic material, the upper, The distance between the next two electrodes is shortened, and the resistance value between the two electrodes is changed; or when the finger is pressed on the capacitive touch panel 11, the conductive property of the human body affects the capacitance between the two electrodes, and the two are changed. The value of the capacitance between the electrodes. Therefore, the detection of the resistance value or the change of the capacitance value is used to detect the touch and force of the finger or the pen.
感應元件陣列12係由一組X方向與一組Y方向的長條導體交錯而成,或是由極座標環狀排列的長條導體組成。每一個交錯點實質上都有一個電阻或電容元件。當控制單元(control unit)14經過多工器16送出驅動訊號(driving signal)導通某一列(row)的長條導體時,透過多工器18依序或同時將該列上每一個節點的感測訊號(sensing signal)值傳回至控制單元14,就可以知道該列的觸控強度。藉著依序或同時量測每一列的感測訊號值,就可以得到強度矩陣表來來決定手指的觸碰位置與力道。The sensing element array 12 is formed by a pair of long conductors in the X direction and a set of Y directions, or a long conductor arranged in a ring shape. Each staggered point essentially has a resistive or capacitive element. When the control unit 14 sends a driving signal through the multiplexer 16 to turn on a long conductor of a row, the multiplexer 18 sequentially or simultaneously senses each node on the column. The value of the sensing signal is transmitted back to the control unit 14, and the touch intensity of the column can be known. By measuring the sensed signal values of each column sequentially or simultaneously, the intensity matrix can be obtained to determine the touch position and force of the finger.
請參閱第2圖,第2圖係顯示觸控面板之感測訊號有無雜訊時之時序圖。然而,感應元件容易受到雜訊的干擾,因此會增加判斷電容值的改變是肇因於手指觸控或是環境雜訊的困難。舉例來說,對一個50pF的電容而言,手指所造成的改變約為1pF。當充電到2V的電壓準位時,手指所造成的電壓改變約為40mV,而雜訊的干擾也大約在數十mV,使得訊號雜訊比(SNR)不夠強烈,容易造成誤判,甚至造成沒有觸控卻誤判成鬼影(ghost effect)的假訊號。Please refer to FIG. 2, which is a timing diagram showing the presence or absence of noise of the sensing signal of the touch panel. However, the sensing element is susceptible to noise interference, which increases the difficulty in determining the value of the capacitance due to finger touch or environmental noise. For example, for a 50pF capacitor, the change caused by the finger is about 1pF. When charging to the voltage level of 2V, the voltage change caused by the finger is about 40mV, and the interference of the noise is also about tens of mV, which makes the signal noise ratio (SNR) not strong enough, which is easy to cause misjudgment, or even cause no The touch is misjudged as a false signal of the ghost effect.
除此之外,現今觸控面板多半搭配許多無線通訊的功能(紅外線傳輸或是藍芽(Bluetooth)傳輸),或是搭配背光液晶面板等等,所以觸控面板所受到雜訊來源相當複雜,例如閃爍雜訊(1/f noise)、白色雜訊(white noise)、功率雜訊(power noise)、50/60Hz雜訊、紅外線或是藍芽無線傳輸產生的通訊微波(communication microwave)、背光雜訊(backlight noise)等。一般可以使用低通濾波器(Low Pass Filter)來過濾高頻雜訊,但是對於閃爍雜訊或是50/60Hz雜訊等低頻雜訊,如果使用的低通濾波器設計在較低的截止頻率(cut off frequency),雖然可以濾掉低頻成分,但是反應時間也會跟著變慢。舉例來說,為了濾掉60Hz雜訊,而使低通濾波器的截止頻率操作在10Hz,將會使反應時間延遲約0.1秒,其所造成的副作用,相當於畫線速度延遲0.1秒。也就是說,手指觸壓到應用程式(比如說拖曳照片)反應的時間會有延遲的情形發生,將造成使用上的不便。In addition, most of today's touch panels are equipped with many wireless communication functions (infrared transmission or Bluetooth transmission), or with a backlit LCD panel, etc., so the source of noise received by the touch panel is quite complicated. For example, 1/f noise, white noise, power noise, 50/60Hz noise, infrared or communication microwave generated by Bluetooth wireless transmission, backlight Noise noise, etc. Generally, a low pass filter can be used to filter high frequency noise, but for low frequency noise such as flicker noise or 50/60 Hz noise, if the low pass filter is used at a lower cutoff frequency. (cut off frequency), although the low frequency components can be filtered out, the reaction time will also slow down. For example, in order to filter out 60 Hz noise, and operate the cutoff frequency of the low pass filter at 10 Hz, the reaction time is delayed by about 0.1 second, which causes a side effect equivalent to a line delay of 0.1 second. That is to say, there is a delay in the reaction time when the finger touches the application (for example, dragging the photo), which causes inconvenience in use.
為了改善此一問題,傳統解調技術(modulation and demodulation)可在感測元件上加載某一頻率為f1的電壓或電流訊號來作為調變的輸入訊號(modulation),接著測量感測元件相對應的電壓或電流訊號,利用頻率f2的訊號解調(demodulation),產生頻率為(f1+f2)與(f1-f2)的訊號,再經過低通濾波器將其截止頻率操作在(f1+f2)/2以下,以濾掉高頻成分,量測低頻成分。當選擇f1=f2時,其低頻成分就是直流項,也就是所要訊號。只要量測直流項的改變,相當於量測手指觸碰時的電容改變。因為解調技術可操作在高頻的波段,所以可以避開低雜訊的干擾。但是傳統調變和解調技術需要複雜度高的類比方式實作,且類比與數位電路共存時需要額外的隔離電路,這會增加開發的成本。In order to improve this problem, a conventional demodulation technique (modulation and demodulation) can load a voltage or current signal of a frequency f1 as a modulated input signal on the sensing element, and then measure the corresponding sensing element. The voltage or current signal is demodulated by the frequency f2 to generate signals of frequency (f1+f2) and (f1-f2), and then operates at a cutoff frequency through a low-pass filter (f1+f2). ) / 2 or less to filter out high frequency components and measure low frequency components. When f1=f2 is selected, its low frequency component is the DC term, which is the desired signal. As long as the change of the DC term is measured, it is equivalent to measuring the change in capacitance when the finger touches. Because the demodulation technology can operate in the high frequency band, it can avoid the interference of low noise. However, traditional modulation and demodulation techniques require a complex analogy implementation, and analogy requires additional isolation circuitry when coexisting with digital circuitry, which increases development costs.
請一併參閱第1圖和第3圖,第3圖係第1圖之控制單元14之功能方塊圖。量測A點和B點的路徑(trace)A和路徑B並不相同,所以解調後的訊號會因不同的路徑延遲而有不同的解調振幅,使得路徑延遲越大,解調振幅越小,降低感應的動態範圍。在大尺寸的感應元件陣列,路徑延遲的問題會更加嚴重。所以傳統上會採用一相位校正器(Phase Calibration)22來量測所有的路徑延遲並且對各節點進行相位補償(phase compensation)。首先在感應元件陣列12置於隔離狀態(un-touched)時,訊號產生器24會依序輸出一方波作為驅動訊號至每一感應元件。在隔離狀態期間,每一感應元件經過路徑延遲之後產生相依的感測訊號到感應器26。而相位校正器22可產生各種相位的同頻方波與所接受訊號解調,以得出各種相位的自相關圖(autocorrelation),並選擇最大值所對應的相位作為該節點所需要的相位補償值。然後在依序產生所有節點的相位補償值,以產生一查詢表(Look Up Table)。之後量測時,累計器28可以直接查表作為相位補償,也可以只做數點量測,比如說周圍角落四點等,以線性內插的方式產生相位補償值。然而上述的相位校正與相位補償過於複雜且需很多的計算。Please refer to FIG. 1 and FIG. 3 together. FIG. 3 is a functional block diagram of the control unit 14 of FIG. The path A and B of the measurement point A and point B are not the same, so the demodulated signal will have different demodulation amplitudes due to different path delays, so that the path delay is larger, and the demodulation amplitude is more Small, reducing the dynamic range of the induction. In large-sized arrays of sensing elements, the problem of path delay is even more serious. Therefore, a phase correction 22 is conventionally used to measure all path delays and phase compensation for each node. First, when the sensing element array 12 is un-touched, the signal generator 24 sequentially outputs a square wave as a driving signal to each sensing element. During the isolated state, each sensing element generates a dependent sensing signal to the inductor 26 after a path delay. The phase corrector 22 can generate the same-frequency square wave of various phases and the received signal demodulation to obtain autocorrelation of various phases, and select the phase corresponding to the maximum value as the phase compensation required by the node. value. The phase compensation values of all nodes are then generated sequentially to generate a Look Up Table. After the measurement, the accumulator 28 can directly look up the table as a phase compensation, or can only perform a few points measurement, for example, four points around the corner, and generate a phase compensation value by linear interpolation. However, the phase correction and phase compensation described above are too complicated and require a lot of calculations.
根據本發明之一特點,電子裝置包含一觸控面板,其包含複數個感應元件;一探測器,用來傳送驅動訊號,該驅動訊號係具有一預設週期(T1)且附加一相位資訊;以及一感應器,用來接收一感測訊號並根據該驅動訊號的該預設週期以及該相位資訊決定一偵測值。According to a feature of the present invention, an electronic device includes a touch panel including a plurality of sensing elements, and a detector for transmitting a driving signal, the driving signal having a predetermined period (T1) and adding a phase information; And a sensor for receiving a sensing signal and determining a detection value according to the preset period of the driving signal and the phase information.
在本發明之一實施例中,該探測器包含一訊號產生器,用來產生該驅動訊號;以及一相位攜帶器,耦接於該訊號產生器,用來產生該相位資訊,並附加該相位資訊於該驅動訊號上。該訊號產生器產生之該驅動訊號係一方波,該相位攜帶器用來將該相位資訊tag1附加於該驅動訊號之上升緣,或是相位資訊tag2附加於該驅動訊號之下降緣,使附加該相位資訊之該驅動訊號之上升緣振幅低於該方波之最低振幅,或是附加該相位資訊之該驅動訊號之下降緣振幅高於該方波之最高振幅。該解調訊號之上升緣的延遲時間較第一相位資訊延遲“Ttag1+(T1/2-Ttag2)”,解調訊號之下降緣的延遲時間較該第一相位資訊延遲“Ttag1+T1/2+(T/2-Ttag2)/2”,其中相位資訊tag1之脈寬係Ttag1和相位資訊tag2之脈寬係Ttag2。In an embodiment of the invention, the detector includes a signal generator for generating the driving signal, and a phase carrier coupled to the signal generator for generating the phase information and adding the phase Information on the driver signal. The driving signal generated by the signal generator is a square wave, and the phase carrier is used to add the phase information tag1 to the rising edge of the driving signal, or the phase information tag2 is added to the falling edge of the driving signal to add the phase. The rising edge amplitude of the driving signal of the information is lower than the lowest amplitude of the square wave, or the falling edge amplitude of the driving signal to which the phase information is added is higher than the highest amplitude of the square wave. The delay time of the rising edge of the demodulation signal is delayed by "Ttag1+(T1/2-Ttag2)" from the first phase information, and the delay time of the falling edge of the demodulation signal is delayed from the first phase information by "Ttag1+T1/2+ (T/2-Ttag2)/2", wherein the pulse width of the phase information tag1 is Ttag1 and the pulse width of the phase information tag2 is Ttag2.
在本發明之一實施例中,每一感應元件係一自電容式感應元件或一互電容式感應元件或一電阻式感應元件。In an embodiment of the invention, each of the sensing elements is a self-capacitive sensing element or a mutual capacitive sensing element or a resistive sensing element.
在本發明之一實施例中,該感應器包含一訊號取出器,用來依據該驅動訊號的該預設週期和該相位資訊之脈寬產生一解調訊號,並依據該解調訊號解調該感測訊號以決定該偵測值;以及一相位偵測器,耦接於該訊號取出器,用來於該感測訊號之振幅大於一預設值時,啟動該訊號取出器。該電子裝置另包含一記憶體,用來儲存該感測訊號之波形,其中該相位偵測器係用來依據該相位資訊對該感測訊號執行自相關計算時,啟動該訊號取出器。In an embodiment of the present invention, the sensor includes a signal extractor for generating a demodulation signal according to the preset period of the driving signal and the pulse width of the phase information, and demodulating according to the demodulation signal. The sensing signal is used to determine the detection value; and a phase detector is coupled to the signal extractor for activating the signal extractor when the amplitude of the sensing signal is greater than a predetermined value. The electronic device further includes a memory for storing the waveform of the sensing signal, wherein the phase detector is configured to activate the signal extractor when performing the autocorrelation calculation on the sensing signal according to the phase information.
在本發明之一實施例中,該電子裝置另包含一類比數位轉換器,耦接於該感應器以及該觸控面板之該感應元件之間,用來取樣該感測訊號。In an embodiment of the invention, the electronic device further includes an analog-to-digital converter coupled between the inductor and the sensing component of the touch panel for sampling the sensing signal.
在本發明之一實施例中,該電子裝置其中該感應器以及該探測器係以一數位訊號處理器加以實現。In an embodiment of the invention, the electronic device and the detector are implemented by a digital signal processor.
在本發明之一實施例中,該訊號產生器係一隨機產生器,該驅動訊號係一隨機產生之方波。In an embodiment of the invention, the signal generator is a random generator, and the driving signal is a randomly generated square wave.
在本發明之一實施例中,該探測器用來對耦接的每一感應元件輸出不同週期之驅動訊號。該感應器用來對耦接的每一感應元件產生複數個偵測值,每一偵測值係與該相位資訊、每一感應元件對應接收的該驅動訊號的預設週期以及該感測訊號的變化有關。In an embodiment of the invention, the detector is configured to output driving signals of different periods to each of the coupled sensing elements. The sensor is configured to generate a plurality of detection values for each of the coupled sensing elements, each detection value is related to the phase information, the preset period of the driving signal corresponding to each sensing element, and the sensing signal. Related to change.
本發明之另一特點在於提供一種用於處理一電子裝置之感測訊號之方法,該電子裝置包含一觸控面板,其包含複數個感應元件,該方法包含下列步驟:產生具有一預設週期之一驅動訊號;附加一相位資訊於該驅動訊號並傳送至該觸控面板之該等感應元件上;於一物件接觸該觸控面板之一感應元件時,產生一感測訊號;執行一峰值檢測以獲得該感測訊號對應於該相位資訊之處,並據此產生一解調起始點;以及依據該相位資訊和該驅動訊號的預設週期產生一解調訊號,並利用該解調訊號解調該感測訊號以決定該觸控面板的被觸控位置。Another feature of the present invention is to provide a method for processing a sensing signal of an electronic device, the electronic device comprising a touch panel comprising a plurality of sensing elements, the method comprising the steps of: generating a predetermined period a driving signal; a phase information is added to the driving signal and transmitted to the sensing elements of the touch panel; when an object contacts an sensing element of the touch panel, a sensing signal is generated; performing a peak Detecting to obtain the sensing signal corresponding to the phase information, and generating a demodulation starting point; and generating a demodulation signal according to the phase information and the preset period of the driving signal, and using the demodulation The signal demodulates the sensing signal to determine the touched position of the touch panel.
為讓本發明之上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to make the above-mentioned contents of the present invention more comprehensible, the preferred embodiments are described below, and the detailed description is as follows:
本發明係利用正交向量的特性。假設一向量群的各向量為Vi,其中i=0,1,...,n。如果一向量與不同向量的乘積為0(亦即Vi×Vj=0,其中i≠j),且一向量與自身的乘積為1(亦即Vi×Vj=1,其中i=j),則此為正交向量群。當V1=(a1,b1,c1,d1)且V2=(a2,b2,c2,d2),則V1×V2的乘積等於a1×a2+b1×b2+c1×c2+d1×d2。舉例而言,如果向量群包括兩個向量:V1=(0,0,0,1)以及V2=(0,0,1,0),則滿足V1×V1=1,V1×V2=0,以及V2×V2=1。因此,V1與V2為正交。The present invention utilizes the characteristics of orthogonal vectors. Suppose that each vector of a vector group is Vi, where i=0, 1, ..., n. If the product of a vector and a different vector is 0 (ie, Vi × Vj = 0, where i ≠ j), and the product of a vector and itself is 1 (ie, Vi × Vj = 1, where i = j), then This is an orthogonal vector group. When V1 = (a1, b1, c1, d1) and V2 = (a2, b2, c2, d2), the product of V1 × V2 is equal to a1 × a2 + b1 × b2 + c1 × c2 + d1 × d2. For example, if the vector group includes two vectors: V1=(0,0,0,1) and V2=(0,0,1,0), then V1×V1=1, V1×V2=0, And V2 × V2 = 1. Therefore, V1 and V2 are orthogonal.
任何信號皆可表示為正交向量群,如S=c1V1+c2V2+c3V3+...+cnVn,其中c1,c2,...,cn為係數。如果環境雜訊表示為N=100V1+50V2+20V3+10V4+2V5+4V6+10V7...,其中各向量V1,V2,...代表一特定頻帶的分量。對於一已知信號A來說,如果選定V5為調變向量,則經調變的信號〈亦即輸入信號〉Si=AV5。可知該信號會耦合雜訊,因此輸出信號So=AV5+100V1+50V2+20V3+10V4+2V5+4V6+10V7...=100V1+50V2+20V3+10V4+(A+2)V5+4V6+10V7...。如果使用相同的向量V5作為解調向量,則還原的信號Sr=So×V5=100×0+50×0+20×0+10×0+(A+2)×1+4×0+10×0...=A+2。Any signal can be represented as an orthogonal vector group, such as S = c1V1 + c2V2 + c3V3 + ... + cnVn, where c1, c2, ..., cn are coefficients. If the ambient noise is expressed as N=100V1+50V2+20V3+10V4+2V5+4V6+10V7..., each of the vectors V1, V2, . . . represents a component of a specific frequency band. For a known signal A, if V5 is selected as the modulation vector, the modulated signal <ie, the input signal>Si=AV5. It can be seen that the signal will couple noise, so the output signal So=AV5+100V1+50V2+20V3+10V4+2V5+4V6+10V7...=100V1+50V2+20V3+10V4+(A+2)V5+4V6+10V7. .. If the same vector V5 is used as the demodulation vector, the restored signal Sr = So × V5 = 100 × 0 + 50 × 0 + 20 × 0 + 10 × 0 + (A + 2) × 1 + 4 × 0 + 10 ×0...=A+2.
如所見者,還原的信號僅會留下少許雜訊。然而,如上所提及,為了降低雜訊,應選定低雜訊的分量〈例如上述的V5〉作為調變與解調向量。As you can see, the restored signal will only leave a little noise. However, as mentioned above, in order to reduce noise, a component of low noise (for example, V5 described above) should be selected as a modulation and demodulation vector.
請參閱第4圖,第4圖係本發明之第一實施例之電子裝置100之功能方塊圖。電子裝置100包含控制單元101和觸控面板102。控制單元101則包含探測器104、感應器106、類比數位轉換器(Analog-to-digital converter,ADC)108、電流源110、輸出入通道112。觸控面板102包含複數個交互排列感應元件1026(亦即列)和感應元件1028(亦即行),較佳地,感應元件1026、1028係矩陣排列。感應元件1026、1028係導電體,可用來傳遞電性訊號。探測器104用來輸出驅動訊號,而感應器106用來接收感測訊號。控制單元101係以數位訊號處理器(Digital signal processor,DSP)或是軟體程式碼加以實現。每一自電容(self capacitance)係形成於感應元件1026或感應元件1028上,用以形成一二元軸線座標來表示觸控位置。每一自電容會因一物件接近而改變其電容值。當手指或其他物件接近觸控面板102時,手指附近的感應元件1026、1028的電容值會變化。這是因為dV/V=-dC/C,所以電容值的變化也使得電壓發生變化,其中V表示感應元件1026、1028上的電壓,而C表示感應元件1026、1028的電容值。當觸碰發生,接觸點所對應的感應元件1026、1028之間會產生電容耦合現象而使感測訊號的電壓發生變化,控制單元101會根據感測訊號發生的電壓變化判斷觸碰點的位置。Please refer to FIG. 4, which is a functional block diagram of the electronic device 100 of the first embodiment of the present invention. The electronic device 100 includes a control unit 101 and a touch panel 102. The control unit 101 includes a detector 104, an inductor 106, an analog-to-digital converter (ADC) 108, a current source 110, and an input-output channel 112. The touch panel 102 includes a plurality of interleaved sensing elements 1026 (ie, columns) and sensing elements 1028 (ie, rows). Preferably, the sensing elements 1026, 1028 are arranged in a matrix. The sensing elements 1026 and 1028 are electrical conductors and can be used to transmit electrical signals. The detector 104 is used to output a driving signal, and the sensor 106 is used to receive a sensing signal. The control unit 101 is implemented by a digital signal processor (DSP) or a software code. Each self capacitance is formed on the sensing element 1026 or the sensing element 1028 to form a binary axis coordinate to represent the touch position. Each self-capacitor changes its capacitance due to the proximity of an object. When a finger or other object approaches the touch panel 102, the capacitance values of the sensing elements 1026, 1028 near the finger may change. This is because dV/V = -dC/C, so the change in capacitance also causes the voltage to change, where V represents the voltage across sensing elements 1026, 1028 and C represents the capacitance of sensing elements 1026, 1028. When a touch occurs, a capacitive coupling phenomenon occurs between the sensing elements 1026 and 1028 corresponding to the contact point to change the voltage of the sensing signal, and the control unit 101 determines the position of the touch point according to the voltage change of the sensing signal. .
請一併參閱第4圖和第5圖,第5圖係第4圖之探測器104各元件產生之訊號之時序圖。探測器104包含訊號產生器(signal generator)142和相位攜帶器(tag generator)144。該訊號產生器142係一方波產生器,用來產生呈一週期性方波(periodical square waveform)之驅動訊號(driving signal)146(週期T1)。該相位攜帶器144耦接於訊號產生器142,用來將相位資訊(phase information)tag1、tag2附加於驅動訊號146以作為解調之用。Please refer to FIG. 4 and FIG. 5 together. FIG. 5 is a timing diagram of signals generated by the components of the detector 104 of FIG. The detector 104 includes a signal generator 142 and a tag generator 144. The signal generator 142 is a square wave generator for generating a driving signal 146 (period T1) in a periodic square waveform. The phase carrier 144 is coupled to the signal generator 142 for adding phase information tags1 and tag2 to the driving signal 146 for demodulation.
請參閱第5圖,相位攜帶器144將第一相位資訊tag1附加於驅動訊號146之上升緣(rising edge),並將第二相位資訊tag2附加於驅動訊號146之下降緣(falling edge),使附加第一相位資訊tag1之驅動訊號146之上升緣振幅低於該方波之最低振幅,同時附加第二相位資訊tag2之驅動訊號146之下降緣振幅高於該方波之最高振幅(maximum amplitude)。較佳地,第一相位資訊tag1的脈寬Ttag1和第二相位資訊tag2的脈寬Ttag2皆十分短暫且相等。以100MHz的數位訊號處理器為例,可以設定脈寬Ttag1=Ttag2=0.1us=100ns。此時,調變驅動訊號(modulation driving signal)148即產生。Referring to FIG. 5, the phase carrier 144 appends the first phase information tag1 to the rising edge of the driving signal 146, and appends the second phase information tag2 to the falling edge of the driving signal 146. The rising edge amplitude of the driving signal 146 to which the first phase information tag1 is added is lower than the lowest amplitude of the square wave, and the falling edge amplitude of the driving signal 146 to which the second phase information tag2 is added is higher than the maximum amplitude of the square wave. . Preferably, the pulse width Ttag1 of the first phase information tag1 and the pulse width Ttag2 of the second phase information tag2 are both very short and equal. Taking a 100 MHz digital signal processor as an example, the pulse width Ttag1 = Ttag2 = 0.1 us = 100 ns can be set. At this time, a modulation driving signal 148 is generated.
探測器104會輸出一個攜帶相位資訊tag1、tag2的調變驅動訊號148來驅動電流源(current driver)110對觸控面板102之感應元件1026、1028充放電。所以第一相位資訊tag1可以讓感應器106識別出感測訊號的第一位置,並重置電流源110使其探測電流降至最低電源電壓VSS以供隨後充電路徑之用。第二相位資訊tag2可以讓感應器106識別出感測訊號的第二位置,並設定電流源110使其探測電流至最高電源電壓VDD以供隨後放電路徑之用。The detector 104 outputs a modulated drive signal 148 carrying the phase information tag1, tag2 to drive the current driver 110 to charge and discharge the sensing elements 1026, 1028 of the touch panel 102. Therefore, the first phase information tag1 allows the sensor 106 to recognize the first position of the sense signal and reset the current source 110 to reduce its sense current to the lowest supply voltage VSS for subsequent charging paths. The second phase information tag2 allows the sensor 106 to recognize the second position of the sense signal and set the current source 110 to detect the current to the highest supply voltage VDD for subsequent discharge paths.
請注意,探測器104會將驅動訊號146的週期T1、第一相位資訊tag1的脈寬Ttag1和第二相位資訊tag2的脈寬Ttag2等資訊傳送至感應器106,以供感應器106產生解調訊號W之用。Please note that the detector 104 transmits information such as the period T1 of the driving signal 146, the pulse width Ttag1 of the first phase information tag1, and the pulse width Ttag2 of the second phase information tag2 to the sensor 106 for the sensor 106 to generate demodulation. Signal W is used.
除此之外,訊號產生器142也可以產生不同週期(亦即不同頻率)的驅動訊號146至不同的感應元件1026、1028。比如說,探測感應元件1026之感應元件E時使用週期T1的驅動訊號146,探測感應元件1028之感應元件D時使用週期T2的驅動訊號146。但是探測某一感應元件1026、1028時,驅動訊號146的週期必須與送往訊號取出器164的週期相同。比如說,探測感應元件E時使用週期T1的驅動訊號146,並同時送出週期值T1到訊號取出器164以形成解調訊號W以便取出感應元件E的感測訊號;探測感應元件D時使用週期T2的驅動訊號146,並同時送出週期值T2到訊號取出器164以形成另一解調訊號W以便取出感應元件D的感測訊號。In addition, the signal generator 142 can also generate drive signals 146 of different periods (i.e., different frequencies) to different sensing elements 1026, 1028. For example, when the sensing element E of the sensing element 1026 is detected, the driving signal 146 of the period T1 is used, and when the sensing element D of the sensing element 1028 is detected, the driving signal 146 of the period T2 is used. However, when detecting an inductive component 1026, 1028, the period of the drive signal 146 must be the same as the period sent to the signal extractor 164. For example, when detecting the sensing element E, the driving signal 146 of the period T1 is used, and the period value T1 is simultaneously sent to the signal extractor 164 to form the demodulation signal W to take out the sensing signal of the sensing element E; the period of use of the detecting element D is detected. The driving signal 146 of T2 is simultaneously sent with the period value T2 to the signal extractor 164 to form another demodulation signal W for taking out the sensing signal of the sensing element D.
請參閱第4圖。在本實施例中,類比數位轉換器(Analog-to-digital converter,ADC)108係用來取樣感測訊號Vin。ADC 108的取樣頻率可決定對相位資訊脈寬Ttag1、Ttag2的靈敏度,以及對感測訊號Vin的靈敏度與誤差。類比數位轉換器108可以係一連續近似類比數位轉換器(Successive approximation ADC,SAR ADC)。當連續近似類比數位轉換器108以數位訊號處理器實作(implement)時,其取樣頻率決定於數位訊號處理器的工作頻率(operating frequency),以及軟體程式碼用於比對n位元(bit)所花的執行時間。為了增加取樣頻率,可以同時使用多個連續近似類比數位轉換器108來搜尋。舉例來說,使用單一連續近似類比數位轉換器108僅能進行二元搜索,但同時使用比如以三個連續近似類比數位轉換器108組成,就可以進行四元搜索,如此一來搜尋速度將比使用單一連續近似類比數位轉換器108快一倍。除此以外,為了增加連續近似類比數位轉換器108動態偵測的範圍,其動態範圍的最大值與最小值,可由前一時刻所得之偵測電壓值加上一預測範圍決定。比如說,前一時刻所得之電壓偵測值為1.22V,預設範圍設定為40mv,則此刻連續近似類比數位轉換器108動態偵測的最大值為1.22V+40mV。最小值為1.22V-40mv,可偵測+/-40mv範圍內的感應電壓Vin。Please refer to Figure 4. In this embodiment, an analog-to-digital converter (ADC) 108 is used to sample the sensing signal Vin. The sampling frequency of the ADC 108 determines the sensitivity to the phase information pulse widths Ttag1, Ttag2, and the sensitivity and error to the sensing signal Vin. The analog digital converter 108 can be a continuous approximation ADC (SAR ADC). When the continuous approximation analog-to-digital converter 108 is implemented as a digital signal processor, the sampling frequency is determined by the operating frequency of the digital signal processor, and the software code is used to compare the n bits (bit). ) The execution time spent. To increase the sampling frequency, multiple consecutive approximate analog digital converters 108 can be used simultaneously to search. For example, using a single continuous approximation analog-to-digital converter 108 can only perform binary searches, but at the same time using, for example, three consecutive approximate analog-bit converters 108, a quaternary search can be performed, so that the search speed will be higher than Using a single continuous approximation analog digital converter 108 is twice as fast. In addition, in order to increase the range of the dynamic detection of the continuous approximate analog-to-digital converter 108, the maximum and minimum values of the dynamic range may be determined by the detected voltage value obtained at the previous moment plus a prediction range. For example, the voltage detection value obtained at the previous moment is 1.22V, and the preset range is set to 40mv. At this moment, the maximum value of the continuous analog analog converter 108 is 1.22V+40mV. The minimum value is 1.22V-40mv, which can detect the induced voltage Vin in the range of +/-40mv.
請一併參閱第4圖和第6圖,第6圖係第4圖之感測訊號Vin、調變驅動訊號、解調訊號W之時序圖。當調變驅動訊號148產生之電流I傳送至感應元件1026、1028使其充放電時,某一接觸點正好因手指或其它觸控物件按壓而使感應元件1026、1028間的距離縮短而改變電容值C;又因為在一固定時間T內,感應元件1026、1028的電荷Q=I×T=C×V為定值(因為I定值,T是固定時間),所以dV/V=-dC/C。也就是說,當電容C改變時,電壓V(也就是感測訊號Vin)也跟著改變。所以依據上述方程式,依據感測訊號Vin的電壓變化就可以判斷手指是否有接觸。Please refer to FIG. 4 and FIG. 6 together. FIG. 6 is a timing diagram of the sensing signal Vin, the modulated driving signal, and the demodulated signal W in FIG. When the current I generated by the modulation driving signal 148 is transmitted to the sensing elements 1026 and 1028 to be charged and discharged, a certain contact point changes the capacitance by shortening the distance between the sensing elements 1026 and 1028 due to the pressing of the finger or other touch object. The value C; and because within a fixed time T, the charge Q=I×T=C×V of the sensing elements 1026, 1028 is a fixed value (because I is fixed, T is a fixed time), so dV/V=-dC /C. That is to say, when the capacitance C changes, the voltage V (that is, the sensing signal Vin) also changes. Therefore, according to the above equation, according to the voltage change of the sensing signal Vin, it can be determined whether the finger has contact.
感應器106包含相位偵測器(Tag Detector)162和訊號取出器(Signal Extractor)164。在一實施例中,相位偵測器162係一峰值偵測器,會在偵測到感測訊號Vin之振幅大於一預設值時,啟動訊號取出器164。因為相位攜帶器144在訊號產生器142所產生的方波(驅動訊號146)的上升緣和下降緣分別加上相位資訊tag1、tag2,所以感測訊號Vin在對應於驅動訊號146的上升緣和下降緣之處會有一明顯振幅變動。因此相位偵測器162能夠在偵測到訊號146振幅變動時,決定驅動訊號146的相位與週期。所以實際應用時,相位攜帶器144所產生的相位資訊tag1、tag2的振幅和原驅動訊號146振幅差距越大,相位偵測器162將越容易感測驅動訊號146的週期與相位。The sensor 106 includes a Tag Detector 162 and a Signal Extractor 164. In one embodiment, the phase detector 162 is a peak detector that activates the signal extractor 164 when detecting that the amplitude of the sensing signal Vin is greater than a predetermined value. Since the phase carrier 144 adds the phase information tag1, tag2 to the rising edge and the falling edge of the square wave (drive signal 146) generated by the signal generator 142, the sensing signal Vin corresponds to the rising edge of the driving signal 146 and There is a significant amplitude change at the falling edge. Therefore, the phase detector 162 can determine the phase and period of the driving signal 146 when detecting the amplitude variation of the signal 146. Therefore, in actual application, the larger the amplitude difference between the amplitude of the phase information tag1, tag2 and the original driving signal 146 generated by the phase carrier 144, the easier the phase detector 162 will sense the period and phase of the driving signal 146.
在另一實施例中,控制單元104另包含一記憶體122,用來儲存感測訊號Vin之波形。相位偵測器162用來於利用相位資訊tag1、tag2對感測訊號Vin執行自相關(autocorrelation)計算以決定解調的起始位置時,啟動訊號取出器164。In another embodiment, the control unit 104 further includes a memory 122 for storing the waveform of the sensing signal Vin. The phase detector 162 is configured to activate the signal extractor 164 when performing autocorrelation calculation on the sensing signal Vin to determine the starting position of the demodulation using the phase information tags1 and tag2.
訊號取出器164依據探測器104傳來的驅動訊號146的週期T1、相位攜帶器144之第一相位資訊tag1之第一脈寬Ttag1和第二相位資訊tag2之第二脈寬Ttag2產生一解調訊號(demodulation signal)W。解調訊號W係一方波(或是弦波),其週期符合驅動訊號146的週期T1,且該解調訊號W之上升緣的延遲時間(t1’)較第一相位資訊tag1延遲“Ttag1+(T1/2-Ttag2)”,解調訊號W之下降緣的延遲時間(t2’)較該第一相位資訊延遲“Ttag1+T1/2+(T/2-Ttag2)/2”。解調訊號方波的數位值(1,-1)。The signal extractor 164 generates a demodulation according to the period T1 of the driving signal 146 transmitted from the detector 104, the first pulse width Ttag1 of the first phase information tag1 of the phase carrier 144, and the second pulse width Ttag2 of the second phase information tag2. Demodulation signal W. The demodulation signal W is a square wave (or a sine wave) whose period coincides with the period T1 of the driving signal 146, and the delay time (t1') of the rising edge of the demodulated signal W is delayed from the first phase information tag1 by "Ttag1+( T1/2-Ttag2)", the delay time (t2') of the falling edge of the demodulation signal W is delayed by "Ttag1+T1/2+(T/2-Ttag2)/2" from the first phase information. Demodulate the digital value of the signal square wave (1, -1).
請參閱第7圖。第7圖係繪示訊號取出器164的解調原理,訊號取出器164利用解調訊號W對感測訊號Vin進行正交運算以取出感測訊號Vin中與解調訊號W相同的頻率分量。在DSP編碼中,可將上述運算標示為,其中Vin表示感測訊號,W表示解調訊號,M表示測量點的總數和測量次數。如第7圖所示,當感測訊號Vin的頻率分量高過f時,經過週期值同為T1的解調訊號W的正交運算後,剛好正負抵消;當感測訊號Vin的某一頻率分量低於f時,經過週期值同為T1的解調訊號W的正交運算後,剛好正負相消;當感測訊號的頻率分量為直流值(DC)時,經過週期值同為T1的解調訊號W的正交運算後,剛好正負相消;只有感測訊號Vin中的頻率分量f正好符合1/T1時,經過週期值同為T1的解調訊號W的乘加運算後的頻率分量才會被取出。Please refer to Figure 7. FIG. 7 illustrates the demodulation principle of the signal extractor 164. The signal extractor 164 performs an orthogonal operation on the sensing signal Vin by using the demodulation signal W to extract the same frequency component of the sensing signal Vin as the demodulation signal W. In DSP coding, the above operation can be marked as Where Vin represents the sensing signal, W represents the demodulation signal, and M represents the total number of measurement points and the number of measurements. As shown in FIG. 7, when the frequency component of the sensing signal Vin is higher than f, after the orthogonal operation of the demodulation signal W whose period value is the same as T1, it is just positive and negative offset; when a certain frequency of the sensing signal Vin is used When the component is lower than f, after the orthogonal operation of the demodulation signal W whose period value is the same as T1, it is just positive and negative cancellation; when the frequency component of the sensing signal is a direct current value (DC), the period value is the same as T1. After the orthogonal operation of the demodulation signal W, it is just positive and negative cancellation; only when the frequency component f in the sensing signal Vin coincides with 1/T1, the frequency after the multiplication and addition of the demodulation signal W whose period value is the same as T1 The component will be taken out.
請繼續參閱第6圖,感測訊號Vin分成交流項(AC term)、相對位移項(dummy term)與直流項(DC term)。因為感應器106實際所收到的感測訊號Vin並不剛好是三角波形,而是具有攜帶相位資訊tag1、tag2的相對位移項、交流項、直流項和雜訊的混合波形。如第6圖所示,解調訊號W的訊號分量176與相對位移項的訊號分量172的乘積,恰好與解調訊號W的訊號分量178與相對位移項的訊號分量174的乘積相同,故兩者相互抵銷濾除。同樣的,直流項和不屬於頻率f的其他頻率的交流項也會被濾除,只有相對位移項中對應於相位資訊tag1、tag2的脈衝170、具有頻率f的交流項和位於頻率f附近的雜訊仍然存在。很明顯的,大部分的雜訊已經被濾除,且位於頻率f附近的雜訊較小(因為當初所選擇的頻率f可選擇在相對雜訊較小的頻率)。而且不論感應元件1026、1028的電容值是否改變(也就是是否有接觸),相對位移項中對應於相位資訊tag1、tag2的脈衝170因為非常短暫且為定值,所以可以忽略。Continuing to refer to FIG. 6, the sensing signal Vin is divided into an AC term, a relative term, and a DC term. Because the sensing signal Vin actually received by the sensor 106 is not exactly a triangular waveform, but has a mixed waveform of the relative displacement term, the AC term, the DC term, and the noise carrying the phase information tags1, tag2. As shown in Fig. 6, the product of the signal component 176 of the demodulated signal W and the signal component 172 of the relative displacement term is exactly the same as the product of the signal component 178 of the demodulated signal W and the signal component 174 of the relative displacement term, so that The offsets are offset by each other. Similarly, the DC term and the AC term of other frequencies not belonging to the frequency f are also filtered out, only the pulse 170 corresponding to the phase information tag1, tag2, the AC term having the frequency f, and the frequency f near the relative displacement term. The noise still exists. Obviously, most of the noise has been filtered out, and the noise near the frequency f is small (because the frequency f selected at the beginning can be selected at a relatively small frequency relative to the noise). Moreover, regardless of whether the capacitance values of the sensing elements 1026, 1028 are changed (ie, whether there is contact), the pulse 170 corresponding to the phase information tag1, tag2 in the relative displacement term is negligible because it is very short and constant.
這麼一來,訊號取出器164可藉由解調訊號W解調感測訊號Vin來判斷感應元件1026、1028的電容值是否改變。當感應元件1026、1028因手指或其它觸控物件接觸時,其電容值(偵測值)就會發生變化。最後控制單元101就可獲得觸控面板102上被觸碰的感應元件1026、1028的座標和施力大小。In this way, the signal extractor 164 can determine whether the capacitance values of the sensing elements 1026, 1028 are changed by demodulating the sensing signal Vin by the demodulation signal W. When the sensing elements 1026, 1028 are touched by a finger or other touch object, the capacitance value (detected value) changes. Finally, the control unit 101 can obtain the coordinates and the force applied to the touched sensing elements 1026, 1028 on the touch panel 102.
請參閱第8圖,第8圖係本發明第二實施例之電子裝置200和觸控面板202之功能方塊圖。為了簡化說明,在第8圖中凡是與第4圖所示之元件具有相同編號者具有相同的功能。感應元件包含2層導電體,其中一層為複數條探測導體(driving conductor)1022(亦即觸控面板202的每一列),另一層為複數條感應導體(sensing conductor)1024(亦即觸控面板202的每一行)。而觸控面板202的探測導體1022與感應導體1024的交點之處形成互電容(mutual capacitance),但兩者並非實體電性接觸。探測器104耦接於一電壓控制器110以輸出驅動訊號。電壓控制器110會轉換數位調變驅動訊號為類比訊號。類比調變驅動訊號經由輸出入通道114傳送至每一條探測導體1022,而感應器106透過輸出入通道112耦接於每一條感應導體1024,用來接收感測訊號。控制單元201係以數位訊號處理器(Digital signal processor,DSP)或是軟體程式碼加以實現。控制單元101的探測器104會輪流輸出驅動訊號以驅動每一條探測導體1022,當手指、觸控筆或其他物件同時多點接觸(multi-touch)到觸控面板202時,與探測導體1022交錯的感應導體1024的某點會發生電容耦合現象使得感應導體1024產生的感測訊號會發生電壓變化。經逐一掃描每一條探測導體1022後即可獲知確切觸點位置。舉例來說,觸控物件(例如手指)在接觸自電容式觸控面板102時,手指與導線1020間產生電容耦合而使感測訊號的電壓發生變化,控制單元101會根據感測訊號發生的電壓變化判斷觸碰點的位置。為了簡化說明,探測器104與感應器106的功能與運作第4圖所繪示的相同元件一致,在此不另贅述。Please refer to FIG. 8. FIG. 8 is a functional block diagram of the electronic device 200 and the touch panel 202 according to the second embodiment of the present invention. In order to simplify the description, in Fig. 8, the same functions as those of the elements shown in Fig. 4 have the same functions. The sensing element comprises two layers of electrical conductors, one of which is a plurality of driving conductors 1022 (that is, each column of the touch panel 202), and the other layer is a plurality of sensing conductors 1024 (ie, a touch panel). Each line of 202). The mutual capacitance between the detecting conductor 1022 of the touch panel 202 and the sensing conductor 1024 forms a mutual capacitance, but the two are not physically electrically contacted. The detector 104 is coupled to a voltage controller 110 for outputting a driving signal. The voltage controller 110 converts the digital modulation drive signal to an analog signal. The analog modulation drive signal is transmitted to each of the detection conductors 1022 via the input and output channels 114, and the inductors 106 are coupled to each of the sensing conductors 1024 through the input and output channels 112 for receiving the sensing signals. The control unit 201 is implemented by a digital signal processor (DSP) or a software code. The detector 104 of the control unit 101 alternately outputs a driving signal to drive each of the detecting conductors 1022. When a finger, a stylus or other object is multi-touched to the touch panel 202 at the same time, the detecting conductor 1022 is interleaved. A capacitive coupling phenomenon occurs at a certain point of the sensing conductor 1024 such that a voltage change occurs in the sensing signal generated by the sensing conductor 1024. The exact contact position is known by scanning each of the probe conductors 1022 one by one. For example, when the touch object (for example, a finger) contacts the self-capacitive touch panel 102, a capacitive coupling occurs between the finger and the wire 1020 to change the voltage of the sensing signal, and the control unit 101 generates a signal according to the sensing signal. The voltage change determines the position of the touch point. In order to simplify the description, the functions of the detector 104 and the sensor 106 are the same as those of the operation of FIG. 4, and will not be further described herein.
請參閱第9圖,第9圖係本發明處理電子裝置之資訊之方法流程圖。該方法包含以下步驟:Please refer to FIG. 9. FIG. 9 is a flow chart of a method for processing information of an electronic device according to the present invention. The method includes the following steps:
步驟900:利用訊號產生器142產生具有預設週期T1之驅動訊號146。Step 900: The signal generator 142 is used to generate the driving signal 146 having the preset period T1.
步驟902:利用相位產生器144附加相位資訊tag1、tag2於該驅動訊號146,並傳送至觸控面板之感應元件1026、1028上。Step 902: The phase information tag1, tag2 are added to the driving signal 146 by the phase generator 144, and transmitted to the sensing elements 1026, 1028 of the touch panel.
步驟904:於一物件接觸該觸控面板102之一感應元件1026、1028時,產生一感測訊號Vin。Step 904: When an object contacts the sensing elements 1026 and 1028 of the touch panel 102, a sensing signal Vin is generated.
步驟906:利用相位偵測器162執行一峰值檢測以獲得該感測訊號Vin對應於相位資訊tag1、tag2之處,並據此產生一解調起始點。Step 906: Perform a peak detection by the phase detector 162 to obtain a position where the sensing signal Vin corresponds to the phase information tag1, tag2, and generate a demodulation starting point accordingly.
步驟908:依據相位資訊tag1、tag2和驅動訊號146的預設週期T1產生一解調訊號W,並利用該解調訊號tag1、tag2解調感測訊號Vin以決定觸控面板102的被觸控位置。Step 908: Generate a demodulation signal W according to the preset period T1 of the phase information tag1, tag2 and the driving signal 146, and demodulate the sensing signal Vin by using the demodulation signals tag1 and tag2 to determine the touched touch panel 102. position.
以上實施例的觸控面板102的自電容式感應元件1026、1028作為說明,熟悉此項技藝者可了解互電容式感應元件或是電阻式感應元件的操作原理與其近似,在另一實施例中,訊號產生器104也可以是一偽隨機雜訊碼(Pseudorandom noise code,PN code)產生器,驅動訊號146係一隨機產生之方波。The self-capacitive sensing elements 1026 and 1028 of the touch panel 102 of the above embodiment are described as an explanation. Those skilled in the art can understand the operation principle of the mutual capacitive sensing element or the resistive sensing element, and in another embodiment, The signal generator 104 can also be a pseudo random noise code (PN code) generator, and the driving signal 146 is a randomly generated square wave.
相較於先前技術,本發明的探測器利用相位攜帶器將相位資訊附加於驅動訊號上以產生一調變驅動訊號。感應元件再依據調變驅動訊號產生對應的感測訊號。最後感應器的相位偵測器可以直接從感測訊號可自行讀出驅動訊號的週期和相位位置,所以不需要額外電路作相位補償。因此可大大減少開發的成本。Compared to the prior art, the detector of the present invention uses phase carriers to append phase information to the drive signals to generate a modulated drive signal. The sensing component generates a corresponding sensing signal according to the modulated driving signal. Finally, the phase detector of the sensor can directly read the period and phase position of the driving signal directly from the sensing signal, so no additional circuit is needed for phase compensation. Therefore, the cost of development can be greatly reduced.
雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the invention may be variously modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
10...電子裝置10. . . Electronic device
11...觸控面板11. . . Touch panel
12...感應元件陣列12. . . Inductive element array
14...控制單元14. . . control unit
16、18...多工器16, 18. . . Multiplexer
22...相位校正器twenty two. . . Phase corrector
24...訊號產生器twenty four. . . Signal generator
26...感應器26. . . sensor
100、200...電子裝置100, 200. . . Electronic device
101、201...控制單元101, 201. . . control unit
102、202...觸控面板102, 202. . . Touch panel
104...探測器104. . . detector
106...感應器106. . . sensor
108...類比數位轉換器108. . . Analog digital converter
110...電流源110. . . Battery
112...輸出入通道112. . . Input and output channel
142...訊號產生器142. . . Signal generator
144...相位攜帶器144. . . Phase carrier
162...相位偵測器162. . . Phase detector
164...訊號取出器164. . . Signal extractor
170...相位資訊脈衝170. . . Phase information pulse
172、174...直流項的訊號分量172, 174. . . Signal component of the DC term
176、178...相位資訊的訊號分量176, 178. . . Signal component of phase information
28...累計器28. . . Accumulator
1022...探測導體1022. . . Probe conductor
1024...感應導體1024. . . Inductive conductor
1026、1028...感應元件1026, 1028. . . Inductive component
第1圖係傳統具有觸控面板之電子裝置之示意圖。FIG. 1 is a schematic diagram of an electronic device having a conventional touch panel.
第2圖係顯示觸控面板之感測訊號有無雜訊時之時序圖。Figure 2 is a timing diagram showing the presence or absence of noise in the sensing signal of the touch panel.
第3圖係第1圖之控制單元之功能方塊圖。Figure 3 is a functional block diagram of the control unit of Figure 1.
第4圖係本發明之第一實施例之電子裝置之功能方塊圖。Figure 4 is a functional block diagram of an electronic device of a first embodiment of the present invention.
第5圖係第4圖之探測器各元件產生之訊號之時序圖。Figure 5 is a timing diagram of the signals generated by the various components of the detector of Figure 4.
第6圖係第4圖之感測訊號、調變驅動訊號、解調訊號之時序圖。Figure 6 is a timing diagram of the sensing signal, the modulated driving signal, and the demodulated signal of Figure 4.
第7圖係繪示感測訊號的頻率分量為直流、高過f、等於f和小於f時與解調訊號的關係。Figure 7 is a diagram showing the relationship between the frequency component of the sensing signal being DC, higher than f, equal to f, and less than f, and the demodulated signal.
第8圖係本發明第二實施例之電子裝置和觸控面板之功能方塊圖。Figure 8 is a functional block diagram of an electronic device and a touch panel according to a second embodiment of the present invention.
第9圖係本發明處理電子裝置之資訊之方法流程圖。Figure 9 is a flow chart of a method of processing information of an electronic device of the present invention.
100‧‧‧電子裝置100‧‧‧Electronic devices
101‧‧‧控制單元101‧‧‧Control unit
102‧‧‧觸控面板102‧‧‧Touch panel
104‧‧‧探測器104‧‧‧ detector
106‧‧‧感應器106‧‧‧ sensor
108‧‧‧類比數位轉換器108‧‧‧ analog digital converter
110‧‧‧電流源110‧‧‧current source
112‧‧‧輸出入通道112‧‧‧Input and output channels
142‧‧‧訊號產生器142‧‧‧Signal Generator
144‧‧‧相位攜帶器144‧‧‧ Phase Carrier
162‧‧‧相位偵測器162‧‧‧ phase detector
164‧‧‧訊號取出器164‧‧‧Sign Extractor
1026、1028‧‧‧感應元件1026, 1028‧‧‧ Inductive components
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98134626A TWI410833B (en) | 2009-10-13 | 2009-10-13 | Electronic device using phase-tagged capacitance sensing circuit and related method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98134626A TWI410833B (en) | 2009-10-13 | 2009-10-13 | Electronic device using phase-tagged capacitance sensing circuit and related method for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201113775A TW201113775A (en) | 2011-04-16 |
TWI410833B true TWI410833B (en) | 2013-10-01 |
Family
ID=44909782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98134626A TWI410833B (en) | 2009-10-13 | 2009-10-13 | Electronic device using phase-tagged capacitance sensing circuit and related method for the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI410833B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2762954A4 (en) | 2011-09-30 | 2015-07-22 | Hsiung-Kuang Tsai | Drive method for video interface system |
TWI456490B (en) * | 2011-09-30 | 2014-10-11 | Hsiung Kuang Tsai | Driving method of visual interface system |
CN103365511B (en) * | 2012-03-29 | 2017-03-01 | 禾瑞亚科技股份有限公司 | The measuring signal method and apparatus of touch screen |
US9823768B2 (en) | 2012-05-18 | 2017-11-21 | Egalax_Empia Technology Inc. | Signal measuring method and device for touch screen |
US9372585B2 (en) | 2012-05-18 | 2016-06-21 | Egalax₋Empia Technology Inc. | Method and device for detecting capacitive touch screen |
TWI501135B (en) * | 2013-12-02 | 2015-09-21 | LCD touch device | |
TW201735540A (en) * | 2016-03-25 | 2017-10-01 | 松下知識產權經營股份有限公司 | Operation switch using electrostatic capacitance sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6239788B1 (en) * | 1997-08-08 | 2001-05-29 | Sharp Kabushiki Kaisha | Coordinate input device and display-integrated type coordinate input device capable of directly detecting electrostatic coupling capacitance with high accuracy |
US20030151713A1 (en) * | 2001-08-23 | 2003-08-14 | Seiko Epson Corporation | Circuit and method for driving electro-optical panel, electro-optical device, and electronic equipment |
TWI226583B (en) * | 2003-03-14 | 2005-01-11 | Higher Way Electronic Co Ltd | Coordinates detection method and system for a touch panel |
TW200837622A (en) * | 2007-01-03 | 2008-09-16 | Apple Inc | Simultaneous sensing arrangement |
-
2009
- 2009-10-13 TW TW98134626A patent/TWI410833B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6239788B1 (en) * | 1997-08-08 | 2001-05-29 | Sharp Kabushiki Kaisha | Coordinate input device and display-integrated type coordinate input device capable of directly detecting electrostatic coupling capacitance with high accuracy |
US20030151713A1 (en) * | 2001-08-23 | 2003-08-14 | Seiko Epson Corporation | Circuit and method for driving electro-optical panel, electro-optical device, and electronic equipment |
TWI226583B (en) * | 2003-03-14 | 2005-01-11 | Higher Way Electronic Co Ltd | Coordinates detection method and system for a touch panel |
TW200837622A (en) * | 2007-01-03 | 2008-09-16 | Apple Inc | Simultaneous sensing arrangement |
Also Published As
Publication number | Publication date |
---|---|
TW201113775A (en) | 2011-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI410833B (en) | Electronic device using phase-tagged capacitance sensing circuit and related method for the same | |
US8305352B2 (en) | Phase-tagged capacitance sensing circuit and electronic device using the same | |
US7924029B2 (en) | Half-bridge for capacitive sensing | |
JP5882439B2 (en) | Capacitance sensor device | |
US7602383B2 (en) | Touch sensing apparatus with differential signal source | |
US7714848B2 (en) | Touch sensing apparatus | |
KR101282915B1 (en) | Method for reducing effect of noise and apparatus for detecting touch using the same | |
KR101198359B1 (en) | A touch screen device, a driving device and a driving method for a touch screen device | |
US20150048851A1 (en) | Capacitive touch sense architecture having a correlator for demodulating a measured capacitance from an excitation signal | |
KR101394465B1 (en) | Driving method of touch sensing apparatus and touch sensing apparatus using the same | |
US9030429B2 (en) | Touchscreen having a capacitance sensing apparatus | |
US8421774B2 (en) | Sensing circuit for use with capacitive touch panel | |
KR101198358B1 (en) | A touch screen device, a driving device and a driving method for a touch panel | |
CN102467305B (en) | Electronic device with capacitive induction circuit carrying phase information, and method for electronic device | |
US9104273B1 (en) | Multi-touch sensing method | |
CN114487784A (en) | Capacitance detection circuit, touch chip and electronic equipment | |
JP5406774B2 (en) | Touch discrimination device and input device | |
KR20210017598A (en) | Touch sensing device and touch sensing system using multi driving signal | |
KR20240096666A (en) | Multi-frequency range touch detection | |
CN217085101U (en) | Capacitance detection circuit, touch control chip and electronic equipment | |
US7170301B1 (en) | Touch sensing apparatus | |
TW201243678A (en) | Touch-control sensing device | |
US11126298B2 (en) | Touch detection apparatus, touch control apparatus, touch and display driver integration chip, touch control display apparatus, and touch detection and resistance measurement method | |
KR102590126B1 (en) | Techniques for wideband touch sensing and related systems, methods and devices | |
Lin et al. | Application of Code Division Multiple Access Technology in Readout Circuit and System Design for an Ultra-Thin On-Cell Flexible Capacitive Touch Panel |