TW201113775A - Electronic device using phase-tagged capacitance sensing circuit and related method for the same - Google Patents

Electronic device using phase-tagged capacitance sensing circuit and related method for the same Download PDF

Info

Publication number
TW201113775A
TW201113775A TW98134626A TW98134626A TW201113775A TW 201113775 A TW201113775 A TW 201113775A TW 98134626 A TW98134626 A TW 98134626A TW 98134626 A TW98134626 A TW 98134626A TW 201113775 A TW201113775 A TW 201113775A
Authority
TW
Taiwan
Prior art keywords
signal
sensing
electronic device
driving signal
phase
Prior art date
Application number
TW98134626A
Other languages
Chinese (zh)
Other versions
TWI410833B (en
Inventor
Hung-Wei Wu
Ying-Jyh Yeh
Chih-Yu Chang
Original Assignee
Pixel Technologies Inc U
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixel Technologies Inc U filed Critical Pixel Technologies Inc U
Priority to TW98134626A priority Critical patent/TWI410833B/en
Publication of TW201113775A publication Critical patent/TW201113775A/en
Application granted granted Critical
Publication of TWI410833B publication Critical patent/TWI410833B/en

Links

Abstract

An electronic device includes a touch panel, a driving circuit, and a sensing circuit. The driving circuit generates a driving signal, and superposes phase information on the driving signal. The touch panel includes multiple crossing conductors, for providing a sensing signal in response to a contact of an object on one of the sensing conductors and to the driving signal applied on the sensing element. The sensing circuit includes a signal extractor and a tag detector. The signal extractor generates a demodulation signal based on the period of the driving signal, width of the phase information, and for demodulating the sensing signal by using the demodulation signal to determine a sensing value. The tag detector enables the signal extractor as soon as a magnitude of the sensing signal is over a predetermined threshold. The signal demodulates the sensing signal by using a demodulation signal whose period is the same as the driving signal to determine the sensing value. The present electronic device can determine a touch position by processing of analog signal using the demodulation signal without phase compensation.

Description

201113775 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有觸控面板之電子裝置以及處理該電子裝置之資 訊之方法,尤指一種不需相位補償即能利用解調訊號處理類比訊號以決定 觸控位置的電子裝置以及方法。 【先前技術】 為了方便攜帶與使用的考量,使用者可直接觸碰的觸控面板 (touch-panel)已逐漸成為市場開發的方向β用於個人數位助理之液晶顯示器 通常與觸控面板相結合以省略按鍵或功能按钮。觸控面板通過觸控產生電 訊號用於控制液晶顯示器之圖像顯示並實現功能控制。 »用參閱第1圖,第1圖係傳統具有觸控面板11之電子裝置1〇之示意圖。電 子裝置10的觸控面板11具有一感應元件陣列(sens〇r 用來偵測手指 或筆的觸控位置與力道。當手指或筆觸控時,由電阻或電容所組成的感應 凡件陣列12的電阻值或電容值會改變,比如說,當手指壓在彈性材質的電 阻式觸控面板11上時’會使上、下^電極(eleetlOde)的距離縮短,而改變兩 電極之間的電阻值;或是當手指壓在電容式觸控面板丨丨上,人體的導電特 性會影響兩電極之間的電容,而改變兩電極之間的電容值。所以利用偵測 電阻值或電容值的變化,來偵測手指或筆的觸控與力道。 感應7G件陣列12係由一組X方向與一組γ方向的長條導體交錯而成,或 疋由極座標環狀排列的長條導體組成。每一個交錯點實質上都有一個電阻 或電容7G件。t鋪私(eontml imit)14經過乡卫㈣送妹動訊號 signal)導通某-列(row)的長條導體時,透過多卫⑽依序或同時將該列上 201113775 每-個點贼觀l(sensing signal)值伽至控制單元14 ,就可以知道該 列的觸控強度。藉著依序或_量崎—列的感測減值,就可以得到強 度矩陣表來來決定手指的觸碰位置與力道。 "月參閱第2圖’第2圖係顯示觸控面板之感測訊號有無雜訊時之時序 圖。然而,錢元件料受舰訊的干擾,目此會增加觸電雜的改變 是肇因於手鋪域是環境雜訊的_。舉例來說,對—個军的電容 而δ ’手指所造成的改變約為lpF。當充電到2V的電壓準位時,手指所造 成的電壓改_為4GmV,而雜訊的干擾也·在數十mV,使得訊號雜訊 比(SNR)不夠強烈’容易造成誤判,甚至造成沒有觸控卻誤判成鬼影(細{ effect)的假訊號。 除此之外’現今觸控面板多半搭配許多無線通訊的功能(紅外線傳輸或 是藍芽(Bluetooth)傳輸),或是搭配背光液晶面板等等,所以觸控面板所受 到雜訊來_當娜,例如_雜訊(1/fndse)、白色雜訊(whit_ise)、功 率雜訊(power n〇ise)、50/60Hz雜訊、紅外線或是藍芽無線傳輸產生的通訊 微波(communication microwave)、背光雜訊(backlight noise)等。一般可以使 用低通濾波器(Low Pass Filter)來過濾高頻雜訊,但是對於閃爍雜訊戋是 50/60HZ雜訊等低頻雜訊,如果使用的低通濾波器設計在較低的截止頻率 (cut off frequency),雖然可以濾掉低頻成分,但是反應時間也會跟著變慢。 舉例來說’為了濾掉60Hz雜訊,而使低通濾波器的截止頻率操作在ι〇Ηζ, 將會使反應時間延遲約〇·1秒,其所造成的副作用,相當於晝線速度延遲 〇·1秒。也就是說’手指觸壓到應用程式(比如說拖曳照片)反應的時間會有 延遲的情形發生,將造成使用上的不便。 201113775 為了改善此一問題,傳統解調技術(modulation and demodulation)可在 感測元件上加載某一頻率為fl的電壓或電流訊號來作為調變的輸入訊號 (modulation),接著測量感測元件相對應的電壓或電流訊號,利用頻率β的 訊號解調(demodulation),產生頻率為與的訊號,再經過 低通;慮波器將其截止頻率_作在(fl+f2) /2以下,以遽掉高頻成分,量測 低頻成分。當選擇fl=f2時,其低頻成分就是直流項,也就是所要訊號。 只要量測直流項的改變,相當於量測手指觸碰時的電容改變。因為解調技 術可操作在高頻的波段,所以可以避開低雜訊的干擾。但是傳統調變和解 調技術需要複雜度高的類比方式實作,且類比與數位電路共存時需要額外 的隔離電路,這會增加開發的成本。 請一併參閱第1圖和第3圖,第3圖係第1圖之控制單元14之功能方塊 圖。量測A點和B點的路徑(trace)A和路徑B並不相同,所以解調後的訊號 會因不同的路徑延遲而有不同的解調振幅,使得路徑延遲越大,解調振幅 越小,降低感應的動態範圍。在大尺寸的感應元件陣列,路徑延遲的問題 會更加嚴重。所以傳統上會採用一相位校正器(phase⑽⑻如峨來量測 所有的路徑延遲並且對各節點進行相位補償c〇mpensati〇n)。首先在 感應7G件陣列I2置於隔離狀態(un_t〇uched)時,訊號產生器Μ會依序輸出— 方波作為驅動職至每-錢元件。在祕狀態綱,每—絲元件經過 路控延遲之後產生相依喊測訊制感應㈣。而相位校正㈣可產生各 種相位的同頻方波與所接受訊號解調,以得出各種相位的自相關圖 (am_da㈣,並選擇最大值所對應的相位作為該節點所需要的相位補償 值。然後在依序產生所有節闕相位補償值,以產生—查詢表% 201113775BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device having a touch panel and a method of processing the information of the electronic device, and more particularly to using an analog signal to process an analogy without phase compensation. The signal is used to determine the electronic device and method of the touch position. [Prior Art] In order to facilitate the consideration of carrying and use, the touch-panel that the user can touch directly has gradually become the direction of market development. The liquid crystal display for personal digital assistant is usually combined with the touch panel. To omit the button or function button. The touch panel generates a signal by touch to control the image display of the liquid crystal display and realize function control. » Referring to FIG. 1 , FIG. 1 is a schematic diagram of an electronic device 1 with a touch panel 11 . The touch panel 11 of the electronic device 10 has an array of sensing elements (sens〇r is used to detect the touch position and the force of the finger or the pen. When the finger or the pen touches, the sensor array 12 composed of a resistor or a capacitor is used. The resistance value or the capacitance value will change. For example, when the finger is pressed against the resistive touch panel 11 of the elastic material, the distance between the upper and lower electrodes (eleetlOde) is shortened, and the resistance between the two electrodes is changed. Value; or when the finger is pressed on the capacitive touch panel, the conductivity of the human body affects the capacitance between the two electrodes, and changes the capacitance between the two electrodes. Therefore, the value of the detected resistance or capacitance is used. Change to detect the touch and force of the finger or pen. The sensing 7G array 12 is formed by a set of X-directions interlaced with a set of γ-directional long conductors, or a long conductor consisting of a polar ring. Each of the staggered points essentially has a resistor or capacitor 7G. t ewt (ietml imit) 14 through the township (four) send the sister signal signal) to turn on a long row of conductors, through the Weiwei (10) sequentially or simultaneously put this column on 201113 775 Each time a sensing signal value is added to the control unit 14, the touch intensity of the column can be known. By sensing the impairments in sequence or _ saki-column, a strength matrix can be obtained to determine the touch position and force of the finger. "Monthly refer to Figure 2'. Figure 2 shows the timing diagram of the sensing signal of the touch panel with or without noise. However, the money components are subject to interference from the ship's news, and this will increase the change in the electric shock. It is because the hand shop is an environmental noise. For example, the change in the capacitance of a military and the δ ' finger is about lpF. When charging to the voltage level of 2V, the voltage caused by the finger is changed to 4GmV, and the interference of the noise is also in the tens of mV, so that the signal noise ratio (SNR) is not strong enough, which is easy to cause misjudgment, or even cause no The touch is mistakenly judged as a ghost (fine {effect) fake signal. In addition, today's touch panels are mostly equipped with many wireless communication functions (infrared transmission or Bluetooth transmission), or with a backlit LCD panel, etc., so the touch panel is subject to noise. For example, _fndse, white noise (whit_ise), power noise (power n〇ise), 50/60 Hz noise, infrared or communication microwave generated by Bluetooth wireless transmission, Backlight noise, etc. Generally, a low pass filter can be used to filter high frequency noise, but for flicker noise, low frequency noise such as 50/60HZ noise, if the low pass filter used is designed at a lower cutoff frequency. (cut off frequency), although the low frequency components can be filtered out, the reaction time will also slow down. For example, in order to filter out 60Hz noise, and operate the cutoff frequency of the low-pass filter at ι〇Ηζ, the reaction time will be delayed by about 〇·1 second, which is equivalent to the delay of the 昼 line speed. 〇·1 second. That is to say, the time when the finger touches the application (for example, dragging the photo) will have a delay, which will cause inconvenience in use. 201113775 In order to improve this problem, the traditional demodulation technique (modulation and demodulation) can load a voltage or current signal of a certain frequency as a modulated input signal on the sensing element, and then measure the sensing element phase. Corresponding voltage or current signal, using signal demodulation of frequency β, generates a signal with a frequency of and, and then passes through a low pass; the filter turns its cutoff frequency _ below (fl+f2) /2 to Remove high frequency components and measure low frequency components. When fl=f2 is selected, its low frequency component is the DC term, which is the desired signal. As long as the change of the DC term is measured, it is equivalent to measuring the change in capacitance when the finger touches. Because the demodulation technology can operate in the high frequency band, it can avoid low noise interference. However, traditional modulation and demodulation techniques require a complex analogy of implementation, and analogy requires additional isolation circuitry when coexisting with digital circuitry, which increases development costs. Please refer to Fig. 1 and Fig. 3 together. Fig. 3 is a functional block diagram of the control unit 14 of Fig. 1. The path A and B of the measurement point A and point B are not the same, so the demodulated signal will have different demodulation amplitudes due to different path delays, so that the path delay is larger, and the demodulation amplitude is more Small, reducing the dynamic range of the induction. In the case of large-sized sensing element arrays, the problem of path delay is more serious. Therefore, a phase corrector (phase(10)(8) such as 峨 is used to measure all path delays and phase compensation for each node c〇mpensati〇n). First, when the sensed 7G device array I2 is placed in an isolated state (un_t〇uched), the signal generator 输出 outputs sequentially—the square wave acts as a driver to the per-money component. In the secret state, each wire component is subjected to a delay in the control of the sense of the signal (4). The phase correction (4) can generate the same-frequency square wave of various phases and the received signal demodulation to obtain autocorrelation maps of various phases (am_da(4), and select the phase corresponding to the maximum value as the phase compensation value required by the node. Then generate all the throttle phase compensation values in order to generate - query table % 201113775

Table)。之後量測時’累計器28可以直接查表作為相位補償,也可以只做數 點量測,比如說祕四點等,以線性内插的方式產生相位補償值。然 而上述的相位校正與相位補償過於複雜且需很多的計算。 【發明内容】 根據本發明之一特點,電子裝置包含一觸控面板,其包含複數個感應 元件;一探測器,用來傳送驅動訊號,該驅動訊號係具有一預設週期(T1) 且附加一相位資訊;以及一感應器,用來接收一感測訊號並根據該驅動訊 號的該預設週期以及該相位資訊決定一偵測值。 在本發明之一實施例中,該探測器包含一訊號產生器,用來產生該驅 動訊號;以及一相位攜帶器,耦接於該訊號產生器,用來產生該相位資訊, 並附加該相位資訊於該驅動訊號上。該訊號產生器產生之該驅動訊號係一 方波’該相位攜帶器用來將該相位資訊tagl附加於該驅動訊號之上升緣,或 是相位資訊tag2附加於該驅動訊號之下降緣,使附加該相位資訊之該驅動訊 號之上升緣振幅低於該方波之最低振幅,或是附加該相位資訊之該驅動訊 號之下降緣振幅高於該方波之最高振幅。該解調訊號之上升緣的延遲時間 較第一相位資訊延遲“Ttagl+(Tl/2- Ttag2),,,解調訊號之下降緣的延遲時間 較該第一相位資訊延遲“Ttagl+ T1/2+ (T/2-Ttag2)/2”,其中相位資訊tagl 之脈寬係Ttagl和相位資訊tag2之脈寬係Ttag2。 在本發明之一實施例中,每一感應元件係一自電容式感應元件或一互 電容式感應元件或一電阻式感應元件。 在本發明之一實施例中,該感應器包含一訊號取出器,用來依據該驅 動訊號的該預設週期和該相位資訊之脈寬產生一解調訊號,並依據該解調Table). After the measurement, the accumulator 28 can directly look up the table as phase compensation, or it can only do a few points measurement, such as the four points of the secret, to generate the phase compensation value by linear interpolation. However, the above phase correction and phase compensation are too complicated and require a lot of calculations. According to a feature of the present invention, an electronic device includes a touch panel including a plurality of sensing elements, and a detector for transmitting a driving signal, the driving signal having a preset period (T1) and being attached a phase information; and a sensor for receiving a sensing signal and determining a detection value according to the preset period of the driving signal and the phase information. In one embodiment of the present invention, the detector includes a signal generator for generating the driving signal, and a phase carrier coupled to the signal generator for generating the phase information and adding the phase Information on the driver signal. The driving signal generated by the signal generator is a side wave 'the phase carrier is used to add the phase information tagl to the rising edge of the driving signal, or the phase information tag2 is added to the falling edge of the driving signal to add the phase The rising edge amplitude of the driving signal of the information is lower than the lowest amplitude of the square wave, or the falling edge amplitude of the driving signal to which the phase information is added is higher than the highest amplitude of the square wave. The delay time of the rising edge of the demodulation signal is delayed from the first phase information "Ttagl+(Tl/2-Ttag2), and the delay time of the falling edge of the demodulation signal is delayed from the first phase information "Ttagl+ T1/2+ (T/2-Ttag2)/2", wherein the pulse width Ttag1 of the phase information tagl and the pulse width Ttag2 of the phase information tag2 are. In one embodiment of the present invention, each sensing element is a self-capacitive sensing element. Or a mutual capacitive sensing element or a resistive sensing element. In an embodiment of the invention, the sensor includes a signal extractor for determining the pulse period of the driving signal according to the preset period of the driving signal. Generating a demodulation signal and based on the demodulation

E 201113775 訊號解調該感測訊號以決定該偵測值;以及一相位偵測器,耦接於該訊號 取出器,用來於該感測訊號之振幅大於一預設值時,啟動該訊號取出器。 該電子裝置另包含一記憶體’用來儲存該感測訊號之波形,其中該相位偵 測器係用來依據該相位資訊對該感測訊號執行自相關計算時,啟動該訊號 取出器。 在本發明之一實施例中,該電子裝置另包含一類比數位轉換器,耦接 於該感應器以及該觸控面板之該感應元件之間,用來取樣該感測訊號。 在本發明之一實施例中,該電子裝置其中該感應器以及該探測器係以 一數位訊號處理器加以實現。 在本發明之一實施例中’該訊號產生器係一隨機產生器,該驅動訊號 係一隨機產生之方波。 在本發明之一實施例中,該探測器用來對耦接的每一感應元件輸出不 同週期之驅動訊號。該感應器用來對耦接的每一感應元件產生複數個偵測 值,每一偵測值係與該相位資訊、每一感應元件對應接收的該驅動訊號的 預設週期以及該感測訊號的變化有關。 本發明之另-特點在於提供-種用於處理一電子裝置之感測訊號之方 法’該電子裝置包含-觸控面板,其包含複數個感應元件,該方法包含下 步驟·產生具有-預設週狀—驅動職;附加—她資訊於該驅動訊 號並傳送馳祕之該雜應树上;於—物件接賴驗面板之一 感應tl件時m麻號;執行—峰值制赠得該_訊號對應於 該相位貝訊之處,並據此產生—解調起始點;以及依據該柿資訊和該驅 δ號的預&amp;週難生_解調峨,並细轉調訊麟麟制訊號以 201113775 決疋S亥觸控面板的被觸控位置。 為讓本發社上__明_,下_雛_,並配合 所附圖式’作詳細說明如下: 【實施方式】 —本發明_正交向量的特性。假設—向量群的各向量為VI,其中i ^.•,如果一向量與不同向量的乘積為^亦㈣^+其中^ j)’且-向量與自身的乘積為丨(亦即WVjy,其中i =』),則此為正 交向量群。當VI = (al,bl,el,dl)且V2 =⑷,昤C2,哟,則νι X π的 乘積等於al X a2 + Μ X b2 + el X e2 + dl xd2。舉例而言,如果向量群包括 兩個向量:VI = (0, 0, 〇, υ 以及 V2 = (〇, 〇, !,〇),則滿足 νι χ νι =】,^ X V2 = 0,以及V2 X V2 = 1。因此,VI與V2為正交。 任何信號皆可表示為正交向量群,如S = clVl+c2V2+c3V3+.. +enVii, 其中cl,c2,…,cn為係數。如果環境雜訊表示為n = loovi + 5〇V2 + 2()V3 + 10V4 + 2V5 + 4V6 + 10V7…,其中各向量VI,V2,…代表一特定頻帶的分 量。對於一已知信號A來說,如果選定V5為調變向量,則經調變的信號 〈亦即輸入信號〉Si = AV5。可知該信號會耦合雜訊’因此輸出信號s〇 = AV5 + 100V1 + 50V2 + 20V3 + 10V4 + 2V5 + 4V6 + 10V7··. = ιοονι + 5〇V2 + 20V3 + 10V4 + (A+2)V5 + 4V6 + 10V7…。如果使用相同的向量V5作為解 調向量,則還原的信號 Sr = So X V5 = 100 X 0 + 50 X 0 + 20 X 〇 + 1〇 x 〇 + (Α+2) χ1+4χ〇+1〇χ〇·.· = Α+2 〇 如所見者,還原的信號僅會留下少許雜訊。然而,如上所提及,為了降 201113775 低雜訊,應選疋低雜訊的分量〈例如上述的V5〉作為調變與解調向量β 請參閱第4圖,第4圖係本發明之第一實施例之電子裝置1〇〇之功能方塊 圖。電子裝置100包含控制單元101和觸控面板1〇2。控制單元ιοί則包含探 測器104、感應器106、類比數位轉換器(Anal〇g_t〇_digital c〇nverter, ADC)108、電流源110、輸出入通道η]。觸控面板1〇2包含複數個交互排列 感應元件1026(亦即列)和感應元件1028(亦即行),較佳地,感應元件1〇26、 1028係矩陣排列。感應元件1〇26、1028係導電體,可用來傳遞電性訊號。 探測器104用來輸出驅動訊號,而感應器丨〇6用來接收感測訊號。控制單元 1〇1係以數位訊號處理器(Digital signal processor,DSP)或是軟體程式碼加以 實現。每一自電容(self capacitance)係形成於感應元件1〇26或感應元件1028 上,用以形成一二元軸線座標來表示觸控位置。每一自電容會因一物件接 近而改變其電容值。當手指或其他物件接近觸控面板1〇2時,手指附近的感 應元件1026、1028的電容值會變化。這是因為dv / v = - dC / C,所以電容 值的變化也使得電壓發生變化,其中V表示感應元件1〇26、1028上的電壓, 而C表示感應元件1026、1028的電容值。當觸碰發生,接觸點所對應的感應 元件1026、1028之間會產生電容耦合現象而使感測訊號的電壓發生變化, 控制單元101會根據感測訊號發生的電壓變化判斷觸碰點的位置。 請一併參閱第4圖和第5圖,第5圖係第4圖之探測器1〇4各元件產生之訊 號之時序圖。探測器104包含訊號產生器(signal generator) 142和相位攜帶器 (tag generat〇r)144。該訊號產生器142係一方波產生器,用來產生呈一週期 性方波(periodical square waveform)之驅動訊號(driving signal)146(週期T1)。 該相位攜帶器144耦接於訊號產生器142,用來將相位資訊(phase information) 201113775 tagl、tag2附加於驅動訊號146以作為解調之用。 請參閱第5圖,相位攜帶器144將第一相位資訊邮附加於驅動訊號146 之上升緣(rising edge) ’並將第二相位資訊tag2附加於驅動訊號146之下降緣 (falling edge) ’使附加第一相位資訊tagl之驅動訊號146之上升緣振幅低於該 方波之最低振幅,同時附加第二相位資訊tag2之驅動訊號146之下降緣振幅 尚於該方波之最高振幅(maximum amplitude)。較佳地,第一相位資訊tagl 的脈寬Ttagl和第二相位資訊tag2的脈寬Ttag2皆十分短暫且相等。以 籲100MHz的數位訊號處理器為例,可以設定脈寬 Ttagl=Ttag2=0. lus=100ns。此時’調變驅動訊號(m〇dulati〇n driving signal)148 即產生。 探測器104會輸出一個攜帶相位資訊、也㈡的調變驅動訊號丨招來驅 動電流源(current driver)l 10對觸控面板1〇2之感應元件1〇26、1028充放電。 所以第一相位資訊tagl可以讓感應器1〇6識別出感測訊號的第一位置,並重 置電流源110使其探測電流降至最低電源電壓VSS以供隨後充電路徑之用。 • 第二相位資訊tag2可以讓感應器106識別出感測訊號的第二位置,並設定電 流源110使其探測電流至最高電源電壓VDD以供隨後放電路徑之用。 請注意,探測器104會將驅動訊號146的週期T1、第一相位資訊tagl的脈 寬Ttagl和第二相位資訊tag2的脈寬Ttag2等資訊傳送至感應器1〇6,以供感應 器106產生解調訊號w之用。 除此之外’訊號產生器142也可以產生不同週期(亦即不同頻率)的驅動 訊號146至不同的感應元件1026、1028。比如說,探測感應元件1〇26之感應 元件E時使用週期T1的驅動訊號146 ’探測感應元件1028之感應元件D時使 11 201113775 用週期T2的驅動訊號146。但是探測某一感應元件1026、1028時,驅動訊號 146的週期必須與送往訊號取出器164的週期相同。比如說,探測感應元件E 時使用週期Τ1的驅動訊號146,並同時送出週期值Τ1到訊號取出器164以形 成解調訊號W以便取出感應元件Ε的感測訊號;探測感應元件D時使用週期 Τ2的驅動訊號146,並同時送出週期值Τ2到訊號取出器164以形成另一解調 訊號W以便取出感應元件D的感測訊號。 請參閱第4圖。在本實施例中,類比數位轉換器(Analog-to-digital converter ’ ADC)108係用來取樣感測訊號Vin。ADC 108的取樣頻率可決定 對相位資訊脈寬Ttagl、Ttag2的靈敏度’以及對感測訊號vin的靈敏度與誤 差。類比數位轉換器108可以係一連續近似類比數位轉換器(Successive appmximation ADC ’ SARADC)。當連續近似類比數位轉換器108以數位訊 號處理器實作(implement)時,其取樣頻率決定於數位訊號處理器的工作頻 率(operating frequency),以及軟體程式碼用於比對n位元(bit)所花的執行時 間。為了增加取樣頻率,可以同時使用多個連續近似類比數位轉換器1〇8來 搜尋。舉例來說,使用單一連續近似類比數位轉換器1〇8僅能進行二元搜 索,但同時使用比如以三個連續近似類比數位轉換器1〇8組成,就可以進行 四元搜索,如此一來搜尋速度將比使用單一連續近似類比數位轉換器ι〇8快 -倍。除此以外’為了增加連續近似類比數位轉換㈣8動態侧的範圍, 其動態細的最大值與最小值,可由前—時刻所得之偵測電壓值加上一預 測㈣決定。比如說,前—時刻所得之電壓制值為122v,預設範圍設定 為4〇mv,則此刻連續近似類比數位轉換器⑽動態制的最大值為n + 4〇mV。最小值為lav —4〇mv,可偵測+M〇mv範圍内的感應電塵。 12 201113775 請一併參閱第4圖和第6圖,第6圖係第4圖之感測訊號Vin、調變驅動訊 號、解調訊號W之時序圖。當調變驅動訊號148產生之電流I傳送至感應元件 1026、1028使其充放電時,某一接觸點正好因手指或其它觸控物件按壓而 使感應元件1026、1028間的距離縮短而改變電容值C;又因為在一固定時間 T内,感應元件1026、1028的電荷Q= ΙχΤ= OV為定值(因為I定值,τ是固定 時間)’所以dV/V= - dC/C。也就是說,當電容C改變時,電壓V(也就是感 測訊號Vin)也跟著改變。所以依據上述方程式,依據感測訊號Vin的電壓變 Φ 化就可以判斷手指是否有接觸。 感應器106包含相位偵測器(Tag Detector) 162和訊號取出器(signal Extractor)164。在一實施例中,相位偵測器162係一峰值偵測器,會在债測 到感測訊號Vin之振幅大於一預設值時’啟動訊號取出器164。因為相位攜 帶器144在訊號產生器142所產生的方波(驅動訊號146)的上升緣和下降緣分 別加上相位資訊tag卜tag2,所以感測訊號Vin在對應於驅動訊號146的上升 緣和下降緣之處會有一明顯振幅變動。因此相位偵測器162能夠在偵測到訊 • 號146振幅變動時,決定驅動訊號146的相位與週期《所以實際應用時,相 位攜帶器144所產生的相位資訊tag卜tag2的振幅和原驅動訊號146振幅差距 越大,相位偵測器162將越容易感測驅動訊號146的週期與相位。 在另一實施例中,控制單元104另包含一記憶體122 ,用來儲存感測訊 號Vin之波形。相位偵測器162用來於利用相位資訊吨丨、tag2對感測訊號vin 執行自相關(autocorrelation)計算以決定解調的起始位置時,啟動訊號取出器 164 〇 訊號取出器164依據探測器1〇4傳來的驅動訊號146的週期丁丨、相位攜帶 13 201113775 器144之第一相位資訊tagi之第一脈寬丁吨丨和第二相位資訊teg2之第二脈寬The signal is demodulated to determine the detection value, and a phase detector is coupled to the signal extractor for starting the signal when the amplitude of the sensing signal is greater than a preset value. Extractor. The electronic device further includes a memory for storing the waveform of the sensing signal, wherein the phase detector is configured to activate the signal extractor when performing an autocorrelation calculation on the sensing signal according to the phase information. In an embodiment of the invention, the electronic device further includes an analog-to-digital converter coupled between the inductor and the sensing component of the touch panel for sampling the sensing signal. In an embodiment of the invention, the electronic device and the detector are implemented by a digital signal processor. In one embodiment of the invention, the signal generator is a random generator, and the drive signal is a randomly generated square wave. In an embodiment of the invention, the detector is configured to output driving signals of different periods for each of the coupled sensing elements. The sensor is configured to generate a plurality of detection values for each of the coupled sensing elements, each detection value is related to the phase information, the preset period of the driving signal corresponding to each sensing element, and the sensing signal. Related to change. Another feature of the present invention is to provide a method for processing a sensing signal of an electronic device. The electronic device includes a touch panel including a plurality of sensing elements, the method comprising the following steps: generating a preset with Weekly-driver; additional--here information on the drive signal and transmit the secret of the hybrid tree; in the case of one of the objects to check the panel to sense tl pieces of m hemp; execution - peak system gift _ The signal corresponds to the phase of the signal, and accordingly generates a demodulation starting point; and according to the persimmon information and the pre-amplifier of the delta number, and the fine-tuning of the lining system The signal is based on the touch position of the S-hai touch panel at 201113775. In order to make the present invention __明_,下___, and with the accompanying drawings' detailed description as follows: [Embodiment] - The characteristics of the present invention _ orthogonal vector. Assume that each vector of the vector group is VI, where i ^.•, if the product of a vector and a different vector is ^ (4) ^ + where ^ j) ' and - the product of the vector and itself is 丨 (ie WVjy, where i = 』), then this is an orthogonal vector group. When VI = (al, bl, el, dl) and V2 = (4), 昤 C2, 哟, then the product of νι X π is equal to al X a2 + Μ X b2 + el X e2 + dl xd2. For example, if the vector group includes two vectors: VI = (0, 0, 〇, υ and V2 = (〇, 〇, !, 〇), then νι χ νι =], ^ X V2 = 0, and V2 X V2 = 1. Therefore, VI and V2 are orthogonal. Any signal can be represented as an orthogonal vector group, such as S = clVl + c2V2 + c3V3 + .. +enVii, where cl, c2, ..., cn are coefficients. If the ambient noise is expressed as n = loovi + 5〇V2 + 2()V3 + 10V4 + 2V5 + 4V6 + 10V7..., where each vector VI, V2, ... represents a component of a particular frequency band. For a known signal A Say, if V5 is selected as the modulation vector, the modulated signal <ie, the input signal>Si = AV5. It is known that the signal will couple the noise' so the output signal s〇= AV5 + 100V1 + 50V2 + 20V3 + 10V4 + 2V5 + 4V6 + 10V7··. = ιοονι + 5〇V2 + 20V3 + 10V4 + (A+2)V5 + 4V6 + 10V7.... If the same vector V5 is used as the demodulation vector, the restored signal Sr = So X V5 = 100 X 0 + 50 X 0 + 20 X 〇+ 1〇x 〇+ (Α+2) χ1+4χ〇+1〇χ〇·.· = Α+2 As you can see, the restored signal will only Leave a little noise. However, like As mentioned, in order to reduce the low noise of 201113775, the component of low noise (for example, V5 described above) should be selected as the modulation and demodulation vector β. Please refer to FIG. 4, which is a first embodiment of the present invention. The functional block diagram of the electronic device 1 . The electronic device 100 includes a control unit 101 and a touch panel 1〇2. The control unit ιοί includes a detector 104, a sensor 106, and an analog digital converter (Anal〇g_t〇_digital) C〇nverter, ADC) 108, current source 110, input/output channel η]. The touch panel 1 〇 2 includes a plurality of interleaved sensing elements 1026 (ie, columns) and sensing elements 1028 (ie, rows), preferably, The sensing elements 1 〇 26 and 10 28 are arranged in a matrix. The sensing elements 1 〇 26 and 10 28 are electrical conductors for transmitting electrical signals. The detector 104 is for outputting a driving signal, and the sensor 丨〇 6 is for receiving a sensing signal. The control unit 〇1 is implemented by a digital signal processor (DSP) or a software code. Each self capacitance is formed on the sensing element 1 〇 26 or the sensing element 1028. To form a binary axis Subscripts to indicate the touch position. Each self-capacitor changes its capacitance due to the proximity of an object. When a finger or other object approaches the touch panel 1〇2, the capacitance values of the sensing elements 1026, 1028 near the finger may change. This is because dv / v = - dC / C, so the change in capacitance also causes the voltage to change, where V represents the voltage across the sensing elements 1 〇 26, 1028 and C represents the capacitance of the sensing elements 1026, 1028. When a touch occurs, a capacitive coupling phenomenon occurs between the sensing elements 1026 and 1028 corresponding to the contact point to change the voltage of the sensing signal, and the control unit 101 determines the position of the touch point according to the voltage change of the sensing signal. . Please refer to Fig. 4 and Fig. 5 together. Fig. 5 is a timing chart of the signals generated by the components of the detector 1〇4 of Fig. 4. The detector 104 includes a signal generator 142 and a phase generator 144. The signal generator 142 is a square wave generator for generating a driving signal 146 (period T1) in a periodic square waveform. The phase carrier 144 is coupled to the signal generator 142 for appending phase information 201113775 tagl, tag2 to the drive signal 146 for demodulation. Referring to FIG. 5, the phase carrier 144 appends the first phase information to the rising edge of the driving signal 146 and appends the second phase information tag2 to the falling edge of the driving signal 146. The rising edge amplitude of the driving signal 146 to which the first phase information tag1 is added is lower than the lowest amplitude of the square wave, and the falling edge amplitude of the driving signal 146 to which the second phase information tag2 is added is still the highest amplitude of the square wave. . Preferably, the pulse width Ttag1 of the first phase information tagl and the pulse width Ttag2 of the second phase information tag2 are both very short and equal. Taking the 100MHz digital signal processor as an example, the pulse width Ttagl=Ttag2=0. lus=100ns can be set. At this time, the 'm调dulati〇n driving signal 148' is generated. The detector 104 outputs a modulation drive signal carrying the phase information and also (2) to drive the current driver 10 to charge and discharge the sensing elements 1〇26 and 1028 of the touch panel 1〇2. Therefore, the first phase information tagl allows the sensor 1〇6 to recognize the first position of the sense signal and reset the current source 110 to reduce the sense current to the lowest supply voltage VSS for subsequent charging paths. • The second phase information tag2 allows the sensor 106 to recognize the second position of the sense signal and set the current source 110 to detect current to the highest supply voltage VDD for subsequent discharge paths. Please note that the detector 104 transmits information such as the period T1 of the driving signal 146, the pulse width Ttagl of the first phase information tagl, and the pulse width Ttag2 of the second phase information tag2 to the sensor 1〇6 for the sensor 106 to generate. Demodulation signal w is used. In addition to this, the signal generator 142 can also generate drive signals 146 of different periods (i.e., different frequencies) to different sensing elements 1026, 1028. For example, when detecting the sensing element E of the sensing element 1 〇 26, the driving signal D of the sensing element 1028 is detected by using the driving signal 146 ′ of the period T1 to make 11 201113775 use the driving signal 146 of the period T2. However, when detecting an inductive component 1026, 1028, the period of the drive signal 146 must be the same as the period sent to the signal extractor 164. For example, when detecting the sensing element E, the driving signal 146 of the period Τ1 is used, and the period value Τ1 is sent to the signal extractor 164 to form the demodulation signal W to take out the sensing signal of the sensing element ;; the period of detecting the sensing element D is used. The driving signal 146 of Τ2 is simultaneously sent with the period value Τ2 to the signal extractor 164 to form another demodulation signal W for taking out the sensing signal of the sensing element D. Please refer to Figure 4. In the present embodiment, an analog-to-digital converter (ADC) 108 is used to sample the sensing signal Vin. The sampling frequency of the ADC 108 determines the sensitivity to the phase information pulse widths Ttagl, Ttag2' and the sensitivity and error to the sensing signal vin. Analog-to-digital converter 108 can be a continuous approximate analog-to-digital converter (Successive appmximation ADC' SARADC). When the continuous approximation analog-to-digital converter 108 is implemented as a digital signal processor, the sampling frequency is determined by the operating frequency of the digital signal processor, and the software code is used to compare the n bits (bit). ) The execution time spent. In order to increase the sampling frequency, multiple consecutive approximate analog digital converters 1〇8 can be used simultaneously for searching. For example, using a single continuous approximation analog-to-digital converter 1〇8 can only perform a binary search, but at the same time using a combination of three consecutive approximate analog-to-digital converters 1〇8, a quaternary search can be performed, thus The search speed will be faster than the single continuous approximation analog converter ι〇8. In addition, in order to increase the range of the dynamic side of the continuous approximation analog-to-digital conversion (4), the maximum and minimum values of the dynamic fineness can be determined by the detected voltage value obtained at the previous time plus a prediction (four). For example, the voltage obtained from the front-time is 122v, and the preset range is set to 4〇mv. At this moment, the maximum value of the continuous analog analog converter (10) is n + 4〇mV. The minimum value is lav — 4〇mv, which can detect inductive dust in the range of +M〇mv. 12 201113775 Please refer to Figure 4 and Figure 6 together. Figure 6 is the timing diagram of the sensing signal Vin, the modulation drive signal and the demodulation signal W in Figure 4. When the current I generated by the modulation driving signal 148 is transmitted to the sensing elements 1026 and 1028 to be charged and discharged, a certain contact point changes the capacitance by shortening the distance between the sensing elements 1026 and 1028 due to the pressing of the finger or other touch object. The value C; and because within a fixed time T, the charge Q = ΙχΤ = OV of the sensing elements 1026, 1028 is a fixed value (because I is fixed, τ is a fixed time) 'so dV / V = - dC / C. That is to say, when the capacitance C changes, the voltage V (i.e., the sensing signal Vin) also changes. Therefore, according to the above equation, it can be judged whether the finger has contact according to the voltage of the sensing signal Vin becoming Φ. The sensor 106 includes a Tag Detector 162 and a Signal Extractor 164. In one embodiment, the phase detector 162 is a peak detector that activates the signal extractor 164 when the amplitude of the sensed signal Vin is greater than a predetermined value. Because the phase carrier 144 adds the phase information tag tag2 to the rising edge and the falling edge of the square wave (drive signal 146) generated by the signal generator 142, the sensing signal Vin corresponds to the rising edge of the driving signal 146 and There is a significant amplitude change at the falling edge. Therefore, the phase detector 162 can determine the phase and period of the driving signal 146 when detecting the amplitude variation of the signal 146. Therefore, the amplitude and the original driving of the phase information tagtag2 generated by the phase carrier 144 in actual application. The greater the amplitude difference of the signal 146, the easier the phase detector 162 will sense the period and phase of the drive signal 146. In another embodiment, the control unit 104 further includes a memory 122 for storing the waveform of the sensing signal Vin. The phase detector 162 is configured to use the phase information ton, tag2 to perform autocorrelation calculation on the sensing signal vin to determine the starting position of the demodulation, and start the signal extractor 164. The signal extractor 164 is based on the detector. The period of the driving signal 146 transmitted from 1〇4, the phase carrying 13 201113775 The first phase information of the device 144 is the first pulse width of the tagi and the second pulse width of the second phase information teg2

Ttag2產生一解調訊號(demodulation signal)W。解調訊號W係一方波(或是弦 波)’其週期符合驅動訊號146的週期T1,且該解調訊號w之上升緣的延遲時 間(tl’)較第一相位資訊tagl延遲“Ttagl+(Tl/2- Ttag2),,,解調訊號W之下降 緣的延遲時間(t2’)較該第一相位資訊延遲“Ttagl+Tl/2+(T/2-Ttag2)/2’,。解 調訊號方波的數位值(1,-1)。 請參閱第7圖。第7圖係繪示訊號取出器164的解調原理,訊號取出器164 利用解調訊號W對感測訊號Vin進行正交運算以取出感測訊號Vin中與解調 訊號W相同的頻率分量。在DSP編碼中,可將上述運算標示為零, 其中Vin表示感測訊號,W表示解調訊號,Μ表示測量點的總數和測量次數。 如第7圖所示,當感測訊號Vin的頻率分量高過f時,經過週期值同為耵的 解調訊號W的正交運算後’剛好正負抵消;當感測訊號vin的某一頻率分量 低於f時,經過週期值同為T1的解調訊號w的正交運算後,剛好正負相消; 當感測訊號的頻率分量為直流值(DC)時,經過週期值同為T1的解調訊號w 的正交運算後,剛好正負相消;只有感測訊號Vin中的頻率分量f正好符合 1/T1時,經過週期值同為T1的解調訊號W的乘加運算後的頻率分量才會被 取出。 請繼續參閱第6圖’感測訊號Vin分成交流項(AC term)、相對位移項 (dummy term)與直流項(DC term)。因為感應器106實際所收到的感測訊號 Vin並不剛好是三角波形’而是具有攜帶相位資訊tag卜tag2的相對位移項、 201113775 交流項、直流項和雜訊的混合波形。如第6圖所示,解調訊號w的訊號分量 176與相對位移項的訊號分量172的乘積,恰好與解調訊號w的訊號分量178 與相對位移項的訊號分量174的乘積相同,故兩者相互抵銷濾除。同樣的, 直流項和不屬於頻率f的其他頻率的交流項也會被濾除’只有相對位移項中 對應於相位資訊tagl、tag2的脈衝170、具有頻率f的交流項和位於頻率你寸近 的雜訊仍然存在。很明顯的,大部分的雜訊已經被濾除,且位於頻率伽近 的雜訊較小(因為當初所選擇的頻率河選擇在相對雜訊較小的頻率)。而且 ® 不論感應元件1026、1028的電容值是否改變(也就是是否有接觸),相對位移 項中對應於相位資訊tagl、tag2的脈衝170因為非常短暫且為定值,所以可 以忽略。 這麼一來,訊號取出器164可藉由解調訊號W解調感測訊號Vin來判斷 感應元件1026、1028的電容值是否改變。當感應元件1()26、1028因手指或 其它觸控物件接觸時’其電容值(偵測值)就會發生變化。最後控制單元1〇1 就可獲得觸控面板102上被觸碰的感應元件1〇26、1028的座標和施力大小。 ® 請參閱第8圖,第8圖係本發明第二實施例之電子裝置2〇〇和觸控面板 202之功能方塊圖。為了簡化說明,在第8圖中凡是與第4圖所示之元件具有 相同編號者具有相同的功能。感應元件包含2層導電體,其中一層為複數條 探測導體(driving conductor)1022(亦即觸控面板202的每一列),另一層為複 數條感應導體(sensing conductor)1024(亦即觸控面板202的每一行)。而觸控 面板2〇2的探測導體1022與感應導體1024的交點之處形成互電容(mutual capacitance),但兩者並非實體電性接觸。探測器104耗接於一電壓控制器ho 以輸出驅動訊號。電壓控制器110會轉換數位調變驅動訊號為類比訊號。類 15 201113775 比調變驅動訊號經由輸出入通道114傳送至每一條探測導體1〇22,而感應器 106透過輸出入通道112耦接於每一條感應導體1〇24,用來接收感測訊號。 控制單元201係以數位訊號處理器(Digitai signalpr〇cess〇r,DSp)或是軟體程 式碼加以實現。控制單元1〇1的探測器104會輪流輸出驅動訊號以驅動每一 條探測導體1022 ’當手指、驗筆或其他物制時多點接觸(multi_touch)到 觸控面板202時,與探測導體1022交錯的感應導體1〇24的某點會發生電容耦 合現象使得感應導體1024產生的感測訊號會發生電壓變化。經逐一掃描每 一條探測導體1022後即可獲知確切觸點位置。舉例來說,觸控物件(例如手 指)在接觸自電容式觸控面板1〇2時,手指與導線1〇2〇間產生電容耦合而使感 測訊號的霞發錢化,控鮮元1()1會根舰觀號發找電壓變化判斷 觸碰點的位置。為了簡化說明,探測器1〇4與感應器1〇6的功能與運作第4圖 所繪示的相同元件一致,在此不另贅述。 請參閱第9圖,第9圖係本發明處理電子裝置之資訊之方法流程圖。該 方法包含以下步驟: 步驟900 :利用訊號產生器142產生具有預設週期T1之驅動訊號146。 步驟902 .利用相位產生器144附加相位資訊tagi、tag2於該驅動訊號146, 並傳送至觸控面板之感應元件1〇26、1〇28上。 步騾904 :於一物件接觸該觸控面板102之一感應元件1026、1028時,產生 一感測訊號Vin。 步驟906 :利用相位偵測器162執行一峰值檢測以獲得該感測訊號vin對應於 柏位資訊tagl、tag2之處,並據此產生一解調起始點。 201113775 步驟908 :依據相位資訊tagl、tag2和驅動訊號146的預設週期T1產生一解調 訊號W,並利用該解調訊號tegl、tag2解調感測訊號Vin以決定觸 控面板102的被觸控位置。 以上實施例的觸控面板102的自電容式感應元件1〇26、1028作為說明, 熟悉此項技藝者可了解互電容式感應元件或是電阻式感應元件的操作原理 與其近似,在另一實施例中,訊號產生器104也可以是一偽隨機雜訊碼 (Pseudomndom noise code,PN code)產生器,驅動訊號146係一隨機產生之 • 方波。 相較於先前技術,本發明的探測器利用相位攜帶器將相位資訊附加於 驅動訊號上以產生一調變驅動訊號。感應元件再依據調變驅動訊號產生對 應的感測訊號。最後感應器的相位偵測器可以直接從感測訊號可自行讀出 驅動訊號的週期和相位位置,所以不需要額外電路作相位補償。因此可大 大減少開發的成本。 雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,任 籲何熟習此技藝者’在不麟本發明之精神和範圍内,當可作各種之更動與 修改,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係傳統具有觸控面板之電子裝置之示意圖。 第2圖係顯示觸控面板之感測訊號有無雜訊時之時序圖。 第3圖係第1圖之控制單元之功能方塊圖。 第4 _本發明之第—實補之電子裝置之魏方塊圖。 第5圖係第4圖之探測器各元件產生之訊號之時序圖。 第6圖係第4圖之感測訊號、調變驅動訊號、解調訊號之時序圖。 17 201113775 第7圖係繪示感測訊號的頻率分量為直流、高過f、等於f和小於f時 與解調訊號的關係。 第8圖係本發明第二實施例之電子裝置和觸控面板之功能方塊圖。 第9圖係本發明處理電子裝置之資訊之方法流程圖。 【主要元件符號說明】 10 電子裝置 11 觸控面板 12 感應元件陣列 14 控制單元 16、18 多工器 22 相位校正器 24 訊號產生器 26 感應器 100、200 電子裝置 101 ' 201 控制單元 102'202 觸控面板 104 探測器 106 感應器 108 類比數位轉換器 110 電流源 112 輪出入通道 142 訊號產生器 144 相位攜帶器 162 相位偵測器 164 訊號取出器 170 相位資訊脈衝 172、174 直流項的訊號分量 176、178 相位資訊的訊號分量 28 累計器 1022 探測導體 1024 感應導體 1026、1028感應元件 18Ttag2 generates a demodulation signal W. The demodulation signal W is a square wave (or a sine wave) whose period coincides with the period T1 of the driving signal 146, and the delay time (tl') of the rising edge of the demodulation signal w is delayed from the first phase information tagl by "Ttagl+( Tl/2-Ttag2),,, the delay time (t2') of the falling edge of the demodulation signal W is delayed by "Ttagl+Tl/2+(T/2-Ttag2)/2' from the first phase information. Demodulate the digital value of the signal square wave (1, -1). Please refer to Figure 7. FIG. 7 illustrates the demodulation principle of the signal extractor 164. The signal extractor 164 performs an orthogonal operation on the sensing signal Vin by using the demodulation signal W to extract the same frequency component of the sensing signal Vin as the demodulation signal W. In DSP coding, the above operation can be marked as zero, where Vin represents the sensing signal, W represents the demodulation signal, and Μ represents the total number of measurement points and the number of measurements. As shown in FIG. 7, when the frequency component of the sensing signal Vin is higher than f, after the orthogonal operation of the demodulated signal W whose period value is the same, the 'just positive and negative offset; when a certain frequency of the sensing signal vin When the component is lower than f, after the orthogonal operation of the demodulation signal w whose period value is the same as T1, it is just positive and negative cancellation; when the frequency component of the sensing signal is a direct current value (DC), the period value is the same as T1. After the orthogonal operation of the demodulation signal w, it is just positive and negative cancellation; only when the frequency component f in the sensing signal Vin coincides with 1/T1, the frequency after the multiplication and addition of the demodulation signal W whose period value is the same as T1 The component will be taken out. Please continue to refer to Fig. 6. The sense signal Vin is divided into an AC term, a relative term, and a DC term. Because the sensing signal Vin actually received by the sensor 106 is not exactly a triangular waveform, but has a mixed waveform carrying the relative displacement term of the phase information tagtag2, the 201113775 AC term, the DC term, and the noise. As shown in Fig. 6, the product of the signal component 176 of the demodulation signal w and the signal component 172 of the relative displacement term is exactly the same as the product of the signal component 178 of the demodulation signal w and the signal component 174 of the relative displacement term. The offsets are offset by each other. Similarly, the DC term and the AC term of other frequencies not belonging to the frequency f are also filtered out 'only the pulse 170 corresponding to the phase information tagl, tag2, the AC term with the frequency f, and the frequency at the frequency of the relative displacement term. The noise still exists. Obviously, most of the noise has been filtered out, and the noise at the frequency gamma is small (because the frequency of the river selected at the beginning is chosen to be less frequent than the noise). Moreover, regardless of whether the capacitance values of the sensing elements 1026, 1028 are changed (i.e., whether there is contact), the pulse 170 corresponding to the phase information tagl, tag2 in the relative displacement term is negligible because it is very short and constant. In this way, the signal extractor 164 can determine whether the capacitance values of the sensing elements 1026, 1028 are changed by demodulating the sensing signal Vin by the demodulation signal W. When the sensing elements 1() 26, 1028 are touched by a finger or other touch object, their capacitance value (detected value) changes. Finally, the control unit 1〇1 can obtain the coordinates and the force applied to the touched sensing elements 1〇26, 1028 on the touch panel 102. ® Referring to FIG. 8, FIG. 8 is a functional block diagram of the electronic device 2A and the touch panel 202 of the second embodiment of the present invention. In order to simplify the description, in Fig. 8, the same functions as those of the elements shown in Fig. 4 have the same functions. The sensing element comprises two layers of electrical conductors, one of which is a plurality of driving conductors 1022 (that is, each column of the touch panel 202), and the other layer is a plurality of sensing conductors 1024 (ie, a touch panel). Each line of 202). The mutual capacitance of the detecting conductor 1022 of the touch panel 2〇2 and the sensing conductor 1024 forms a mutual capacitance, but the two are not physically electrically contacted. The detector 104 is consuming a voltage controller ho to output a driving signal. The voltage controller 110 converts the digital modulation drive signal to an analog signal. The analog drive signal is transmitted to each of the detecting conductors 1 and 22 via the input and output channels 114, and the sensor 106 is coupled to each of the sensing conductors 1 and 24 through the input and output channels 112 for receiving the sensing signals. The control unit 201 is implemented by a digital signal processor (Digitai signalpr〇cess〇r, DSp) or a software program code. The detector 104 of the control unit 101 will alternately output the driving signals to drive each of the detecting conductors 1022' to be interleaved with the detecting conductors 1022 when a multi-touch is touched to the touch panel 202 by a finger, a pen or other object. A capacitive coupling phenomenon occurs at a certain point of the inductive conductor 1 〇 24 such that a voltage change occurs in the sensing signal generated by the sensing conductor 1024. The exact contact position is known by scanning each of the probe conductors 1022 one by one. For example, when a touch object (for example, a finger) contacts the self-capacitive touch panel 1〇2, a capacitive coupling occurs between the finger and the wire 1〇2, so that the sensing signal is saved, and the control element 1 is used. () 1 will be the root of the ship to look for the voltage change to determine the location of the touch point. In order to simplify the description, the functions of the detector 1〇4 and the sensor 1〇6 are the same as those of the operation of Fig. 4, and will not be further described herein. Please refer to FIG. 9. FIG. 9 is a flow chart of a method for processing information of an electronic device according to the present invention. The method includes the following steps: Step 900: Using the signal generator 142 to generate a driving signal 146 having a preset period T1. Step 902: The phase generator 144 is used to add the phase information tagi, tag2 to the driving signal 146, and is transmitted to the sensing elements 1 〇 26, 1 〇 28 of the touch panel. Step 904: A sensing signal Vin is generated when an object contacts one of the sensing elements 1026, 1028 of the touch panel 102. Step 906: Perform a peak detection by the phase detector 162 to obtain the sensing signal vin corresponding to the berth information tagl, tag2, and generate a demodulation starting point accordingly. 201113775 Step 908: Generate a demodulation signal W according to the preset period T1 of the phase information tagl, tag2 and the driving signal 146, and demodulate the sensing signal Vin by using the demodulating signals tegl and tag2 to determine the touch of the touch panel 102. Control position. The self-capacitive sensing elements 1 〇 26 and 1028 of the touch panel 102 of the above embodiment are described as an explanation. Those skilled in the art can understand the operation principle of the mutual capacitive sensing element or the resistive sensing element and approximate it. In another implementation, In the example, the signal generator 104 can also be a Pseudomndom noise code (PN code) generator, and the driving signal 146 is a randomly generated square wave. In contrast to the prior art, the detector of the present invention utilizes a phase carrier to append phase information to the drive signal to produce a modulated drive signal. The sensing component then generates a corresponding sensing signal according to the modulated driving signal. Finally, the phase detector of the sensor can read the period and phase position of the driving signal directly from the sensing signal, so no additional circuit is needed for phase compensation. This can greatly reduce the cost of development. While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and it is to be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. [Simple description of the drawing] Fig. 1 is a schematic view of an electronic device having a conventional touch panel. Figure 2 is a timing diagram showing the presence or absence of noise in the sensing signal of the touch panel. Figure 3 is a functional block diagram of the control unit of Figure 1. 4th - The Wei block diagram of the electronic device of the first embodiment of the present invention. Figure 5 is a timing diagram of the signals generated by the various components of the detector of Figure 4. Figure 6 is a timing diagram of the sensing signal, the modulated driving signal, and the demodulated signal of Figure 4. 17 201113775 Figure 7 shows the relationship between the frequency component of the sensed signal and the demodulated signal when the frequency component of the sense signal is DC, higher than f, equal to f and less than f. Figure 8 is a functional block diagram of an electronic device and a touch panel according to a second embodiment of the present invention. Figure 9 is a flow chart of a method of processing information of an electronic device of the present invention. [Main component symbol description] 10 Electronic device 11 Touch panel 12 Inductive element array 14 Control unit 16, 18 multiplexer 22 Phase corrector 24 Signal generator 26 Sensor 100, 200 Electronic device 101 '201 Control unit 102'202 Touch panel 104 detector 106 sensor 108 analog to digital converter 110 current source 112 wheel in and out channel 142 signal generator 144 phase carrier 162 phase detector 164 signal extractor 170 phase information pulse 172, 174 DC component signal component 176, 178 phase information signal component 28 accumulator 1022 detecting conductor 1024 sensing conductor 1026, 1028 sensing element 18

Claims (1)

201113775 七、申請專利範圍: 1. 一種電子裝置,其包含: 一觸控面板’其包含複數個感應元件; -探測器’用來傳送-驅動訊號,該驅動訊號係具有—預設週期且附加 相位資訊;以及 -感應器’絲接卜_訊號並根據該驅動訊號的該預設週期以及該 ^ 相位資訊決定一偵測值。 2. 如申請專利範圍S1項所述之電子裝置,其中該探測器包含: 一訊號產生器,用來產生該驅動訊號;以及 -相位攜帶器(taggeneratOT),_於該訊號產生器,用來產生該相位資 訊,並附加該相位資訊於該驅動訊號上。 3. 如申請專利細第2顿述之電子裝置,其巾舰缝生㉞生之該驅 動訊號係方波’該相位攜帶器用來將該相位資訊附加於該駆動訊號之 • 上升緣(nsing edge) ’或是附加於該驅動訊號之下降緣(falling edge),使 附加該相位資訊之該驅動訊號之上升緣振幅低於該方波之最低振幅,或 是附加該相位資訊之該驅動訊號之下降緣振幅高於該方波之最高振幅。 今如申請專利範圍第丨項所述之電子裝置,其中每一感應元件係一自電容 式感應元件。 5·如申請專利範圍第6項所述之電子裝置,其中每一感應元件係 一互電容 式感應元件。 6·如申請專利範圍第1項所述之電子裝置,其中該感應器包含: 19 201113775 一訊號取出器(Signal Extractor) ’用來依據該驅動訊號的該預設週期和 該相位資訊之脈寬產生一解調訊號,並依據該解調訊號解調 (demodulate)該感測訊號以決定該彳貞測值;以及 一相位偵測器(TagDetector) ’耦接於該訊號取出器,用來於該感測訊號 之振幅大於一預設值時,啟動該訊號取出器。 7. 如申請專利範圍第6項所述之電子裝置,其另包含一記憶體,用來儲存 該感測訊號之波形,其中該相位偵測器係用來依據該相位資訊對該感 測訊號執行自相關(autocorrelation)計算時,啟動該訊號取出器。 隹 8. 如申請專利範圍第1項所述之電子裝置,其另包含一類比數位轉換器, 耦接於該感應器以及該觸控面板之該感應元件之間,用來取樣該感測 訊號。 9. 如申請專利範圍第1項所述之電子裝置,其中該感應器以及該探測器係 以一數位訊號處理器(Digital signal processor)加以實現。 10. 如申請專利範圍第1項所述之電子裝置,其中該訊號產生器係一偽隨機 雜訊碼(Pseudorandom noise code,PN code),該驅動訊號係一隨機產生 籲 之方波。 11. 如申請專利範圍第1項所述之電子裝置,其中每一感應元件係一電阻式 感應元件。 12. 如申明專利範圍第1項所述之電子裝置,其中 該測器用來對轉接的每一感應元件輸出不同週期之驅動訊號; 該感應器用來對輕接的每一感應元件產生複數個伽值,每一侧值 係與該相位=貝訊、每一感應元件對應接收的該驅動訊號的預設週期 20 201113775 以及該感測訊號的變化有關。 13. —種用於處理一電子裝置之感測訊號之方法,該電子裝置包含一觸控 面板,其包含複數個感應元件,該方法包含: 產生具有一預設週期之一驅動訊號; 附加相位資訊於該驅動訊號並傳送至該觸控面板之該等感應元件上; 於-物件制賴控面板之-錢元件時,產生―制訊號; 執行一峰值檢測(peak detection)以獲得該感測訊號對應於該相位資訊 Φ 之處,並據此產生一解調起始點;以及 依卿她㈣和娜動域的賊勸產生—_城,並利用該 解調訊號解綱制訊肋蚊鞠控面板馳觸控位置。 M_如申請專利範圍第13項所述之方法,其中該驅動訊號係一錢,該相位 資爾加於該驅動訊號之上升緣或下降緣,使附加該相位資訊之該驅動 紕號之上升緣振巾§低於該方波之最低振幅,㈤時附加該她資訊之該驅 動訊號之下降緣振幅高於該方波之最高振幅。 馨^如申請專利範圍第13項所述之方法,其中每一感應元件係一自電容式感 應元件。 16.如申請專利!_13項所述之方法,其情—感應元件係—互電容式感 應元件。 π.如U利細第丨3項所述之方法’其中該驅動訊號係—隨機產生之方 波。 1SH專利項所述之方法,其中每—感應元件係—電阻式感應 元件。 201113775 19.如申請專利範圍第13項所述之方法,其另包含: 當該感測訊號之振幅大於一預設值時,依據該驅動訊號的週期和該相位 資訊之脈寬產生一解調訊號;以及 依據該解調訊號解調該感測訊號以決定該偵測值。201113775 VII. Patent application scope: 1. An electronic device comprising: a touch panel comprising a plurality of sensing elements; - a detector for transmitting a driving signal, the driving signal having a preset period and being attached Phase information; and - the sensor 'wires the _ signal and determines a detection value according to the preset period of the driving signal and the phase information. 2. The electronic device of claim S1, wherein the detector comprises: a signal generator for generating the driving signal; and a phase carrier (taggeneratOT), for the signal generator, for The phase information is generated and the phase information is appended to the drive signal. 3. If the electronic device of the patent application No. 2 is applied, the driving signal of the towel is 34 square waves. The phase carrier is used to attach the phase information to the rising edge of the swaying signal (nsing edge) Or 'adding to the falling edge of the driving signal, so that the rising edge amplitude of the driving signal to which the phase information is added is lower than the lowest amplitude of the square wave, or the driving signal to which the phase information is added The falling edge amplitude is higher than the highest amplitude of the square wave. The electronic device of claim 2, wherein each of the sensing elements is a self-capacitive sensing element. 5. The electronic device of claim 6, wherein each of the sensing elements is a mutual capacitive sensing element. 6. The electronic device of claim 1, wherein the sensor comprises: 19 201113775 A Signal Extractor ' is used to determine the pulse width of the drive signal according to the preset period and the phase information. Generating a demodulation signal, and demodulating the sensing signal according to the demodulation signal to determine the measured value; and a phase detector (TagDetector) coupled to the signal extractor for When the amplitude of the sensing signal is greater than a preset value, the signal extractor is activated. 7. The electronic device of claim 6, further comprising a memory for storing a waveform of the sensing signal, wherein the phase detector is configured to sense the signal according to the phase information The signal extractor is started when an autocorrelation calculation is performed. The electronic device of claim 1, further comprising an analog-to-digital converter coupled between the sensor and the sensing element of the touch panel for sampling the sensing signal . 9. The electronic device of claim 1, wherein the sensor and the detector are implemented by a digital signal processor. 10. The electronic device of claim 1, wherein the signal generator is a Pseudorandom noise code (PN code), and the drive signal is a square wave randomly generated. 11. The electronic device of claim 1, wherein each of the sensing elements is a resistive sensing element. 12. The electronic device of claim 1, wherein the detector is configured to output a driving signal of a different period for each of the inductive components of the adapter; the inductor is configured to generate a plurality of signals for each sensing component that is lightly connected. The gamma value is associated with the phase = the signal, the preset period 20 201113775 of the driving signal corresponding to each sensing element, and the change of the sensing signal. 13. A method for processing a sensing signal of an electronic device, the electronic device comprising a touch panel comprising a plurality of sensing elements, the method comprising: generating a driving signal having a predetermined period; The driving signal is transmitted to the sensing elements of the touch panel; when the object is controlled by the money component of the control panel, a signal is generated; and a peak detection is performed to obtain the sensing The signal corresponds to the phase information Φ, and according to this, a demodulation starting point is generated; and the thief of the Qing (4) and Nadong domain provokes the generation of the _ city, and uses the demodulation signal to solve the problem The control panel is in the touch position. The method of claim 13, wherein the driving signal is a money, and the phase is added to the rising edge or the falling edge of the driving signal, so that the driving signal of the phase information is increased. The edge vibration § is lower than the lowest amplitude of the square wave, and (5) the falling edge amplitude of the driving signal to which the information is attached is higher than the highest amplitude of the square wave. The method of claim 13, wherein each of the sensing elements is a self-capacitive sensing element. 16. The method of claim [13], wherein the sensing component is a mutual capacitive sensing component. π. The method of claim 3, wherein the driving signal is a randomly generated square wave. The method of the 1SH patent, wherein each of the sensing elements is a resistive sensing element. The method of claim 13, wherein the method further comprises: when the amplitude of the sensing signal is greater than a predetermined value, generating a demodulation according to a period of the driving signal and a pulse width of the phase information a signal; and demodulating the sensing signal according to the demodulation signal to determine the detection value. 22twenty two
TW98134626A 2009-10-13 2009-10-13 Electronic device using phase-tagged capacitance sensing circuit and related method for the same TWI410833B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98134626A TWI410833B (en) 2009-10-13 2009-10-13 Electronic device using phase-tagged capacitance sensing circuit and related method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98134626A TWI410833B (en) 2009-10-13 2009-10-13 Electronic device using phase-tagged capacitance sensing circuit and related method for the same

Publications (2)

Publication Number Publication Date
TW201113775A true TW201113775A (en) 2011-04-16
TWI410833B TWI410833B (en) 2013-10-01

Family

ID=44909782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98134626A TWI410833B (en) 2009-10-13 2009-10-13 Electronic device using phase-tagged capacitance sensing circuit and related method for the same

Country Status (1)

Country Link
TW (1) TWI410833B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365511A (en) * 2012-03-29 2013-10-23 禾瑞亚科技股份有限公司 Method and device for measuring signal of touch screen
TWI456490B (en) * 2011-09-30 2014-10-11 Hsiung Kuang Tsai Driving method of visual interface system
TWI501135B (en) * 2013-12-02 2015-09-21 LCD touch device
US9372585B2 (en) 2012-05-18 2016-06-21 Egalax₋Empia Technology Inc. Method and device for detecting capacitive touch screen
CN107231146A (en) * 2016-03-25 2017-10-03 松下知识产权经营株式会社 Operation switch
US9823768B2 (en) 2012-05-18 2017-11-21 Egalax_Empia Technology Inc. Signal measuring method and device for touch screen
US10438558B2 (en) 2011-09-30 2019-10-08 Slim Hmi Technology Driving method of visual interface system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3394187B2 (en) * 1997-08-08 2003-04-07 シャープ株式会社 Coordinate input device and display integrated type coordinate input device
JP3729163B2 (en) * 2001-08-23 2005-12-21 セイコーエプソン株式会社 Electro-optical panel driving circuit, driving method, electro-optical device, and electronic apparatus
TWI226583B (en) * 2003-03-14 2005-01-11 Higher Way Electronic Co Ltd Coordinates detection method and system for a touch panel
US7812827B2 (en) * 2007-01-03 2010-10-12 Apple Inc. Simultaneous sensing arrangement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456490B (en) * 2011-09-30 2014-10-11 Hsiung Kuang Tsai Driving method of visual interface system
US10438558B2 (en) 2011-09-30 2019-10-08 Slim Hmi Technology Driving method of visual interface system
CN103365511A (en) * 2012-03-29 2013-10-23 禾瑞亚科技股份有限公司 Method and device for measuring signal of touch screen
CN107092383B (en) * 2012-03-29 2020-09-11 禾瑞亚科技股份有限公司 Touch processor
US9372585B2 (en) 2012-05-18 2016-06-21 Egalax₋Empia Technology Inc. Method and device for detecting capacitive touch screen
US9823768B2 (en) 2012-05-18 2017-11-21 Egalax_Empia Technology Inc. Signal measuring method and device for touch screen
TWI501135B (en) * 2013-12-02 2015-09-21 LCD touch device
CN107231146A (en) * 2016-03-25 2017-10-03 松下知识产权经营株式会社 Operation switch

Also Published As

Publication number Publication date
TWI410833B (en) 2013-10-01

Similar Documents

Publication Publication Date Title
TW201113775A (en) Electronic device using phase-tagged capacitance sensing circuit and related method for the same
US10761643B2 (en) Touch sensor circuit
CA2805189C (en) Capacitive touch sensor having code-divided and time-divided transmit waveforms
CN104718702B (en) Electronic equipment, electrostatic capacitance sensor and touch panel
US9612693B2 (en) Capacitive touch sensor having correlation with a receiver
KR101863162B1 (en) Techniques for locally improving signal to noise in a capacitive touch sensor
US8305352B2 (en) Phase-tagged capacitance sensing circuit and electronic device using the same
JP2011003036A (en) Pointer detection apparatus and pointer detection method
JP2018526734A (en) Semi-passive stylus
CN102467305B (en) Electronic device with capacitive induction circuit carrying phase information, and method for electronic device
JP5852818B2 (en) Touch panel controller, input device using the same, and electronic device
KR102634468B1 (en) Touch sensing device and touch sensing system using multi driving signal
JP2013065212A (en) Touch panel controller, touch panel unit, touch panel driving method, and electronic information device
MXPA02003854A (en) Position sensor.
TWI621981B (en) Touch panel and sensing method of touch panel
CN109407867A (en) Touch detection system and its detection method, touch device
CN102467282A (en) Touch sensing device and method for detecting touch event of sensing array
KR20220084786A (en) Two levels coding/decoding based touch sensing apparatus and touch sensing method for mutual capacitance touch sensor