TWI409972B - Method for fabricating a coarse surface of semiconductor - Google Patents

Method for fabricating a coarse surface of semiconductor Download PDF

Info

Publication number
TWI409972B
TWI409972B TW99144959A TW99144959A TWI409972B TW I409972 B TWI409972 B TW I409972B TW 99144959 A TW99144959 A TW 99144959A TW 99144959 A TW99144959 A TW 99144959A TW I409972 B TWI409972 B TW I409972B
Authority
TW
Taiwan
Prior art keywords
type doped
layer
semiconductor layer
doped semiconductor
gas
Prior art date
Application number
TW99144959A
Other languages
Chinese (zh)
Other versions
TW201228028A (en
Inventor
Zhong Shan Gao
Original Assignee
Lextar Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lextar Electronics Corp filed Critical Lextar Electronics Corp
Priority to TW99144959A priority Critical patent/TWI409972B/en
Priority to CN201110285551.3A priority patent/CN102569548B/en
Publication of TW201228028A publication Critical patent/TW201228028A/en
Application granted granted Critical
Publication of TWI409972B publication Critical patent/TWI409972B/en

Links

Abstract

The invention provides a semiconductor surface roughening method, which comprises the following steps: providing a substrate; forming a first type doped semiconductor layer and a light-emitting layer on the substrate sequentially; adjusting the air pressure range within 300 to 700 mbar; setting the predetermined temperature range to be 850 to 1200 degrees; and forming a second type doped semiconductor layer on the light-emitting surface. Then etching gas and passivation gas are introduced into the surface of the second type doped semiconductor layer for 10 to 120 minutes within the predetermined air pressure range and the predetermined temperature range, so that the surface concavo-convex structure of the second type doped semiconductor layer is realized.

Description

半導體表面粗糙化方法 Semiconductor surface roughening method

本發明是有關於一種半導體表面粗糙化方法,且特別是有關於一種增加內部量子效率之半導體表面粗糙化方法。 The present invention relates to a semiconductor surface roughening method, and more particularly to a semiconductor surface roughening method that increases internal quantum efficiency.

由於發光二極體與傳統燈泡比較具有絕對的優勢,例如體積小、壽命長、低電壓/電流驅動、不易破裂、發光時無顯著之熱問題、不含水銀(沒有污染問題)、發光效率佳(省電)等特性,且近幾年來發光二極體的發光效率不斷提升,因此發光二極體在某些領域已漸漸取代日光燈與白熱燈泡。 Because the light-emitting diode has absolute advantages compared with the traditional light bulb, such as small size, long life, low voltage/current drive, not easy to break, no significant heat problem when emitting light, no mercury (no pollution problem), good luminous efficiency. (Power saving) and other characteristics, and in recent years, the luminous efficiency of LEDs has been increasing, so LEDs have gradually replaced fluorescent lamps and incandescent bulbs in some fields.

圖1繪示為習知發光二極體的剖面示意圖。其中,在基板102上依序形成n型半導體摻雜層104、發光層106、p型半導體摻雜層108,為求能提高發光二極體的光萃取效率,一般會將p型半導體摻雜層108表面粗糙化,以避免內部的全反射。而習知p型半導體摻雜層108粗糙化方法為在低溫低壓的條件下,使p型半導體摻雜層108表面生成凹凸構造110,但不幸的是,在此條件下卻會使p型半導體摻雜層108成長的品質較差而出現缺陷112,導致內部量子效率下降,進而使發光二極體整體外部量子效率降低。 FIG. 1 is a schematic cross-sectional view of a conventional light emitting diode. The n-type semiconductor doping layer 104, the light emitting layer 106, and the p-type semiconductor doping layer 108 are sequentially formed on the substrate 102. In order to improve the light extraction efficiency of the light emitting diode, the p-type semiconductor is generally doped. Layer 108 is roughened to avoid internal total reflection. The conventional p-type semiconductor doped layer 108 is roughened by forming a concavo-convex structure 110 on the surface of the p-type semiconductor doped layer 108 under low temperature and low pressure conditions, but unfortunately, under such conditions, the p-type semiconductor is formed. The doped layer 108 is poor in quality and defects 112 occur, resulting in a decrease in internal quantum efficiency, which in turn reduces the overall external quantum efficiency of the light-emitting diode.

有鑑於此,本發明的目的就是在提供一種半導體表面粗糙化方法,其可以增加內部量子效率。 In view of the above, it is an object of the present invention to provide a semiconductor surface roughening method which can increase internal quantum efficiency.

本發明提出一種半導體表面粗糙化的製造方法,首先提供基板,在基板上形成第一型摻雜半導體層,並在第一型摻雜半導體層表面上形成發光層,接著於預定氣壓範圍與預定溫度範圍內, 在發光層表面沉積形成第二型摻雜半導體層。之後,繼續於此預定氣壓範圍與於此預定溫度範圍內,通入蝕刻氣體與鈍化氣體至第二型摻雜半導體層表面達預定時間,以完成第二型摻雜半導體層表面之凹凸構造。 The invention provides a manufacturing method for roughening a semiconductor surface, firstly providing a substrate, forming a first type doped semiconductor layer on the substrate, and forming a light emitting layer on the surface of the first type doped semiconductor layer, followed by a predetermined pressure range and predetermined Within the temperature range, A second type doped semiconductor layer is deposited on the surface of the light emitting layer. Thereafter, continuing to the predetermined gas pressure range and the predetermined temperature range, the etching gas and the passivation gas are introduced to the surface of the second-type doped semiconductor layer for a predetermined time to complete the uneven structure of the surface of the second-type doped semiconductor layer.

在本發明的一實施例中,上述基板可以是藍寶石基板或碳化矽基板。 In an embodiment of the invention, the substrate may be a sapphire substrate or a tantalum carbide substrate.

在本發明的一實施例中,上述第一型摻雜半導體層可為n型摻雜半導體層,而第二型摻雜層可為p型摻雜半導體層。 In an embodiment of the invention, the first type doped semiconductor layer may be an n-type doped semiconductor layer, and the second type doped layer may be a p-type doped semiconductor layer.

在本發明的一實施例中,上述第一型摻雜半導體層可為p型摻雜半導體層,而第二型摻雜層可為n型摻雜半導體層。 In an embodiment of the invention, the first type doped semiconductor layer may be a p-type doped semiconductor layer, and the second type doped layer may be an n-type doped semiconductor layer.

在本發明的一實施例中,上述發光層可為多量子井結構層。 In an embodiment of the invention, the luminescent layer may be a multi-quantum well structural layer.

在本發明的一實施例中,上述那些摻雜半導體層可以分別為n型摻雜氮化鎵(GaN)層與p型摻雜氮化鎵(GaN)層,預定氣壓範圍為300至700毫巴(mbar),預定溫度範圍為攝氏850至1200度。 In an embodiment of the invention, the doped semiconductor layers may be an n-type doped gallium nitride (GaN) layer and a p-type doped gallium nitride (GaN) layer, respectively, and the predetermined gas pressure ranges from 300 to 700 millimeters. Bar (mbar), the predetermined temperature range is 850 to 1200 degrees Celsius.

在本發明的一實施例中,上述蝕刻氣體可為氫氣(H2),鈍化氣體可為氨氣(NH3)或氮氣(N2),預定時間之範圍為10至120分鐘。 In an embodiment of the invention, the etching gas may be hydrogen (H 2 ), and the passivating gas may be ammonia (NH 3 ) or nitrogen (N 2 ) for a predetermined time ranging from 10 to 120 minutes.

在本發明的一實施例中,上述半導體表面粗糙化方法更可包含下列步驟:於預定時間結束後,再通入修補氣體,修補氣體可為三甲基鎵(TMGa)氣體或三乙基鎵(TEGa)或三甲基銦(TMIn)。 In an embodiment of the invention, the semiconductor surface roughening method may further comprise the steps of: after the predetermined time is over, the repair gas is introduced, and the repair gas may be trimethylgallium (TMGa) gas or triethyl gallium. (TEGa) or trimethylindium (TMIn).

在本發明的一實施例中,上述凹凸構造可為高低差達200至800奈米之三角錐狀凹凸構造。 In an embodiment of the invention, the concavo-convex structure may be a triangular pyramid-shaped concavo-convex structure having a height difference of 200 to 800 nm.

在本發明的一實施例中,上述第二型摻雜半導體層可以氣相沉積所形成。 In an embodiment of the invention, the second type doped semiconductor layer may be formed by vapor deposition.

在本發明之半導體表面粗糙化製程中,是利用高溫高壓的條件,使第二型摻雜半導體層的緻密度較低溫低壓形成時好,以提升內部量子效率。形成第二型摻雜半導體層後,再以蝕刻氣體進 行蝕刻將其表面粗糙化,使第二型摻雜半導體層表面生成凹凸構造以增加光萃取效率。 In the semiconductor surface roughening process of the present invention, the conditions of high temperature and high pressure are utilized, so that the density of the second type doped semiconductor layer is formed at a lower temperature and low pressure to improve the internal quantum efficiency. After forming the second type doped semiconductor layer, the etching gas is further introduced The row etching roughens the surface to form a textured structure on the surface of the second type doped semiconductor layer to increase the light extraction efficiency.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

圖2A、2B為本發明之一實施例中半導體表面粗糙化製程的剖面示意圖。請參照圖2A,首先提供基板208,在基板208上形成第一型摻雜半導體層210,在第一型摻雜半導體層210上形成發光層212,接著,於高溫高壓條件下,以氣相沉積法在發光層212之表面上沉積形成第二型摻雜半導體層214。在本實施例中,將反應室中之預定氣壓範圍調整在約為300至700毫巴(mbar),預定溫度範圍控制在攝氏850至1200度左右,藉以達成高溫高壓之環境。詳細來說,以此高溫高壓條件下所形成之第二型摻雜半導體層214,其較低溫低壓條件下所形成之習用第二型摻雜半導體層,改善因發光層212上之缺陷所造成習用第二型摻雜半導體層緻密度下降的問題,本案第二型摻雜半導體層214表面與習知第二型摻雜半導體層相比,第二型摻雜半導體層214減少了奈米級孔洞的數量,使電流分佈較為均勻,進而提升了本案第二型摻雜半導體層214之內部量子效率。 2A and 2B are schematic cross-sectional views showing a semiconductor surface roughening process in an embodiment of the present invention. Referring to FIG. 2A, a substrate 208 is first provided, a first type doped semiconductor layer 210 is formed on the substrate 208, a light emitting layer 212 is formed on the first type doped semiconductor layer 210, and then, in a gas phase under high temperature and high pressure conditions. A deposition method deposits a second type doped semiconductor layer 214 on the surface of the light emitting layer 212. In the present embodiment, the predetermined pressure range in the reaction chamber is adjusted to be about 300 to 700 mbar, and the predetermined temperature range is controlled to be about 850 to 1200 degrees Celsius, thereby achieving an environment of high temperature and high pressure. In detail, the second type doped semiconductor layer 214 formed under the high temperature and high pressure condition has a conventional second type doped semiconductor layer formed under low temperature and low pressure conditions, thereby improving defects caused by the light emitting layer 212. The problem of the density reduction of the second type doped semiconductor layer is conventional. In the present case, the surface of the second type doped semiconductor layer 214 is reduced in nanometer level compared with the conventional second type doped semiconductor layer. The number of holes makes the current distribution relatively uniform, thereby improving the internal quantum efficiency of the second type doped semiconductor layer 214 of the present invention.

而在本案實施例中,基板208的材質可為藍寶石基板或碳化矽基板,第一型摻雜半導體層210可為n型摻雜半導體層,而第二型摻雜半導體層214為p型摻雜半導體層,但本發明不以此為限。在其他實施例中,第一型摻雜半導體層210也可為p型摻雜半導體層,而第二型摻雜層214可為n型摻雜半導體層。此外,第一型摻雜半導體層210、發光層212及第二型摻雜半導體層214 可由III-V族化合物半導體材料所構成。一般來說,第一型摻雜半導體層210的材質可為n型摻雜的氮化鎵,發光層212的材質可為Ⅲ-V族元素為主的量子井結構,如氮化鎵(GaN)、砷化鎵(GaAs)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、氮化鋁(AlN)、氮化銦(InN)、三元組成之氮化銦鎵(InGaN)和氮化鋁鎵(AlGaN)、或四元組成的氮砷化銦鎵(GaInAsN)和氮磷化銦鎵(GaInPN)等,而第二型摻雜半導體層214的材質則可為p型摻雜的氮化鎵。以下為說明方便,將第二型半導體摻雜層214以p型氮化鎵摻雜半導體層為例來進行闡述。 In the embodiment of the present invention, the material of the substrate 208 may be a sapphire substrate or a tantalum carbide substrate, the first type doped semiconductor layer 210 may be an n-type doped semiconductor layer, and the second type doped semiconductor layer 214 may be a p-type doped layer. A hetero semiconductor layer, but the invention is not limited thereto. In other embodiments, the first type doped semiconductor layer 210 may also be a p-type doped semiconductor layer, and the second type doped layer 214 may be an n-type doped semiconductor layer. In addition, the first type doped semiconductor layer 210, the light emitting layer 212, and the second type doped semiconductor layer 214 It can be composed of a III-V compound semiconductor material. Generally, the material of the first type doped semiconductor layer 210 may be n-type doped gallium nitride, and the material of the light emitting layer 212 may be a quantum well structure mainly composed of a group III-V element, such as gallium nitride (GaN). GaAs, GaAs, GaP, GaAsP, AlN, InN, ternary Indium Gallium Ni Aluminum gallium nitride (AlGaN), or quaternary composition of indium gallium arsenide (GaInAsN) and indium gallium phosphide (GaInPN), etc., and the material of the second type doped semiconductor layer 214 may be p-type doped Gallium nitride. For convenience of description, the second type semiconductor doped layer 214 is exemplified by a p-type gallium nitride doped semiconductor layer.

再請參照圖2B,於相同高溫(攝氏850至1200度)高壓(300至700毫巴(mbar))的條件下,本案製程繼續於反應室中之p型氮化鎵摻雜半導體層214表面通入蝕刻氣體202、鈍化氣體204,達到反應預定時間之範圍10至120分鐘後,p型氮化鎵摻雜半導體層214表面經蝕刻粗糙化形成多個凹凸構造216。而使p型氮化鎵摻雜半導體層214表面產生粗糙化的目的是降低光線自其射出時發生全反射現象的機率,進而提升半導體的光萃取效率。通入鈍化氣體204的目的在於蝕刻氣體202蝕刻p型氮化鎵摻雜半導體層214時並沒有選擇性,也就是無論p型氮化鎵摻雜半導體層214的晶格穩定面、不穩定面皆會遭受侵蝕,通入鈍化氣體204能抑制p型氮化鎵摻雜半導體層214的穩定面被蝕刻,使被蝕刻表面形成的凹凸構造216能較為規則,不至於雜亂無章。在本實施例中,蝕刻氣體202可為氫氣(H2),而鈍化氣體204可為氨氣(NH3)或氮氣(N2)。除此之外,達到此反應預定時間之範圍10至120分鐘後關掉以上氣體,再通入修補氣體206,修補氣體206例如是三甲基鎵(TMGa)氣體或三乙基鎵(TEGa)或三甲基銦(TMIn)等,其功用為填平p型氮化鎵摻雜半導體層214在氣相沉積過程和蝕刻 過程所造成氮原子損失之缺陷。此時p型氮化鎵摻雜半導體層214粗糙化後之表面已形成高低差達200至800奈米之多個三角錐狀凹凸構造。 Referring again to FIG. 2B, in the same high temperature (850 to 1200 degrees Celsius) high voltage (300 to 700 mbar), the process continues on the surface of the p-type gallium nitride doped semiconductor layer 214 in the reaction chamber. After the etching gas 202 and the passivation gas 204 are introduced to reach the reaction for a predetermined time period of 10 to 120 minutes, the surface of the p-type gallium nitride doped semiconductor layer 214 is roughened by etching to form a plurality of concavo-convex structures 216. The purpose of roughening the surface of the p-type gallium nitride doped semiconductor layer 214 is to reduce the probability of total reflection from light when it is emitted, thereby improving the light extraction efficiency of the semiconductor. The purpose of the passivation gas 204 is that the etching gas 202 does not selectively etch the p-type gallium nitride doped semiconductor layer 214, that is, the lattice stable surface and the unstable surface of the p-type gallium nitride doped semiconductor layer 214. All of them will be eroded, and the passivation gas 204 can prevent the stable surface of the p-type gallium nitride doped semiconductor layer 214 from being etched, so that the uneven structure 216 formed on the surface to be etched can be relatively regular and not disordered. In the present embodiment, the etching gas 202 may be hydrogen (H 2 ), and the passivating gas 204 may be ammonia (NH 3 ) or nitrogen (N 2 ). In addition, after the predetermined time period of the reaction is reached for 10 to 120 minutes, the above gas is turned off, and then the repair gas 206 is introduced, and the repair gas 206 is, for example, trimethylgallium (TMGa) gas or triethylgallium (TEGa). Or trimethyl indium (TMIn) or the like, which functions to fill in defects of nitrogen atom loss caused by the p-type gallium nitride doped semiconductor layer 214 during the vapor deposition process and the etching process. At this time, the roughened surface of the p-type gallium nitride doped semiconductor layer 214 has formed a plurality of triangular pyramidal concavo-convex structures having a height difference of 200 to 800 nm.

在本發明之半導體表面粗糙化製程中,是利用高溫高壓的條件形成第二型半導體摻雜層,此後繼續在同樣的條件下通入蝕刻氣體、鈍化氣體和修補氣體使第二型半導體摻雜層表面粗糙化生成三角錐狀凹凸構造,降低光線從第二型半導體摻雜層射出發生全反射現象的機率,以增加元件的光萃取效率。如此一來,在高溫高壓製程同樣可以蝕刻達成第二型半導體摻雜層粗糙化目的,並且也使得第二型半導體摻雜層的緻密度較低溫低壓製程時好,相對提升了發光二極體內部量子效率和整體外部量子效率。 In the semiconductor surface roughening process of the present invention, the second type semiconductor doped layer is formed by using high temperature and high pressure conditions, and thereafter, the second type semiconductor is doped by introducing an etching gas, a passivation gas, and a repair gas under the same conditions. The roughening of the layer surface produces a triangular pyramidal concavo-convex structure, which reduces the probability of light being emitted from the second type semiconductor doped layer to cause total reflection, thereby increasing the light extraction efficiency of the element. In this way, the high-temperature and high-pressure process can also be etched to achieve the purpose of roughening the second-type semiconductor doping layer, and also makes the second-type semiconductor doped layer have a lower density and a lower temperature and low-pressure process, and relatively enhances the light-emitting diode. Quantum efficiency and overall external quantum efficiency.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

102、208‧‧‧基板 102, 208‧‧‧ substrate

104‧‧‧n型半導體摻雜層 104‧‧‧n-type semiconductor doped layer

106、212‧‧‧發光層 106, 212‧‧‧Lighting layer

108‧‧‧p型半導體摻雜層 108‧‧‧p-type semiconductor doped layer

110、216‧‧‧凹凸構造 110, 216‧‧‧ concave and convex structure

112‧‧‧缺陷 112‧‧‧ Defects

202‧‧‧蝕刻氣體 202‧‧‧etching gas

204‧‧‧鈍化氣體 204‧‧‧ Passivation gas

206‧‧‧修補氣體 206‧‧‧ repair gas

210‧‧‧第一型摻雜半導體層 210‧‧‧First type doped semiconductor layer

214‧‧‧第二型摻雜半導體層 214‧‧‧Second type doped semiconductor layer

圖1繪示為習知發光二極體的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a conventional light emitting diode.

圖2A、2B為本發明之一實施例中半導體表面粗糙化製程的剖面示意圖。 2A and 2B are schematic cross-sectional views showing a semiconductor surface roughening process in an embodiment of the present invention.

202‧‧‧蝕刻氣體 202‧‧‧etching gas

204‧‧‧鈍化氣體 204‧‧‧ Passivation gas

206‧‧‧修補氣體 206‧‧‧ repair gas

208‧‧‧基板 208‧‧‧Substrate

210‧‧‧第一型摻雜半導體層 210‧‧‧First type doped semiconductor layer

212‧‧‧發光層 212‧‧‧Lighting layer

214‧‧‧第二型摻雜半導體層 214‧‧‧Second type doped semiconductor layer

216‧‧‧凹凸構造 216‧‧‧ concave and convex structure

Claims (8)

一種半導體表面粗糙化方法,其包含下列步驟:提供一基板;於該基板上形成一第一型摻雜半導體層;於該第一型摻雜半導體層表面上形成一發光層;於一預定氣壓範圍與一預定溫度範圍內,在該發光層表面沉積形成一第二型摻雜半導體層,其中該等摻雜半導體層係分別為n型摻雜氮化鎵(GaN)層與p型摻雜氮化鎵(GaN)層,該預定氣壓範圍為300至700毫巴(mbar),該預定溫度範圍為攝氏850至1200度;以及於該預定氣壓範圍與該預定溫度範圍內,通入一蝕刻氣體與一鈍化氣體至該第二型摻雜半導體層表面達一預定時間,並於該預定時間結束後,再通入一修補氣體,該修補氣體可為三甲基鎵(TMGa)氣體或三乙基鎵(TEGa)或三甲基銦(TMIn),以完成該第二型摻雜半導體層表面之至少一凹凸構造。 A semiconductor surface roughening method, comprising the steps of: providing a substrate; forming a first type doped semiconductor layer on the substrate; forming a light emitting layer on the surface of the first type doped semiconductor layer; And forming a second type doped semiconductor layer on the surface of the light emitting layer in a range and a predetermined temperature range, wherein the doped semiconductor layers are respectively an n-type doped gallium nitride (GaN) layer and a p-type doping a gallium nitride (GaN) layer, the predetermined gas pressure range being 300 to 700 mbar, the predetermined temperature range being 850 to 1200 degrees Celsius; and an etching is performed in the predetermined gas pressure range and the predetermined temperature range And a passivating gas is applied to the surface of the second type doped semiconductor layer for a predetermined time, and after the predetermined time is over, a repair gas is introduced, and the repair gas may be trimethylgallium (TMGa) gas or three Ethylene gallium (TEGa) or trimethyl indium (TMIn) to complete at least one relief structure of the surface of the second type doped semiconductor layer. 如申請專利範圍第1項所述之半導體表面粗糙化方法,其中該基板係為一藍寶石基板或一碳化矽基板。 The semiconductor surface roughening method according to claim 1, wherein the substrate is a sapphire substrate or a tantalum carbide substrate. 如申請專利範圍第1項所述之半導體表面粗糙化方法,其中該第一型摻雜半導體層係為一n型摻雜半導體層,而該第二型摻雜層係為一p型摻雜半導體層。 The semiconductor surface roughening method according to claim 1, wherein the first type doped semiconductor layer is an n-type doped semiconductor layer, and the second type doped layer is a p-type doping Semiconductor layer. 如申請專利範圍第1項所述之半導體表面粗糙化方法,其中該第一型摻雜半導體層係為一p型摻雜半導體層,而該第二型摻雜層係為一n型摻雜半導體層。 The semiconductor surface roughening method according to claim 1, wherein the first type doped semiconductor layer is a p-type doped semiconductor layer, and the second type doped layer is an n-type doping Semiconductor layer. 如申請專利範圍第1項所述之半導體表面粗糙化方法,其中該發光層係為一多量子井結構層。 The method of roughening a semiconductor surface according to claim 1, wherein the luminescent layer is a multi-quantum well structure layer. 如申請專利範圍第1項所述之半導體表面粗糙化方法,其中該蝕刻氣體為氫氣(H2),該鈍化氣體為氨氣(NH3)或氮氣(N2),該預定時間之範圍為10至120分鐘。 The semiconductor surface roughening method according to claim 1, wherein the etching gas is hydrogen (H 2 ), and the passivating gas is ammonia (NH 3 ) or nitrogen (N 2 ), and the predetermined time range is 10 to 120 minutes. 如申請專利範圍第1項所述之半導體表面粗糙化方法,其中各該凹凸構造係為高差低達200至800奈米之一三角錐狀凹凸構造。 The semiconductor surface roughening method according to claim 1, wherein each of the uneven structures is a triangular pyramidal uneven structure having a height difference of as low as 200 to 800 nm. 如申請專利範圍第1項所述之半導體表面粗糙化方法,其中該第二型摻雜半導體層係以氣相沉積所形成。 The semiconductor surface roughening method according to claim 1, wherein the second type doped semiconductor layer is formed by vapor deposition.
TW99144959A 2010-12-21 2010-12-21 Method for fabricating a coarse surface of semiconductor TWI409972B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99144959A TWI409972B (en) 2010-12-21 2010-12-21 Method for fabricating a coarse surface of semiconductor
CN201110285551.3A CN102569548B (en) 2010-12-21 2011-09-23 Semiconductor surface roughening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99144959A TWI409972B (en) 2010-12-21 2010-12-21 Method for fabricating a coarse surface of semiconductor

Publications (2)

Publication Number Publication Date
TW201228028A TW201228028A (en) 2012-07-01
TWI409972B true TWI409972B (en) 2013-09-21

Family

ID=46414487

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99144959A TWI409972B (en) 2010-12-21 2010-12-21 Method for fabricating a coarse surface of semiconductor

Country Status (2)

Country Link
CN (1) CN102569548B (en)
TW (1) TWI409972B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441403B1 (en) * 2000-06-23 2002-08-27 United Epitaxy Company, Ltd. Semiconductor device with roughened surface increasing external quantum efficiency
US20050224816A1 (en) * 2004-03-30 2005-10-13 Kim Sun W Nitride based semiconductor having improved external quantum efficiency and fabrication method thereof
JP2007103891A (en) * 2005-09-06 2007-04-19 Showa Denko Kk Gallium-nitride-based compound semiconductor light emitting element and its manufacturing method
TW200810151A (en) * 2006-03-23 2008-02-16 Showa Denko Kk Process for producing gallium nitride type compound semiconductor light emitting element, gallium nitride type compound semiconductor light emitting element, and lamp using the same
TW200816523A (en) * 2006-07-26 2008-04-01 Lg Electronics Inc Nitride-based light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568555C (en) * 2006-09-05 2009-12-09 武汉迪源光电科技有限公司 Coarsening electrode is used for high-brightness packed LED chip and vertical LED chip
CN101226977A (en) * 2007-12-18 2008-07-23 西安电子科技大学 Processing method of GaN basis light emitting diode surface coarsing
CN101702419B (en) * 2009-10-30 2011-07-06 华南师范大学 Surface roughening method of p-GaN layer or ITO layer in GaN-based LED chip structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441403B1 (en) * 2000-06-23 2002-08-27 United Epitaxy Company, Ltd. Semiconductor device with roughened surface increasing external quantum efficiency
US20050224816A1 (en) * 2004-03-30 2005-10-13 Kim Sun W Nitride based semiconductor having improved external quantum efficiency and fabrication method thereof
JP2007103891A (en) * 2005-09-06 2007-04-19 Showa Denko Kk Gallium-nitride-based compound semiconductor light emitting element and its manufacturing method
TW200810151A (en) * 2006-03-23 2008-02-16 Showa Denko Kk Process for producing gallium nitride type compound semiconductor light emitting element, gallium nitride type compound semiconductor light emitting element, and lamp using the same
TW200816523A (en) * 2006-07-26 2008-04-01 Lg Electronics Inc Nitride-based light emitting device

Also Published As

Publication number Publication date
CN102569548B (en) 2014-05-07
TW201228028A (en) 2012-07-01
CN102569548A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP3219854U (en) III-V nitride semiconductor epitaxial wafer and III-V nitride semiconductor device
US9490392B2 (en) P-type doping layers for use with light emitting devices
CN108091740B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
US20080315180A1 (en) Semiconductor light emitting device
CN109119515B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
US20150318441A9 (en) P-type doping layers for use with light emitting devices
CN102664145A (en) Method for growing asymmetric electron storing layer high-luminance luminous diode by metal organic compound gas phase epitaxy technology
Chang et al. Effect of electron leakage on efficiency droop in wide-well InGaN-based light-emitting diodes
US10361339B2 (en) Light emitting device and manufacturing method therefor
CN110828623B (en) Light-emitting diode preparation method and light-emitting diode
CN104576852A (en) Stress regulation method for luminous quantum wells of GaN-based LED epitaxial structure
Huang et al. Improving InGaN-LED performance by optimizing the patterned sapphire substrate shape
US8513039B2 (en) Method for fabricating semiconductor lighting chip
CN113206175A (en) Light emitting diode epitaxial wafer and preparation method thereof
JP2006339427A (en) Method for producing epitaxial wafer for nitride semiconductor light-emitting diode, epitaxial wafer for the nitride semiconductor light-emitting diode, and the nitride semiconductor light-emitting diode
CN114256394B (en) Light-emitting diode and preparation method thereof
CN1996625A (en) GaN base optical electronic part and its making method
CN109346585B (en) Epitaxial wafer for reducing working voltage of gallium nitride-based light-emitting diode and growth method
CN111599904A (en) LED epitaxial wafer grown on Si substrate and preparation method thereof
CN116722083A (en) Preparation method of high-radiation light-emitting diode and light-emitting diode
TWI409972B (en) Method for fabricating a coarse surface of semiconductor
KR100722818B1 (en) Method of manufacturing light emitting diode
CN114220891A (en) Epitaxial wafer of semiconductor device and manufacturing method and application thereof
CN107910411B (en) Light emitting diode and preparation method thereof
KR101239856B1 (en) Light-emitting diode and Method of manufacturing the same