TWI408753B - Fabricating method of thin film transistor - Google Patents

Fabricating method of thin film transistor Download PDF

Info

Publication number
TWI408753B
TWI408753B TW99128835A TW99128835A TWI408753B TW I408753 B TWI408753 B TW I408753B TW 99128835 A TW99128835 A TW 99128835A TW 99128835 A TW99128835 A TW 99128835A TW I408753 B TWI408753 B TW I408753B
Authority
TW
Taiwan
Prior art keywords
layer
patterned photoresist
ultraviolet light
photoresist layer
light shielding
Prior art date
Application number
TW99128835A
Other languages
Chinese (zh)
Other versions
TW201209928A (en
Inventor
Chia Hsiang Chen
Ming Chin Hung
Chun Hao Tu
Wei Ting Lin
Jiun Jye Chang
Po Lun Chen
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW99128835A priority Critical patent/TWI408753B/en
Publication of TW201209928A publication Critical patent/TW201209928A/en
Application granted granted Critical
Publication of TWI408753B publication Critical patent/TWI408753B/en

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

A fabricating method of thin film transistor including: forming a gate on a substrate; sequentially forming a gate insulator, an oxide semiconductor layer and an ultraviolet shielding material layer for covering the gate; forming a first patterned photoresist layer on the ultraviolet shielding material layer; patterning the oxide semiconductor layer and the ultraviolet shielding material layer to form an oxide channel layer by using the first patterned photoresist layer as a mask; forming a second photoresist layer by removing parts of the first photoresist layer, wherein parts of the ultraviolet shielding material layer is exposed by the second photoresist layer; patterning the ultraviolet shielding material layer to form an ultraviolet shielding pattern by using the second patterned photoresist layer as a mask; removing the second patterned photoresist layer; and forming a source and a drain electrically insulated from one another.

Description

薄膜電晶體的製造方法Method for manufacturing thin film transistor

本發明是有關於一種薄膜電晶體的製造方法,且特別是有關於一種具有氧化物通道層以及紫外光遮蔽圖案之薄膜電晶體的製造方法。The present invention relates to a method of fabricating a thin film transistor, and more particularly to a method of fabricating a thin film transistor having an oxide channel layer and an ultraviolet light shielding pattern.

近來環保意識抬頭,具有低消耗功率、空間利用效率佳、無輻射、高畫質等優越特性的平面顯示面板(flat display panels)已成為市場主流。常見的平面顯示器包括液晶顯示器(liquid crystal displays)、電漿顯示器(plasma displays)、有機電激發光顯示器(electroluminescent displays)等。以目前最為普及的液晶顯示器為例,其主要是由薄膜電晶體陣列基板、彩色濾光基板以及夾於二者之間的液晶層所構成。在習知的薄膜電晶體陣列基板上,多採用非晶矽(a -Si)薄膜電晶體或低溫多晶矽薄膜電晶體作為各個子畫素的切換元件。近年來,已有研究指出氧化物半導體(oxide semiconductor)薄膜電晶體相較於非晶矽薄膜電晶體,具有較高的載子移動率(mobility),而氧化物半導體薄膜電晶體相較於低溫多晶矽薄膜電晶體,則具有較佳的臨界電壓(threat hold voltage,Vth)均勻性。因此,氧化物半導體薄膜電晶體有潛力成為下一代平面顯示器之關鍵元件。Recently, environmental awareness has risen, and flat display panels with low power consumption, good space utilization efficiency, no radiation, and high image quality have become mainstream in the market. Common flat panel displays include liquid crystal displays, plasma displays, electroluminescent displays, and the like. Taking the most popular liquid crystal display as an example, it is mainly composed of a thin film transistor array substrate, a color filter substrate, and a liquid crystal layer sandwiched therebetween. On a conventional thin film transistor array substrate, an amorphous germanium ( a- Si) thin film transistor or a low temperature polycrystalline germanium thin film transistor is often used as a switching element of each sub-pixel. In recent years, studies have shown that oxide semiconductor thin film transistors have higher carrier mobility than amorphous germanium thin film transistors, while oxide semiconductor thin films are lower than low temperature. The polycrystalline germanium film transistor has a better threshold hold voltage (Vth) uniformity. Therefore, oxide semiconductor thin film transistors have the potential to become key components of next-generation flat panel displays.

在習知的氧化物半導體薄膜電晶體中,其氧化物通道層之臨界電壓(Vth)會受到紫外光照射(例如清洗製程)而產生偏移,進而影響到氧化物半導體薄膜電晶體的電器特性,因此已有習知技術提出採用具有紫外光遮蔽效果之氧化鈦(TiOx)作為閘絕緣層或保護層之材質,以避免氧化物通道層之臨界電壓偏移的問題。閘絕緣層或保護層是全面性地覆蓋於薄膜電晶體陣列基板上。然而,在一般的聚合物穩定配向(Polymer Stabilization Alignment,PSA)的液晶顯示面板中,通常會使用到紫外光照射液晶分子以完成液晶之配向製程,前述採用氧化鈦(TiOx)作為閘絕緣層或保護層之設計會導致配向製程中所使用的紫外光無法穿透薄膜電晶體陣列基板,因此液晶分子內的單體(monomer)無法受到紫外光照射而聚合成高分子聚合物,導致液晶配向製程失敗。In a conventional oxide semiconductor thin film transistor, the threshold voltage (Vth) of the oxide channel layer is deflected by ultraviolet light (for example, a cleaning process), thereby affecting electrical characteristics of the oxide semiconductor thin film transistor. Therefore, it has been proposed in the prior art to use titanium oxide (TiOx) having an ultraviolet light shielding effect as a material of a gate insulating layer or a protective layer to avoid the problem of a threshold voltage shift of the oxide channel layer. The gate insulating layer or the protective layer is entirely covered on the thin film transistor array substrate. However, in a general polymer stabilization alignment (PSA) liquid crystal display panel, ultraviolet light is usually used to illuminate liquid crystal molecules to complete a liquid crystal alignment process, and the foregoing uses titanium oxide (TiOx) as a gate insulating layer or The design of the protective layer may cause the ultraviolet light used in the alignment process to not penetrate the thin film transistor array substrate, so that the monomer in the liquid crystal molecule cannot be polymerized into a high molecular polymer by ultraviolet light irradiation, resulting in a liquid crystal alignment process. failure.

本發明提供一種薄膜電晶體的製造方法,以製造出具有紫外光遮蔽圖案之薄膜電晶體。The present invention provides a method of manufacturing a thin film transistor to produce a thin film transistor having an ultraviolet light shielding pattern.

本發明提出一種薄膜電晶體的製造方法,包括:於基板上形成閘極;與基板上依序形成閘絕緣層、氧化物半導體層以及紫外光遮蔽材料層,以覆蓋閘極;於閘極上方之紫外光遮蔽材料層上形成第一圖案化光阻層;以第一圖案化光阻層為罩幕,圖案化氧化物半導體層以及紫外光遮蔽材料層,以於紫外光遮蔽材料層下方形成氧化物通道層;移除部分第一圖案化光阻層,以形成第二圖案化光阻層,其中第二圖案化光阻層暴露出部分紫外光遮蔽材料層;以第二圖案化光阻層為罩幕,圖案化紫外光遮蔽材料層,以於氧化物通道層之部分區域上形成紫外光遮蔽圖案;移除第二圖案化光阻層;以及於氧化物通道層以及紫外光遮蔽圖案上形成彼此電性絕緣之源極與汲極。The invention provides a method for manufacturing a thin film transistor, comprising: forming a gate on a substrate; sequentially forming a gate insulating layer, an oxide semiconductor layer and an ultraviolet shielding material layer on the substrate to cover the gate; above the gate Forming a first patterned photoresist layer on the ultraviolet shielding material layer; using the first patterned photoresist layer as a mask, patterning the oxide semiconductor layer and the ultraviolet shielding material layer to form under the ultraviolet shielding material layer An oxide channel layer; removing a portion of the first patterned photoresist layer to form a second patterned photoresist layer, wherein the second patterned photoresist layer exposes a portion of the ultraviolet light shielding material layer; and the second patterned photoresist layer The layer is a mask, and the ultraviolet light shielding material layer is patterned to form an ultraviolet light shielding pattern on a portion of the oxide channel layer; the second patterned photoresist layer is removed; and the oxide channel layer and the ultraviolet light shielding pattern are The source and the drain are electrically insulated from each other.

在本發明之一實施例中,前述之第一圖案化光阻層包括第一部分以及第二部分,第一部分的厚度大於第二部分的厚度,而形成第二圖案化光阻層的方法包括移除第一部分與第二部分,直到第二部分被完全移除,而未被完全移除的第一部分構成第二圖案化光阻層。In an embodiment of the invention, the first patterned photoresist layer comprises a first portion and a second portion, the thickness of the first portion being greater than the thickness of the second portion, and the method of forming the second patterned photoresist layer comprises moving Except for the first portion and the second portion, until the second portion is completely removed, and the first portion that is not completely removed constitutes the second patterned photoresist layer.

在本發明之一實施例中,在形成紫外光遮蔽圖案之後以及移除第二圖案化光阻層之前,更包括對未被第二圖案化光阻層覆蓋之氧化物通道層進行處理,以使未被第二圖案化光阻層覆蓋之氧化物通道層具有歐姆接觸層之特性。In an embodiment of the invention, after forming the ultraviolet light shielding pattern and before removing the second patterned photoresist layer, further comprising processing the oxide channel layer not covered by the second patterned photoresist layer to The oxide channel layer not covered by the second patterned photoresist layer has the property of an ohmic contact layer.

在本發明之一實施例中,移除部分第一圖案化光阻層的方法包括灰化(ashing)。In an embodiment of the invention, the method of removing a portion of the first patterned photoresist layer includes ashing.

在本發明之一實施例中,前述之紫外光遮蔽材料層之材質包括氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。In an embodiment of the invention, the material of the ultraviolet shielding material layer comprises titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich SiOx).

本發明另提供一種薄膜電晶體的製造方法,包括:於基板上形成閘極;與基板上依序形成閘絕緣層、第一紫外光遮蔽材料層、氧化物半導體層以及第二紫外光遮蔽材料層,以覆蓋閘極;於閘極上方之第二紫外光遮蔽材料層上形成第一圖案化光阻層;以第一圖案化光阻層為罩幕,圖案化第二紫外光遮蔽材料層、氧化物半導體層以及第一紫外光遮蔽材料層,以於第二紫外光遮蔽材料層下方形成形成氧化物通道層以及第一紫外光遮蔽圖案;移除部分第一圖案化光阻層,以形成第二圖案化光阻層,其中第二圖案化光阻層暴露出部分第二紫外光遮蔽材料層;以第二圖案化光阻層為罩幕,圖案化第二紫外光遮蔽材料層,以於氧化物通道層之部分區域上形成第二紫外光遮蔽圖案;移除第二圖案化光阻層;以及於氧化物通道層以及第二紫外光遮蔽圖案上形成彼此電性絕緣之源極與汲極。The present invention further provides a method for fabricating a thin film transistor, comprising: forming a gate on a substrate; sequentially forming a gate insulating layer, a first ultraviolet light shielding material layer, an oxide semiconductor layer, and a second ultraviolet light shielding material on the substrate; a layer to cover the gate; forming a first patterned photoresist layer on the second ultraviolet shielding material layer above the gate; patterning the second ultraviolet shielding material layer with the first patterned photoresist layer as a mask And an oxide semiconductor layer and a first ultraviolet light shielding material layer to form an oxide channel layer and a first ultraviolet light shielding pattern under the second ultraviolet light shielding material layer; and removing a portion of the first patterned photoresist layer to Forming a second patterned photoresist layer, wherein the second patterned photoresist layer exposes a portion of the second ultraviolet light shielding material layer; and the second patterned photoresist layer is used as a mask to pattern the second ultraviolet light shielding material layer, Forming a second ultraviolet light shielding pattern on a portion of the oxide channel layer; removing the second patterned photoresist layer; and forming mutual electricity on the oxide channel layer and the second ultraviolet light shielding pattern Source and drain insulation to the extreme poles.

在本發明之一實施例中,前述之第一圖案化光阻層包括第一部分以及第二部分,第一部分的厚度大於第二部分的厚度,而形成第二圖案化光阻層的方法包括移除第一部分與第二部分,直到第二部分被完全移除,而未被完全移除的第一部分構成第二圖案化光阻層。In an embodiment of the invention, the first patterned photoresist layer comprises a first portion and a second portion, the thickness of the first portion being greater than the thickness of the second portion, and the method of forming the second patterned photoresist layer comprises moving Except for the first portion and the second portion, until the second portion is completely removed, and the first portion that is not completely removed constitutes the second patterned photoresist layer.

在本發明之一實施例中,在形成第二紫外光遮蔽圖案之後以及移除第二圖案化光阻層之前,更包括對未被第二圖案化光阻層覆蓋之氧化物通道層進行處理,以使未被第二圖案化光阻層覆蓋之氧化物通道層具有歐姆接觸層之特性。In an embodiment of the invention, after forming the second ultraviolet light shielding pattern and before removing the second patterned photoresist layer, further comprising processing the oxide channel layer not covered by the second patterned photoresist layer So that the oxide channel layer not covered by the second patterned photoresist layer has the characteristics of an ohmic contact layer.

在本發明之一實施例中,移除部分第一圖案化光阻層的方法包括灰化(ashing)。In an embodiment of the invention, the method of removing a portion of the first patterned photoresist layer includes ashing.

在本發明之一實施例中,第一紫外光遮蔽材料層之材質包括氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。In an embodiment of the invention, the material of the first ultraviolet shielding material layer comprises titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich SiOx).

在本發明之一實施例中,前述之第二紫外光遮蔽材料層之材質包括氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。In an embodiment of the invention, the material of the second ultraviolet shielding material layer comprises titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich SiOx).

本發明再提出一種薄膜電晶體的製造方法,包括:於基板上形成閘極;於基板上依序形成閘絕緣層、紫外光遮蔽材料層、氧化物半導體層以及導電層,以覆蓋閘極;圖案化導電層、氧化物半導體層以及紫外光遮蔽材料層,以於導電層下方形成形成氧化物通道層以及第一紫外光遮蔽圖案;於導電層的部分區域以及閘絕緣層的部分區域上形成彼此電性絕緣之源極與汲極;以及對未被源極與汲極覆蓋之導電層進行處理,以使未被源極與汲極覆蓋之導電層轉化為絕緣之第二紫外光遮蔽圖案。The invention further provides a method for manufacturing a thin film transistor, comprising: forming a gate on a substrate; sequentially forming a gate insulating layer, an ultraviolet light shielding material layer, an oxide semiconductor layer and a conductive layer on the substrate to cover the gate; Forming a conductive layer, an oxide semiconductor layer, and an ultraviolet light shielding material layer to form an oxide channel layer and a first ultraviolet light shielding pattern under the conductive layer; forming a partial region of the conductive layer and a partial region of the gate insulating layer a source and a drain electrically insulated from each other; and a conductive layer not covered by the source and the drain to convert the conductive layer not covered by the source and the drain into an insulating second ultraviolet light shielding pattern .

在本發明之一實施例中,前述之導電層包括鈦(Ti)、Zn、Sn或Zr。In an embodiment of the invention, the aforementioned conductive layer comprises titanium (Ti), Zn, Sn or Zr.

在本發明之一實施例中,前述之第二紫外光遮蔽圖案之材質包括氧化鈦(TiOx)、ZnOx、SnOx或ZrOx。In an embodiment of the invention, the material of the second ultraviolet light shielding pattern comprises titanium oxide (TiOx), ZnOx, SnOx or ZrOx.

在本發明之一實施例中,前述之紫外光遮蔽材料層之材質包括氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。In an embodiment of the invention, the material of the ultraviolet shielding material layer comprises titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich SiOx).

在本發明之一實施例中,將導電層轉化為絕緣之第二紫外光遮蔽圖案的方法包括電漿氧化或熱氧化。In one embodiment of the invention, a method of converting a conductive layer into an insulated second ultraviolet light shielding pattern comprises plasma oxidation or thermal oxidation.

本發明又提出一種薄膜電晶體的製造方法,包括:於基板上形成閘極;於基板上依序形成閘絕緣層、氧化物半導體層以及導電層,以覆蓋閘極;圖案化導電層以及氧化物半導體層,以於導電層下方形成形成氧化物通道層;於導電層的部分區域以及閘絕緣層的部分區域上形成彼此電性絕緣之源極與汲極;以及對未被源極與汲極覆蓋之導電層進行處理,以使未被源極與汲極覆蓋之導電層轉化為絕緣之紫外光遮蔽圖案。The invention further provides a method for manufacturing a thin film transistor, comprising: forming a gate on a substrate; sequentially forming a gate insulating layer, an oxide semiconductor layer and a conductive layer on the substrate to cover the gate; patterning the conductive layer and oxidizing a semiconductor layer for forming an oxide channel layer under the conductive layer; forming a source and a drain electrically insulated from each other on a partial region of the conductive layer and a portion of the gate insulating layer; and a pair of sources and regions The highly covered conductive layer is processed to convert the conductive layer not covered by the source and the drain into an insulating ultraviolet light shielding pattern.

在本發明之一實施例中,前述之導電層包括鈦(Ti)、Zn、Sn或Zr。In an embodiment of the invention, the aforementioned conductive layer comprises titanium (Ti), Zn, Sn or Zr.

在本發明之一實施例中,前述之紫外光遮蔽圖案之材質包括氧化鈦(TiOx)、ZnOx、SnOx或ZrOx。In an embodiment of the invention, the material of the ultraviolet light shielding pattern comprises titanium oxide (TiOx), ZnOx, SnOx or ZrOx.

在本發明之一實施例中,將導電層轉化為絕緣之紫外光遮蔽圖案的方法包括電漿氧化或熱氧化。In one embodiment of the invention, a method of converting a conductive layer into an insulating ultraviolet light shielding pattern includes plasma oxidation or thermal oxidation.

本發明於氧化物通道層上方或下方形成紫外光遮蔽圖案,由於紫外光遮蔽圖案並未全面性覆蓋於基板上,因此紫外光遮蔽圖案不會導致紫外光完全無法穿透基板。The invention forms an ultraviolet light shielding pattern above or below the oxide channel layer. Since the ultraviolet light shielding pattern is not completely covered on the substrate, the ultraviolet light shielding pattern does not cause the ultraviolet light to completely fail to penetrate the substrate.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

【第一實施例】[First Embodiment]

圖1A至圖1F為本發明第一實施例之薄膜電晶體的製造流程示意圖。請參照圖1A,首先,於基板100上形成閘極G,此閘極G之材質例如為金屬或其他導電材料。接著,於基板100上依序形成閘絕緣層GI、氧化物半導體層110以及紫外光遮蔽材料層120,以覆蓋閘極G。在本實施例中,閘絕緣層GI之材質例如為氧化矽(SiOx)、氮化矽(SiNx)或氮氧化矽(SiOxNy)等介電材質,氧化物半導體層110之材質例如為氧化銦鎵鋅(Indium Gallium Zinc Oxide,IGZO)、氧化鋅(ZnO)、氧化錫(SnO)或二氧化錫(SnO2)等材質,而紫外光遮蔽材料層120之材質例如為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。由於氧化鈦(TiOx)具有良好的紫外光遮蔽能力,因此,此領域具有通常知識者可以根據實際設計需求,適度地更動氧化鈦(TiOx)的折射率與厚度,以獲得適當的的紫外光遮蔽效果。在本實施例中,當紫外光遮蔽材料層120之材質為富矽氧化矽(Si-rich SiOx)時,吾人同樣可以選擇適當的折射率及厚度,以使富矽氧化矽(Si-rich SiOx)具有紫外光遮蔽效果。舉例而言,富矽氧化矽(Si-rich SiOx)之折射率以1.5至2.9為佳,而富矽氧化矽(Si-rich SiOx)的厚度以1000埃至3000埃之間為佳。1A to 1F are schematic views showing a manufacturing process of a thin film transistor according to a first embodiment of the present invention. Referring to FIG. 1A, first, a gate G is formed on the substrate 100. The material of the gate G is, for example, a metal or other conductive material. Next, a gate insulating layer GI, an oxide semiconductor layer 110, and an ultraviolet light shielding material layer 120 are sequentially formed on the substrate 100 to cover the gate G. In the present embodiment, the material of the gate insulating layer GI is, for example, a dielectric material such as yttrium oxide (SiOx), tantalum nitride (SiNx) or yttrium oxynitride (SiOxNy), and the material of the oxide semiconductor layer 110 is, for example, indium gallium oxide. A material such as zinc (Indium Gallium Zinc Oxide, IGZO), zinc oxide (ZnO), tin oxide (SnO) or tin dioxide (SnO 2 ), and the material of the ultraviolet shielding material layer 120 is, for example, titanium oxide (TiOx) or ruthenium. Cerium oxide (Si-rich SiOx). Since titanium oxide (TiOx) has good ultraviolet light shielding ability, those skilled in the art can appropriately change the refractive index and thickness of titanium oxide (TiOx) according to actual design requirements to obtain appropriate ultraviolet light shielding. effect. In the present embodiment, when the material of the ultraviolet shielding material layer 120 is Si-rich SiOx, we can also select an appropriate refractive index and thickness to make the cerium-rich cerium oxide (Si-rich SiOx). ) has an ultraviolet light shielding effect. For example, the refractive index of Si-rich SiOx is preferably from 1.5 to 2.9, and the thickness of Si-rich SiOx is preferably from 1000 angstroms to 3,000 angstroms.

值得注意的是,本實施例可以採用其他具有紫外光遮蔽效果之材質來製造紫外光遮蔽材料層120,本實施例不限定其材質必須為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。It should be noted that in this embodiment, the ultraviolet shielding material layer 120 can be fabricated by using other materials having an ultraviolet shielding effect. The embodiment does not limit the material to be titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich). SiOx).

請參照圖1B,於閘極G上方之紫外光遮蔽材料層120上形成一第一圖案化光阻層130。在本實施例中,第一圖案化光阻層130包括一第一部分132以及一第二部分134,第一部分132的厚度大於第二部分134的厚度。前述之第一圖案化光阻層130例如是以半調式光罩(half-tone mask)、灰階式光罩(gray-tone mask)為遮罩搭配一般之曝光製程所形成。從圖1B可知,第一圖案化光阻層130位於閘極G之正上方,厚度較小的第二部分134分佈於厚度較大的第一部分132的兩側,且第二部分134係與第一部分132連接。Referring to FIG. 1B, a first patterned photoresist layer 130 is formed on the ultraviolet shielding material layer 120 above the gate G. In the present embodiment, the first patterned photoresist layer 130 includes a first portion 132 and a second portion 134. The thickness of the first portion 132 is greater than the thickness of the second portion 134. The first patterned photoresist layer 130 is formed, for example, by a half-tone mask, a gray-tone mask, and a general exposure process. As can be seen from FIG. 1B, the first patterned photoresist layer 130 is located directly above the gate G, and the second portion 134 having a smaller thickness is distributed on both sides of the first portion 132 having a larger thickness, and the second portion 134 is A portion 132 is connected.

請參照圖1C,以第一圖案化光阻層130為罩幕,圖案化氧化物半導體層110以及紫外光遮蔽材料層120,以於被圖案化之紫外光遮蔽材料層120a下方形成氧化物通道層110a。如圖1C所示,未被第一圖案化光阻層130所覆蓋之氧化物半導體層110以及紫外光遮蔽材料層120會被完全移除,直到閘絕緣層GI被暴露出來為止。在本實施例中,圖案化氧化物半導體層110以及紫外光遮蔽材料層120的方式例如是乾式蝕刻。Referring to FIG. 1C, the first patterned photoresist layer 130 is used as a mask to pattern the oxide semiconductor layer 110 and the ultraviolet light shielding material layer 120 to form an oxide channel under the patterned ultraviolet light shielding material layer 120a. Layer 110a. As shown in FIG. 1C, the oxide semiconductor layer 110 and the ultraviolet light shielding material layer 120 not covered by the first patterned photoresist layer 130 are completely removed until the gate insulating layer GI is exposed. In the present embodiment, the manner of patterning the oxide semiconductor layer 110 and the ultraviolet light shielding material layer 120 is, for example, dry etching.

請參照圖1D,移除部分的第一圖案化光阻層130,以形成第二圖案化光阻層140,其中第二圖案化光阻層140暴露出部分紫外光遮蔽材料層120a。在本實施例中,形成第二圖案化光阻層140的方法例如是利用氧氣電漿灰化(O2 plasma ashing)製程移除部分的第一圖案化光阻層130,直到第二部分134被完全移除,而未被完全移除的第一部分132則構成第二圖案化光阻層140。Referring to FIG. 1D, a portion of the first patterned photoresist layer 130 is removed to form a second patterned photoresist layer 140, wherein the second patterned photoresist layer 140 exposes a portion of the ultraviolet light shielding material layer 120a. In this embodiment, the method of forming the second patterned photoresist layer 140 is, for example, using an oxygen plasma ashing process to remove a portion of the first patterned photoresist layer 130 until the second portion 134 is The first portion 132 that is completely removed without being completely removed constitutes the second patterned photoresist layer 140.

請參照圖1E,以第二圖案化光阻層140為罩幕,圖案化紫外光遮蔽材料層120a,以於氧化物通道層110a之部分區域上形成紫外光遮蔽圖案120b。在形成紫外光遮蔽圖案120b之後,本實施例可以選擇性地對未被第二圖案化光阻層140所覆蓋之氧化物通道層110a進行處理,以使未被第二圖案化光阻層140所覆蓋之氧化物通道層110a(斜線標示處)具有歐姆接觸層之特性。舉例而言,本實施例可利用氫氣電漿(H2 plasma)或氬電漿(Ar plasma)對未被第二圖案化光阻層140所覆蓋之氧化物通道層110a進行表面處理,以使未被第二圖案化光阻層140所覆蓋之氧化物通道層110a具有歐姆接觸層之特性。Referring to FIG. 1E, the second patterned photoresist layer 140 is used as a mask to pattern the ultraviolet shielding material layer 120a to form an ultraviolet light shielding pattern 120b on a partial region of the oxide channel layer 110a. After forming the ultraviolet light shielding pattern 120b, the present embodiment can selectively process the oxide channel layer 110a not covered by the second patterned photoresist layer 140 so that the second patterned photoresist layer 140 is not patterned. The covered oxide channel layer 110a (marked at the slanted line) has the characteristics of an ohmic contact layer. For example, in this embodiment, the oxide channel layer 110a not covered by the second patterned photoresist layer 140 may be surface-treated with hydrogen plasma (H2 plasma) or argon plasma (Ar plasma) so that The oxide channel layer 110a covered by the second patterned photoresist layer 140 has the characteristics of an ohmic contact layer.

請參照圖1F,在完成紫外光遮蔽圖案120b之後,移除第二圖案化光阻層140。之後,於氧化物通道層110a以及紫外光遮蔽圖案120b上形成彼此電性絕緣之源極150S與一汲極150D。在本實施例中,源極150S與汲極150D的圖案化製程例如是濕式蝕刻製程,從圖1F可知,由於源極150S、汲極150D以及紫外光遮蔽圖案120b不會讓氧化物通道層110a暴露,因此源極150S與汲極150D的圖案化製程所使用之蝕刻劑(etchant)不會損害到氧化物通道層110a,故氧化物通道層110a的電器特性更為穩定。Referring to FIG. 1F, after the ultraviolet light shielding pattern 120b is completed, the second patterned photoresist layer 140 is removed. Thereafter, a source 150S and a drain 150D electrically insulated from each other are formed on the oxide channel layer 110a and the ultraviolet shielding pattern 120b. In this embodiment, the patterning process of the source 150S and the drain 150D is, for example, a wet etching process. As can be seen from FIG. 1F, since the source 150S, the drain 150D, and the ultraviolet shielding pattern 120b do not allow the oxide channel layer. 110a is exposed, so that the etchant used in the patterning process of the source 150S and the drain 150D does not damage the oxide channel layer 110a, so the electrical characteristics of the oxide channel layer 110a are more stable.

在本實施例中,前述之紫外光遮蔽圖案120b雖無法完全遮蔽入射至氧化物通道層110a之紫外光,但紫外光遮蔽圖案120b可以降低入射至至氧化物通道層110a之紫外光的機率。因此,紫外光遮蔽圖案120b對於氧化物通道層110a之臨界電壓偏移現象仍有一定程度之幫助。In the present embodiment, although the ultraviolet light shielding pattern 120b described above cannot completely shield the ultraviolet light incident on the oxide channel layer 110a, the ultraviolet light shielding pattern 120b can reduce the probability of ultraviolet light incident on the oxide channel layer 110a. Therefore, the ultraviolet light shielding pattern 120b still has a certain degree of help for the threshold voltage shift phenomenon of the oxide channel layer 110a.

【第二實施例】[Second embodiment]

圖2A至圖2F為本發明第二實施例之薄膜電晶體的製造流程示意圖。請參照圖2A,首先,於基板100上形成閘極G,此閘極G之材質例如為金屬或其他導電材料。接著,於基板100上依序形成閘絕緣層GI、氧化物半導體層110以及紫外光遮蔽材料層120,以覆蓋閘極G。在本實施例中,閘絕緣層GI之材質例如為氧化矽(SiOx)、氮化矽(SiNx)或氮氧化矽(SiOxNy)等介電材質,氧化物半導體層110之材質例如為氧化銦鎵鋅(Indium Gallium Zinc Oxide,IGZO)、氧化鋅(ZnO)、氧化錫(SnO)或二氧化錫(SnO2)等材質,而紫外光遮蔽材料層120之材質例如為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。由於氧化鈦(TiOx)具有良好的紫外光遮蔽能力,因此,此領域具有通常知識者可以根據實際設計需求,適度地更動氧化鈦(TiOx)的折射率與厚度,以獲得適當的的紫外光遮蔽效果。在本實施例中,當紫外光遮蔽材料層120之材質為富矽氧化矽(Si-rich SiOx)時,吾人同樣可以選擇適當的折射率及厚度,以使富矽氧化矽(Si-rich SiOx)具有紫外光遮蔽效果。舉例而言,富矽氧化矽(Si-rich SiOx)之折射率以1.5至2.9為佳,而富矽氧化矽(Si-rich SiOx)的厚度以1000埃至3000埃之間為佳。2A to 2F are schematic views showing a manufacturing process of a thin film transistor according to a second embodiment of the present invention. Referring to FIG. 2A, first, a gate G is formed on the substrate 100. The material of the gate G is, for example, a metal or other conductive material. Next, a gate insulating layer GI, an oxide semiconductor layer 110, and an ultraviolet light shielding material layer 120 are sequentially formed on the substrate 100 to cover the gate G. In the present embodiment, the material of the gate insulating layer GI is, for example, a dielectric material such as yttrium oxide (SiOx), tantalum nitride (SiNx) or yttrium oxynitride (SiOxNy), and the material of the oxide semiconductor layer 110 is, for example, indium gallium oxide. A material such as zinc (Indium Gallium Zinc Oxide, IGZO), zinc oxide (ZnO), tin oxide (SnO) or tin dioxide (SnO 2 ), and the material of the ultraviolet shielding material layer 120 is, for example, titanium oxide (TiOx) or ruthenium. Cerium oxide (Si-rich SiOx). Since titanium oxide (TiOx) has good ultraviolet light shielding ability, those skilled in the art can appropriately change the refractive index and thickness of titanium oxide (TiOx) according to actual design requirements to obtain appropriate ultraviolet light shielding. effect. In the present embodiment, when the material of the ultraviolet shielding material layer 120 is Si-rich SiOx, we can also select an appropriate refractive index and thickness to make the cerium-rich cerium oxide (Si-rich SiOx). ) has an ultraviolet light shielding effect. For example, the refractive index of Si-rich SiOx is preferably from 1.5 to 2.9, and the thickness of Si-rich SiOx is preferably from 1000 angstroms to 3,000 angstroms.

值得注意的是,本實施例可以採用其他具有紫外光遮蔽效果之材質來製造紫外光遮蔽材料層120,本實施例不限定其材質必須為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。It should be noted that in this embodiment, the ultraviolet shielding material layer 120 can be fabricated by using other materials having an ultraviolet shielding effect. The embodiment does not limit the material to be titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich). SiOx).

請參照圖2B與圖2C,於閘極G上方之紫外光遮蔽材料層120上形成第一圖案化光阻層130’,如圖2B所示。接著,以第一圖案化光阻層130’為罩幕,圖案化氧化物半導體層110以及紫外光遮蔽材料層120,以於被圖案化之紫外光遮蔽材料層120a下方形成氧化物通道層110a。如圖2C所示,未被第一圖案化光阻層130所覆蓋之氧化物半導體層110以及紫外光遮蔽材料層120會被完全移除,直到閘絕緣層GI被暴露出來為止。在本實施例中,圖案化氧化物半導體層110以及紫外光遮蔽材料層120的方式例如是乾式蝕刻。Referring to FIG. 2B and FIG. 2C, a first patterned photoresist layer 130' is formed on the ultraviolet shielding material layer 120 above the gate G, as shown in FIG. 2B. Next, the first patterned photoresist layer 130' is used as a mask to pattern the oxide semiconductor layer 110 and the ultraviolet light shielding material layer 120 to form an oxide channel layer 110a under the patterned ultraviolet light shielding material layer 120a. . As shown in FIG. 2C, the oxide semiconductor layer 110 and the ultraviolet light shielding material layer 120 not covered by the first patterned photoresist layer 130 are completely removed until the gate insulating layer GI is exposed. In the present embodiment, the manner of patterning the oxide semiconductor layer 110 and the ultraviolet light shielding material layer 120 is, for example, dry etching.

請參照圖2D,等向性地移除部分的第一圖案化光阻層130’,以形成第二圖案化光阻層140,其中第二圖案化光阻層140暴露出部分紫外光遮蔽材料層120a。在本實施例中,形成第二圖案化光阻層140的方法例如是利用氧氣電漿灰化製程使第一圖案化光阻層130’的厚度、長度與寬度縮減,直到部分紫外光遮蔽材料層120a被暴露。Referring to FIG. 2D, a portion of the first patterned photoresist layer 130' is isotropically removed to form a second patterned photoresist layer 140, wherein the second patterned photoresist layer 140 exposes a portion of the ultraviolet light shielding material. Layer 120a. In this embodiment, the method of forming the second patterned photoresist layer 140 is, for example, reducing the thickness, length and width of the first patterned photoresist layer 130 ′ by using an oxygen plasma ashing process until a part of the ultraviolet light shielding material Layer 120a is exposed.

請參照圖2E,以第二圖案化光阻層140為罩幕,圖案化紫外光遮蔽材料層120a,以於氧化物通道層110a之部分區域上形成紫外光遮蔽圖案120b。在形成紫外光遮蔽圖案120b之後,本實施例可以選擇性地對未被第二圖案化光阻層140所覆蓋之氧化物通道層110a進行處理,以使未被第二圖案化光阻層140所覆蓋之氧化物通道層110a(斜線標示處)具有歐姆接觸層之特性。舉例而言,本實施例可利用氫氣電漿或氬電漿對未被第二圖案化光阻層140所覆蓋之氧化物通道層110a進行表面處理,以使未被第二圖案化光阻層140所覆蓋之氧化物通道層110a具有歐姆接觸層之特性。Referring to FIG. 2E, the second patterned photoresist layer 140 is used as a mask to pattern the ultraviolet shielding material layer 120a to form an ultraviolet light shielding pattern 120b on a partial region of the oxide channel layer 110a. After forming the ultraviolet light shielding pattern 120b, the present embodiment can selectively process the oxide channel layer 110a not covered by the second patterned photoresist layer 140 so that the second patterned photoresist layer 140 is not patterned. The covered oxide channel layer 110a (marked at the slanted line) has the characteristics of an ohmic contact layer. For example, in this embodiment, the oxide channel layer 110a not covered by the second patterned photoresist layer 140 may be surface-treated with hydrogen plasma or argon plasma so that the second patterned photoresist layer is not patterned. The oxide channel layer 110a covered by 140 has the characteristics of an ohmic contact layer.

請參照圖2F,在完成紫外光遮蔽圖案120b之後,移除第二圖案化光阻層140。之後,於氧化物通道層110a以及紫外光遮蔽圖案120b上形成彼此電性絕緣之源極150S與一汲極150D。在本實施例中,源極150S與汲極150D的圖案化製程例如是濕式蝕刻製程,從圖2F可知,由於源極150S、汲極150D以及紫外光遮蔽圖案120b不會讓氧化物通道層110a暴露,因此源極150S與汲極150D的圖案化製程所使用之蝕刻劑不會損害到氧化物通道層110a,故氧化物通道層110a的電器特性更為穩定。Referring to FIG. 2F, after the ultraviolet light shielding pattern 120b is completed, the second patterned photoresist layer 140 is removed. Thereafter, a source 150S and a drain 150D electrically insulated from each other are formed on the oxide channel layer 110a and the ultraviolet shielding pattern 120b. In the present embodiment, the patterning process of the source 150S and the drain 150D is, for example, a wet etching process. As can be seen from FIG. 2F, since the source 150S, the drain 150D, and the ultraviolet shielding pattern 120b do not allow the oxide channel layer. Since 110a is exposed, the etchant used in the patterning process of the source 150S and the drain 150D does not damage the oxide channel layer 110a, so the electrical characteristics of the oxide channel layer 110a are more stable.

【第三實施例】[Third embodiment]

圖3A至圖3F為本發明第三實施例之薄膜電晶體的製造流程示意圖。請參照圖3A,首先,於基板100上形成閘極G,此閘極G之材質例如為金屬。接著,於基板100上依序形成閘絕緣層GI、第一紫外光遮蔽材料層120’、氧化物半導體層110以及第二紫外光遮蔽材料層120。在本實施例中,閘絕緣層GI之材質例如為氧化矽(SiOx)、氮化矽(SiNx)或氮氧化矽(SiOxNy)等介電材質,氧化物半導體層110之材質例如為氧化銦鎵鋅(Indium Gallium Zinc Oxide,IGZO)、氧化鋅(ZnO)、氧化錫(SnO)或二氧化錫(SnO2)等材質,而紫外光遮蔽材料層120之材質例如為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。由於氧化鈦(TiOx)具有良好的紫外光遮蔽能力,因此,此領域具有通常知識者可以根據實際設計需求,適度地更動氧化鈦(TiOx)的折射率與厚度,以獲得適當的的紫外光遮蔽效果。在本實施例中,當第一紫外光遮蔽材料層120’與第二紫外光遮蔽材料層120之材質為富矽氧化矽(Si-rich SiOx)時,吾人同樣可以選擇適當的折射率及厚度,以使富矽氧化矽(Si-rich SiOx)具有紫外光遮蔽效果。舉例而言,富矽氧化矽(Si-rich SiOx)之折射率以1.5至2.9為佳,而富矽氧化矽(Si-rich SiOx)的厚度以1000埃至3000埃之間為佳。3A to 3F are schematic views showing a manufacturing process of a thin film transistor according to a third embodiment of the present invention. Referring to FIG. 3A, first, a gate G is formed on the substrate 100, and the material of the gate G is, for example, metal. Next, a gate insulating layer GI, a first ultraviolet light shielding material layer 120', an oxide semiconductor layer 110, and a second ultraviolet light shielding material layer 120 are sequentially formed on the substrate 100. In the present embodiment, the material of the gate insulating layer GI is, for example, a dielectric material such as yttrium oxide (SiOx), tantalum nitride (SiNx) or yttrium oxynitride (SiOxNy), and the material of the oxide semiconductor layer 110 is, for example, indium gallium oxide. A material such as zinc (Indium Gallium Zinc Oxide, IGZO), zinc oxide (ZnO), tin oxide (SnO) or tin dioxide (SnO 2 ), and the material of the ultraviolet shielding material layer 120 is, for example, titanium oxide (TiOx) or ruthenium. Cerium oxide (Si-rich SiOx). Since titanium oxide (TiOx) has good ultraviolet light shielding ability, those skilled in the art can appropriately change the refractive index and thickness of titanium oxide (TiOx) according to actual design requirements to obtain appropriate ultraviolet light shielding. effect. In this embodiment, when the material of the first ultraviolet shielding material layer 120' and the second ultraviolet shielding material layer 120 is Si-rich SiOx, we can also select an appropriate refractive index and thickness. In order to make the cerium-rich cerium oxide (Si-rich SiOx) have an ultraviolet light shielding effect. For example, the refractive index of Si-rich SiOx is preferably from 1.5 to 2.9, and the thickness of Si-rich SiOx is preferably from 1000 angstroms to 3,000 angstroms.

值得注意的是,本實施例可以採用其他具有紫外光遮蔽效果之材質來製造第一紫外光遮蔽材料層120’與第二紫外光遮蔽材料層120,本實施例不限定其材質必須為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。It should be noted that, in this embodiment, the first ultraviolet light shielding material layer 120 ′ and the second ultraviolet light shielding material layer 120 may be fabricated by using other materials having an ultraviolet light shielding effect, and the material of the embodiment is not limited to titanium oxide. (TiOx) or yttrium-rich yttrium oxide (Si-rich SiOx).

請參照圖3B,於閘極G上方之第二紫外光遮蔽材料層120上形成第一圖案化光阻層130。在本實施例中,第一圖案化光阻層130包括第一部分132以及第二部分134,第一部分132的厚度大於第二部分134的厚度。前述之第一圖案化光阻層130例如是以半調式光罩(half-tone mask)、灰階式光罩(gray-tone mask)為遮罩搭配一般之曝光製程所形成。從圖1B可知,第一圖案化光阻層130位於閘極G之正上方,厚度較小的第二部分134分佈於厚度較大的第一部分132的兩側,且第二部分134係與第一部分132連接。Referring to FIG. 3B, a first patterned photoresist layer 130 is formed on the second ultraviolet shielding material layer 120 above the gate G. In the present embodiment, the first patterned photoresist layer 130 includes a first portion 132 and a second portion 134 having a thickness greater than a thickness of the second portion 134. The first patterned photoresist layer 130 is formed, for example, by a half-tone mask, a gray-tone mask, and a general exposure process. As can be seen from FIG. 1B, the first patterned photoresist layer 130 is located directly above the gate G, and the second portion 134 having a smaller thickness is distributed on both sides of the first portion 132 having a larger thickness, and the second portion 134 is A portion 132 is connected.

請參照圖3C,以第一圖案化光阻層130為罩幕,圖案化第一紫外光遮蔽材料層120’、氧化物半導體層110以及第二紫外光遮蔽材料層120,以於被圖案化之紫外光遮蔽材料層120a下方形成氧化物通道層110a以及一紫外光遮蔽圖案120a’。如圖3C所示,未被第一圖案化光阻層130所覆蓋之第一紫外光遮蔽材料層120’、氧化物半導體層110以及第二紫外光遮蔽材料層120會被完全移除,直到閘絕緣層GI被暴露出來為止。在本實施例中,圖案化第一紫外光遮蔽材料層120’、氧化物半導體層110以及第二紫外光遮蔽材料層120的方式例如是乾式蝕刻。Referring to FIG. 3C, the first patterned photoresist layer 130 is used as a mask to pattern the first ultraviolet shielding material layer 120', the oxide semiconductor layer 110, and the second ultraviolet shielding material layer 120 to be patterned. An oxide channel layer 110a and an ultraviolet light shielding pattern 120a' are formed under the ultraviolet light shielding material layer 120a. As shown in FIG. 3C, the first ultraviolet light shielding material layer 120', the oxide semiconductor layer 110, and the second ultraviolet light shielding material layer 120 not covered by the first patterned photoresist layer 130 are completely removed until The gate insulating layer GI is exposed. In the present embodiment, the manner of patterning the first ultraviolet light shielding material layer 120', the oxide semiconductor layer 110, and the second ultraviolet light shielding material layer 120 is, for example, dry etching.

請參照圖3D,移除部分的第一圖案化光阻層130,以形成第二圖案化光阻層140,其中第二圖案化光阻層140暴露出部分紫外光遮蔽材料層120a。在本實施例中,形成第二圖案化光阻層140的方法例如是利用氧氣電漿灰化製程移除部分的第一圖案化光阻層130,直到第二部分134被完全移除,而未被完全移除的第一部分132則構成第二圖案化光阻層140。Referring to FIG. 3D, a portion of the first patterned photoresist layer 130 is removed to form a second patterned photoresist layer 140, wherein the second patterned photoresist layer 140 exposes a portion of the ultraviolet light shielding material layer 120a. In this embodiment, the method of forming the second patterned photoresist layer 140 is, for example, using the oxygen plasma ashing process to remove a portion of the first patterned photoresist layer 130 until the second portion 134 is completely removed. The first portion 132 that is not completely removed then constitutes the second patterned photoresist layer 140.

請參照圖3E,以第二圖案化光阻層140為罩幕,圖案化紫外光遮蔽材料層120a,以於氧化物通道層110a之部分區域上形成紫外光遮蔽圖案120b。在形成紫外光遮蔽圖案120b之後,本實施例可以選擇性地對未被第二圖案化光阻層140所覆蓋之氧化物通道層110a進行處理,以使未被第二圖案化光阻層140所覆蓋之氧化物通道層110a(斜線標示處)具有歐姆接觸層之特性。舉例而言,本實施例可利用氫氣電漿(H2 plasma)或氬電漿(Ar plasma)對未被第二圖案化光阻層140所覆蓋之氧化物通道層110a進行表面處理,以使未被第二圖案化光阻層140所覆蓋之氧化物通道層110a具有歐姆接觸層之特性。Referring to FIG. 3E, the second patterned photoresist layer 140 is used as a mask to pattern the ultraviolet shielding material layer 120a to form an ultraviolet light shielding pattern 120b on a partial region of the oxide channel layer 110a. After forming the ultraviolet light shielding pattern 120b, the present embodiment can selectively process the oxide channel layer 110a not covered by the second patterned photoresist layer 140 so that the second patterned photoresist layer 140 is not patterned. The covered oxide channel layer 110a (marked at the slanted line) has the characteristics of an ohmic contact layer. For example, in this embodiment, the oxide channel layer 110a not covered by the second patterned photoresist layer 140 may be surface-treated with hydrogen plasma (H2 plasma) or argon plasma (Ar plasma) so that The oxide channel layer 110a covered by the second patterned photoresist layer 140 has the characteristics of an ohmic contact layer.

請參照圖3F,在完成紫外光遮蔽圖案120b之後,移除第二圖案化光阻層140。之後,於氧化物通道層110a以及紫外光遮蔽圖案120b上形成彼此電性絕緣之源極150S與一汲極150D。在本實施例中,源極150S與汲極150D的圖案化製程例如是濕式蝕刻製程,從圖3F可知,由於源極150S、汲極150D以及紫外光遮蔽圖案120b不會讓氧化物通道層110a暴露,因此源極150S與汲極150D的圖案化製程所使用之蝕刻劑不會損害到氧化物通道層110a,故氧化物通道層110a的電器特性更為穩定。Referring to FIG. 3F, after the ultraviolet light shielding pattern 120b is completed, the second patterned photoresist layer 140 is removed. Thereafter, a source 150S and a drain 150D electrically insulated from each other are formed on the oxide channel layer 110a and the ultraviolet shielding pattern 120b. In the present embodiment, the patterning process of the source 150S and the drain 150D is, for example, a wet etching process. As can be seen from FIG. 3F, since the source 150S, the drain 150D, and the ultraviolet shielding pattern 120b do not allow the oxide channel layer. Since 110a is exposed, the etchant used in the patterning process of the source 150S and the drain 150D does not damage the oxide channel layer 110a, so the electrical characteristics of the oxide channel layer 110a are more stable.

在本實施例中,前述之紫外光遮蔽圖案120b與紫外光遮蔽圖案120a’雖無法完全遮蔽入射至氧化物通道層110a之紫外光,但紫外光遮蔽圖案120b與紫外光遮蔽圖案120a’可以降低入射至至氧化物通道層110a之紫外光的機率。因此,紫外光遮蔽圖案120b與紫外光遮蔽圖案120a’對於氧化物通道層110a之臨界電壓偏移現象仍有一定程度之幫助。In the embodiment, the ultraviolet light shielding pattern 120b and the ultraviolet light shielding pattern 120a' cannot completely shield the ultraviolet light incident on the oxide channel layer 110a, but the ultraviolet light shielding pattern 120b and the ultraviolet light shielding pattern 120a' can be reduced. The probability of ultraviolet light incident on the oxide channel layer 110a. Therefore, the ultraviolet light shielding pattern 120b and the ultraviolet light shielding pattern 120a' still have a certain degree of help for the threshold voltage shift phenomenon of the oxide channel layer 110a.

【第四實施例】Fourth Embodiment

圖4A至圖4F為本發明第四實施例之薄膜電晶體的製造流程示意圖。請參照圖4A至圖4F,本實施例之薄膜電晶體的製造方法與第三實施例類似,惟二者主要差異之處在於:本實施例之第一圖案化光阻層130與第二圖案化光阻層140的結構與製造方法(圖4B~圖4D)與第二實施例相同(圖2B~圖2D)。4A to 4F are schematic views showing a manufacturing process of a thin film transistor according to a fourth embodiment of the present invention. Referring to FIG. 4A to FIG. 4F, the manufacturing method of the thin film transistor of the present embodiment is similar to that of the third embodiment, but the main difference between the two is that the first patterned photoresist layer 130 and the second pattern of this embodiment are different. The structure and manufacturing method (Figs. 4B to 4D) of the photoresist layer 140 are the same as those of the second embodiment (Figs. 2B to 2D).

【第五實施例】[Fifth Embodiment]

圖5A至圖5D為本發明第五實施例之薄膜電晶體的製造流程示意圖。請參照圖5A,首先,於基板100上形成閘極G,此閘極G之材質例如為金屬。接著,於基板100上依序形成閘絕緣層GI、紫外光遮蔽材料層120、氧化物半導體層110以及導電層C,以覆蓋閘極G。在本實施例中,閘絕緣層GI之材質例如為氧化矽(SiOx)、氮化矽(SiNx)或氮氧化矽(SiOxNy)等介電材質,氧化物半導體層110之材質例如為氧化銦鎵鋅(Indium Gallium Zinc Oxide,IGZO)、氧化鋅(ZnO)、氧化錫(SnO)或二氧化錫(SnO2)等材質,而紫外光遮蔽材料層120之材質例如為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。由於氧化鈦(TiOx)具有良好的紫外光遮蔽能力,因此,此領域具有通常知識者可以根據實際設計需求,適度地更動氧化鈦(TiOx)的折射率與厚度,以獲得適當的的紫外光遮蔽效果。在本實施例中,當紫外光遮蔽材料層120之材質為富矽氧化矽(Si-rich SiOx)時,吾人同樣可以選擇適當的折射率及厚度,以使富矽氧化矽(Si-rich SiOx)具有紫外光遮蔽效果。舉例而言,富矽氧化矽(Si-rich SiOx)之折射率以1.5至2.9為佳,而富矽氧化矽(Si-rich SiOx)的厚度以1000埃至3000埃之間為佳。5A to 5D are schematic views showing a manufacturing process of a thin film transistor according to a fifth embodiment of the present invention. Referring to FIG. 5A, first, a gate G is formed on the substrate 100, and the material of the gate G is, for example, metal. Next, a gate insulating layer GI, an ultraviolet light shielding material layer 120, an oxide semiconductor layer 110, and a conductive layer C are sequentially formed on the substrate 100 to cover the gate G. In the present embodiment, the material of the gate insulating layer GI is, for example, a dielectric material such as yttrium oxide (SiOx), tantalum nitride (SiNx) or yttrium oxynitride (SiOxNy), and the material of the oxide semiconductor layer 110 is, for example, indium gallium oxide. A material such as zinc (Indium Gallium Zinc Oxide, IGZO), zinc oxide (ZnO), tin oxide (SnO) or tin dioxide (SnO 2 ), and the material of the ultraviolet shielding material layer 120 is, for example, titanium oxide (TiOx) or ruthenium. Cerium oxide (Si-rich SiOx). Since titanium oxide (TiOx) has good ultraviolet light shielding ability, those skilled in the art can appropriately change the refractive index and thickness of titanium oxide (TiOx) according to actual design requirements to obtain appropriate ultraviolet light shielding. effect. In the present embodiment, when the material of the ultraviolet shielding material layer 120 is Si-rich SiOx, we can also select an appropriate refractive index and thickness to make the cerium-rich cerium oxide (Si-rich SiOx). ) has an ultraviolet light shielding effect. For example, the refractive index of Si-rich SiOx is preferably from 1.5 to 2.9, and the thickness of Si-rich SiOx is preferably from 1000 angstroms to 3,000 angstroms.

值得注意的是,本實施例可以採用其他具有紫外光遮蔽效果之材質來製造紫外光遮蔽材料層120,本實施例不限定其材質必須為氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。It should be noted that in this embodiment, the ultraviolet shielding material layer 120 can be fabricated by using other materials having an ultraviolet shielding effect. The embodiment does not limit the material to be titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich). SiOx).

請參照圖5B,接著,圖案化導電層C、氧化物半導體層110以及紫外光遮蔽材料層120,以於被圖案化之導電層C下方形成形成氧化物通道層110a以及第一紫外光遮蔽圖案120b。Referring to FIG. 5B, the conductive layer C, the oxide semiconductor layer 110, and the ultraviolet shielding material layer 120 are patterned to form an oxide channel layer 110a and a first ultraviolet light shielding pattern under the patterned conductive layer C. 120b.

請參照圖5C,在完成氧化物通道層110a以及紫外光遮蔽圖案120b之後,於導電層C的部分區域以及閘絕緣層GI的部分區域上形成彼此電性絕緣之源極150S與汲極150D。在本實施例中,源極150S與汲極150D的圖案化製程例如是濕式蝕刻製程,從圖5C可知,由於源極150S、汲極150D以及導電層C不會讓氧化物通道層110a暴露,因此源極150S與汲極150D的圖案化製程所使用之蝕刻劑不會損害到氧化物通道層110a,故氧化物通道層110a的電器特性更為穩定。Referring to FIG. 5C, after the oxide channel layer 110a and the ultraviolet light shielding pattern 120b are completed, the source 150S and the drain 150D electrically insulated from each other are formed on a partial region of the conductive layer C and a partial region of the gate insulating layer GI. In the present embodiment, the patterning process of the source 150S and the drain 150D is, for example, a wet etching process. As can be seen from FIG. 5C, since the source 150S, the drain 150D, and the conductive layer C do not expose the oxide channel layer 110a. Therefore, the etchant used in the patterning process of the source 150S and the drain 150D does not damage the oxide channel layer 110a, so the electrical characteristics of the oxide channel layer 110a are more stable.

接著請參照圖5D,接著對未被源極150S與汲極150D所覆蓋之導電層C進行處理,以使未被源極150S與汲極150D所覆蓋之導電層C轉化為具備絕緣性質之第二紫外光遮蔽圖案120a’。在本實施例中,將導電層C轉化為絕緣之第二紫外光遮蔽圖案120a’的方法包括電漿氧化或熱氧化。此外,導電層C之材質例如為鈦(Ti)、Zn、Sn或Zr。值得注意的是,本實施例不限定前述所使用之導電層C的材質必須為鈦(Ti)、Zn、Sn或Zr,其他經過適當處理後會轉化為絕緣材且具備紫外光遮蔽效果之導電材料皆可被使用於本實施例中。Next, referring to FIG. 5D, the conductive layer C not covered by the source 150S and the drain 150D is processed to convert the conductive layer C not covered by the source 150S and the drain 150D into an insulating property. Two ultraviolet light shielding patterns 120a'. In the present embodiment, the method of converting the conductive layer C into the insulating second ultraviolet light shielding pattern 120a' includes plasma oxidation or thermal oxidation. Further, the material of the conductive layer C is, for example, titanium (Ti), Zn, Sn or Zr. It should be noted that, in this embodiment, the material of the conductive layer C used in the foregoing embodiment is not limited to titanium (Ti), Zn, Sn or Zr, and other conductive materials which are converted into an insulating material and have an ultraviolet shielding effect after being properly treated. Materials can be used in this embodiment.

【第六實施例】[Sixth embodiment]

圖6A至圖6D為本發明第六實施例之薄膜電晶體的製造流程示意圖。請參照圖6A至圖6D,本實施例與第五實施例類似,惟二者主要差異之處在於:本實施例之薄膜電晶體的製造方法省略了紫外光遮蔽材料層120以及第一紫外光遮蔽圖案120b的製作。6A to 6D are schematic views showing a manufacturing process of a thin film transistor according to a sixth embodiment of the present invention. Referring to FIG. 6A to FIG. 6D , this embodiment is similar to the fifth embodiment, but the main difference between the two is that the manufacturing method of the thin film transistor of the embodiment omits the ultraviolet shielding material layer 120 and the first ultraviolet light. The production of the mask pattern 120b.

由於本發明前述之實施例將紫外光遮蔽圖案的製作整合於氧化物通道層的製作過程中,因此本發明所提出的製程與現有製程相容,不會造成過度的成本負擔。此外,本發明前述之實施例可以製作出經過圖案化之紫外光遮蔽圖案以適度遮蔽紫外光,且紫外光遮蔽圖案的分佈不會導致紫外光完全無法穿透基板。Since the foregoing embodiment of the present invention integrates the fabrication of the ultraviolet light shielding pattern into the fabrication process of the oxide channel layer, the process proposed by the present invention is compatible with the existing process without causing an excessive cost burden. In addition, the foregoing embodiments of the present invention can produce a patterned ultraviolet light shielding pattern to moderately shield ultraviolet light, and the distribution of the ultraviolet light shielding pattern does not cause ultraviolet light to completely penetrate the substrate.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...基板100. . . Substrate

GI...閘絕緣層GI. . . Brake insulation

110...氧化物半導體層110. . . Oxide semiconductor layer

110a...氧化物通道層110a. . . Oxide channel layer

120、120a、120’...紫外光遮蔽材料層120, 120a, 120’. . . UV shielding material layer

120b、120a’...紫外光遮蔽圖案120b, 120a’. . . UV shielding pattern

130、130’...第一圖案化光阻層130, 130’. . . First patterned photoresist layer

132...第一部分132. . . first part

134...第二部分134. . . the second part

140...第二圖案化光阻層140. . . Second patterned photoresist layer

150S...源極150S. . . Source

150D...汲極150D. . . Bungee

C...導電層C. . . Conductive layer

圖1A至圖1F為本發明第一實施例之薄膜電晶體的製造流程示意圖。1A to 1F are schematic views showing a manufacturing process of a thin film transistor according to a first embodiment of the present invention.

圖2A至圖2F為本發明第二實施例之薄膜電晶體的製造流程示意圖。2A to 2F are schematic views showing a manufacturing process of a thin film transistor according to a second embodiment of the present invention.

圖3A至圖3F為本發明第三實施例之薄膜電晶體的製造流程示意圖。3A to 3F are schematic views showing a manufacturing process of a thin film transistor according to a third embodiment of the present invention.

圖4A至圖4F為本發明第四實施例之薄膜電晶體的製造流程示意圖。4A to 4F are schematic views showing a manufacturing process of a thin film transistor according to a fourth embodiment of the present invention.

圖5A至圖5D為本發明第五實施例之薄膜電晶體的製造流程示意圖。5A to 5D are schematic views showing a manufacturing process of a thin film transistor according to a fifth embodiment of the present invention.

圖6A至圖6D為本發明第六實施例之薄膜電晶體的製造流程示意圖。6A to 6D are schematic views showing a manufacturing process of a thin film transistor according to a sixth embodiment of the present invention.

100...基板100. . . Substrate

GI...閘絕緣層GI. . . Brake insulation

110a...氧化物通道層110a. . . Oxide channel layer

120b...紫外光遮蔽圖案120b. . . UV shielding pattern

150S...源極150S. . . Source

150D...汲極150D. . . Bungee

Claims (21)

一種薄膜電晶體的製造方法,包括:於一基板上形成一閘極;於該基板上依序形成一閘絕緣層、一氧化物半導體層以及一紫外光遮蔽材料層,以覆蓋該閘極;於該閘極上方之該紫外光遮蔽材料層上形成一第一圖案化光阻層;以該第一圖案化光阻層為罩幕,圖案化該氧化物半導體層以及該紫外光遮蔽材料層,以於該紫外光遮蔽材料層下方形成一氧化物通道層;移除部分該第一圖案化光阻層,以形成一第二圖案化光阻層,其中該第二圖案化光阻層暴露出部分該紫外光遮蔽材料層;以該第二圖案化光阻層為罩幕,圖案化該紫外光遮蔽材料層,以於該氧化物通道層之部分區域上形成一紫外光遮蔽圖案,且該紫外光遮蔽圖案對應於該閘極的中央;移除該第二圖案化光阻層;以及於該氧化物通道層以及該紫外光遮蔽圖案上形成彼此電性絕緣之一源極與一汲極。 A method for manufacturing a thin film transistor, comprising: forming a gate on a substrate; forming a gate insulating layer, an oxide semiconductor layer and an ultraviolet shielding material layer on the substrate to cover the gate; Forming a first patterned photoresist layer on the ultraviolet shielding material layer above the gate; patterning the oxide semiconductor layer and the ultraviolet shielding material layer by using the first patterned photoresist layer as a mask Forming an oxide channel layer under the ultraviolet shielding material layer; removing a portion of the first patterned photoresist layer to form a second patterned photoresist layer, wherein the second patterned photoresist layer is exposed Forming a portion of the ultraviolet light shielding material layer; using the second patterned photoresist layer as a mask, patterning the ultraviolet light shielding material layer to form an ultraviolet light shielding pattern on a portion of the oxide channel layer, and The ultraviolet light shielding pattern corresponds to the center of the gate electrode; the second patterned photoresist layer is removed; and one source and one of the electrical insulation layers are electrically formed on the oxide channel layer and the ultraviolet light shielding pattern pole. 如申請專利範圍第1項所述之薄膜電晶體的製造方法,其中該第一圖案化光阻層包括一第一部分以及一第二部分,該第一部分的厚度大於該第二部分的厚度,而形成該第二圖案化光阻層的方法包括移除該第一部分與該第二部分,直到該第二部分被完全移除,而未被完全移除的該第一部分構成該第二圖案化光阻層。 The method for fabricating a thin film transistor according to claim 1, wherein the first patterned photoresist layer comprises a first portion and a second portion, the first portion having a thickness greater than a thickness of the second portion, and The method of forming the second patterned photoresist layer includes removing the first portion and the second portion until the second portion is completely removed, and the first portion not completely removed constitutes the second patterned light Resistance layer. 如申請專利範圍第1項所述之薄膜電晶體的製造方法,其中在形成該紫外光遮蔽圖案之後以及移除該第二圖案化光阻層之前,更包括對未被該第二圖案化光阻層覆蓋之該氧化物通道層進行處理,以使未被該第二圖案化光阻層覆蓋之該氧化物通道層具有歐姆接觸層之特性。 The method for fabricating a thin film transistor according to claim 1, wherein after the ultraviolet light shielding pattern is formed and before the second patterned photoresist layer is removed, the second patterned light is further included The oxide channel layer covered by the resist layer is processed such that the oxide channel layer not covered by the second patterned photoresist layer has the characteristics of an ohmic contact layer. 如申請專利範圍第1項所述之薄膜電晶體的製造方法,其中移除部分該第一圖案化光阻層的方法包括灰化(ashing)。 The method of manufacturing a thin film transistor according to claim 1, wherein the method of removing a portion of the first patterned photoresist layer comprises ashing. 如申請專利範圍第1項所述之薄膜電晶體的製造方法,其中該紫外光遮蔽材料層之材質包括氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。 The method for producing a thin film transistor according to claim 1, wherein the material of the ultraviolet shielding material layer comprises titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich SiOx). 一種薄膜電晶體的製造方法,包括:於一基板上形成一閘極;於該基板上依序形成一閘絕緣層、一第一紫外光遮蔽材料層、一氧化物半導體層以及一第二紫外光遮蔽材料層,以覆蓋該閘極;於該閘極上方之該第二紫外光遮蔽材料層上形成一第一圖案化光阻層;以該第一圖案化光阻層為罩幕,圖案化該第二紫外光遮蔽材料層、該氧化物半導體層以及該第一紫外光遮蔽材料層,以於該第二紫外光遮蔽材料層下方形成形成一氧化物通道層以及一第一紫外光遮蔽圖案;移除部分該第一圖案化光阻層,以形成一第二圖案化光阻層,其中該第二圖案化光阻層暴露出部分該第二紫外光遮蔽材料層; 以該第二圖案化光阻層為罩幕,圖案化該第二紫外光遮蔽材料層,以於該氧化物通道層之部分區域上形成一第二紫外光遮蔽圖案;移除該第二圖案化光阻層;以及於該氧化物通道層以及該第二紫外光遮蔽圖案上形成彼此電性絕緣之一源極與一汲極。 A method for manufacturing a thin film transistor includes: forming a gate on a substrate; sequentially forming a gate insulating layer, a first ultraviolet light shielding material layer, an oxide semiconductor layer, and a second ultraviolet light on the substrate a layer of light shielding material to cover the gate; forming a first patterned photoresist layer on the second ultraviolet shielding material layer above the gate; using the first patterned photoresist layer as a mask, a pattern The second ultraviolet light shielding material layer, the oxide semiconductor layer and the first ultraviolet light shielding material layer are formed to form an oxide channel layer and a first ultraviolet light shielding layer under the second ultraviolet light shielding material layer a portion of the first patterned photoresist layer to form a second patterned photoresist layer, wherein the second patterned photoresist layer exposes a portion of the second ultraviolet light shielding material layer; Using the second patterned photoresist layer as a mask, patterning the second ultraviolet shielding material layer to form a second ultraviolet light shielding pattern on a portion of the oxide channel layer; removing the second pattern Forming a photoresist layer; and forming a source and a drain electrically insulated from each other on the oxide channel layer and the second ultraviolet light shielding pattern. 如申請專利範圍第6項所述之薄膜電晶體的製造方法,其中該第一圖案化光阻層包括一第一部分以及一第二部分,該第一部分的厚度大於該第二部分的厚度,而形成該第二圖案化光阻層的方法包括移除該第一部分與該第二部分,直到該第二部分被完全移除,而未被完全移除的該第一部分構成該第二圖案化光阻層。 The method of manufacturing a thin film transistor according to claim 6, wherein the first patterned photoresist layer comprises a first portion and a second portion, the first portion having a thickness greater than a thickness of the second portion, and The method of forming the second patterned photoresist layer includes removing the first portion and the second portion until the second portion is completely removed, and the first portion not completely removed constitutes the second patterned light Resistance layer. 如申請專利範圍第6項所述之薄膜電晶體的製造方法,其中在形成該第二紫外光遮蔽圖案之後以及移除該第二圖案化光阻層之前,更包括對未被該第二圖案化光阻層覆蓋之該氧化物通道層進行處理,以使未被該第二圖案化光阻層覆蓋之該氧化物通道層具有歐姆接觸層之特性。 The method of manufacturing a thin film transistor according to claim 6, wherein after the forming the second ultraviolet light shielding pattern and before removing the second patterned photoresist layer, the pair is further included in the second pattern The oxide channel layer covered by the photoresist layer is processed such that the oxide channel layer not covered by the second patterned photoresist layer has the characteristics of an ohmic contact layer. 如申請專利範圍第6項所述之薄膜電晶體的製造方法,其中移除部分該第一圖案化光阻層的方法包括灰化(ashing)。 The method of manufacturing a thin film transistor according to claim 6, wherein the method of removing a portion of the first patterned photoresist layer comprises ashing. 如申請專利範圍第6項所述之薄膜電晶體的製造方法,其中該第一紫外光遮蔽材料層之材質包括氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。 The method for manufacturing a thin film transistor according to claim 6, wherein the material of the first ultraviolet shielding material layer comprises titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich SiOx). 如申請專利範圍第6項所述之薄膜電晶體的製造方法,其中該第二紫外光遮蔽材料層之材質包括氧化鈦 (TiOx)或富矽氧化矽(Si-rich SiOx)。 The method for manufacturing a thin film transistor according to claim 6, wherein the material of the second ultraviolet shielding material layer comprises titanium oxide. (TiOx) or yttrium-rich yttrium oxide (Si-rich SiOx). 一種薄膜電晶體的製造方法,包括:於一基板上形成一閘極;於該基板上依序形成一閘絕緣層、一紫外光遮蔽材料層、一氧化物半導體層以及一導電層,以覆蓋該閘極;圖案化該導電層、該氧化物半導體層以及該紫外光遮蔽材料層,以於該導電層下方形成形成一氧化物通道層以及一第一紫外光遮蔽圖案;於該導電層的部分區域以及該閘絕緣層的部分區域上形成彼此電性絕緣之一源極與一汲極;以及對未被該源極與該汲極覆蓋之該導電層進行處理,以使未被該源極與該汲極覆蓋之該導電層轉化為絕緣之一第二紫外光遮蔽圖案。 A method for manufacturing a thin film transistor includes: forming a gate on a substrate; sequentially forming a gate insulating layer, an ultraviolet light shielding material layer, an oxide semiconductor layer, and a conductive layer on the substrate to cover Forming the conductive layer, the oxide semiconductor layer and the ultraviolet shielding material layer to form an oxide channel layer and a first ultraviolet light shielding pattern under the conductive layer; a portion of the region and a portion of the gate insulating layer are electrically insulated from one source and one drain; and the conductive layer not covered by the source and the drain is processed so as not to be The conductive layer covered by the pole and the drain is converted into one of the second ultraviolet light shielding patterns. 如申請專利範圍第12項所述之薄膜電晶體的製造方法,其中該導電層包括鈦(Ti)、Zn、Sn或Zr。 The method of producing a thin film transistor according to claim 12, wherein the conductive layer comprises titanium (Ti), Zn, Sn or Zr. 如申請專利範圍第13項所述之薄膜電晶體的製造方法,其中該第二紫外光遮蔽圖案之材質包括氧化鈦(TiOx)、ZnOx、SnOx或ZrOx。 The method for manufacturing a thin film transistor according to claim 13, wherein the material of the second ultraviolet light shielding pattern comprises titanium oxide (TiOx), ZnOx, SnOx or ZrOx. 如申請專利範圍第12項所述之薄膜電晶體的製造方法,其中該紫外光遮蔽材料層之材質包括氧化鈦(TiOx)或富矽氧化矽(Si-rich SiOx)。 The method for producing a thin film transistor according to claim 12, wherein the material of the ultraviolet shielding material layer comprises titanium oxide (TiOx) or cerium-rich cerium oxide (Si-rich SiOx). 如申請專利範圍第12項所述之薄膜電晶體的製造方法,其中將該導電層轉化為絕緣之該第二紫外光遮蔽圖案的方法包括電漿氧化或熱氧化。 The method of manufacturing a thin film transistor according to claim 12, wherein the method of converting the conductive layer into the insulating second ultraviolet light shielding pattern comprises plasma oxidation or thermal oxidation. 一種薄膜電晶體的製造方法,包括: 於一基板上形成一閘極;於該基板上依序形成一閘絕緣層、一氧化物半導體層以及一導電層,以覆蓋該閘極;圖案化該導電層以及該氧化物半導體層,以於該導電層下方形成形成一氧化物通道層;於該導電層的部分區域以及該閘絕緣層的部分區域上形成彼此電性絕緣之一源極與一汲極;以及對未被該源極與該汲極覆蓋之該導電層進行處理,以使未被該源極與該汲極覆蓋之該導電層轉化為絕緣之一紫外光遮蔽圖案。 A method of manufacturing a thin film transistor, comprising: Forming a gate on a substrate; sequentially forming a gate insulating layer, an oxide semiconductor layer and a conductive layer on the substrate to cover the gate; patterning the conductive layer and the oxide semiconductor layer to Forming an oxide channel layer under the conductive layer; forming a source and a drain electrically insulated from each other on a portion of the conductive layer and a portion of the gate insulating layer; and not being the source The conductive layer covered with the drain is processed to convert the conductive layer not covered by the source and the drain into an insulating ultraviolet shielding pattern. 如申請專利範圍第17項所述之薄膜電晶體的製造方法,其中該導電層包括鈦(Ti)、Zn、Sn或Zr。 The method of producing a thin film transistor according to claim 17, wherein the conductive layer comprises titanium (Ti), Zn, Sn or Zr. 如申請專利範圍第17項所述之薄膜電晶體的製造方法,其中該紫外光遮蔽圖案之材質包括氧化鈦(TiOx)、ZnOx、SnOx或ZrOx。 The method for producing a thin film transistor according to claim 17, wherein the material of the ultraviolet light shielding pattern comprises titanium oxide (TiOx), ZnOx, SnOx or ZrOx. 如申請專利範圍第17項所述之薄膜電晶體的製造方法,其中將該導電層轉化為絕緣之該紫外光遮蔽圖案的方法包括電漿氧化或熱氧化。 The method of manufacturing a thin film transistor according to claim 17, wherein the method of converting the conductive layer into the insulating ultraviolet light shielding pattern comprises plasma oxidation or thermal oxidation. 一種薄膜電晶體的製造方法,包括:於一基板上形成一閘極;於該基板上依序形成一閘絕緣層、一氧化物半導體層以及一紫外光遮蔽材料層,以覆蓋該閘極;於該閘極上方之該紫外光遮蔽材料層上形成一第一圖案化光阻層,其中該第一圖案化光阻層包括一第一部分以及一第二部分,該第一部分的厚度大於該第二部分的厚 度,且該第二部分分佈於該第一部分的兩側;以該第一圖案化光阻層為罩幕,圖案化該氧化物半導體層以及該紫外光遮蔽材料層,以於該紫外光遮蔽材料層下方形成一氧化物通道層;移除部分該第一圖案化光阻層,以形成一第二圖案化光阻層,而形成該第二圖案化光阻層的方法包括移除該第一部分與該第二部分,直到該第二部分被完全移除,而未被完全移除的該第一部分構成該第二圖案化光阻層,其中該第二圖案化光阻層暴露出部分該紫外光遮蔽材料層;以該第二圖案化光阻層為罩幕,圖案化該紫外光遮蔽材料層,以於該氧化物通道層之部分區域上形成一紫外光遮蔽圖案,且該紫外光遮蔽圖案對應於該閘極的中央;移除該第二圖案化光阻層;以及於該氧化物通道層以及該紫外光遮蔽圖案上形成彼此電性絕緣之一源極與一汲極。 A method for manufacturing a thin film transistor, comprising: forming a gate on a substrate; forming a gate insulating layer, an oxide semiconductor layer and an ultraviolet shielding material layer on the substrate to cover the gate; Forming a first patterned photoresist layer on the ultraviolet shielding material layer above the gate, wherein the first patterned photoresist layer comprises a first portion and a second portion, the first portion having a thickness greater than the first portion Two parts thick And the second portion is distributed on both sides of the first portion; the first patterned photoresist layer is used as a mask, and the oxide semiconductor layer and the ultraviolet shielding material layer are patterned to shield the ultraviolet light Forming an oxide channel layer under the material layer; removing a portion of the first patterned photoresist layer to form a second patterned photoresist layer, and the method of forming the second patterned photoresist layer includes removing the first a portion and the second portion until the second portion is completely removed, and the first portion not completely removed constitutes the second patterned photoresist layer, wherein the second patterned photoresist layer exposes a portion a layer of the ultraviolet shielding material; the second patterned photoresist layer is used as a mask, and the ultraviolet shielding material layer is patterned to form an ultraviolet shielding pattern on a portion of the oxide channel layer, and the ultraviolet light The shielding pattern corresponds to a center of the gate; removing the second patterned photoresist layer; and forming a source and a drain electrically insulated from each other on the oxide channel layer and the ultraviolet shielding pattern.
TW99128835A 2010-08-27 2010-08-27 Fabricating method of thin film transistor TWI408753B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128835A TWI408753B (en) 2010-08-27 2010-08-27 Fabricating method of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128835A TWI408753B (en) 2010-08-27 2010-08-27 Fabricating method of thin film transistor

Publications (2)

Publication Number Publication Date
TW201209928A TW201209928A (en) 2012-03-01
TWI408753B true TWI408753B (en) 2013-09-11

Family

ID=46763809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128835A TWI408753B (en) 2010-08-27 2010-08-27 Fabricating method of thin film transistor

Country Status (1)

Country Link
TW (1) TWI408753B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640219A (en) * 2008-07-31 2010-02-03 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
US20100025677A1 (en) * 2008-07-31 2010-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100065844A1 (en) * 2008-09-18 2010-03-18 Sony Corporation Thin film transistor and method of manufacturing thin film transistor
TW201021211A (en) * 2008-09-19 2010-06-01 Semiconductor Energy Lab Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640219A (en) * 2008-07-31 2010-02-03 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
US20100025677A1 (en) * 2008-07-31 2010-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100065844A1 (en) * 2008-09-18 2010-03-18 Sony Corporation Thin film transistor and method of manufacturing thin film transistor
TW201021211A (en) * 2008-09-19 2010-06-01 Semiconductor Energy Lab Semiconductor device

Also Published As

Publication number Publication date
TW201209928A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TWI432865B (en) Pixel structure and manufactrung method thereof
KR101345376B1 (en) Fabrication method of ZnO family Thin film transistor
JP6416128B2 (en) Thin film transistor fabrication method
US10707236B2 (en) Array substrate, manufacturing method therefor and display device
US20100283055A1 (en) Tft substrate and tft substrate manufacturing method
WO2016165186A1 (en) Manufacturing method for dual-gate oxide semiconductor tft substrate, and structure of dual-gate oxide semiconductor tft substrate
TWI478355B (en) Thin film transistor
CN108550625B (en) Thin film transistor and manufacturing method thereof
US20150340455A1 (en) Thin film transistor and method of fabricating the same, array substrate and method of fabricating the same, and display device
JP2007220819A (en) Thin-film transistor and manufacturing method thereof
TW201519416A (en) Driving back plate of thin film transistor and manufacturing method thereof
KR102318054B1 (en) TFT substrate and manufacturing method thereof
TW201622158A (en) Thin film transistor and manufacturing method thereof
JP2010243594A (en) Thin-film transistor substrate, and method of manufacturing the same
US20140175423A1 (en) Thin film transistor array panel and method of manufacturing the same
WO2015096307A1 (en) Oxide thin-film transistor, display device and manufacturing method for array substrate
US20130134514A1 (en) Thin film transistor and method for fabricating the same
TW201403815A (en) Transistor and manufacturing method thereof
CN101964309B (en) Manufacturing method of thin film transistor
US9269637B2 (en) Thin film transistor substrate
TWI470808B (en) Semiconductor device and manufacturing method thereof
KR101200237B1 (en) Thin Film Transistor for Display and Method of forming the same
KR20150056240A (en) Method of forming an oxide semiconductor device and method of manufacturing a display device including an oxide semiconductor device
CN105765709B (en) Array base palte and preparation method thereof, display panel, display device
WO2017166337A1 (en) Thin-film transistor, method for fabricating thin-film transistor, and liquid-crystal display panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees