TWI406979B - 化學氣相沈積法及原子層沈積法 - Google Patents

化學氣相沈積法及原子層沈積法 Download PDF

Info

Publication number
TWI406979B
TWI406979B TW096121148A TW96121148A TWI406979B TW I406979 B TWI406979 B TW I406979B TW 096121148 A TW096121148 A TW 096121148A TW 96121148 A TW96121148 A TW 96121148A TW I406979 B TWI406979 B TW I406979B
Authority
TW
Taiwan
Prior art keywords
deposition method
precursor
semiconductor wafer
reactant
reaction chamber
Prior art date
Application number
TW096121148A
Other languages
English (en)
Other versions
TW200829734A (en
Inventor
Chen Hua Yu
Liang Gi Yao
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW200829734A publication Critical patent/TW200829734A/zh
Application granted granted Critical
Publication of TWI406979B publication Critical patent/TWI406979B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02277Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition the reactions being activated by other means than plasma or thermal, e.g. photo-CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3141Deposition using atomic layer deposition techniques [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02148Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing hafnium, e.g. HfSiOx or HfSiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

化學氣相沈積法及原子層沈積法
本發明有關於一種積體電路製程,而特別有關於一種化學氣相沈積製程。
化學氣相沈積製程被廣泛使用在半導體領域中以用來製作積體電路。目前所應用的多種化學氣相沈積製程,係如原子層沈積法,有機金屬化學氣相沈積法,電漿加強式化學氣相沈積法或其他製程,雖然這些方法有不同的機制,但均以使用化學反應為主,其將氣體反應物導入至反應室中,藉由化學反應的發生以沈積化學反應後的產物。
隨著積體電路的漸趨微縮化,元件尺寸也愈來愈小,因此,每個元件中的零件尺寸也必須縮減,例如,在下個世代中,電晶體閘極絕緣層的厚度必須微縮化兩埃左右,目前,傳統的二氧化矽閘極絕緣層的厚度已經逼近理論上的極限,具有高介電常數的絕緣材料因而取代了二氧化矽。
高介電常數的絕緣材料,例如矽酸鉿和氧化鉿材料則經常使用原子層沈積法形成,不同於其他的化學氣相沈積法,後者的特徵在於與前驅物並流的連續沈積方式,而原子層沈積法則是在良好的控制方式下,由單一層的小部分或多個獨立單層(mono-layer)依序生長而成,在原子層沈積法中,此生長的表面是交替暴露於幾種化學物之一,例如,每個前驅物係一次輸入一種至反應室中,且上述暴露於反應物的步驟係間隔著惰性氣體的洗滌(Purge)步驟,以便在導入另一種前驅物至反應室前,除去任何殘餘之化學性活化的來源氣體或副產物。因此,原子層沈積法是由各個生長循環重複組成,藉由每一次的暴露反應物的步驟中,前驅物分子和晶圓表面會在反應室中反應,直到所有可處理的表面均已反應,而所選擇的前驅物的化學性質和製程條件,必須符合下列特性:一旦在表面的反應完全飽和時即不會有進一步的反應發生。表面飽和可以保證原子層沈積法的自我限制,因此前驅物的供應以過量為佳,如此可確保反應機制不受前驅物在表面上的供應量所影響。因此,影響薄膜生長的因素並不在於如前驅物的流量或壓力等特定製程參數的精準控制,而是表面的化學性質。每一次的生長循環會沈積一固定的厚度。
原子層沈積法有能力形成高品質的材料層,而且對於薄膜的形成特別有用,然而,當閘極絕緣層的厚度到達20埃左右或更少時,閘極絕緣層的漏電流會變成一個重要的議題,且因此閘極絕緣層的品質需要進一步的改進。而傳統的原子層沈積法需要相當長的製程時間,因此可能會對薄膜品質產生不利的影響,此外,由於原子層沈積法的低溫特性,不完全的反應也可能發生,這也會影響到薄膜的品質,據此,業界亟需要一種能改進薄膜品質的方法。
有鑑於此,本發明之一實施例係揭露一種化學氣相沈積法,包括:置入一半導體晶圓於一反應室中;導入一前驅物於此反應室中;藉由使用一非直接電漿能源活化上述前驅物;以及使此前驅物反應形成一材料層於半導體晶圓上。
本發明之另一實施例係揭露一種原子層沈積法,包括:置入一半導體晶圓於一反應室中;以脈衝方式導入一反應物於反應室中;供應光線予上述反應物;及使此反應物反應形成一材料層於半導體晶圓上;及對反應室執行一洗滌步驟。
其中,上述實施例之優點包括可改善材料層的品質以及減少製程時間。
為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖示,作詳細說明如下:
有關各實施例之製造和使用方式係如以下所詳述。然而,值得注意的是,本發明所提供之各種可應用的發明概念係依具體內文的各種變化據以實施,且在此所討論的具體實施例僅是用來顯示具體使用和製造本發明的方法,而不是用於限定本發明之範圍。
在以下所討論的內容中,使用原子層沈積法形成矽酸鉿/氧化鉿(HfSiOx /HfO2 )材料層係僅作為解釋本發明概念之一實施例,熟習此技藝之人士應可了解,本發明概念亦可應用於使用其他化學氣相沈積法沈積其他材料的各種實施例。此外,在本發明之各種實施例和圖示中,相同符號係用以指示相同或類似元件。
在一般的原子層沈積法中,必須執行多道的沈積循環。而在每一道沈積循環中,會發生化學反應以沈積一薄的材料層。其中第1圖顯示形成矽酸鉿/氧化鉿材料層之沈積循環的實施例,矽酸鉿/氧化鉿的符號則表示所產生的材料層包括矽酸鉿和氧化鉿或其結合。首先,水係被以脈衝方式導入原子層沈積反應室中,然後藉由一洗滌步驟除去超量的水和副產物。此洗滌步驟可使用氮氣或惰性氣體,例如氦、氬、氪或其他材料。一包括四氯化鉿(HfCl4 )之前驅物氣體則隨之被以脈衝方式導入原子層沈積反應室中,然後執行另一洗滌步驟。為簡化目的起見,標示A-cycle之沈積循環包括以脈衝方式導入水、一洗滌步驟、以脈衝方式導入四氯化鉿、以及另一洗滌步驟;此外第1圖另標示有B-cycle之沈積循環,其包括以脈衝方式導入水、一洗滌步驟、以脈衝方式導入四氯化矽、以及另一洗滌步驟。
而用於形成矽酸鉿及/或氧化鉿材料層之原子層沈積製程則可包括A-cycle和B-cycle之結合。其中,A-cycle次數和B-cycle次數之比率會影響所形成之材料層的組成,如果A-cycle的次數較多,則所形成之材料層中,氧化鉿對矽酸鉿的比率會增加。反之,如果B-cycle的次數較多,則所形成之材料層中,氧化鉿對矽酸鉿的比率會降低。第2圖顯示其實驗結果,其中,所沈積之矽酸鉿/氧化鉿材料層的厚度與A-cycle的次數具有函數關係。在實驗中,每個A-cycle伴隨5次的B-cycle,Y軸顯示矽酸鉿/氧化鉿材料層的每次沈積循環的生長厚度(GPC:growth-per-cycle)。值得注意的是每增加一次A-cycle,矽酸鉿/氧化鉿材料層的生長厚度也隨之增加,且A-cycle的次數和生長厚度也接近於線性關係。
第3圖顯示另一實驗結果,其中,所沈積之矽酸鉿/氧化鉿材料層的厚度與B-cycle的次數具有函數關係。在實驗中,每個A-cycle伴隨5次的B-cycle,Y軸顯示矽酸鉿/氧化鉿材料層的每次沈積循環的生長厚度(GPC:growth-per-cycle)。值得注意的是每增加一次B-cycle,矽酸鉿/氧化鉿材料層的生長厚度也隨之增加,然而,這樣的生長厚度並不是線性關係,且GPC的增加率也下降,圖示顯示在第一次B-cycle之後GPC就已接近飽和。
上述顯示於第2圖和第3圖之現象的可能原因之一係解釋如下。在一個A-cycle中,四氯化鉿和水反應且其反應式如下:HfCl4 +H2 O → Cl3 -Hf-OH+HCl
其中,鹽酸(HCl)會在後續的洗滌步驟中從反應室洗滌出來,而Hf-OH則會留在晶圓表面。轉換Hf-Cl3 為Hf-OH鍵的效率係仰賴四氯化鉿前驅物的能量狀態。
由於在後續的B-cycle中,四氯化矽會和Hf-OH鍵反應,之後其可能導致Hf-Si-OH鍵或Hf-O-Si-OH鍵的形成,然而,四氯化矽只和Hf-OH反應而不及於Si-OH,而在A-cycle之後的B-cycle中,原A-cycle期間形成之Hf-OH鍵已經實質耗盡,因此四氯化矽和Hf-OH鍵的反應已經接近飽和,因而新導入之四氯化矽不會繼續和在原子層沈積反應室中的化學物或產物反應,即使執行更多次的B-cycle,也由於沒有足夠的Hf-OH鍵產生,反應速度仍屬緩慢,據此,在第3圖中,相對於B-cycle的次數,GPC的增加率是下降的。
另一方面,四氯化鉿可以和Si-OH及Hf-OH鍵反應,在每一道A-cycle中,新導入的四氯化鉿可和水反應,或和前一次A-cycle中產生之Hf-OH鍵反應,因此,有足夠的新化學反應可繼續進行此材料層的生長。
四氯化鉿和四氯化矽的行為可以藉由第4圖解釋,Y軸代表能量,同時X軸代表反應軸,在X軸左側顯示反應物,在X軸右側則顯示對應的產物。第4圖顯示在反應期間必須克服自由能障壁12和14以形成最終產物,其中,自由能障壁的大小係受表面能以及打斷反應物鍵结的能量所影響。而在前段所述的反應中,四氯化鉿和水或OH鍵的反應是相對快速的,同時四氯化矽和水的反應是相對緩慢的。因此,四氯化矽和水反應的能量障壁較高,且因此產出較少的中間產物,故一旦和含有鉿的產物發生反應,具有較低能量障壁的反應鍵因而變少,導致B-cycle的反應較慢且困難。
高自由能障壁會導致兩種結果,首先完成時間需時甚久,導致所生成的薄膜粗糙度增加,第5圖顯示沈積在基底18上的分子/原子,其中區塊代表所沈積的分子/原子,其表面是粗糙的,亦即有一些區域沒有分子/原子存在,有一些區域則有超過一層的分子/原子。對很薄的材料層而言,例如閘極絕緣層,粗糙會導致高的漏電流。其次,高自由能障壁會導致不完全的反應,在上述例子中,由於Si-Cl和水的鍵結有較高的能量障壁,因此實質的Si-Cl鍵會留在最終的閘極絕緣層中。此閘極絕緣層因此較不緻密,結果,具有此種形態之閘極絕緣層的電晶體會產生高漏電流和低崩潰電壓的現象。
基於上述實驗結果,本發明提供一較佳實施例,為了克服高自由能障壁,可供應一能量源以活化原子層沈積反應物至較高的能階進而促進化學反應。在前面所討論的實施例中,反應物包括水和前驅物,例如四氯化矽和四氯化鉿。然而在所有的描述中,前驅物一詞可適用於原子層沈積法中包括水在內的所有的反應物。
在較佳的例子中,能量源可提供充分的活化能給前驅物以克服反應能障壁,此能量源可以是紫外線、雷射、遙控電漿等。在本例中,能量源為紫外線,而紫外線的較佳波長則和前驅物的種類及活化前驅物至對應能階所需的能量有關,最佳化的波長可藉由實驗得知,如熟習此技藝之人士所知,由UV紫外線提供的能量是E=(hC)/λ,其中,E為能量,h是浦朗克常數,C是光速,而λ則是紫外線的波長,因此,紫外線的波長越短,所提供的能量越高。在本例中,紫外線的波長λ介於約120nm至約400nm之間。
上述活化能可以不同方式提供以最佳化原子層沈積製程,在一實施例中,所有的前驅物都被活化,而在其他實施例中,則只有某些前驅物被活化。舉例而言,只有具有高自由能障壁的前驅物(和各自的化學反應),例如四氯化矽被活化,而其他前驅物如四氯化鉿則不予活化。而在另外的實施例中,上述處裡步驟可在每個沈積循環中進行,或只選擇沈積循環的特定百分比進行。此種前驅物的活化更可作為一種裝置,以調整所生成之材料層的成分。以矽酸鉿材料層沈積步驟為例,如果希望提高氧化鉿對矽酸鉿的比例,則活化四氯化矽的沈積循環百分比應予減少,以使進入所生成之材料層的矽更為少量。反之,如果希望降低氧化鉿對矽酸鉿的比例,則活化四氯化矽的沈積循環百分比應予提高,以使進入所生成之材料層的矽更為多量。
能量源的供應時間可以延長或縮短,在本例中,活化步驟係在整個原子層沈積期間進行,在其他實施例中,供應光線予該反應物之步驟係在以脈衝方式導入反應物的期間進行,而不及於洗滌步驟期間。
既然高能階態並不穩定,且在高能階態的前驅物也會很快遞減並回到低能階態,因此,較佳的活化方式是在前驅物到達所欲沈積的半導體晶圓之前的當下位置執行,亦即,在大部分的例子中,活化前驅物之步驟係以同環境(in-situ)方式在該反應室中執行。而在一些其他實施例中,活化可以在前驅物洗滌之後實施。第6A圖顯示以同環境之方式活化反應物之實施例,晶圓26係置放在原子層沈積反應室20中,其包括一反應物輸入口22及一輸出口24,反應物23則從輸入口22流向輸出口24。而供應至晶圓上方之能量源,例如紫外線,則以箭號28表示,而紫外線和晶圓26的間距D則是愈短愈好。因此在晶圓26上方之極靠近的薄層區域以不受紫外線照射為佳。亦即被活化的前驅物幾乎在活化後的瞬間抵達晶圓,此紫外線以覆蓋整個反應物的行徑為佳。第6B圖顯示另一個實施例,其中反應物23沿著平行晶圓26表面流過,而紫外線則照射在反應物上。
第7圖顯示另一個實施例,其中晶圓26係使用能量源進行掃瞄,在一個脈衝期間,能量源如紫外線,以掃瞄過整個晶圓26為佳,在任何時後,紫外線係照射在一線形脈衝區(line pulse area),例如線形脈衝區29,其可大到足以涵蓋整個晶圓,或僅只涵蓋晶圓的一部分,或甚至一個點區域,如果所掃瞄的區域小於整個晶圓,則能量源應來回掃瞄以涵蓋整個晶圓。提供用於反應之充分活化以適時產生具有良好特性的均勻材料層是需要的。另外既然線形脈衝區29是以極短的脈衝時間掃瞄,晶圓26的溫度並不致於增加到不利的地步,而顯示於第6A、6B圖和第7圖的實施例也可結合以得到更好的效果。
在先前的實施例中,只有討論到原子層沈積法,然而值得注意的是,本發明也可用於其他化學氣相沈積法,特別是低溫化學氣相沈積法,例如有機金屬化學氣相沈積法(MOCVD),一般來說,和其他方法相較,上述方法係使用相對低溫的技術,因此其熱能可能不足以完成完全的化學反應,而由能量源所供應的活化能可因此使反應更為完全。
上述較佳實施例具有幾個優點,藉由能量源活化前驅物,可克服用於化學反應之自由能障壁,使反應變得更容易,因此製程期間可以縮短且反應速率提高,而較少的製程期間則可產出較均勻的薄膜。此外,由能量源所供應的額外能量,化學反應會更完全,產生更緻密的薄膜,例如,氯-矽鍵可被此額外的能量打斷,因此所生成的薄膜,氯雜質會減少,薄膜會更緻密,對於很薄的絕緣層而言,更均勻和致密的薄膜可以產生低漏電流和高崩潰電壓的結果,此外,本發明所用的能量源將不會導致超薄材料層的損傷,例如不會使用直接電漿能量源。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
自由能障壁...12、14
基底...18
晶圓...26
原子層沈積反應室...20
反應物輸入口...22
反應物...23
輸出口...24
紫外線...28
線形脈衝區...29
第1圖顯示用於形成矽酸鉿/氧化鉿材料層的脈衝導入和洗滌步驟的順序之實施例,其中,上述順序包括A-cycle和B-cycle,其各自包含脈衝導入一種化學物質。
第2圖顯示矽酸鉿/氧化鉿材料層的每個生長循環和A-cycle的次數之函數關係。
第3圖顯示矽酸鉿/氧化鉿材料層的每個生長循環和B-cycle的次數之函數關係。
第4圖顯示用於化學反應之自由能障壁。
第5圖顯示分子/原子非均勻性的沈積在基底的表面上。
第6A、6B及第7圖顯示用於活化反應物之較佳實施例。
晶圓...26
原子層沈積反應室...20
反應物輸入口...22
輸出口...24
反應物...23
輸出口...24
紫外線...28

Claims (17)

  1. 一種化學氣相沈積法,包括:置入一半導體晶圓於一反應室中;以氣態形式導入一前驅物於該反應室中;藉由在該反應室中使用一紫外線、雷射、或遙控電漿從該半導體晶圓下方照射該前趨物於該半導體晶圓正上方的一部份上以活化該前驅物;及使該前驅物反應形成一材料層於該半導體晶圓上。
  2. 如申請專利範圍第1項所述之化學氣相沈積法,其包括原子層沈積法或有機金屬化學氣相沈積法。
  3. 如申請專利範圍第1項所述之化學氣相沈積法,其中導入該前驅物之步驟包括以脈衝方式導入該前驅物至該反應室,且在該前驅物進行反應後更包括一洗滌步驟。
  4. 如申請專利範圍第1項所述之化學氣相沈積法,其中活化該前驅物之步驟包括供應能量予該前驅物及半導體晶圓。
  5. 如申請專利範圍第4項所述之化學氣相沈積法,其中活化該前驅物之步驟包括以紫外線掃瞄該半導體晶圓。
  6. 如申請專利範圍第1項所述之化學氣相沈積法,其中活化該前驅物之步驟包括只供應能量予該前驅物而不及於該半導體晶圓。
  7. 如申請專利範圍第6項所述之化學氣相沈積法,其中來自該紫外線、雷射、或遙控電漿之能量係只供應給 相距該半導體晶圓一既定距離之區域。
  8. 如申請專利範圍第1項所述之化學氣相沈積法,更包括:導入另一前驅物至該反應室;及使該另一前驅物反應形成一材料層於該半導體晶圓上,其中該另一前驅物並未予以活化。
  9. 一種原子層沈積法,包括:置入一半導體晶圓於一反應室中;以脈衝方式及氣態形式導入一反應物於該反應室中;在該反應室中從該半導體晶圓下方供應紫外線予該反應物於該半導體晶圓正上方的一部份;使該反應物反應形成一材料層於該半導體晶圓上;及對該反應室執行一洗滌步驟。
  10. 如申請專利範圍第9項所述之原子層沈積法,其中供應紫外線予該反應物之步驟只在該反應物到達該半導體晶圓之前進行。
  11. 如申請專利範圍第9項所述之原子層沈積法,其中供應紫外線予該反應物之步驟係在整個原子層沈積期間。
  12. 如申請專利範圍9項所述之原子層沈積法,其中供應紫外線予該反應物之步驟係在以脈衝方式導入反應物的期間進行,而不及於洗滌步驟期間。
  13. 如申請專利範圍第9項所述之原子層沈積法,更包括:以脈衝方式導入另一反應物至該反應室;及對該反應室執行另一洗滌步驟,其中該紫外線不及於該另一反應物。
  14. 如申請專利範圍第9項所述之原子層沈積法,更包括下列複數道重複的步驟:以脈衝方式導入該反應物於該反應室中;及使該反應物反應形成一材料層於該半導體晶圓上,其中該紫外線只供應予上述重複步驟之一部分。
  15. 如申請專利範圍第9項所述之原子層沈積法,其中該紫外線係供應予該反應物及半導體晶圓。
  16. 如申請專利範圍第9項所述之原子層沈積法,其中該紫外線係供應予該反應物,而不及於該半導體晶圓。
  17. 如申請專利範圍第9項所述之原子層沈積法,其中該紫外線不及於該半導體晶圓之表面區域,而係供應予位於該表面區域上方的另一區域。
TW096121148A 2007-01-11 2007-06-12 化學氣相沈積法及原子層沈積法 TWI406979B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/652,209 US7851377B2 (en) 2007-01-11 2007-01-11 Chemical vapor deposition process

Publications (2)

Publication Number Publication Date
TW200829734A TW200829734A (en) 2008-07-16
TWI406979B true TWI406979B (zh) 2013-09-01

Family

ID=39618122

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096121148A TWI406979B (zh) 2007-01-11 2007-06-12 化學氣相沈積法及原子層沈積法

Country Status (2)

Country Link
US (1) US7851377B2 (zh)
TW (1) TWI406979B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965219A (en) * 1988-12-27 1999-10-12 Symetrix Corporation Misted deposition method with applied UV radiation
US6838125B2 (en) * 2002-07-10 2005-01-04 Applied Materials, Inc. Method of film deposition using activated precursor gases

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966595A (en) 1995-10-05 1999-10-12 Micron Technology, Inc. Method to form a DRAM capacitor using low temperature reoxidation
JP4232330B2 (ja) * 2000-09-22 2009-03-04 東京エレクトロン株式会社 励起ガス形成装置、処理装置及び処理方法
US6730367B2 (en) * 2002-03-05 2004-05-04 Micron Technology, Inc. Atomic layer deposition method with point of use generated reactive gas species
US7404990B2 (en) * 2002-11-14 2008-07-29 Air Products And Chemicals, Inc. Non-thermal process for forming porous low dielectric constant films
US7311947B2 (en) * 2003-10-10 2007-12-25 Micron Technology, Inc. Laser assisted material deposition
US20050145177A1 (en) * 2003-12-30 2005-07-07 Mcswiney Michael Method and apparatus for low temperature silicon nitride deposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965219A (en) * 1988-12-27 1999-10-12 Symetrix Corporation Misted deposition method with applied UV radiation
US6838125B2 (en) * 2002-07-10 2005-01-04 Applied Materials, Inc. Method of film deposition using activated precursor gases

Also Published As

Publication number Publication date
US7851377B2 (en) 2010-12-14
TW200829734A (en) 2008-07-16
US20080171445A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
KR102588666B1 (ko) 기판 상의 구조물 형성 방법
KR101442212B1 (ko) 금속 실리케이트 막들의 원자층 증착
US6875677B1 (en) Method to control the interfacial layer for deposition of high dielectric constant films
TWI263695B (en) Atomic layer deposition of oxide film
KR100819318B1 (ko) 반도체 장치의 제조방법
US6806145B2 (en) Low temperature method of forming a gate stack with a high k layer deposited over an interfacial oxide layer
JP3798248B2 (ja) ラジカルを利用した連続cvd
TWI276700B (en) Atomic layer deposition of nanolaminate film
TWI426547B (zh) 用於批次原子層沈積反應器之處理製程
US20060090694A1 (en) Method for atomic layer deposition (ALD) of silicon oxide film
JP2007194582A (ja) 高誘電体薄膜の改質方法及び半導体装置
US10381219B1 (en) Methods for forming a silicon nitride film
TW202044345A (zh) 於反應腔室中藉由循環沉積製程於基板上沉積鉿鑭氧化物膜之方法
CN110402482B (zh) 半导体装置的制造方法、清洁方法、基板处理装置和记录介质
US7507644B2 (en) Method of forming dielectric layer of flash memory device
CN112640062A (zh) 清扫方法、半导体装置的制造方法、程序和基板处理装置
US20080305646A1 (en) Atomic layer deposition
TWI406979B (zh) 化學氣相沈積法及原子層沈積法
US20050009369A1 (en) Methods of forming a multi-layered structure using an atomic layer deposition process and methods of forming a capacitor of an integrated circuit device
US9330901B2 (en) Nitrogen-containing oxide film and method of forming the same
TWI764264B (zh) 基板處理裝置,半導體裝置的製造方法及程式
CN114606477A (zh) 用于氮化硅沉积的硅前体
US20090311878A1 (en) Method for depositing a dielectric material
KR20060003211A (ko) 오존을 이용하는 원자층 증착법으로 실리콘 산화막을형성하는 방법
TW202331841A (zh) 半導體結構和其形成方法以及用於執行方法之設備

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees