TWI405709B - Fluidic chip and method for making the same - Google Patents
Fluidic chip and method for making the same Download PDFInfo
- Publication number
- TWI405709B TWI405709B TW97144396A TW97144396A TWI405709B TW I405709 B TWI405709 B TW I405709B TW 97144396 A TW97144396 A TW 97144396A TW 97144396 A TW97144396 A TW 97144396A TW I405709 B TWI405709 B TW I405709B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- bonding
- top layer
- bonding layer
- fluid
- Prior art date
Links
Landscapes
- Micromachines (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本發明係關於一種流體晶片及其製造方法,詳言之,係關於一種利用一接合層達到低溫接合之目的之流體晶片及其製造方法。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a fluid wafer and a method of manufacturing the same, and more particularly to a fluid wafer for the purpose of low temperature bonding using a bonding layer and a method of fabricating the same.
檢體的驅動在生醫檢測晶片當中是最基本且重要的,其中又以高黏度流體(全血)的驅動較為困難,外加微幫浦的方式是常見的方式之一,然而若能藉由表面張力驅動高黏度流體,將可省略微幫浦的製作與花費,大幅降低晶片的製程複雜度。The driving of the specimen is the most basic and important in the biomedical test wafer. It is difficult to drive with high viscosity fluid (whole blood). It is a common way to add micro-pull, but if it can be used The surface tension drives the high viscosity fluid, which will omit the fabrication and cost of the micro-pull, greatly reducing the process complexity of the wafer.
一般表面張力驅動之流體晶片當中,流道材料具有高親水特性顯得相當重要,親水性高將產生較大的驅動力達到輸送流體之目的。這類流體自驅動晶片常以斥水性高分子材料(例如SU-8光阻(SU-8 photoresist)或聚二甲基矽氧烷(Polydimethylsiloxane,PDMS))製作微流道,為了增進此類高分子材料的親水性質,一般會以氧氣電漿或其他表面改質處理,處理後材料表面將由斥水性表面改變成高親水性與濕潤性表面,達到流體自驅動與輸送目的,然而此表面處理方法常遇到斥水性恢復的問題。例如:針對氧電漿與熱處理方式改善聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)的親水性的方式而言,例如文獻[D.T.Eddington,J.P.Puccinelli and D.J.Beebe,Sensors and Actuators B,2006,114,170]所揭示,當只做氧電漿處理時,高親水特 性在數十分鐘之後將消失,若搭配熱處理時,高親水性則可延長到數天之久。若將氧電漿改質之後的聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)做進一步的化學浸泡處理,例如文獻[J.A.Vickers,M.M.Caulum,and C.S.Henry,Anal.Chem.,2006,78,7446]所揭示,則可將親水性維持到數天或十幾天之久,但斥水性回復問題依然存在。Among the fluid wafers driven by surface tension, the high hydrophilic property of the flow channel material is very important, and the high hydrophilicity will generate a large driving force for the purpose of transporting the fluid. Such fluid self-driving wafers are often made of water-repellent polymer materials (such as SU-8 photoresist or polydimethylsiloxane (PDMS)) to create such microchannels. The hydrophilic nature of the molecular material is generally treated by oxygen plasma or other surface modification. After treatment, the surface of the material will be changed from a water-repellent surface to a highly hydrophilic and wet surface to achieve fluid self-driving and transporting purposes. However, this surface treatment method Water recovery problems are often encountered. For example, for the way in which oxygen plasma and heat treatment improve the hydrophilicity of polydimethylsiloxane (PDMS), for example, [DTEddington, JPPuccinelli and DJ Beeebe, Sensors and Actuators B, 2006, 114, 170 ] revealed that when only oxygen plasma treatment, high hydrophilic Sex will disappear after tens of minutes. If it is combined with heat treatment, the high hydrophilicity can be extended to several days. If the oxygen plasma is modified, the polydimethylsiloxane (PDMS) is subjected to further chemical immersion treatment, for example, [JAVickers, MMCaulum, and CSHenry, Anal. Chem., 2006, 78, 7446], the hydrophilicity can be maintained for several days or ten days, but the problem of water repellency still exists.
總之,儘管現在有許多表面處理的方法可增進高分子材料之親水性,卻沒有一個具有穩定且永久高親水性的改質方法被發展,故發明一永久親水性自驅動流體晶片將是重要的,此問題的解決將可真正實現商品化之目的。In summary, although many surface treatment methods are now available to enhance the hydrophilicity of polymeric materials, none of the reforming methods with stable and permanent high hydrophilicity have been developed, so it would be important to invent a permanent hydrophilic self-driven fluid wafer. The solution to this problem will truly achieve the purpose of commercialization.
除了聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)和SU-8光阻(SU-8 photoresist)之高分子材料之外,玻璃也是流體晶片常用的材料,但傳統玻璃晶片的製作與接合存在著製程步驟複雜與熱接合溫度高等缺點,例如文獻[A.Daridon,V.Fascio,J.Lichtenberg,R.Wtrich,H.Langen,E.Verpoorte and N.F.de Rooij,Fresenius J.Anal.Chem.,2001,371,261]所揭示。In addition to polymer materials such as polydimethylsiloxane (PDMS) and SU-8 photoresist (SU-8 photoresist), glass is also a commonly used material for fluid wafers, but the fabrication and bonding of conventional glass wafers exist. Complex process steps and high thermal bonding temperatures, such as the literature [A.Daridon, V.Fascio, J.Lichtenberg, RW Trich, H. Langen, E. Verpoorte and NF de Rooij, Fresenius J. Anal. Chem., 2001, 371, 261].
因此,有必要提供一種創新且具進步性的流體晶片及其製造方法,以解決上述問題。Therefore, it is necessary to provide an innovative and progressive fluid wafer and a method of manufacturing the same to solve the above problems.
本發明提供一種流體晶片,其包括一底層、一接合層及一頂層。該接合層位於該底層上,該接合層之材質係為親水性高分子。該頂層位於該接合層上,該頂層包括至少一 流體儲存槽及至少一流道,該流體儲存槽係連通該流道。The present invention provides a fluid wafer comprising a bottom layer, a bonding layer and a top layer. The bonding layer is located on the underlayer, and the material of the bonding layer is a hydrophilic polymer. The top layer is on the bonding layer, the top layer includes at least one a fluid storage tank and at least a flow channel that communicates with the flow channel.
本發明另提供一種流體晶片,其包括一底層、一接合層及一頂層。該接合層位於該底層上,該接合層包括至少一流道。該頂層位於該接合層上,該頂層包括至少一流體儲存槽,該流體儲存槽係連通該流道。The invention further provides a fluid wafer comprising a bottom layer, a bonding layer and a top layer. The bonding layer is on the bottom layer, and the bonding layer includes at least a first pass. The top layer is located on the bonding layer, the top layer including at least one fluid storage tank that communicates with the flow channel.
本發明又提供一種流體晶片之製造方法,包括以下步驟:(a)提供一頂層、一接合層及一底層,其中該接合層之材質係為親水性高分子;(b)於該頂層形成至少一貫穿孔及至少一溝槽,其中該貫穿孔係貫穿該頂層且連通該溝槽;及(c)熱接合該頂層、該接合層及該底層,其中該貫穿孔形成一流體儲存槽,該溝槽形成一流道。The invention further provides a method for manufacturing a fluid wafer, comprising the steps of: (a) providing a top layer, a bonding layer and a bottom layer, wherein the bonding layer is made of a hydrophilic polymer; and (b) forming at least the top layer. Consistently perforating and at least one groove, wherein the through hole extends through the top layer and communicates with the groove; and (c) thermally bonds the top layer, the bonding layer and the bottom layer, wherein the through hole forms a fluid storage tank, the groove The trough forms a first class road.
本發明再提供一種流體晶片之製造方法,包括以下步驟:(a)提供一頂層、一接合層及一底層;(b)於該頂層形成至少一貫穿孔,於該接合層形成至少一穿槽,其中該貫穿孔係貫穿該頂層,該穿槽係貫穿該接合層;及(c)接合該頂層、該接合層及該底層,其中該貫穿孔形成一流體儲存槽,該穿槽形成一流道。The invention further provides a method for manufacturing a fluid wafer, comprising the steps of: (a) providing a top layer, a bonding layer and a bottom layer; (b) forming at least a uniform via in the top layer, and forming at least one through-groove in the bonding layer, Wherein the through hole extends through the top layer, the through groove extends through the bonding layer; and (c) joins the top layer, the bonding layer and the bottom layer, wherein the through hole forms a fluid storage groove, and the through groove forms a channel.
本發明更提供一種流體晶片之製造方法,包括以下步驟:(a)提供一頂層、一接合層及一底層;(b)接合該接合層及該底層;(c)於該接合層形成至少一穿槽,於該底層形成至少一凹槽,其中該穿槽係貫穿該接合層,該凹槽係對應該穿槽;(d)於該頂層形成至少一貫穿孔,該貫穿孔係貫穿該頂層;(e)置放該頂層於該接合層上;及(f)接合該頂層及該接合層,其中該貫穿孔形成一流體儲存槽,該穿槽 及該凹槽形成一流道。藉此,該接合層得以低溫接合該頂層及該底層,且該流道不需任何表面加工即具有高親水性,而得以驅動一流體。The invention further provides a method for manufacturing a fluid wafer, comprising the steps of: (a) providing a top layer, a bonding layer and a bottom layer; (b) bonding the bonding layer and the bottom layer; (c) forming at least one of the bonding layer The through hole is formed in the bottom layer to form at least one groove, wherein the groove is through the joint layer, the groove is corresponding to the groove; (d) the top layer is formed with at least a uniform perforation, the through hole is through the top layer; (e) placing the top layer on the bonding layer; and (f) bonding the top layer and the bonding layer, wherein the through hole forms a fluid storage tank, the through groove And the groove forms a first-class track. Thereby, the bonding layer can bond the top layer and the bottom layer at a low temperature, and the flow path can drive a fluid without any surface processing, that is, having high hydrophilicity.
參考圖1至圖3,顯示本發明流體晶片之第一實施例之製造方法之示意圖。首先,參考圖1,提供一頂層11、一接合層12及一底層13,其中該接合層12之材質係為親水性高分子。在本發明中,親水性材質及斥水性材質之定義方法如下,於一固體表面上置放一水滴,若該水滴之接觸角(水滴之液氣相介面之切線與固體表面所形成之角度值)角度愈小,則該固體材質親水性愈高;反之角度愈大,則該固體材質斥水性愈高。Referring to Figures 1 through 3, there are shown schematic views of a method of fabricating a first embodiment of a fluid wafer of the present invention. First, referring to FIG. 1, a top layer 11, a bonding layer 12 and a bottom layer 13 are provided, wherein the bonding layer 12 is made of a hydrophilic polymer. In the present invention, the hydrophilic material and the water repellent material are defined as follows, a water drop is placed on a solid surface, if the contact angle of the water droplet (the tangent of the liquid-vapor interface of the water droplet and the angle formed by the solid surface) The smaller the angle, the higher the hydrophilicity of the solid material; the larger the angle, the higher the water repellency of the solid material.
在本實施例中,該頂層11包括一第一表面111及一第二表面112。該頂層11及該底層13之材質係為親水性材料(例如:玻璃),該接合層12之材質係為親水性液晶高分子材料(Liquid Crystal Polymer,LCP),且該接合層12之熔點係低於該底層13及該頂層11。In this embodiment, the top layer 11 includes a first surface 111 and a second surface 112. The material of the top layer 11 and the bottom layer 13 is a hydrophilic material (for example, glass), and the material of the bonding layer 12 is a hydrophilic liquid crystal polymer (LCP), and the melting point of the bonding layer 12 is Lower than the bottom layer 13 and the top layer 11.
接著,參考圖2,於該頂層11形成至少一貫穿孔113及至少一溝槽114,其中該等貫穿孔113係貫穿該頂層11且連通該溝槽114。在本實施例中,該等貫穿孔113位於該溝槽114之末端,該溝槽114係形成於該頂層11之第二表面112。該頂層11之該等貫穿孔113及該溝槽114係利用雷射加工形成。Next, referring to FIG. 2 , at least a uniform through hole 113 and at least one groove 114 are formed in the top layer 11 , wherein the through holes 113 penetrate the top layer 11 and communicate with the groove 114 . In the present embodiment, the through holes 113 are located at the ends of the trenches 114 , and the trenches 114 are formed on the second surface 112 of the top layer 11 . The through holes 113 of the top layer 11 and the grooves 114 are formed by laser processing.
最後,參考圖3,熱接合該頂層11、該接合層12及該底 層13,使得該等貫穿孔113(圖2)形成複數個流體儲存槽14,該溝槽114(圖2)形成一流道15。在本實施例中,該頂層11之第二表面112係接觸該接合層12。在本實施例中,係同時熱接合該頂層11、該接合層12及該底層13。然而在其他應用中,係可先熱接合該頂層11及該接合層12,再熱接合該接合層12及該底層13,或者,先熱接合該底層13及該接合層12,再熱接合該接合層12及該頂層11。Finally, referring to FIG. 3, the top layer 11, the bonding layer 12 and the bottom are thermally bonded. The layer 13 is such that the through holes 113 (Fig. 2) form a plurality of fluid storage slots 14, which form the channel 114 (Fig. 2). In the present embodiment, the second surface 112 of the top layer 11 is in contact with the bonding layer 12. In the present embodiment, the top layer 11, the bonding layer 12, and the bottom layer 13 are thermally bonded simultaneously. In other applications, however, the top layer 11 and the bonding layer 12 may be thermally bonded, and then the bonding layer 12 and the bottom layer 13 may be thermally bonded, or the bottom layer 13 and the bonding layer 12 may be thermally bonded first, and then thermally bonded. The bonding layer 12 and the top layer 11.
在本發明中,進行熱接合時,控制其溫度,使該底層13及該頂層11呈固態,而該接合層12呈固態但具黏性,以利接合。在本實施例中,溫度約300℃或者更低即可進行熱接合,可改善習知玻璃流體晶片熱接合溫度過高(約680℃或者更高)以及步驟繁瑣的問題。此外,由於該頂層11、接合層12及底層13皆為親水性材質,故不需任何表面加工即具有高親水性,而得以驅動一流體(圖中未示),故達到簡化製程之效果。同時,可避免習知將一斥水性材質表面加工為一親水性材質後,又恢復其斥水性的問題。In the present invention, when the thermal bonding is performed, the temperature is controlled so that the underlayer 13 and the top layer 11 are in a solid state, and the bonding layer 12 is solid but viscous to facilitate bonding. In the present embodiment, thermal bonding can be performed at a temperature of about 300 ° C or lower, which can improve the problem that the conventional glass fluid wafer is too hot (about 680 ° C or higher) and the steps are cumbersome. In addition, since the top layer 11, the bonding layer 12 and the bottom layer 13 are both hydrophilic materials, a liquid is not required to be processed, and a fluid (not shown) is driven, so that the process is simplified. At the same time, it is possible to avoid the problem of recovering the water repellency after processing the surface of a water repellent material into a hydrophilic material.
再參考圖3,顯示本發明流體晶片之第一實施例之剖面示意圖。該流體晶片1包括一底層13、一接合層12及一頂層11。該接合層12位於該底層13上,該接合層12之材質係為親水性高分子。該頂層11位於該接合層12上,該頂層11包括至少一流體儲存槽14及至少一流道15,該等流體儲存槽14係連通該流道15。在本實施例中,該頂層11及該底層13之材質係為親水性材料(例如:玻璃)。該接合層12之熔點係低於該底層13及該頂層11,該接合層12之材質係為親 水性液晶高分子材料(Liquid Crystal Polymer,LCP)。在本實施例中,該頂層11更包括一第一表面111及一第二表面112,該頂層11之第二表面112係接觸該接合層12。該等流體儲存槽14貫穿該頂層11,且位於該流道15之末端,如圖4所示。在本實施例中,該流道15係位於該頂層11之第二表面112,且位於該接合層12上方。Referring again to Figure 3, a cross-sectional view of a first embodiment of a fluid wafer of the present invention is shown. The fluid wafer 1 includes a bottom layer 13, a bonding layer 12, and a top layer 11. The bonding layer 12 is located on the underlayer 13. The material of the bonding layer 12 is a hydrophilic polymer. The top layer 11 is located on the bonding layer 12, and the top layer 11 includes at least one fluid storage tank 14 and at least a first-class channel 15 that communicates with the flow channel 15. In this embodiment, the material of the top layer 11 and the bottom layer 13 is a hydrophilic material (for example, glass). The bonding layer 12 has a lower melting point than the bottom layer 13 and the top layer 11. The bonding layer 12 is made of a pro A liquid crystal polymer material (LCP). In this embodiment, the top layer 11 further includes a first surface 111 and a second surface 112 , and the second surface 112 of the top layer 11 contacts the bonding layer 12 . The fluid storage tanks 14 extend through the top layer 11 and are located at the ends of the flow passages 15, as shown in FIG. In the present embodiment, the flow channel 15 is located on the second surface 112 of the top layer 11 and above the bonding layer 12.
參考圖5,顯示本發明流體晶片之第二實施例之俯視示意圖。本實施例之流體晶片2與第一實施例之流體晶片1大致相同,其中相同之元件賦予相同之編號。本實施例與第一實施例之不同處,僅在於該流道15包括一主流道151、一分叉點152及複數個次流道153,該分叉點152係連通廳主流道151及該等次流道153。Referring to Figure 5, there is shown a top plan view of a second embodiment of a fluid wafer of the present invention. The fluid wafer 2 of the present embodiment is substantially the same as the fluid wafer 1 of the first embodiment, wherein the same elements are given the same reference numerals. The difference between this embodiment and the first embodiment is that the flow path 15 includes a main flow path 151, a bifurcation point 152, and a plurality of secondary flow paths 153. The bifurcation point 152 is a communication hall main channel 151 and the The secondary flow path 153.
參考圖6至圖8,顯示本發明流體晶片之第三實施例之製造方法之示意圖。首先,參考圖6,提供一頂層31、一接合層32及一底層33。在本實施例中,該頂層31及該底層33之材質係為親水性材料(例如:玻璃),該接合層32之材質係為親水性液晶高分子材料(Liquid Crystal Polymer,LCP),且該接合層32之熔點係低於該底層33及該頂層31。然而在其他應用中,該接合層32係可為雙面膠帶(Twin Adhesive Tape)。Referring to Figures 6 through 8, there are shown schematic views of a method of fabricating a third embodiment of a fluid wafer of the present invention. First, referring to FIG. 6, a top layer 31, a bonding layer 32, and a bottom layer 33 are provided. In this embodiment, the material of the top layer 31 and the bottom layer 33 is a hydrophilic material (for example, glass), and the material of the bonding layer 32 is a hydrophilic liquid crystal polymer (LCP), and the material The bonding layer 32 has a lower melting point than the bottom layer 33 and the top layer 31. In other applications, however, the bonding layer 32 can be a Twin Adhesive Tape.
接著,參考圖7,於該頂層31形成至少一貫穿孔311,於該接合層32形成至少一穿槽321,其中該等貫穿孔311係貫穿該頂層31,該穿槽321係貫穿該接合層32。在本實施例中,該頂層31之該等貫穿孔311及該接合層32之該穿槽321 係利用雷射加工形成。Next, referring to FIG. 7 , at least one of the through holes 311 is formed in the top layer 31 , and at least one through hole 321 is formed in the bonding layer 32 , wherein the through holes 311 extend through the top layer 31 , and the through holes 321 extend through the bonding layer 32 . . In the embodiment, the through holes 311 of the top layer 31 and the through grooves 321 of the bonding layer 32 It is formed by laser processing.
最後,參考圖8,接合該頂層31、該接合層32及該底層33,使得該等貫穿孔311(圖7)形成複數個流體儲存槽34,該穿槽321(圖7)形成一流道35。該流體儲存槽34位於該流道35之末端。在本實施例中,係同時熱接合該頂層31、該接合層32及該底層33。然而在其他應用中,係可先熱接合該頂層31及該接合層32,再熱接合該接合層32及該底層33,或者,先熱接合該底層33及該接合層32,再熱接合該接合層32及該頂層31。又或者,當該接合層32係為雙面膠帶(Twin Adhesive Tape)時,係可直接黏合該頂層31、該接合層32及該底層33。Finally, referring to FIG. 8, the top layer 31, the bonding layer 32 and the bottom layer 33 are joined such that the through holes 311 (FIG. 7) form a plurality of fluid storage grooves 34, and the through grooves 321 (FIG. 7) form a first-class channel 35. . The fluid storage tank 34 is located at the end of the flow passage 35. In the present embodiment, the top layer 31, the bonding layer 32, and the bottom layer 33 are thermally bonded simultaneously. In other applications, however, the top layer 31 and the bonding layer 32 may be thermally bonded, the bonding layer 32 and the bottom layer 33 may be thermally bonded, or the bottom layer 33 and the bonding layer 32 may be thermally bonded first, and then thermally bonded. The bonding layer 32 and the top layer 31. Alternatively, when the bonding layer 32 is a double-adhesive tape, the top layer 31, the bonding layer 32, and the bottom layer 33 may be directly bonded.
再參考圖8,顯示本發明流體晶片之第三實施例之剖面示意圖。該流體晶片3包括一底層33、一接合層32及一頂層31。該接合層32位於該底層33上,該接合層32包括至少一流道35。該頂層31位於該接合層32上,該頂層31包括至少一流體儲存槽34,該等流體儲存槽34係連通該流道35。在本實施例中,該頂層31及該底層33之材質係為親水性材料(例如:玻璃)。該接合層32之熔點係低於該底層33及該頂層31,該接合層32之材質係為親水性液晶高分子材料(Liquid Crystal Polymer,LCP)。然而在其他應用中,該接合層32係可為雙面膠帶(Twin Adhesive Tape)。該等流體儲存槽34貫穿該頂層31,且位於該流道35之末端。在本實施例中,該流道35貫穿該接合層32。Referring again to Figure 8, a cross-sectional view of a third embodiment of the fluid wafer of the present invention is shown. The fluid wafer 3 includes a bottom layer 33, a bonding layer 32, and a top layer 31. The bonding layer 32 is located on the bottom layer 33, and the bonding layer 32 includes at least the first pass 35. The top layer 31 is located on the bonding layer 32. The top layer 31 includes at least one fluid storage tank 34 that communicates with the flow channel 35. In this embodiment, the material of the top layer 31 and the bottom layer 33 is a hydrophilic material (for example, glass). The bonding layer 32 has a lower melting point than the underlayer 33 and the top layer 31. The bonding layer 32 is made of a hydrophilic liquid crystal polymer (LCP). In other applications, however, the bonding layer 32 can be a Twin Adhesive Tape. The fluid storage tanks 34 extend through the top layer 31 and are located at the ends of the flow passages 35. In the present embodiment, the flow path 35 extends through the bonding layer 32.
參考圖9至圖11,顯示本發明流體晶片之第四實施例之 製造方法之示意圖。首先,參考圖9,提供一頂層41、一接合層42及一底層43。在本實施例中,該底層43包括一第一表面431及一第二表面432。在本實施例中,該頂層41及該底層43之材質係為親水性材料(例如:玻璃),該接合層42之材質係為親水性液晶高分子材料(Liquid Crystal Polymer,LCP),且該接合層42之熔點係低於該底層43及該頂層41。然而在其他應用中,該接合層42係可為雙面膠帶(Twin Adhesive Tape)。Referring to Figures 9 through 11, there is shown a fourth embodiment of the fluid wafer of the present invention. Schematic diagram of the manufacturing method. First, referring to FIG. 9, a top layer 41, a bonding layer 42, and a bottom layer 43 are provided. In the embodiment, the bottom layer 43 includes a first surface 431 and a second surface 432. In this embodiment, the material of the top layer 41 and the bottom layer 43 is a hydrophilic material (for example, glass), and the material of the bonding layer 42 is a hydrophilic liquid crystal polymer (LCP), and the material The bonding layer 42 has a lower melting point than the bottom layer 43 and the top layer 41. In other applications, however, the bonding layer 42 can be a Twin Adhesive Tape.
接著,參考圖10,於該頂層41形成至少一貫穿孔411,於該接合層42形成至少一穿槽421,其中該等貫穿孔411係貫穿該頂層41,該穿槽421係貫穿該接合層42。在本實施例中,更於該底層43之第一表面431形成至少一凹槽433,該凹槽433係對應該穿槽421。在本實施例中,該頂層41之該等貫穿孔411、該接合層42之該穿槽421及該底層43之該凹槽433係利用雷射加工形成。Next, referring to FIG. 10 , at least one of the through holes 411 is formed in the top layer 41 , and at least one through hole 421 is formed in the bonding layer 42 . The through holes 411 extend through the top layer 41 , and the through holes 421 extend through the bonding layer 42 . . In this embodiment, at least one groove 433 is formed on the first surface 431 of the bottom layer 43 , and the groove 433 is opposite to the groove 421 . In the present embodiment, the through holes 411 of the top layer 41, the through grooves 421 of the bonding layer 42, and the grooves 433 of the bottom layer 43 are formed by laser processing.
最後,參考圖11,接合該頂層41、該接合層42及該底層43,使得該等貫穿孔411(圖10)形成複數個流體儲存槽44,該穿槽421(圖10)及該凹槽433形成一流道45。該流體儲存槽44位於該流道45之末端。在本實施例中,該底層43之第一表面431係接觸該接合層42。在本實施例中,係同時熱接合該頂層41、該接合層42及該底層43。然而在其他應用中,係可先熱接合該頂層41及該接合層42,再熱接合該接合層42及該底層43,或者,先熱接合該底層43及該接合層42,再熱接合該接合層42及該頂層41。又或者,當該接合 層42係為雙面膠帶(Twin Adhesive Tape)時,係可直接黏合該頂層41、該接合層42及該底層43。Finally, referring to FIG. 11, the top layer 41, the bonding layer 42 and the bottom layer 43 are joined such that the through holes 411 (FIG. 10) form a plurality of fluid storage grooves 44, the through grooves 421 (FIG. 10) and the grooves. 433 forms a superb road 45. The fluid storage tank 44 is located at the end of the flow passage 45. In the present embodiment, the first surface 431 of the bottom layer 43 contacts the bonding layer 42. In the present embodiment, the top layer 41, the bonding layer 42, and the bottom layer 43 are thermally bonded simultaneously. In other applications, however, the top layer 41 and the bonding layer 42 may be thermally bonded, the bonding layer 42 and the bottom layer 43 may be thermally bonded, or the bottom layer 43 and the bonding layer 42 may be thermally bonded first, and then thermally bonded. The bonding layer 42 and the top layer 41. Or, when the joint When the layer 42 is a double-adhesive tape, the top layer 41, the bonding layer 42, and the bottom layer 43 can be directly bonded.
再參考圖11,顯示本發明流體晶片之第四實施例之剖面示意圖。本實施例之流體晶片4與第三實施例之流體晶片3大致相同。本實施例與第三實施例之不同處,僅在於該底層43包括至少一凹槽433、一第一表面431及一第二表面432,該凹槽433係位於該第一表面431,該流道45係延伸至該凹槽433,該底層43之第一表面431係接觸該接合層42。Referring again to Figure 11, a cross-sectional view of a fourth embodiment of a fluid wafer of the present invention is shown. The fluid wafer 4 of the present embodiment is substantially the same as the fluid wafer 3 of the third embodiment. The difference between this embodiment and the third embodiment is that the bottom layer 43 includes at least one groove 433, a first surface 431 and a second surface 432. The groove 433 is located on the first surface 431. The track 45 extends to the recess 433, and the first surface 431 of the bottom layer 43 contacts the bonding layer 42.
參考圖12至圖16,顯示本發明流體晶片之第四實施例之另一製造方法之示意圖。首先,參考圖12,提供一頂層41、一接合層42及一底層43。在本實施例中,該底層43包括一第一表面431及一第二表面432。在本實施例中,該頂層41及該底層43之材質係為親水性材料(例如:玻璃),該接合層42之材質係為親水性液晶高分子材料(Liquid Crystal Polymer,LCP),且該接合層42之熔點係低於該底層43及該頂層41。然而在其他應用中,該接合層42係可為雙面膠帶(Twin Adhesive Tape)。Referring to Figures 12 through 16, there are shown schematic views of another method of fabricating a fourth embodiment of the fluid wafer of the present invention. First, referring to FIG. 12, a top layer 41, a bonding layer 42, and a bottom layer 43 are provided. In the embodiment, the bottom layer 43 includes a first surface 431 and a second surface 432. In this embodiment, the material of the top layer 41 and the bottom layer 43 is a hydrophilic material (for example, glass), and the material of the bonding layer 42 is a hydrophilic liquid crystal polymer (LCP), and the material The bonding layer 42 has a lower melting point than the bottom layer 43 and the top layer 41. In other applications, however, the bonding layer 42 can be a Twin Adhesive Tape.
接著,參考圖13,接合該接合層42及該底層43。在本實施例中,該底層43之第一表面431係接觸該接合層42。Next, referring to FIG. 13, the bonding layer 42 and the underlayer 43 are bonded. In the present embodiment, the first surface 431 of the bottom layer 43 contacts the bonding layer 42.
接著,參考圖14,於該接合層42形成至少一穿槽421,於該底層43形成至少一凹槽433,其中該穿槽421係貫穿該接合層42,該凹槽433係對應該穿槽421。在本實施例中,該凹槽433係形成於該底層43之第一表面431。該接合層42 之該穿槽421及該底層43之該凹槽433係利用雷射加工形成。Next, referring to FIG. 14, at least one through hole 421 is formed in the bonding layer 42, and at least one groove 433 is formed in the bottom layer 43, wherein the through hole 421 is penetrated through the bonding layer 42, and the groove 433 is correspondingly grooved. 421. In the embodiment, the groove 433 is formed on the first surface 431 of the bottom layer 43. The bonding layer 42 The groove 421 and the groove 433 of the bottom layer 43 are formed by laser processing.
接著,參考圖15,於該頂層41形成至少一貫穿孔411,該貫穿孔411係貫穿該頂層41。在本實施例中,該頂層41之該貫穿孔411係利用雷射加工形成。接著,置放該頂層41於該接合層42上。最後,參考圖16,接合該頂層41及該接合層42,其中該貫穿孔411(圖15)形成一流體儲存槽44,該穿槽421(圖15)及該凹槽433形成一流道45。在本實施例中,該流體儲存槽44位於該流道45之末端。Next, referring to FIG. 15, at least a uniform through hole 411 is formed in the top layer 41, and the through hole 411 is penetrated through the top layer 41. In the present embodiment, the through hole 411 of the top layer 41 is formed by laser processing. Next, the top layer 41 is placed on the bonding layer 42. Finally, referring to FIG. 16, the top layer 41 and the bonding layer 42 are joined, wherein the through hole 411 (FIG. 15) forms a fluid storage groove 44, and the groove 421 (FIG. 15) and the groove 433 form a channel 45. In the present embodiment, the fluid storage tank 44 is located at the end of the flow passage 45.
惟上述實施例僅為說明本發明之原理及其功效,而非用以限制本發明。因此,習於此技術之人士對上述實施例進行修改及變化仍不脫本發明之精神。本發明之權利範圍應如後述之申請專利範圍所列。However, the above embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims.
1‧‧‧本發明流體晶片之第一實施例1‧‧‧First Embodiment of the Fluid Wafer of the Invention
2‧‧‧本發明流體晶片之第二實施例2‧‧‧Second embodiment of the fluid wafer of the invention
3‧‧‧本發明流體晶片之第三實施例3‧‧‧ Third embodiment of the fluid wafer of the present invention
4‧‧‧本發明流體晶片之第四實施例4‧‧‧Fourth embodiment of the fluid wafer of the present invention
11‧‧‧頂層11‧‧‧ top
12‧‧‧接合層12‧‧‧ joint layer
13‧‧‧底層13‧‧‧ bottom layer
14‧‧‧流體儲存槽14‧‧‧ fluid storage tank
15‧‧‧流道15‧‧‧ flow path
31‧‧‧頂層31‧‧‧ top
32‧‧‧接合層32‧‧‧ joint layer
33‧‧‧底層33‧‧‧ bottom layer
34‧‧‧流體儲存槽34‧‧‧ fluid storage tank
35‧‧‧流道35‧‧‧ flow path
41‧‧‧頂層41‧‧‧ top
42‧‧‧接合層42‧‧‧ joint layer
43‧‧‧底層43‧‧‧ bottom layer
44‧‧‧流體儲存槽44‧‧‧ fluid storage tank
45‧‧‧流道45‧‧‧ flow path
111‧‧‧第一表面111‧‧‧ first surface
112‧‧‧第二表面112‧‧‧ second surface
113‧‧‧貫穿孔113‧‧‧through holes
114‧‧‧溝槽114‧‧‧ trench
151‧‧‧主流道151‧‧‧mainstream
152‧‧‧分叉點152‧‧‧ bifurcation point
153‧‧‧次流道153‧‧‧ secondary runner
311‧‧‧貫穿孔311‧‧‧through holes
321‧‧‧穿槽321‧‧‧through slot
411‧‧‧貫穿孔411‧‧‧through holes
421‧‧‧穿槽421‧‧‧through slot
431‧‧‧第一表面431‧‧‧ first surface
432‧‧‧第二表面432‧‧‧ second surface
433‧‧‧凹槽433‧‧‧ Groove
圖1至圖3顯示本發明流體晶片之第一實施例之製造方法之示意圖;圖4顯示本發明流體晶片之第一實施例之俯視示意圖;圖5顯示本發明流體晶片之第二實施例之俯視示意圖;圖6至圖8顯示本發明流體晶片之第三實施例之製造方法之示意圖;圖9至圖11顯示本發明流體晶片之第四實施例之製造方法之示意圖;及圖12至圖16顯示本發明流體晶片之第四實施例之另一製造方法之示意圖。1 to 3 are schematic views showing a manufacturing method of a first embodiment of a fluid wafer of the present invention; Fig. 4 is a top plan view showing a first embodiment of the fluid wafer of the present invention; and Fig. 5 is a view showing a second embodiment of the fluid wafer of the present invention. FIG. 6 to FIG. 8 are schematic views showing a manufacturing method of a third embodiment of the fluid wafer of the present invention; and FIGS. 9 to 11 are views showing a manufacturing method of a fourth embodiment of the fluid wafer of the present invention; and FIG. 12 to FIG. 16 is a schematic view showing another manufacturing method of the fourth embodiment of the fluid wafer of the present invention.
1‧‧‧本發明流體晶片之第一實施例1‧‧‧First Embodiment of the Fluid Wafer of the Invention
11‧‧‧頂層11‧‧‧ top
12‧‧‧接合層12‧‧‧ joint layer
13‧‧‧底層13‧‧‧ bottom layer
14‧‧‧流體儲存槽14‧‧‧ fluid storage tank
15‧‧‧流道15‧‧‧ flow path
111‧‧‧第一表面111‧‧‧ first surface
112‧‧‧第二表面112‧‧‧ second surface
Claims (56)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97144396A TWI405709B (en) | 2008-11-17 | 2008-11-17 | Fluidic chip and method for making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97144396A TWI405709B (en) | 2008-11-17 | 2008-11-17 | Fluidic chip and method for making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201020201A TW201020201A (en) | 2010-06-01 |
TWI405709B true TWI405709B (en) | 2013-08-21 |
Family
ID=44832110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97144396A TWI405709B (en) | 2008-11-17 | 2008-11-17 | Fluidic chip and method for making the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI405709B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102692515B (en) * | 2011-03-23 | 2014-09-17 | 成功大学 | Biomedical chip used for blood coagulation tests, its manufacturing method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020076538A1 (en) * | 2000-12-14 | 2002-06-20 | St. Lawrence Michael E. | Liquid crystalline polymer bond plies and circuits formed therefrom |
TWM281175U (en) * | 2005-02-04 | 2005-11-21 | Dr Chip Biotechnology Inc | Biochips |
TWI269776B (en) * | 2005-01-27 | 2007-01-01 | Univ Nat Cheng Kung | Microfluidic driving apparatus and method for manufacturing the same |
TWI282775B (en) * | 2005-04-27 | 2007-06-21 | Ind Tech Res Inst | Fabricated technique of micro spray nozzles |
US7425276B2 (en) * | 2004-06-30 | 2008-09-16 | University Of South Florida | Method for etching microchannel networks within liquid crystal polymer substrates |
-
2008
- 2008-11-17 TW TW97144396A patent/TWI405709B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020076538A1 (en) * | 2000-12-14 | 2002-06-20 | St. Lawrence Michael E. | Liquid crystalline polymer bond plies and circuits formed therefrom |
US7425276B2 (en) * | 2004-06-30 | 2008-09-16 | University Of South Florida | Method for etching microchannel networks within liquid crystal polymer substrates |
TWI269776B (en) * | 2005-01-27 | 2007-01-01 | Univ Nat Cheng Kung | Microfluidic driving apparatus and method for manufacturing the same |
TWM281175U (en) * | 2005-02-04 | 2005-11-21 | Dr Chip Biotechnology Inc | Biochips |
TWI282775B (en) * | 2005-04-27 | 2007-06-21 | Ind Tech Res Inst | Fabricated technique of micro spray nozzles |
Also Published As
Publication number | Publication date |
---|---|
TW201020201A (en) | 2010-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Satyanarayana et al. | Stamp-and-stick room-temperature bonding technique for microdevices | |
JP5511788B2 (en) | Microfluidic circuit element having microfluidic channel with nano-gap and manufacturing method thereof | |
US8869815B2 (en) | Pinch valve and method for manufacturing same | |
JP5965908B2 (en) | Microfluidic device | |
US20060261033A1 (en) | Alignment of multicomponent microfabricated structures | |
Welch et al. | Seamless integration of CMOS and microfluidics using flip chip bonding | |
Tsao et al. | Bonding of thermoplastic microfluidics by using dry adhesive tape | |
US20110162785A1 (en) | Latent solvent-based microfluidic apparatus, methods, and applications | |
WO2009156045A4 (en) | Microfluidic foil structure for metering of fluids | |
EP2014366A3 (en) | Microfluidic chip and method of fabricating the same | |
JP2009530633A (en) | System-in-package platform for electronic microfluidic devices | |
JP2003039396A (en) | Method of manufacturing for microstructure for microfluidic application and method of manufacturing for fluidic device | |
CN102580799B (en) | Machining method of micro-drop and micro-fluidic control chip | |
JP2004033141A (en) | Polymerase chain reaction container and method for producing the same | |
EP1121199B1 (en) | Device for chemical and/or biological analysis with analysis support | |
TWI405709B (en) | Fluidic chip and method for making the same | |
Li et al. | Fabrication of a thermoplastic multilayer microfluidic chip | |
Zhu | Micro/nanoporous membrane based gas–water separation in microchannel | |
Karlsson et al. | PCR on a PDMS-based microchip with integrated bubble removal | |
FR2813073A1 (en) | Device for biological, chemical, pharmaceutical and medical uses, comprises channels and a reception area for guiding and positioning capillaries to connect to a micro-fluidic component | |
US9580747B2 (en) | DNA chip with micro-channel for DNA analysis | |
JP4804090B2 (en) | Reaction vessel | |
JP3990316B2 (en) | Manufacturing method of micro chemical chip | |
Moreno et al. | High-integrated microvalve for lab-on-chip biomedical applications | |
US20180326415A1 (en) | Microfluidic device and method of manufacture of microfluidic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |