TWI403350B - Filter material and method for fabricating the same - Google Patents

Filter material and method for fabricating the same Download PDF

Info

Publication number
TWI403350B
TWI403350B TW99141051A TW99141051A TWI403350B TW I403350 B TWI403350 B TW I403350B TW 99141051 A TW99141051 A TW 99141051A TW 99141051 A TW99141051 A TW 99141051A TW I403350 B TWI403350 B TW I403350B
Authority
TW
Taiwan
Prior art keywords
layer
microfiltration
filter material
nano
fibers
Prior art date
Application number
TW99141051A
Other languages
Chinese (zh)
Other versions
TW201221199A (en
Inventor
Tai Hong Cheng
Cheng Chiang Huang
Shin Ying Chou
Original Assignee
Taiwan Textile Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Textile Res Inst filed Critical Taiwan Textile Res Inst
Priority to TW99141051A priority Critical patent/TWI403350B/en
Publication of TW201221199A publication Critical patent/TW201221199A/en
Application granted granted Critical
Publication of TWI403350B publication Critical patent/TWI403350B/en

Links

Abstract

A filter material and a method for fabricating the same are provided. The filter material includes a supporting layer, at least one ion-exchange layer and at least one microfiltration layer. The supporting layer has a first surface and a second surface, wherein the supporting layer is composed of supporting micro- or nano-fibers. The ion-exchange layer including charged nano-fibers is disposed on at least one of the first and the second surfaces of the supporting layer. The microfiltration layer is disposed on at least one of the ion-exchange layer. The microfiltration layer includes microfiltration nano-fibers and fillers that fill pores between the microfiltration nano-fibers.

Description

過濾材及其製造方法Filter material and method of manufacturing same

本發明是有關於一種過濾材及其製造方法,且特別是有關於一種同時具有微過濾及離子吸附之過濾材及其製造方法。The present invention relates to a filter material and a method of manufacturing the same, and more particularly to a filter material having both microfiltration and ion adsorption and a method of manufacturing the same.

近年來,過濾操作已廣泛應用於各領域,尤其是用於分離液體中的固體顆粒,或是用於分離氣體中的粉塵。一般過濾是指分離懸浮在流體中之物質,例如研磨顆粒、金屬離子、有機化合物、蛋白質、細菌等。習知的過濾方法包括離子交換法以及微過濾法(microfiltration)等,其分別是利用欲分離物質的電荷及尺寸差異來達成分離的效果。In recent years, filtration operations have been widely used in various fields, especially for separating solid particles in liquids or for separating dust in gases. Generally, filtration refers to the separation of substances suspended in a fluid, such as abrasive particles, metal ions, organic compounds, proteins, bacteria, and the like. Conventional filtration methods include ion exchange methods, microfiltration, and the like, which are effects of separating the charge and size of the substance to be separated, respectively.

就離子交換法而言,主要可依照所使用的載體種類分類為填充床層析法、薄膜分離層析法、離子交換纖維不織布等。填充床層析法通常是利用粒狀樹脂,但對於樹脂要求大小均一、材質堅固、耐高壓等特性,且大部分的吸附能力集中在樹脂內部,使得分子擴散距離遠造成過濾效果不佳。而薄膜分離層析法及離子交換纖維不織布則遭遇到吸附量低、質重、吸附速率慢,且習知的微過濾法也面臨到低流量、高壓損等問題。因此,如何在提升過濾材的吸附量、吸附速率的同時並增進其耐熱性,以有效改善分離過濾效率是業界亟欲解決的課題之一。The ion exchange method can be mainly classified into packed bed chromatography, thin film separation chromatography, ion exchange fiber nonwoven, and the like according to the kind of the carrier to be used. Packed bed chromatography usually uses granular resin, but the resin requires uniform size, firm material, high pressure resistance, etc., and most of the adsorption capacity is concentrated inside the resin, so that the molecular diffusion distance is far from causing poor filtration effect. Thin film separation chromatography and ion exchange fiber non-woven fabrics suffer from low adsorption, heavy weight, and slow adsorption rate, and the conventional microfiltration method also faces problems such as low flow rate and high pressure loss. Therefore, how to improve the adsorption capacity and adsorption rate of the filter material and improve the heat resistance thereof to effectively improve the separation and filtration efficiency is one of the problems that the industry is eager to solve.

有鑑於此,本發明提供一種過濾材,可同時具有微過濾以及內層離子吸附之功能,以大量應用於各種領域。In view of this, the present invention provides a filter material which can simultaneously have the functions of microfiltration and inner layer ion adsorption, and is widely applied to various fields.

本發明另提供一種過濾材的製作方法,利用電紡絲(electrospinning)技術、電噴塗(electrospraying)技術及纖維表面處理技術製作上述之過濾材。The invention further provides a method for preparing a filter material, which comprises the above-mentioned filter material by electrospinning technology, electrospraying technology and fiber surface treatment technology.

本發明提出一種過濾材,其包括支撐層、至少一離子交換層以及至少一微過濾層。支撐層具有第一表面以及第二表面,其中支撐層由微米或奈米支撐纖維構成。離子交換層位於支撐層之第一表面以及第二表面至少其中之一,其中離子交換層包括帶電荷奈米纖維。微過濾層位於至少一離子交換層上,其中微過濾層包括奈米微過濾纖維以及填於奈米微過濾纖維之間之孔隙的填充材料。The present invention provides a filter material comprising a support layer, at least one ion exchange layer, and at least one microfiltration layer. The support layer has a first surface and a second surface, wherein the support layer is comprised of micro or nano support fibers. The ion exchange layer is located on at least one of the first surface and the second surface of the support layer, wherein the ion exchange layer comprises charged nanofibers. The microfiltration layer is located on at least one ion exchange layer, wherein the microfiltration layer comprises nano microfiltration fibers and a filler material that fills the pores between the nanofiltration fibers.

在本發明之一實施例中,上述之離子交換層之帶電荷奈米纖維表面帶有正電荷。In one embodiment of the invention, the surface of the charged nanofiber of the ion exchange layer described above has a positive charge.

在本發明之一實施例中,上述之離子交換層之帶電荷奈米纖維表面帶有負電荷。In one embodiment of the invention, the surface of the charged nanofiber of the ion exchange layer described above is negatively charged.

在本發明之一實施例中,上述之奈米支撐纖維、帶電荷奈米纖維以及奈米微過濾纖維包括高分子聚合物或是纖維素。In an embodiment of the invention, the nano support fiber, the charged nanofiber, and the nano micro filter fiber comprise a high molecular polymer or a cellulose.

在本發明之一實施例中,上述之高分子聚合物包括聚丙烯腈(polyacrylonitrile,PAN)、聚碸(polysulfone,PS)、聚醚碸(polyethersulfone,PES)、(polyethylene terephthalate,PET)、聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)、聚對苯二甲酸乙二酯(polyethylene-grafted maleic anhydride,PE-g-MA)、聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、幾丁聚醣(chitosan)、聚乙烯醇(polyvinyl alcohol,PVA)、UV樹脂或是其組合。In an embodiment of the invention, the high molecular polymer comprises polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), (polyethylene terephthalate, PET), poly Propylene (PP), polyethylene (PE), polyethylene-grafted maleic anhydride (PE-g-MA), polyvinylidene fluoride (PVDF), several Chitosan, polyvinyl alcohol (PVA), UV resin or a combination thereof.

本發明另提出一種過濾材的製造方法,包括下列步驟。提供具有第一表面以及第二表面之支撐層,其中支撐層由微米或奈米支撐纖維構成。進行電紡絲程序,以於支撐層之第一表面以及第二表面至少其中之一上形成奈米纖維層。進行電紡絲及電噴塗程序,以於奈米纖維層上形成至少一微過濾層,其中微過濾層包括奈米微過濾纖維以及填於奈米微過濾纖維之間之孔隙的填充材料。進行纖維表面處理程序,以使奈米纖維層之纖維表面帶電荷,以形成至少一離子交換層。The present invention further provides a method of manufacturing a filter material comprising the following steps. A support layer having a first surface and a second surface is provided, wherein the support layer is comprised of micron or nano support fibers. An electrospinning process is performed to form a layer of nanofibers on at least one of the first surface and the second surface of the support layer. An electrospinning and electrospraying procedure is performed to form at least one microfiltration layer on the nanofiber layer, wherein the microfiltration layer comprises nano microfiltration fibers and a filler material filled in pores between the nanofiltration fibers. A fiber surface treatment procedure is performed to charge the surface of the fibers of the nanofiber layer to form at least one ion exchange layer.

在本發明之一實施例中,上述之纖維表面處理程序包括進行羧基化或鹼水解改質程序,以使纖維表面具有-COO- 官能基。In one embodiment of the invention, the fiber surface treatment procedure described above comprises performing a carboxylation or alkaline hydrolysis modification procedure to provide a -COO - functional group on the surface of the fiber.

在本發明之一實施例中,上述之纖維表面處理程序包括進行胺化改質程序,以使纖維表面具有-NH3 + 官能基。In one embodiment of the present invention, the processing program includes the fiber surface modified by amination procedures, to the surface of the fibers having a functional group -NH 3 +.

在本發明之一實施例中,上述之纖維表面處理程序包括進行磺酸化或交聯劑含浸程序,以使纖維表面具有-SO3 - 官能基。In one embodiment of the present invention, the surface of the fiber processing program or crosslinking agents include sulphonated impregnation procedure, so that the surface of the fiber having a -SO 3 - functional group.

在本發明之一實施例中,上述之纖維表面處理程序包括進行金屬螯合改質程序,以使纖維表面吸附具有-NH3 + 官能基或-COO- 官能基之金屬螯合化合物。In one embodiment of the invention, the fiber surface treatment procedure described above includes performing a metal chelation modification procedure to adsorb a metal chelate compound having a -NH 3 + functional group or a -COO - functional group on the surface of the fiber.

在本發明之一實施例中,上述之電紡絲及電噴塗程序包括進行電紡絲程序,以形成奈米微過濾纖維;進行電噴塗程序,以在奈米微過濾纖維上噴塗填充材料;以及進行熱壓程序,以使填充材料填於奈米微過濾纖維之間的孔隙之中。In an embodiment of the invention, the electrospinning and electrospraying process comprises performing an electrospinning process to form nano-microfiltration fibers; and performing an electro-spraying procedure to spray the filler material on the nano-microfiltration fibers; And a hot pressing process is performed to fill the pores between the nanofiltration fibers.

在本發明之一實施例中,上述之電紡絲及電噴塗程序包括進行電紡絲程序,以形成奈米微過濾纖維;進行熱壓程序;以及進行電噴塗程序,以在奈米微過濾纖維上噴塗填充材料。In an embodiment of the invention, the electrospinning and electrospraying process comprises performing an electrospinning process to form nano-microfiltration fibers; performing a hot pressing procedure; and performing an electro-spraying procedure to microfiltration in the nanometer The filler material is sprayed onto the fibers.

在本發明之一實施例中,上述形成支撐層之方法包括進行電紡絲程序。In one embodiment of the invention, the above method of forming a support layer includes performing an electrospinning process.

在本發明之一實施例中,上述之奈米支撐纖維、帶電荷奈米纖維以及奈米微過濾纖維包括高分子聚合物、纖維素。In an embodiment of the invention, the nano support fiber, the charged nanofiber, and the nano micro filter fiber comprise a high molecular polymer and a cellulose.

在本發明之一實施例中,上述之高分子聚合物包括聚丙烯腈(polyacrylonitrile,PAN)、聚碸(polysulfone,PS)、聚醚碸(polyethersulfone,PES)、(polyethylene terephthalate,PET)、聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)、聚對苯二甲酸乙二酯(polyethylene-grafted maleic anhydride,PE-g-MA)、聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、幾丁聚醣(chitosan)、聚乙烯醇(polyvinyl alcohol,PVA)、UV樹脂或是其組合。In an embodiment of the invention, the high molecular polymer comprises polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), (polyethylene terephthalate, PET), poly Propylene (PP), polyethylene (PE), polyethylene-grafted maleic anhydride (PE-g-MA), polyvinylidene fluoride (PVDF), several Chitosan, polyvinyl alcohol (PVA), UV resin or a combination thereof.

基於上述,本發明之過濾材包括離子交換層以及微過濾層,一方面可以在表層進行微過濾,而另一方面在內層進行離子吸附。此外,本發明之過濾材的孔隙緻密且孔隙度高,並具有高流量、低壓損、吸附量高、輕量、吸附速率快之特性。再者,藉由電紡絲技術、電噴塗技術及纖維表面處理技術製作上述之過濾材,製程簡單並可輕易控制孔隙大小,而極具競爭性。Based on the above, the filter material of the present invention comprises an ion exchange layer and a microfiltration layer, on the one hand, microfiltration on the surface layer, and ion adsorption on the inner layer. Further, the filter material of the present invention has a dense pore and a high porosity, and has a high flow rate, a low pressure loss, a high adsorption amount, a light weight, and a high adsorption rate. Furthermore, the above-mentioned filter material is produced by electrospinning technology, electro-spraying technology and fiber surface treatment technology, and the process is simple and the pore size can be easily controlled, which is highly competitive.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1為依據本發明之一實施例所繪示之過濾材的剖面示意圖。請參照圖1,過濾材100包括支撐層110、離子交換層120以及微過濾層130。過濾材100例如是具有一體成型之結構,因此各膜層之間不易分離脫落。1 is a schematic cross-sectional view of a filter material according to an embodiment of the invention. Referring to FIG. 1 , the filter material 100 includes a support layer 110 , an ion exchange layer 120 , and a micro filter layer 130 . The filter material 100 has, for example, an integrally formed structure, so that the film layers are less likely to separate and fall off between the film layers.

支撐層110具有第一表面110a以及第二表面110b。支撐層110是由微米或奈米支撐纖維112所構成,其中微米或奈米支撐纖維112包括高分子聚合物或是纖維素。上述之高分子聚合物例如是聚丙烯腈(polyacrylonitrile,PAN)、聚碸(polysulfone,PS)、聚醚碸(polyethersulfone,PES)、(polyethylene terephthalate,PET)、聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)、聚對苯二甲酸乙二酯(polyethylene-grafted maleic anhydride,PE-g-MA)、聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、幾丁聚醣(chitosan)、聚乙烯醇(polyvinyl alcohol,PVA)、UV樹脂或是其組合。在一實施例中,支撐層110的材料可以是以PET作為結構支撐材料,其厚度例如是約為1 μm至500 μm,且其孔徑大小例如是約為0.1 μm至30 μm,而微米或奈米支撐纖維112的直徑例如是介於0.5 μm至50 μm之間,因而可獲得高結構強度及擴散快等特性。The support layer 110 has a first surface 110a and a second surface 110b. The support layer 110 is comprised of micron or nano support fibers 112, wherein the micro or nano support fibers 112 comprise a high molecular polymer or cellulose. The above polymer is, for example, polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), polyethylene terephthalate (PET), polypropylene (PP), poly Polyethylene (PE), polyethylene-grafted maleic anhydride (PE-g-MA), polyvinylidene fluoride (PVDF), chitosan (chitosan), poly Polyvinyl alcohol (PVA), UV resin or a combination thereof. In an embodiment, the material of the support layer 110 may be PET as a structural support material, and the thickness thereof is, for example, about 1 μm to 500 μm, and the pore size thereof is, for example, about 0.1 μm to 30 μm, and the micron or the nanometer. The diameter of the rice support fiber 112 is, for example, between 0.5 μm and 50 μm, so that high structural strength and fast diffusion characteristics can be obtained.

離子交換層120位於支撐層110之第一表面110a上。離子交換層120包括帶電荷奈米纖維122。帶電荷奈米纖維122包括高分子聚合物或是纖維素。上述之高分子聚合物例如是聚丙烯腈(PAN)、聚碸(PS)、聚醚碸(PES)、(PET)、聚丙烯(PP)、聚乙烯(PE)、聚對苯二甲酸乙二酯(PE-g-MA)、聚偏二氟乙烯(PVDF)、幾丁聚醣(chitosan)、聚乙烯醇(PVA)、UV樹脂或是其組合。在一實施例中,離子交換層120的材料可以是PAN,其厚度例如是約為1 μm至200 μm,其孔徑大小例如是約為0.01 μm至10 μm,其孔隙率例如是約為10%至99%,且其比表面積例如是約為0.1 m2 /g至1000 m2 /g,且帶電荷奈米纖維122的直徑例如是介於50 nm至300 nm之間,因而能夠使離子交換層120具備高孔隙及高比表面積。The ion exchange layer 120 is located on the first surface 110a of the support layer 110. The ion exchange layer 120 includes charged nanofibers 122. The charged nanofiber 122 includes a high molecular polymer or cellulose. The above polymer is, for example, polyacrylonitrile (PAN), polyfluorene (PS), polyether oxime (PES), (PET), polypropylene (PP), polyethylene (PE), polyethylene terephthalate. Diester (PE-g-MA), polyvinylidene fluoride (PVDF), chitosan, polyvinyl alcohol (PVA), UV resin or a combination thereof. In one embodiment, the material of the ion exchange layer 120 may be PAN having a thickness of, for example, about 1 μm to 200 μm, a pore size of, for example, about 0.01 μm to 10 μm, and a porosity of, for example, about 10%. Up to 99%, and its specific surface area is, for example, about 0.1 m 2 /g to 1000 m 2 /g, and the diameter of the charged nanofiber 122 is, for example, between 50 nm and 300 nm, thereby enabling ion exchange Layer 120 has high porosity and a high specific surface area.

此外,離子交換層120之帶電荷奈米纖維122表面可以是帶有正電荷或帶有負電荷(未繪示)。在一實施例中,帶電荷奈米纖維122表面具有-COO- 官能基、-NH3 + 官能基或是-SO3 - 官能基,以作為不同酸鹼類型之離子交換纖維。在另一實施例中,帶電荷奈米纖維122表面吸附具有-NH3 + 官能基或-COO- 官能基之金屬螯合化合物,以作為金屬螯合型吸附纖維。帶電荷奈米纖維122表面所具有之官能基或是所吸附之金屬螯合化合物可視所欲分離的目標物及需求來調整其種類及密度。在此說明的是,由於離子交換層120具高比表面積,因此帶電荷奈米纖維122可帶有高密度官能基,以更有效率吸附目標物質。In addition, the surface of the charged nanofiber 122 of the ion exchange layer 120 may be positively charged or negatively charged (not shown). In one embodiment, the charged surface Henai Mi fiber 122 having -COO - functional groups, -NH 3 + or a functional group -SO 3 - functional groups to acid-base exchange fiber as different types of ions. In another embodiment, the surface of the charged nanofiber 122 adsorbs a metal chelate compound having a -NH 3 + functional group or a -COO - functional group as a metal chelate-type adsorption fiber. The functional group or the adsorbed metal chelate compound on the surface of the charged nanofiber 122 can be adjusted in kind and density depending on the target and the desired separation. It is explained herein that since the ion exchange layer 120 has a high specific surface area, the charged nanofibers 122 can carry a high density functional group to adsorb the target substance more efficiently.

微過濾層130位於離子交換層120上。微過濾層130包括奈米微過濾纖維132以及填充材料134,其中填充材料134填於奈米微過濾纖維132之間之孔隙136。奈米微過濾纖維132包括高分子聚合物或是纖維素。上述之高分子聚合物例如是聚丙烯腈(PAN)、聚碸(PS)、聚醚碸(PES)、(PET)、聚丙烯(PP)、聚乙烯(PE)、聚對苯二甲酸乙二酯(PE-g-MA)、聚偏二氟乙烯(PVDF)、幾丁聚醣(chitosan)、聚乙烯醇(PVA)、UV樹脂或是其組合。特別要說明的是,微過濾層130之奈米微過濾纖維132的材料和支撐層110之奈米支撐纖維112、離子交換層120之帶電荷奈米纖維122的材料可以相同或不相同。在一實施例中,微過濾層130之奈米微過濾纖維132的材料和離子交換層120之帶電荷奈米纖維122的材料相同,例如是均為PAN。在一實施例中,奈米微過濾纖維132的直徑例如是介於0.01 μm至1 μm之間。The microfiltration layer 130 is located on the ion exchange layer 120. The microfiltration layer 130 includes nanofiltration fibers 132 and a filler material 134, wherein the filler material 134 fills the pores 136 between the nanofiltration fibers 132. The nanofiber filter fiber 132 comprises a high molecular polymer or cellulose. The above polymer is, for example, polyacrylonitrile (PAN), polyfluorene (PS), polyether oxime (PES), (PET), polypropylene (PP), polyethylene (PE), polyethylene terephthalate. Diester (PE-g-MA), polyvinylidene fluoride (PVDF), chitosan, polyvinyl alcohol (PVA), UV resin or a combination thereof. In particular, the material of the nanofiltration fiber 132 of the microfiltration layer 130 and the material of the nanofiber support fiber 112 of the support layer 110 and the charged nanofiber 122 of the ion exchange layer 120 may be the same or different. In one embodiment, the material of the nanofiltration fiber 132 of the microfiltration layer 130 is the same as the material of the charged nanofiber 122 of the ion exchange layer 120, for example, both are PAN. In one embodiment, the diameter of the nano-microfiltration fibers 132 is, for example, between 0.01 μm and 1 μm.

填充材料134例如是以噴塗的方式均勻填充在奈米微過濾纖維132之間之孔隙136中,而使微過濾層130能夠獲得高緻密等特性。填充材料134可以是親水性材料也可以是疏水性材料,可視需求而選擇。在一實施例中,填充材料134可以是PVDF,且其濃度例如是約為0.01%至8%。如此一來,包括奈米微過濾纖維132以及填充材料134之微過濾層130的厚度例如是約為0.1 μm至50 μm,其孔徑大小例如是約為0.01 μm至5 μm。The filling material 134 is uniformly filled in the pores 136 between the nano microfiltration fibers 132, for example, by spraying, so that the microfiltration layer 130 can obtain characteristics such as high density. The filler material 134 may be a hydrophilic material or a hydrophobic material, and may be selected as needed. In an embodiment, the fill material 134 may be PVDF and has a concentration of, for example, about 0.01% to 8%. As such, the microfiltration layer 130 including the nano-microfiltration fibers 132 and the filler material 134 has a thickness of, for example, about 0.1 μm to 50 μm and a pore size of, for example, about 0.01 μm to 5 μm.

值得一提的是,在上述實施例中是以在支撐層之第一表面上形成一層離子交換層及一層微過濾層為例來進行說明,但本發明並不限於此。圖2為依據本發明之另一實施例所繪示之過濾材的剖面示意圖。須注意的是,在圖2中,與圖1相同的構件則使用相同的標號並省略其說明。It is to be noted that in the above embodiment, an example is described in which an ion exchange layer and a microfiltration layer are formed on the first surface of the support layer, but the present invention is not limited thereto. 2 is a cross-sectional view of a filter material according to another embodiment of the present invention. It is to be noted that in FIG. 2, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted.

在另一實施例中,組成圖2所示之過濾材200主要構件與組成圖1所示之過濾材100的主要構件大致相同,然而兩者之間的差異主要是在於離子交換層及微過濾層的數量。請參照圖2,除了位於支撐層110之第一表面110a上的離子交換層120以外,過濾材200更包括另一離子交換層220,其位於支撐層110之第二表面110b上。也就是說,過濾材200包括兩層離子交換層120、220,分別位於支撐層110之第一表面110a及第二表面110b上。而微過濾層130、230則例如是分別位於離子交換層120、220上。而且,離子交換層220的組成與離子交換層120的組成例如是相同或不相同,而微過濾層230的組成與微過濾層130的組成例如是相同或不相同。In another embodiment, the main components constituting the filter material 200 shown in FIG. 2 are substantially the same as the main components constituting the filter material 100 shown in FIG. 1, but the difference between the two is mainly in the ion exchange layer and the microfiltration. The number of layers. Referring to FIG. 2, in addition to the ion exchange layer 120 on the first surface 110a of the support layer 110, the filter material 200 further includes another ion exchange layer 220 on the second surface 110b of the support layer 110. That is, the filter material 200 includes two layers of ion exchange layers 120, 220 on the first surface 110a and the second surface 110b of the support layer 110, respectively. The microfiltration layers 130, 230 are, for example, located on the ion exchange layers 120, 220, respectively. Moreover, the composition of the ion exchange layer 220 is, for example, the same or different from the composition of the ion exchange layer 120, and the composition of the microfiltration layer 230 is, for example, the same or different from the composition of the microfiltration layer 130.

在又一實施例中,過濾材也可以不包括圖2所示之微過濾層230,亦即僅離子交換層120上覆蓋有微過濾層130,而另一離子交換層220上則無覆蓋微過濾層。此外,至於在支撐層之第一表面及第二表面上分別配置的離子交換層、微過濾層數量,均可依所屬技術領域中具有通常知識者所知的技術調整,而不限於上述實施例所述。In still another embodiment, the filter material may not include the microfiltration layer 230 shown in FIG. 2, that is, only the ion exchange layer 120 is covered with the microfiltration layer 130, and the other ion exchange layer 220 has no coverage. Filter layer. In addition, as for the number of the ion exchange layer and the micro-filter layer respectively disposed on the first surface and the second surface of the support layer, the number of the ion exchange layer and the micro-filter layer can be adjusted according to a technique known to those skilled in the art, and is not limited to the above embodiment. Said.

在本發明之過濾材100、200中,位於內層之離子交換層120、220具有離子交換功能,而可吸附如蛋白質、金屬離子等帶電物質;位於外層之微過濾層130、230包括均勻填滿奈米微過濾纖維132之間孔隙136的填充材料134,因而孔隙緻密的微過濾層130、230可達到微過濾或除菌之功能。如此一來,本發明之過濾材100、200可有助於提升分離過濾的效率。In the filter material 100, 200 of the present invention, the ion exchange layers 120, 220 located in the inner layer have an ion exchange function, and can adsorb charged substances such as proteins, metal ions, etc.; the microfiltration layers 130, 230 located on the outer layer include uniform filling The filling material 134 of the pores 136 between the nanofiber filter fibers 132, and thus the pore-densified microfiltration layers 130, 230 can achieve the function of microfiltration or sterilization. As such, the filter media 100, 200 of the present invention can help to increase the efficiency of the separation filtration.

以下,將以圖1之過濾材為例,詳細說明本發明一實施例之過濾材的製作方法。圖3為依據本發明之一實施例所繪示之過濾材的製作流程圖。Hereinafter, a method of producing a filter material according to an embodiment of the present invention will be described in detail by taking the filter material of Fig. 1 as an example. FIG. 3 is a flow chart showing the manufacture of a filter material according to an embodiment of the invention.

請同時參照圖1及圖3,進行步驟S300,提供具有第一表面110a以及第二表面110b之支撐層110,其中支撐層110是由微米或奈米支撐纖維構成112所構成。在一實施例中,形成支撐層110之材料為PET不織布。Referring to FIG. 1 and FIG. 3 simultaneously, step S300 is performed to provide a support layer 110 having a first surface 110a and a second surface 110b, wherein the support layer 110 is composed of micro or nano support fibers 112. In one embodiment, the material forming the support layer 110 is a PET non-woven fabric.

接著,進行步驟S302,進行電紡絲程序,以於支撐層110之第一表面110a以及第二表面110b至少其中之一上形成奈米纖維層。在圖1所示之實施例中,奈米纖維層例如是形成在支撐層110之第一表面110a上,且可作為後續預定形成之帶電荷奈米纖維122的基材。在一實施例中,可以使用15%的PAN溶液來進行電紡絲程序,來形成奈米纖維層。Next, in step S302, an electrospinning process is performed to form a nanofiber layer on at least one of the first surface 110a and the second surface 110b of the support layer 110. In the embodiment shown in FIG. 1, the nanofiber layer is, for example, formed on the first surface 110a of the support layer 110 and serves as a substrate for the subsequently predetermined charged nanofibers 122. In one embodiment, an electrospinning procedure can be performed using a 15% PAN solution to form a layer of nanofibers.

在進行電紡絲程序而形成奈米纖維層(步驟S302)之後,還可以選擇性地進行熱壓程序,以使形成之奈米纖維層的表面平整,並可控制纖維之間的孔隙縮小,而使孔隙緻密化且分布均勻。After the electrospinning process is performed to form the nanofiber layer (step S302), a hot pressing process may be selectively performed to flatten the surface of the formed nanofiber layer, and the pores between the fibers may be controlled to be reduced. The pores are densified and evenly distributed.

接著,進行步驟S304,進行電紡絲及電噴塗程序,以於奈米纖維層上形成微過濾層130,其中微過濾層130包括奈米微過濾纖維132以及填於奈米微過濾纖維132之間之孔隙136的填充材料134。具體而言,步驟S304更包括進行熱壓程序,以使形成之奈米微過濾纖維132的表面平整,並使纖維之間的孔隙136緻密化且分布均勻。在一實施例中,電紡絲及電噴塗程序可以先進行電紡絲程序,以於奈米纖維層上形成奈米微過濾纖維132;接著,進行電噴塗程序,以在奈米微過濾纖維132上噴塗填充材料134;隨之,進行熱壓程序,以使填充材料134填於奈米微過濾纖維132之間的孔隙136之中。在另一實施例中,電紡絲及電噴塗程序也可以是先進行電紡絲程序,以形成奈米微過濾纖維132;接著,進行熱壓程序,以使孔隙136縮小並緻密化而有利後續程序的進行;之後,才進行電噴塗程序,以在具有緻密化孔隙136之奈米微過濾纖維132上噴塗填充材料134。值得一提的是,除了上述以後處理方式進行電噴塗程序外,也可以在進行電紡絲程序的過程中,同時進行電噴塗程序,以一邊形成奈米微過濾纖維132,一邊使填充材料134填於奈米微過濾纖維132之間的孔隙136中。Next, step S304 is performed to perform an electrospinning and electrospraying process to form a microfiltration layer 130 on the nanofiber layer, wherein the microfiltration layer 130 includes nano microfiltration fibers 132 and is filled with nano microfiltration fibers 132. A fill material 134 between the apertures 136. Specifically, step S304 further includes performing a hot pressing process to flatten the surface of the formed nano-microfiltration fibers 132 and to densify and evenly distribute the pores 136 between the fibers. In one embodiment, the electrospinning and electrospraying process may first perform an electrospinning process to form nano-microfiltration fibers 132 on the nanofiber layer; followed by an electrospray procedure to filter the fibers in the nano-microfiltration Filler material 134 is sprayed onto 132; a hot pressing procedure is then performed to fill filler material 134 in voids 136 between nanofiber filter fibers 132. In another embodiment, the electrospinning and electrospraying process may also be performed by an electrospinning process to form nano-microfiltration fibers 132; then, a hot pressing process is performed to shrink and densify the pores 136. Subsequent procedures are performed; thereafter, an electrospray procedure is performed to spray the fill material 134 onto the nanofiltration fibers 132 having densified pores 136. It is worth mentioning that, in addition to the above-described post-processing method for performing the electro-spraying process, the electro-spraying process may be simultaneously performed during the electrospinning process to form the nano-filter fiber 132 while the filling material 134 is formed. The pores 136 between the nanofiltration fibers 132 are filled.

承上述,電紡絲程序例如是使用15%的PAN溶液來形成奈米微過濾纖維132。電噴塗程序例如是使用5%的PVDF溶液來噴塗填充材料134。在此說明的是,隨著電噴塗程序所進行的時間增加,所形成之微過濾層130的孔隙136則會變小。如此一來,可以藉由控制進行電噴塗程序的時間,而調整微過濾層130中的孔隙136大小,以獲得所需孔徑。而熱壓程序熱壓程序的次數可以為一次或多次。藉由進行電紡絲及電噴塗程序來形成微過濾層130,可以使過濾材100具有一體成型之結構,而讓位於表層之微過濾層130與主體結構不易分離。In view of the above, the electrospinning process uses, for example, a 15% PAN solution to form the nano-microfiltration fibers 132. The electrospray procedure, for example, uses a 5% PVDF solution to spray the fill material 134. It is explained herein that as the time elapsed by the electrospraying process increases, the pores 136 of the formed microfiltration layer 130 become smaller. As such, the size of the apertures 136 in the microfiltration layer 130 can be adjusted to achieve the desired aperture by controlling the time during which the electrospray procedure is performed. The hot press program may be one or more times. By forming the microfiltration layer 130 by performing an electrospinning and electrospraying process, the filter material 100 can have an integrally formed structure, and the microfiltration layer 130 located on the surface layer can be easily separated from the main structure.

之後,進行步驟S306,進行纖維表面處理程序,以使奈米纖維層之纖維表面帶電荷,以形成離子交換層120,而完成過濾材100的製作。詳細說明的是,在對奈米纖維層之進行纖維表面處理程序而帶電荷之後,即可形成圖1所示之帶電荷奈米纖維122。在一實施例中,纖維表面處理程序包括進行羧基化或鹼水解改質程序,以使奈米纖維層之纖維表面具有-COO- 官能基。在一實施例中,纖維表面處理程序包括進行胺化改質程序,以使奈米纖維層之纖維表面具有-NH3 + 官能基。在一實施例中,纖維表面處理程序包括進行磺酸化或交聯劑含浸程序,以使奈米纖維層之纖維表面具有-SO3 - 官能基,其中交聯劑含浸程序例如是使用磺酸化丁二酸(SSA)或戊二醛作為交聯劑,並可進一步強化膜材。在一實施例中,纖維表面處理程序包括進行金屬螯合改質程序,以使奈米纖維層之纖維表面吸附具有-NH3 + 官能基或-COO- 官能基之金屬螯合化合物。在步驟S306中,利用纖維表面處理程序來形成帶電荷奈米纖維122,可於奈米纖維層之表面快速地產生高密度的官能基,並同時仍能維持奈米纖維之結構。Thereafter, in step S306, a fiber surface treatment process is performed to charge the surface of the fiber of the nanofiber layer to form the ion exchange layer 120, and the production of the filter material 100 is completed. In detail, the charged nanofibers 122 shown in Fig. 1 can be formed after the nanofiber layer is subjected to a fiber surface treatment process and charged. In one embodiment, the fiber surface treatment procedure includes performing a carboxylation or alkaline hydrolysis modification procedure such that the fiber surface of the nanofiber layer has a -COO - functional group. In one embodiment, the processing program includes fiber surface modified by amination procedures, to the surface of the fibers of the nanofiber layer having a functional group -NH 3 +. In one embodiment, the fiber comprises a surface treatment procedure for sulfonation or crosslinking impregnation procedure, so that the fiber surface of the nanofiber layer having a -SO 3 - functional groups, wherein the crosslinking agent is impregnated using programs such as sulfonated butyl Diacid (SSA) or glutaraldehyde acts as a crosslinking agent and can further strengthen the membrane. In one embodiment, the fiber comprises a surface treatment procedure for the metal chelate modified program, so that the fiber surface adsorbed nanofiber layer having a functional group -NH 3 + or -COO - group of functional metal chelate compounds. In step S306, the fiber surface treatment program is used to form the charged nanofibers 122, which can rapidly produce high-density functional groups on the surface of the nanofiber layer while still maintaining the structure of the nanofibers.

特別說明的是,在圖3所示之流程中,是在形成微過濾層130(步驟S304)之後,才對奈米纖維層表面進行纖維表面處理程序,以形成離子交換層120(步驟S306)。然而,在另一實施例中,也可以先進行步驟S306形成離子交換層120,才進行步驟S304形成微過濾層130,其取決於纖維表面處理程序是否會對微過濾層130的材質造成破壞。具體而言,當微過濾層130的材質不會受到步驟S306之纖維表面處理程序破壞時,則可如圖3所示先進行步驟S304才進行步驟S306。另一方面,當微過濾層130的材質會受到步驟S306之纖維表面處理程序破壞時,則改變其形成順序,亦即先進行步驟S306才進行步驟S304,以在進行纖維表面處理程序之後才形成微過濾層130。Specifically, in the flow shown in FIG. 3, after the microfiltration layer 130 is formed (step S304), the surface of the nanofiber layer is subjected to a fiber surface treatment process to form the ion exchange layer 120 (step S306). . However, in another embodiment, the ion exchange layer 120 may be formed in step S306 before the step S304 is performed to form the microfiltration layer 130 depending on whether the fiber surface treatment process causes damage to the material of the microfiltration layer 130. Specifically, when the material of the microfiltration layer 130 is not damaged by the fiber surface treatment process of step S306, step S306 may be performed first as shown in FIG. On the other hand, when the material of the micro-filter layer 130 is damaged by the fiber surface treatment process of step S306, the order of formation is changed, that is, step S306 is performed first to perform step S304 to form after the fiber surface treatment process. Microfiltration layer 130.

為證實本發明之過濾材確實能夠提升過濾分離效果,以下特舉實驗例來說明使用本發明之過濾材的功效。表1分別列出本發明實驗例之過濾材以及市售之過濾材產品的分析結果。In order to confirm that the filter material of the present invention can indeed enhance the filtration separation effect, the following specific experimental examples are given to illustrate the efficacy of using the filter material of the present invention. Table 1 shows the analysis results of the filter materials of the experimental examples of the present invention and the commercially available filter materials, respectively.

實驗例:本發明之過濾材,其以PET不織布作為支撐層,並在PET不織布支撐層之一表面上配置以PAN作為基材之離子交換層及微過濾層,其中PAN纖維的直徑小於300 nm,離子交換層的纖維表面具有-COOH- 官能基,且在微過濾層纖維之間的孔隙中填有PVDF之填充材料。Experimental example: the filter material of the present invention uses PET non-woven fabric as a support layer, and an ion exchange layer and a micro-filter layer with PAN as a substrate are disposed on one surface of the PET non-woven support layer, wherein the diameter of the PAN fiber is less than 300 nm. The fiber surface of the ion exchange layer has a -COOH - functional group, and the pores between the microfiltration layer fibers are filled with a filler material of PVDF.

比較例1:Sartorius離子交換膜。Comparative Example 1: Sartorius ion exchange membrane.

比較例1:Sartorius微過濾材。Comparative Example 1: Sartorius microfiltration material.

請參照表1,比較實驗例以及比較例1,可以觀察到本發明之過濾材的吸附量大、吸附速率快、流量高、耐熱性高。比較實驗例以及比較例2,可以觀察到本發明之過濾材的孔隙緻密且孔隙度高。由上述可知,本發明之過濾材確實可同時具有表層微過濾、內層離子吸附之功能。此外,由於本發明之過濾材具有微過濾或除菌功能,因此可廣泛應用於包半導體領域以吸附化學機械研磨之金屬離子、染整領域以回收染劑、環境領域以吸附廢水有機物、生技醫藥領域以純化蛋白質、食品領域以過濾乳製品,而極具競爭力。Referring to Table 1, comparing the experimental examples and Comparative Example 1, it was observed that the filter material of the present invention has a large adsorption amount, a high adsorption rate, a high flow rate, and high heat resistance. Comparing the experimental examples and Comparative Example 2, it was observed that the filter material of the present invention has a dense pore and a high porosity. From the above, it can be seen that the filter material of the present invention can simultaneously have the functions of surface microfiltration and inner layer ion adsorption. In addition, since the filter material of the present invention has microfiltration or sterilization function, it can be widely used in the field of semiconductor packaging to adsorb metal ions in chemical mechanical polishing, in the field of dyeing and finishing to recover dyes, in the environmental field to adsorb waste organic substances, and biotechnology. The pharmaceutical field is highly competitive in the field of purifying protein and food to filter dairy products.

綜上所述,本發明之過濾材及其製造方法至少具有下列優點:In summary, the filter material of the present invention and the method of manufacturing the same have at least the following advantages:

1. 上述實施例之過濾材為一體成型之結構,其同時具備表層微過濾、內層離子吸附之功能,其特色為高流量、低壓損、吸附量高、輕量、吸附速率快。1. The filter material of the above embodiment is an integrally formed structure, which has the functions of surface microfiltration and inner layer ion adsorption, and is characterized by high flow rate, low pressure loss, high adsorption amount, light weight, and fast adsorption rate.

2. 上述實施例之過濾材的孔隙分佈均勻且孔徑集中,並具有高孔隙率、高比表面積等特性,因而可帶有高密度官能基,以有效提升吸附量並縮短吸附時間。2. The filter material of the above embodiment has a uniform pore distribution and a concentrated pore size, and has characteristics such as high porosity and high specific surface area, and thus can have a high-density functional group to effectively increase the adsorption amount and shorten the adsorption time.

3. 上述實施例之過濾材的熱穩定性高,因此可以在高溫操作下具有吸附及脫附之功能。3. The filter material of the above embodiment has high thermal stability and thus has a function of adsorption and desorption under high temperature operation.

4. 上述實施例之過濾材的製造方法利用利用電紡絲技術、電噴塗技術及纖維表面處理技術製作一體成型之過濾材,製程簡單並可控制孔隙大小,因此可藉由簡單手段即可改善分離過濾的效率而極具競爭性。4. The method for manufacturing a filter material according to the above embodiment utilizes electrospinning technology, electrospraying technology, and fiber surface treatment technology to produce an integrally formed filter material, which has a simple process and can control the pore size, so that it can be improved by simple means. The efficiency of separation filtration is highly competitive.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、200...過濾材100, 200. . . Filter material

110...支撐層110. . . Support layer

110a...第一表面110a. . . First surface

110b...第二表面110b. . . Second surface

112...微米或奈米支撐纖維112. . . Micron or nano support fiber

120、220...離子交換層120, 220. . . Ion exchange layer

122...帶電荷奈米纖維122. . . Charged nanofiber

130、230...微過濾層130, 230. . . Microfiltration layer

132...奈米微過濾纖維132. . . Nano micro filter fiber

134...填充材料134. . . Filler

136...孔隙136. . . Porosity

S300、S302、S304、S306...步驟S300, S302, S304, S306. . . step

圖1為依據本發明之一實施例所繪示之過濾材的剖面示意圖。1 is a schematic cross-sectional view of a filter material according to an embodiment of the invention.

圖2為依據本發明之另一實施例所繪示之過濾材的剖面示意圖。2 is a cross-sectional view of a filter material according to another embodiment of the present invention.

圖3為依據本發明之一實施例所繪示之過濾材的製作流程圖。FIG. 3 is a flow chart showing the manufacture of a filter material according to an embodiment of the invention.

100...過濾材100. . . Filter material

110...支撐層110. . . Support layer

110a...第一表面110a. . . First surface

110b...第二表面110b. . . Second surface

112...奈米支撐纖維112. . . Nano support fiber

120...離子交換層120. . . Ion exchange layer

122...帶電荷奈米纖維122. . . Charged nanofiber

130...微過濾層130. . . Microfiltration layer

132...奈米微過濾纖維132. . . Nano micro filter fiber

134...填充材料134. . . Filler

136...孔隙136. . . Porosity

Claims (15)

一種過濾材,包括:一支撐層,其具有一第一表面以及一第二表面,其中該支撐層由微米或奈米支撐纖維構成;至少一離子交換層,位於該支撐層之該第一表面以及該第二表面至少其中之一,其中該離子交換層包括帶電荷奈米纖維;以及至少一微過濾層,位於該至少一離子交換層上,其中該微過濾層包括奈米微過濾纖維以及填於該些奈米微過濾纖維之間之孔隙的一填充材料。A filter material comprising: a support layer having a first surface and a second surface, wherein the support layer is composed of micro or nano support fibers; at least one ion exchange layer on the first surface of the support layer And at least one of the second surface, wherein the ion exchange layer comprises charged nanofibers; and at least one microfiltration layer is disposed on the at least one ion exchange layer, wherein the microfiltration layer comprises nano microfiltration fibers and A filling material filled in the pores between the nano-microfiltration fibers. 如申請專利範圍第1項所述之過濾材,其中該離子交換層之該些帶電荷奈米纖維表面帶有正電荷。The filter material of claim 1, wherein the charged nanofiber surface of the ion exchange layer has a positive charge. 如申請專利範圍第1項所述之過濾材,其中該離子交換層之該些帶電荷奈米纖維表面帶有負電荷。The filter material according to claim 1, wherein the charged nanofiber surface of the ion exchange layer has a negative charge. 如申請專利範圍第1項所述之過濾材,其中該些微米或奈米支撐纖維、該些帶電荷奈米纖維以及該些奈米微過濾纖維包括高分子聚合物或是纖維素。The filter material according to claim 1, wherein the micro or nano support fibers, the charged nanofibers, and the nano microfiltration fibers comprise a high molecular polymer or cellulose. 如申請專利範圍第4項所述之過濾材,其中該高分子聚合物包括聚丙烯腈(polyacrylonitrile,PAN)、聚碸(polysulfone,PS)、聚醚碸(polyethersulfone,PES)、(polyethylene terephthalate,PET)、聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)、聚對苯二甲酸乙二酯(polyethylene-grafted maleic anhydride,PE-g-MA)、聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、幾丁聚醣(chitosan)、聚乙烯醇(polyvinyl alcohol,PVA)、UV樹脂或是其組合。The filter material according to claim 4, wherein the high molecular polymer comprises polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), (polyethylene terephthalate, PET), polypropylene (PP), polyethylene (PE), polyethylene-grafted maleic anhydride (PE-g-MA), polyvinylidene fluoride (polyvinylidene fluoride, PVDF), chitosan, polyvinyl alcohol (PVA), UV resin or a combination thereof. 一種過濾材的製造方法,包括:提供一支撐層,其具有一第一表面以及一第二表面,其中該支撐層由微米或奈米支撐纖維構成;進行一電紡絲程序,以於該支撐層之該第一表面以及該第二表面至少其中之一上形成一奈米纖維層;進行一電紡絲及電噴塗程序,以於該奈米纖維層上形成至少一微過濾層,其中該微過濾層包括奈米微過濾纖維以及填於該些奈米微過濾纖維之間之孔隙的一填充材料;以及進行一纖維表面處理程序,以使該奈米纖維層之纖維表面帶電荷,以形成至少一離子交換層。A method of manufacturing a filter material, comprising: providing a support layer having a first surface and a second surface, wherein the support layer is composed of micron or nano support fibers; performing an electrospinning process to support the support Forming a nanofiber layer on at least one of the first surface and the second surface; performing an electrospinning and electrospraying process to form at least one microfiltration layer on the nanofiber layer, wherein The microfiltration layer comprises a nano microfiltration fiber and a filling material filled in the pores between the nano microfiltration fibers; and a fiber surface treatment procedure to charge the fiber surface of the nanofiber layer to At least one ion exchange layer is formed. 如申請專利範圍第6項所述之過濾材的製造方法,其中該纖維表面處理程序包括進行一羧基化或鹼水解改質程序,以使纖維表面具有-COO- 官能基。The method of producing a filter material according to claim 6, wherein the fiber surface treatment procedure comprises performing a carboxylation or alkali hydrolysis modification procedure to have a -COO - functional group on the surface of the fiber. 如申請專利範圍第6項所述之過濾材的製造方法,其中該纖維表面處理程序包括進行一胺化改質程序,以使纖維表面具有-NH3 + 官能基。The method of producing a filter material according to claim 6, wherein the fiber surface treatment procedure comprises performing an amination modification procedure to have a -NH 3 + functional group on the surface of the fiber. 如申請專利範圍第6項所述之過濾材的製造方法,其中該纖維表面處理程序包括進行一磺酸化或交聯劑含浸程序,以使纖維表面具有-SO3 - 官能基。The application of the method of manufacturing a filter material patentable scope of item 6, wherein the fiber surface processing program includes a crosslinking agent or a sulfonating impregnation procedure, so that the surface of the fiber having a -SO 3 - functional group. 如申請專利範圍第6項所述之過濾材的製造方法,其中該纖維表面處理程序包括進行一金屬螯合改質程序,以使纖維表面吸附具有-NH3 + 官能基或-COO- 官能基之金屬螯合化合物。The method for producing a filter material according to claim 6, wherein the fiber surface treatment procedure comprises performing a metal chelation modification procedure to adsorb a -NH 3 + functional group or a -COO - functional group on the surface of the fiber. Metal chelate compound. 如申請專利範圍第6項所述之過濾材的製造方法,其中該電紡絲及電噴塗程序包括:進行一電紡絲程序,以形成該些奈米微過濾纖維;進行一電噴塗程序,以在該些奈米微過濾纖維上噴塗該填充材料;以及進行一熱壓程序,以使該些填充材料填於該些奈米微過濾纖維之間的孔隙之中。The method for manufacturing a filter material according to claim 6, wherein the electrospinning and electrospraying process comprises: performing an electrospinning process to form the nano microfiltration fibers; performing an electrospraying process, Spraying the filling material on the nano microfiltration fibers; and performing a hot pressing process to fill the pores between the nano microfiltration fibers. 如申請專利範圍第6項所述之過濾材的製造方法,其中該電紡絲及電噴塗程序包括:進行一電紡絲程序,以形成該些奈米微過濾纖維;進行一熱壓程序;以及進行一電噴塗程序,以在該些奈米微過濾纖維上噴塗該填充材料。The method for manufacturing a filter material according to claim 6, wherein the electrospinning and electrospraying process comprises: performing an electrospinning process to form the nano microfiltration fibers; performing a hot pressing process; And performing an electrospray process to spray the fill material on the nanofiber filter fibers. 如申請專利範圍第6項所述之過濾材的製造方法,其中形成該支撐層之方法包括進行一電紡絲程序。The method of producing a filter material according to claim 6, wherein the method of forming the support layer comprises performing an electrospinning process. 如申請專利範圍第6項所述之過濾材的製造方法,其中該些微米或奈米支撐纖維、該些帶電荷奈米纖維以及該些奈米微過濾纖維包括高分子聚合物、纖維素。The method for producing a filter material according to claim 6, wherein the micro or nano support fibers, the charged nanofibers, and the nano microfiltration fibers comprise a high molecular polymer and cellulose. 如申請專利範圍第14項所述之過濾材的製造方法,其中該高分子聚合物包括聚丙烯腈(polyacrylonitrile,PAN)、聚碸(polysulfone,PS)、聚醚碸(polyethersulfone,PES)、(polyethylene terephthalate,PET)、聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)、聚對苯二甲酸乙二酯(polyethylene-grafted maleic anhydride,PE-g-MA)、聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、幾丁聚醣(chitosan)、聚乙烯醇(polyvinyl alcohol,PVA)、UV樹脂或是其組合。The method for producing a filter material according to claim 14, wherein the high molecular polymer comprises polyacrylonitrile (PAN), polysulfone (PS), polyethersulfone (PES), Polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polyethylene-grafted maleic anhydride (PE-g-MA), polyvinylidene fluoride (polyvinylidene fluoride) Polyvinylidene fluoride, PVDF), chitosan, polyvinyl alcohol (PVA), UV resin or a combination thereof.
TW99141051A 2010-11-26 2010-11-26 Filter material and method for fabricating the same TWI403350B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99141051A TWI403350B (en) 2010-11-26 2010-11-26 Filter material and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99141051A TWI403350B (en) 2010-11-26 2010-11-26 Filter material and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201221199A TW201221199A (en) 2012-06-01
TWI403350B true TWI403350B (en) 2013-08-01

Family

ID=46724828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99141051A TWI403350B (en) 2010-11-26 2010-11-26 Filter material and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI403350B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088377B (en) * 2014-05-13 2018-03-20 财团法人纺织产业综合研究所 Electrostatic spinning solution, polyvinyl alcohol nanofiber and ion exchange membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402819B1 (en) * 1997-06-27 2002-06-11 Mhb Filtration Gmbh & Co. Kg Fresh air filter
TW201006975A (en) * 2008-03-27 2010-02-16 Kurita Water Ind Ltd Polymer fiber material, method of producing the same and filter for filtering fluid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402819B1 (en) * 1997-06-27 2002-06-11 Mhb Filtration Gmbh & Co. Kg Fresh air filter
TW201006975A (en) * 2008-03-27 2010-02-16 Kurita Water Ind Ltd Polymer fiber material, method of producing the same and filter for filtering fluid

Also Published As

Publication number Publication date
TW201221199A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
CN100339515C (en) Functional porous fibres
JP6289442B2 (en) Nanofiber-containing composite structure
JP6134345B2 (en) Retrovirus removal method
KR101989914B1 (en) Filter assembly, method for manufacturing thereof and Filter module comprising the same
CN105032202B (en) A kind of multi-layer composite ultrafiltration membrane and preparation method thereof
JP2011504138A5 (en)
EP2386628A1 (en) Separation of viruses from nucleic acids using a membrane coated with polymeric primary amines
CN110756055B (en) Bipolar membrane and preparation method thereof
JP5062630B2 (en) Composite fiber body, method for producing the same, filter, and fluid filtration method
CN106245232A (en) Graphene oxide@high polymer nano fiber multilayer film and its preparation method and application
US20180133658A1 (en) Adsorptive membrane
CN106040015A (en) High-throughput multilayer composite nano-filtration membrane and preparation method thereof
JP2021503530A (en) Polymer matrix composite containing functional particles and method for producing the same
CN105854414A (en) Composite filter material for air purifier and a preparation method thereof
Shen et al. Eco-friendly construction of dye-fouled loose CS/PAN nanofibrous composite membranes for permeability-selectivity anti-trade-off property
CN110314557A (en) A kind of bio-pharmaceuticals nanofiber coating sterilization film and preparation method thereof
TWI403350B (en) Filter material and method for fabricating the same
KR20140137197A (en) Liquid Treating Chemical Filter Using Sulfonated Nano-Fiber Web and Method of Manufacturing the Same
Zhang et al. Electric field-enhanced assembly of polyelectrolyte composite membranes
KR20180069721A (en) Filter media, method for manufacturing thereof and Filter unit comprising the same
CN107512036A (en) Film and the method for preparing film
CN107456876A (en) A kind of preparation method of blend film
WO2020244611A1 (en) Automobile air conditioner filter material having voc filtering function and process therefor
Geng et al. Fabrication of carbon nanotubes-modified poly (ethyleneimine)/sodium lignosulfonate membranes for improved selectivity performance and antifouling capability in forward osmosis process
JP4351176B2 (en) Ion exchange material and ion exchange filter using the same