TWI401596B - Method for calibrating coordinates of touch screen - Google Patents
Method for calibrating coordinates of touch screen Download PDFInfo
- Publication number
- TWI401596B TWI401596B TW97111811A TW97111811A TWI401596B TW I401596 B TWI401596 B TW I401596B TW 97111811 A TW97111811 A TW 97111811A TW 97111811 A TW97111811 A TW 97111811A TW I401596 B TWI401596 B TW I401596B
- Authority
- TW
- Taiwan
- Prior art keywords
- coordinate
- value
- sensing electrode
- sensing
- capacitive sensor
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
Description
本發明是有關於一種指標定位技術,且特別是有關於一種觸控螢幕的座標校準方法。The invention relates to an index positioning technology, and in particular to a coordinate calibration method for a touch screen.
近年來,由於科技的發展快速,手持式裝置,例如智慧型手機、數位個人助理(Personal Digital Assistant,PDA)、衛星導航系統(Global Position System,GPS)等等,也跟著越來越普及。由於上述裝置都是使用觸控螢幕,因此觸控式傳感器與顯示裝置的座標校準之技術變的十分重要。在以往,觸控式傳感器一般是使用電阻式傳感器。此種電阻式傳感器必須要靠壓力來感測指標在螢幕上的座標。由於目前此種手持式裝置通常是使用液晶螢幕,而電阻式傳感器又必須與液晶螢幕重疊。因此當壓迫到電阻式傳感器時,相對的也就壓迫到了液晶螢幕。長久下去,液晶螢幕可能會因此損毀。另外,電阻式傳感器之解析度較低,常常會有座標定位不準確的情況發生。In recent years, due to the rapid development of technology, handheld devices, such as smart phones, personal digital assistants (PDAs), satellite navigation systems (GPS), etc., have become more and more popular. Since the above devices all use a touch screen, the technique of coordinate calibration between the touch sensor and the display device becomes very important. In the past, touch sensors generally used resistive sensors. Such resistive sensors must rely on pressure to sense the coordinates of the indicator on the screen. Since such hand-held devices currently use a liquid crystal screen, the resistive sensor must overlap the liquid crystal screen. Therefore, when pressed to the resistive sensor, the opposite is pressed against the liquid crystal screen. For a long time, the LCD screen may be damaged. In addition, the resolution of the resistive sensor is low, and there are often cases where the coordinate positioning is inaccurate.
在習知技術中,還有一種觸控式傳感器,就是電容式傳感器。電容式傳感器,在目前被廣泛的應用在到手持式裝置的觸控螢幕中。然而,電容式傳感器應用在觸控螢幕時,由於電容式觸控板的座標的配置,與顯示器的座標的配置不匹配,因而存在著準確性的問題。In the prior art, there is also a touch sensor, which is a capacitive sensor. Capacitive sensors are widely used in touch screens of handheld devices. However, when the capacitive sensor is applied to the touch screen, there is a problem of accuracy due to the configuration of the coordinates of the capacitive touch panel and the configuration of the coordinates of the display.
有鑑於此,本發明之一目的就是在提供一種觸控螢幕的座標校準方法,用以解決電容式觸控板的座標的配置,與顯示器的座標的配置不匹配之問題。In view of the above, an object of the present invention is to provide a coordinate calibration method for a touch screen for solving the problem that the coordinates of the capacitive touch panel are not matched with the coordinates of the display.
本發明之另一目的就是在提供一種觸控螢幕的座標校準方法,用以使電容式傳感器的座標轉換為顯示面板的座標。Another object of the present invention is to provide a coordinate calibration method for a touch screen for converting a coordinate of a capacitive sensor into a coordinate of a display panel.
為達上述或其他目的,本發明提出一種觸控螢幕的座標校準方法,包括下列步驟:提供一顯示面板,在第一軸方向,此顯示面板包括多個顯示座標以及一第一軸顯示座標數;提供一電容式傳感器,在第一軸方向,此電容式傳感器配置了多個感應電極,並分別對應多個感應座標值,其中此電容式傳感器具有一最大感應座標值;當電容式傳感器被碰觸時,偵測感應電極所對應之多個數位值;將上述數位值乘上每個感應電極所對應的感應座標值得到一加成值;將上述加成值除以上述數位值之總合得到一內插值;以及將此內插值乘以上述第一軸顯示座標數得到一校準座標。To achieve the above or other objects, the present invention provides a coordinate calibration method for a touch screen, comprising the steps of: providing a display panel, wherein the display panel includes a plurality of display coordinates and a first axis display coordinate number in a first axis direction Providing a capacitive sensor, in the first axis direction, the capacitive sensor is configured with a plurality of sensing electrodes corresponding to a plurality of sensing coordinate values, wherein the capacitive sensor has a maximum sensing coordinate value; when the capacitive sensor is When touched, detecting a plurality of digit values corresponding to the sensing electrode; multiplying the digit value by the inductive coordinate value corresponding to each sensing electrode to obtain an additive value; dividing the additive value by the total of the digit values Combining an interpolated value; and multiplying the interpolated value by the first axis display coordinate number to obtain a calibration coordinate.
另外,本發明提出一種觸控螢幕的座標校準方法。此方法包括下列步驟:提供一顯示面板,在第一軸方向,此顯示面板包括多個顯示座標以及一第一軸顯示座標數;提供一電容式傳感器,在第一軸方向,此電容式傳感器配置了多個感應電極,並分別對應多個感應座標值,其中此電容式傳感器具有一最大感應座標值,且距離此電容式傳感器的一第一邊緣最近的一第一特定感應電極所對應之座 標值為一初始值,距離該電容式傳感器的一第二邊緣最近的一第二特定感應電極所對應之座標值與該最大感應座標值相同;當第一邊緣配置於顯示面板的最小顯示座標,且第二邊緣配置於顯示面板的最大顯示座標時:將每一感應電極所對應的感應座標值加上一預設座標值,取代原始的感應座標值;以及將最大感應座標值加上兩倍的預設座標值,取代該最大感應座標值,其中,該最大感應座標值為該第二邊緣的座標值;當偵測到僅有離第一邊緣最近的第一特定感應電極被碰觸時:判斷第一特定感應電極所對應之數位值是否大於一參考數位值;當第一特定感應電極所對應之數位值小於參考數位值時,根據第二特定感應電極所對應之數位值與參考數位值之比例,決定一第一邊緣感應座標值,其中,第一邊緣感應座標值落在該初始值與第一特定感應電極所對應之感應座標值之間;以及將第一邊緣感應座標值除以最大感應座標值後,乘上第一軸顯示座標數,得到校準座標;以及當偵測到僅有離第二邊緣最近的第二特定感應電極被碰觸時:判斷第二特定感應電極所對應之數位值是否大於一參考數位值;當第二特定感應電極所對應之數位值小於參考數位值時,根據第二特定感應電極所對應之數位值與參考數位值之比例,決定一第二邊緣感應座標值,其中,該第二邊緣感應座標值落在最大感應座標值與第一特定感應電極所對應之感應座標值之間;以及將第二邊緣感應座標值除以最大感應座標值後,乘上第一軸顯示座標數,得到校準座標。In addition, the present invention provides a coordinate calibration method for a touch screen. The method includes the following steps: providing a display panel, the display panel includes a plurality of display coordinates and a first axis display coordinate number in a first axis direction; providing a capacitive sensor in the first axis direction, the capacitive sensor Configuring a plurality of sensing electrodes corresponding to a plurality of sensing coordinate values, wherein the capacitive sensor has a maximum sensing coordinate value, and a first specific sensing electrode closest to a first edge of the capacitive sensor corresponds to seat The value is an initial value, and a coordinate value corresponding to a second specific sensing electrode closest to a second edge of the capacitive sensor is the same as the maximum sensing coordinate value; when the first edge is disposed on the minimum display coordinate of the display panel And the second edge is disposed on the maximum display coordinate of the display panel: the initial coordinate value corresponding to each sensing electrode is added with a preset coordinate value instead of the original sensing coordinate value; and the maximum sensing coordinate value is added to two The preset value of the preset coordinate value is replaced by the maximum sensing coordinate value, wherein the maximum sensing coordinate value is a coordinate value of the second edge; when detecting that only the first specific sensing electrode closest to the first edge is touched Time: determining whether the digit value corresponding to the first specific sensing electrode is greater than a reference digit value; when the digit value corresponding to the first specific sensing electrode is less than the reference digit value, according to the digit value and reference corresponding to the second specific sensing electrode The ratio of the digital value determines a first edge sensing coordinate value, wherein the first edge sensing coordinate value falls between the initial value and the first specific sensing electrode Between the sensing coordinate values; and dividing the first edge sensing coordinate value by the maximum sensing coordinate value, multiplying the first axis display coordinate number to obtain the calibration coordinate; and when detecting only the closest to the second edge When the second specific sensing electrode is touched: determining whether the digital value corresponding to the second specific sensing electrode is greater than a reference digital value; and when the digital value corresponding to the second specific sensing electrode is less than the reference digital value, according to the second specific sensing Determining a second edge sensing coordinate value corresponding to the ratio of the digital value of the electrode to the reference digit value, wherein the second edge sensing coordinate value falls between the maximum sensing coordinate value and the sensing coordinate value corresponding to the first specific sensing electrode And after dividing the second edge sensing coordinate value by the maximum sensing coordinate value, multiplying the first axis to display the coordinate number to obtain the calibration coordinate.
本發明提出一種觸控螢幕的座標校準方法,此觸控螢 幕包括一顯示面板及一電容式傳感器。此方法包括:在第一軸方向上,根據一觸碰物對電容式傳感器造成的電容變化量獲得一觸碰物座標;將觸碰物座標加上一校準值獲得第一座標;根據電容式傳感器於第一軸方向的理論總座標數以及顯示面板於第一軸方向的解析度決定一轉換比例;將第一座標乘上轉換比例,獲得觸碰物對應於顯示面板的第二座標。The invention provides a coordinate calibration method for a touch screen, the touch firefly The screen includes a display panel and a capacitive sensor. The method includes: obtaining, in a direction of the first axis, a touch object coordinate according to a capacitance change caused by a touch object to the capacitive sensor; adding a calibration value to the touch object coordinate to obtain a first coordinate; according to the capacitive type The theoretical total coordinate number of the sensor in the first axis direction and the resolution of the display panel in the first axis direction determine a conversion ratio; the first coordinate is multiplied by the conversion ratio to obtain a touch object corresponding to the second coordinate of the display panel.
本發明提出一種觸控螢幕的座標校準方法,此觸控螢幕包括一顯示面板及一電容式傳感器。此方法包括:在第一軸方向,偵測一觸碰物對電容式傳感器造成的電容變化量;根據一查找表獲得電容變化量所對應的第三座標;根據電容式傳感器於第一軸方向的理論總座標數以及顯示面板於第一軸向的解析度決定一轉換比例;將第三座標乘上轉換比例,獲得觸碰物對應於顯示面板的第四座標。The invention provides a coordinate calibration method for a touch screen, the touch screen comprising a display panel and a capacitive sensor. The method includes: detecting, in a direction of the first axis, a capacitance change caused by a touch to the capacitive sensor; obtaining a third coordinate corresponding to the capacitance change according to a lookup table; and the first axis according to the capacitive sensor The theoretical total coordinate number and the resolution of the display panel in the first axial direction determine a conversion ratio; the third coordinate is multiplied by the conversion ratio to obtain a touch object corresponding to the fourth coordinate of the display panel.
本發明之一方面是利用內插的方式,來校準電容式傳感器與顯示面板之間的座標不匹配另一方面,由於電容式傳感器具有多個感應電極,每一個感應電極皆有一預定寬度,當僅有邊緣的感應電極被碰觸時,利用內插法便只能算出邊緣感應電極所對應的座標,如此可能造成顯示面板的邊緣無法被觸碰到,因此,本發明的另一方面,則是利用邊緣的感應電極所感應到的等效電容所對應之數位值,來判定邊緣的座標,因此也解決了用電容式觸控板的座標的配置與顯示器的座標的配置不匹配之問題。One aspect of the present invention is to use an interpolation method to calibrate the coordinate mismatch between the capacitive sensor and the display panel. On the other hand, since the capacitive sensor has a plurality of sensing electrodes, each of the sensing electrodes has a predetermined width. When only the edge sensing electrodes are touched, only the coordinates corresponding to the edge sensing electrodes can be calculated by interpolation, which may cause the edges of the display panel to be untouched. Therefore, in another aspect of the present invention, The coordinate value corresponding to the equivalent capacitance sensed by the edge sensing electrode is used to determine the coordinates of the edge, thereby solving the problem that the configuration of the coordinate of the capacitive touch panel does not match the coordinate configuration of the display.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt; See below.
第1圖是根據本發明實施例所繪示的電容式觸控螢幕之結構剖面圖。請參考第1圖,此電容式觸控螢幕包括顯示模組40以及電容式傳感器41。第2圖是根據本發明實施例所繪示的電容式傳感器41之結構上視圖。請參考第2圖,電容式傳感器41包括多個X軸感應電極X01~X12以及一控制電路C10。由於要定位指標,必須要有X軸座標與Y軸座標,在此實施例僅提供定位X軸座標的方法,Y軸座標定位方法可以與X軸座標定位方法相同。在此不予贅述。1 is a cross-sectional view showing the structure of a capacitive touch screen according to an embodiment of the invention. Referring to FIG. 1 , the capacitive touch screen includes a display module 40 and a capacitive sensor 41 . FIG. 2 is a structural top view of the capacitive sensor 41 according to an embodiment of the invention. Referring to FIG. 2, the capacitive sensor 41 includes a plurality of X-axis sensing electrodes X01 to X12 and a control circuit C10. Since the index is to be positioned, there must be an X-axis coordinate and a Y-axis coordinate. In this embodiment, only the method of positioning the X-axis coordinate is provided. The Y-axis coordinate positioning method can be the same as the X-axis coordinate positioning method. I will not repeat them here.
由於電容式傳感器41具有兩種感測方式,分別是非差動感測與差動感測。也就是說,非差動感測方式是每一個X軸感應線會得到一組與等效電容值相關的數位值,此數位值與導體,一般來說指的是手指,碰觸X軸感應線的面積或接近X軸感應電極的距離相關。在此實施例中,X軸感應電極X01~X12是以12個感應線為例。一般來說,每一個X軸感應線與鄰近的X軸感應線之間可以分割成64個座標位置,在此以64為例,然而,根據不同的應用與不同的精密度,座標分割也會有所不同。另外,第一個X軸感應線X01的座標為0。因此,電容式傳感器41的X軸座標總共有64×(12-1)+1=705個座標。另外,差動感測方式由於每兩個X軸感應電極才能得到一組數位值,因此電容式傳感器41的X軸座標總共有64×(12-2) +1=641個座標。以下便使用非差動感測方式作為例子以說明如何得到手指碰觸X軸感應電極得到在電容式傳感器41上的X座標。Since the capacitive sensor 41 has two sensing modes, it is a non-differential sensing and a differential sensing, respectively. That is to say, the non-differential sensing method is that each X-axis sensing line obtains a set of digit values related to the equivalent capacitance value, which is a conductor, generally refers to a finger, and touches the X-axis sensing line. The area is related to the distance from the X-axis sensing electrode. In this embodiment, the X-axis sensing electrodes X01 to X12 are exemplified by 12 sensing lines. In general, each X-axis sensing line can be divided into 64 coordinate positions between adjacent X-axis sensing lines. Here, 64 is used as an example. However, according to different applications and different precision, coordinate division will also be used. It is different. In addition, the coordinate of the first X-axis sensing line X01 is zero. Therefore, the X-axis coordinates of the capacitive sensor 41 have a total of 64 × (12 - 1) + 1 = 705 coordinates. In addition, the differential sensing method can obtain a set of digit values for every two X-axis sensing electrodes, so the X-axis coordinates of the capacitive sensor 41 have a total of 64×(12-2). +1=641 coordinates. The non-differential sensing method is used as an example to illustrate how to obtain a finger touch on the X-axis sensing electrode to obtain the X coordinate on the capacitive sensor 41.
第3A圖與第3B圖分別是用以說明本發明實施例的電容式傳感器41的座標之定位方法的示意圖。請先參考第3A圖,假設X軸感應線X01~X12在沒被碰觸到時,其對應的數位值是0。當偵測到第6~第8條X軸感應線X06~X08的數位值分別為163、185以及70,如此便可以用內插法算出手指碰觸到電容式傳感器41上的X軸座標:64×[(6-1)×163+(7-1)×185+(8-1)×70]/(163+185+70)=369.76。3A and 3B are respectively schematic views for explaining a method of positioning the coordinates of the capacitive sensor 41 according to the embodiment of the present invention. Please refer to Figure 3A first. If the X-axis sensing lines X01~X12 are not touched, the corresponding digit value is 0. When the digital values of the 6th to 8th X-axis sensing lines X06~X08 are detected as 163, 185 and 70 respectively, the X-axis coordinates of the finger touching the capacitive sensor 41 can be calculated by interpolation: 64 × [(6-1) × 163 + (7-1) × 185 + (8-1) × 70] / (163 + 185 + 70) = 369.76.
接下來,請參考第3B圖,當偵測到第1條X軸感應線X01的數位值為200時,用內插法算出手指碰觸到電容式傳感器41上的X軸座標:64×(1-1)×200/200=0。Next, please refer to FIG. 3B. When the digital value of the first X-axis sensing line X01 is detected to be 200, the X-axis coordinate of the finger touching the capacitive sensor 41 is calculated by interpolation: 64×( 1-1) × 200 / 200 = 0.
上述得到的座標值,需要透過轉換,才能得到顯示模組40的座標值。然而,由於近年來,電子裝置朝向輕、薄、短、小發展,因此手持式行動裝置的邊框越作越小,導致電容式傳感器41必須要與顯示模組40的顯示區域的大小相同。然而,電容式傳感器41的感應線X01~X12分別具有一定的線寬。第4圖是電容式觸控板的座標的配置,與顯示器的座標的配置不匹配的示意圖。請參考第4圖,當手指碰觸到電容式傳感器41的第一條X軸感應電極X01時,得到的座標值是0,但是感應電極X01離螢幕 的邊緣還有一定的距離,此種情況,若手指指向顯示模組40的邊緣部份701,將無法從電容式傳感器41的座標轉換得到顯示模組40的座標。再者,若硬是把第一條X軸感應線X01的中心點配置在顯示模組40的邊緣,當使用者碰觸到產品的邊框時,使用者會誤觸到電容式傳感器41的第一條X軸感應電極X01,將來將會導致電容式傳感器41的感應發生問題。The coordinates obtained above need to be converted to obtain the coordinate value of the display module 40. However, in recent years, electronic devices have become light, thin, short, and small, and thus the frame of the hand-held mobile device has become smaller and smaller, so that the capacitive sensor 41 must be the same size as the display area of the display module 40. However, the sensing lines X01 to X12 of the capacitive sensor 41 each have a certain line width. Figure 4 is a schematic diagram of the configuration of the coordinates of the capacitive touch panel, which does not match the configuration of the coordinates of the display. Referring to FIG. 4, when the finger touches the first X-axis sensing electrode X01 of the capacitive sensor 41, the obtained coordinate value is 0, but the sensing electrode X01 is off the screen. There is also a certain distance at the edge. In this case, if the finger points to the edge portion 701 of the display module 40, the coordinates of the display module 40 cannot be converted from the coordinates of the capacitive sensor 41. Moreover, if the center point of the first X-axis sensing line X01 is arranged at the edge of the display module 40, when the user touches the frame of the product, the user may accidentally touch the first of the capacitive sensor 41. The X-axis sensing electrode X01 will cause a problem in the sensing of the capacitive sensor 41 in the future.
為了解決上述問題,在本發明的實施例中,提出了一種顯示面板與電容式傳感器的座標之校準方法。此方法分別作用在兩個區域,第一個區域是線性區域,也就是顯示模組40的中央區域702,第二個區域則是非線性區域,也就是顯示模組40的邊緣部份701。以下分別對此兩區域的座標轉換作說明。在說明此實施例的方法之前,先假設顯示模組40的解析度為240×320,也就是X軸有240個像素。In order to solve the above problems, in an embodiment of the present invention, a method of calibrating coordinates of a display panel and a capacitive sensor is proposed. The method acts on two regions, the first region being a linear region, that is, the central region 702 of the display module 40, and the second region being a non-linear region, that is, the edge portion 701 of the display module 40. The following is a description of the coordinates of the two regions. Before explaining the method of this embodiment, it is assumed that the resolution of the display module 40 is 240×320, that is, the X-axis has 240 pixels.
首先,先解釋線性區域的座標轉換方法。第5圖是本發明實施例的非差動感測式的電容式傳感器之線性區域示意圖。請先參考第5圖,由於線性區域指的是電容式傳感器41可以判定座標的區域。在此,先假設此電容式傳感器41是非差動感測式的電容式傳感器,再假設X軸有12條感應線,Y軸有16條感應線,且每一個感應線與鄰近的感應線之間可以分割成64個座標位置,則在此線性區可以得到座標(1,1)~(703,959),假設要將傳感器左上角定位為座標原點時,此時線性區需經座標平移。第6圖是本發明實施例的非差動感測式的電容式傳感器之座標 平移示意圖。請參考第6圖,線性區需經座標平移後,線性區的座標起點為(33,33),座標終點為(735,991)。First, first explain the coordinate conversion method of the linear region. Fig. 5 is a schematic view showing a linear region of a non-differential sensing type capacitive sensor according to an embodiment of the present invention. Please refer to FIG. 5 first, because the linear area refers to the area where the capacitive sensor 41 can determine the coordinates. Here, it is assumed that the capacitive sensor 41 is a non-differential sensing capacitive sensor, and further assumes that the X-axis has 12 sensing lines, the Y-axis has 16 sensing lines, and each sensing line is adjacent to the adjacent sensing line. Can be divided into 64 coordinate positions, then the coordinates (1,1)~(703,959) can be obtained in this linear region. If the upper left corner of the sensor is to be positioned as the coordinate origin, the linear region needs to be translated by coordinates. Figure 6 is a diagram showing the coordinates of a non-differential sensing type capacitive sensor according to an embodiment of the present invention. Pan diagram. Please refer to Figure 6. After the linear region needs to be translated by coordinates, the starting point of the linear region is (33, 33) and the ending point of the coordinate is (735, 991).
由於上面假設每一個X軸感應電極與鄰近的X軸感應電極之間分別可以分割成64個座標位置,因此,在第一條X軸感應線X01的中央位置的電容式傳感器座標需要平移為32,且在第十二條X軸感應電極X12的中央位置的電容式傳感器座標需要平移704+32=736。假設手指如第6A圖按壓電容式傳感器41,得到在電容式傳感器41上的X座標為369.76。接下來,只要將此座標加上32之後,除以電容式傳感器理論總座標數64*12=768,再乘上X軸解析度240,便可以得到手指按壓在顯示模組40上的X座標。以數學式表示如下:X座標=(369.76+32)×240÷768=133.9875≒134(先除768再乘240)Since it is assumed above that each of the X-axis sensing electrodes and the adjacent X-axis sensing electrodes can be divided into 64 coordinate positions, respectively, the capacitive sensor coordinates at the center of the first X-axis sensing line X01 need to be translated to 32. And the capacitive sensor coordinate at the center of the twelfth X-axis sensing electrode X12 needs to translate 704 + 32 = 736. Assuming that the finger presses the capacitive sensor 41 as shown in FIG. 6A, the X coordinate on the capacitive sensor 41 is 369.76. Next, by adding 32 to this coordinate, dividing the theoretical total coordinate number of the capacitive sensor by 64*12=768, and multiplying the X-axis resolution by 240, the X coordinate of the finger pressing on the display module 40 can be obtained. . Expressed as follows: X coordinate = (369.76 + 32) × 240 ÷ 768 = 133.9875 ≒ 134 (first divided by 768 and then multiplied by 240)
從上述的實施例可以了解,本發明將線性區域所計算出來的觸碰物座標加上一校準值而獲得一第一座標。上述的”平移”使得電容式傳感器的座標原點與顯示器的座標原點重疊。第一座標乘上一個比例,便轉換成觸碰物在顯示面板上的第二座標。It can be understood from the above embodiments that the present invention adds a calibration value to the touch object coordinates calculated by the linear region to obtain a first coordinate. The "translation" described above causes the coordinate origin of the capacitive sensor to overlap the coordinate origin of the display. The first scale is multiplied by a ratio and converted into the second coordinate of the touch object on the display panel.
接下來,解釋非線性區域的座標轉換方法。第7A~7C是導體按壓電容式傳感器41上的X軸感應線時,得到對應的數位值的對比關係示意圖。請先參考第7A圖以及第7B圖,由第7A圖以及第7B圖可以看出,當導體,一般來說是手指,按壓在感應線X01的接觸面積越大時,感應線X01的等效電容會越大,相對的,得到數位值也會越 大。因此,在此實施例中,主要是以第一條X軸感應電極X01所對應的數位值大小來判定X座標是坐落在0~31的哪一點。Next, the coordinate conversion method of the nonlinear region is explained. 7A to 7C are diagrams showing a comparison relationship of corresponding digital values when the conductor presses the X-axis sensing line on the capacitive sensor 41. Please refer to Figure 7A and Figure 7B first. It can be seen from Figure 7A and Figure 7B that when the conductor, generally a finger, presses the contact area of the sensing line X01, the equivalent of the sensing line X01 The larger the capacitance, the more the digital value will be. Big. Therefore, in this embodiment, it is mainly determined by the magnitude of the digital value corresponding to the first X-axis sensing electrode X01 that the X coordinate is located at 0 to 31.
請參考第7C圖,當手指按壓在電容式傳感器41的第一條X軸感應線X01時,此時只會得到感應線X01所對應的數位值。在此,有一參考值會被預先設置。為了方便說明,假設此參考值為160。也就是說,當只得到感應電極X01所對應的數位值,且此數值大於或等於160時,則判定X座標坐落在32。當只得到感應電極X01所對應的數位值,且此數值等於80時,則判定X座標坐落在15。簡單的說,就是依照感應電極X01所對應的數位值與上述參考值的大小比例關係,判定X座標。上述實施例的判定方式可以表示成以下表格
假設得到X座標為20,只要依照上述比例計算,便可以得到在螢幕上的X座標:X座標=20×240÷768=6.25≒6(先除768再乘240)Assuming that the X coordinate is 20, as long as the above ratio is calculated, the X coordinate on the screen can be obtained: X coordinate = 20 × 240 ÷ 768 = 6.25 ≒ 6 (excluding 768 and then 240)
從上述實施例可以了解,在非線性區域的座標原點與 顯示區域的座標原點重疊,本發明利用查找表獲得觸碰物在電容式傳感器上的第三座標,第三座標乘上一個比例,便轉換成觸碰物對應在顯示面板上的第四座標。It can be understood from the above embodiment that the coordinate origin in the nonlinear region is The coordinate origin of the display area overlaps. The present invention uses the lookup table to obtain the third coordinate of the touch object on the capacitive sensor. The third coordinate is multiplied by a ratio, and then converted into a fourth coordinate corresponding to the touch object on the display panel. .
雖然上述實施例僅對X軸座標作運算,但是本領域具有通常知識者,參考上述實施例之後,應當知道,Y軸座標亦可以利用上述方式計算出來。故在此不予贅述。Although the above embodiment operates only on the X-axis coordinates, those skilled in the art, with reference to the above embodiments, it should be understood that the Y-axis coordinates can also be calculated in the manner described above. Therefore, I will not repeat them here.
接下來,當電容式傳感器41為差動感測式的電容式傳感器時,表示每兩條感應電極只能得到一組數位值。第8圖是本發明實施例的差動感測式的電容式傳感器之線性區域示意圖。假設X軸感應線總共有12條,Y軸感應線有16條,又假設每一個感應線與鄰近的感應線之間可以分割成64個座標位置。由於每兩條感應線只能得到一組數位值,因此線性區的未平移前的座標範圍便只有(1,1)~(639,895)。第9圖是本發明實施例的差動感測式的電容式傳感器之座標平移示意圖。請參考第9圖,平移後則為(65,65)~(713,959)。而非線性區域經平移後的X座標範圍則變成0~64,714~778。Next, when the capacitive sensor 41 is a differential sensing capacitive sensor, it means that only one set of digital values can be obtained for each of the two sensing electrodes. Fig. 8 is a view showing a linear region of a differential sensing type capacitive sensor according to an embodiment of the present invention. Assuming that there are a total of 12 X-axis sensing lines and 16 Y-axis sensing lines, it is assumed that each sensing line and the adjacent sensing line can be divided into 64 coordinate positions. Since only two sets of digit values can be obtained for each of the two sensing lines, the range of coordinates before the non-translation of the linear region is only (1,1)~(639,895). FIG. 9 is a schematic diagram showing the coordinate translation of the differential sensing type capacitive sensor according to the embodiment of the present invention. Please refer to Figure 9, after translation (65, 65) ~ (713, 959). The X coordinate range of the nonlinear region after translation is 0~64, 714~778.
首先,先解釋線性區域的座標轉換方法。同樣的,假設控制電路C10判斷出X座標為369.76。當要轉換成顯示模組40上的X座標,只需要作以下計算:(369.76+64)×240÷768=135.55≒136(先除768再乘240)First, first explain the coordinate conversion method of the linear region. Similarly, it is assumed that the control circuit C10 determines that the X coordinate is 369.76. When converting to the X coordinate on the display module 40, only the following calculation is required: (369.76+64) × 240 ÷ 768 = 135.55 ≒ 136 (first divided by 768 and then multiplied by 240)
便可以得到顯示模組40上的X座標為136。The X coordinate on display module 40 is 136.
同樣的道理,當手指在非線性區時,例如手指碰觸電容式傳感器41的左邊緣,此時控制電路C10將只會得到 感應電極X01與X02所對應的數位值。此時同樣會有一組事先設定好的預設值。假設此預設值是192。簡單的說,就是依照感應電極X01與X02所對應的數位值與上述參考值的大小比例關係,判定X座標。當所得到的感應電極X01與X02所對應的數位值在94~96之間時,則判定X座標坐落在31。之後,只要將判定出的座標依照比例關係,便可以轉換出在螢幕上的X座標:螢幕上的X座標=31×240÷768=9.6875≒10。(先除768再乘240)By the same token, when the finger is in the non-linear region, for example, the finger touches the left edge of the capacitive sensor 41, the control circuit C10 will only get The digital value corresponding to the sensing electrodes X01 and X02. There will also be a set of preset values set in advance. Suppose this preset is 192. In short, the X coordinate is determined according to the proportional relationship between the digital value corresponding to the sensing electrodes X01 and X02 and the above reference value. When the digit value corresponding to the obtained sensing electrodes X01 and X02 is between 94 and 96, it is determined that the X coordinate is located at 31. After that, as long as the determined coordinates are proportional, the X coordinate on the screen can be converted: the X coordinate on the screen = 31 × 240 ÷ 768 = 9.6875 ≒ 10. (first divide 768 and then multiply 240)
由上述實施例,可以整理出以下兩種座標之校準方法。第10圖以及第11圖是依照本發明實施例的觸控螢幕的座標校準方法之流程圖。請先參考第10圖,第10圖是假設線性區與顯示區域剛好重疊的情況,此方法包括下列步驟:According to the above embodiment, the calibration methods of the following two coordinates can be arranged. 10 and 11 are flowcharts of a coordinate calibration method of a touch screen according to an embodiment of the present invention. Please refer to Figure 10 first. Figure 10 is assuming that the linear area overlaps the display area. This method includes the following steps:
步驟S1000:開始。Step S1000: Start.
步驟S1001:提供一顯示面板,在第一軸方向,該顯示面板包括多個顯示座標以及一第一軸顯示座標數。例如上述的顯示模組40,其解析度為240×320。X軸有240個像素,也就是240個座標。其最大顯示座標則為239。Step S1001: providing a display panel, wherein the display panel comprises a plurality of display coordinates and a first axis display coordinate number in the first axis direction. For example, the display module 40 described above has a resolution of 240×320. The X axis has 240 pixels, which is 240 coordinates. Its maximum display coordinates are 239.
步驟S1002:提供一電容式傳感器,在第一軸方向,電容式傳感器配置了多個感應電極,並分別對應多個感應座標值,其中電容式傳感器具有一最大感應座標值。例如上述的電容式傳感器41,在此以非差動感測式的電容式傳感器舉例,其配置了12個感應電極X01~X12,X01對應座標0、X02對應座標64、...、X12對應座標704。其 最大顯示座標則為704。Step S1002: Providing a capacitive sensor. In the first axis direction, the capacitive sensor is configured with a plurality of sensing electrodes and corresponding to a plurality of sensing coordinate values, wherein the capacitive sensor has a maximum sensing coordinate value. For example, the above-mentioned capacitive sensor 41 is exemplified by a non-differential sensing capacitive sensor, which is configured with 12 sensing electrodes X01~X12, and X01 corresponds to coordinates 0, X02 corresponding coordinates 64, ..., X12 corresponding coordinates 704. its The maximum display coordinates are 704.
步驟S1003:判斷電容式傳感器是否被碰觸。若否,則回步驟S1003持續偵測。當判斷為是時,則進行步驟S1004。Step S1003: Determine whether the capacitive sensor is touched. If no, the process returns to step S1003 for continuous detection. When the determination is YES, step S1004 is performed.
步驟S1004:偵測每一個感應電極所對應之多個數位值。如第3A圖所示,當導體,例如手指碰觸到電容式傳感器上的感應電極X6~X8時,X6會有對應的數位值為163;X7會有對應的數位值為185;X8會有對應的數位值為70。Step S1004: Detecting a plurality of digit values corresponding to each of the sensing electrodes. As shown in Figure 3A, when a conductor, such as a finger, touches the sensing electrodes X6~X8 on the capacitive sensor, X6 will have a corresponding digit value of 163; X7 will have a corresponding digit value of 185; X8 will have The corresponding digit value is 70.
步驟S1005:將該些數位值乘上每個感應電極所對應的感應座標值得到一加成值。接下來,便將上述數位值163乘以5×64;185乘以6×64;70乘以7×64。因此,便得到加成值為154560。Step S1005: Multiplying the digit values by the inductive coordinate value corresponding to each of the sensing electrodes to obtain an additive value. Next, the above-mentioned digit value 163 is multiplied by 5 × 64; 185 is multiplied by 6 × 64; 70 is multiplied by 7 × 64. Therefore, the bonus value is 154,560.
步驟S1006:將該加成值除以上述數位值之總合得到一內插值。接下來,將上述加成值154560除以(163+185+70)便可以得到內插值為369.76,此內插值相當於導體觸碰電容式傳感器的座標。Step S1006: dividing the addition value by the sum of the above digit values to obtain an interpolation value. Next, by dividing the above-mentioned addition value 154560 by (163 + 185 + 70), an interpolation value of 369.76 can be obtained, which is equivalent to the coordinates of the conductor touch capacitive sensor.
步驟S1007:將該內插值除以最大感應座標值之後,乘以第一軸顯示座標數得到一校準座標。Step S1007: After dividing the interpolated value by the maximum inductive coordinate value, multiplying the first axis display coordinate number to obtain a calibration coordinate.
步驟S1008:結束。Step S1008: End.
當然,此例僅可實施於顯示面板配置於電容式傳感器之線性區時。當電容式傳感器的邊緣與顯示區域的邊緣緊密配置時,本發明實施例的方法便會改為如下步驟:Of course, this example can only be implemented when the display panel is disposed in the linear region of the capacitive sensor. When the edge of the capacitive sensor is closely arranged with the edge of the display area, the method of the embodiment of the present invention is changed to the following steps:
步驟S1100:開始。Step S1100: Start.
步驟S1101:提供如上述步驟S1001的顯示面板。Step S1101: Providing a display panel as in the above step S1001.
步驟S1102:提供一電容式傳感器,在第一軸方向,電容式傳感器配置了多個感應電極,並分別對應多個感應座標值,其中電容式傳感器具有一最大感應座標值,且距離電容式傳感器的一第一邊緣最近的一第一特定感應電極所對應之座標值為一初始值,距離電容式傳感器的一第二邊緣最近的一第二特定感應電極所對應之座標值與最大感應座標值相同。Step S1102: Providing a capacitive sensor. In the first axis direction, the capacitive sensor is configured with a plurality of sensing electrodes corresponding to the plurality of sensing coordinate values, wherein the capacitive sensor has a maximum sensing coordinate value and the distance capacitive sensor a coordinate value corresponding to a first specific sensing electrode of a first edge is an initial value, and a coordinate value corresponding to a second specific sensing electrode closest to a second edge of the capacitive sensor and a maximum sensing coordinate value the same.
步驟S1103:將每一感應電極所對應的感應座標值加上一預設座標值,取代原始的感應座標值。由上述實施例,可以知道,由於感應電極具有一定的寬度,另外,由於兩相鄰的感應電極之間具有64個感應座標,因此,邊緣到離邊緣最近的感應電極的中心應當要相差32個感應座標。故在此實施例,每個感應電極所對應的感應座標值加上預設座標值32以取代原始的感應座標值。Step S1103: adding a preset coordinate value corresponding to the sensing coordinate value of each sensing electrode to replace the original sensing coordinate value. According to the above embodiment, it can be known that since the sensing electrodes have a certain width, and since there are 64 sensing coordinates between the two adjacent sensing electrodes, the center of the sensing electrodes closest to the edge should be different from each other by 32. Inductive coordinates. Therefore, in this embodiment, the inductive coordinate value corresponding to each sensing electrode is added with a preset coordinate value 32 to replace the original inductive coordinate value.
步驟S1104:將最大感應座標值加上兩倍的預設座標值,取代最大感應座標值。同樣道理,原始的最大座標值加上64來取代原始的最大感應座標值。Step S1104: Substituting the maximum sensing coordinate value by twice the preset coordinate value instead of the maximum sensing coordinate value. By the same token, the original maximum coordinate value plus 64 replaces the original maximum inductive coordinate value.
步驟S1105:判斷電容式傳感器是否被碰觸。當電容式傳感器沒有被碰觸時,回到步驟S1106持續判斷。當判斷為是,則到步驟S1107。Step S1105: Determine whether the capacitive sensor is touched. When the capacitive sensor is not touched, it returns to step S1106 to continue the determination. When the determination is YES, the process goes to step S1107.
步驟S1106:判斷是否只有邊緣的感應電極被碰觸。當判斷為否時,到步驟S1108。當判斷為是時,到步驟S1109。Step S1106: It is judged whether only the sensing electrodes of the edge are touched. When the determination is no, the process goes to step S1108. When it is judged as YES, it progresses to step S1109.
步驟S1107:執行上述步驟S1004~S1007以得到校準座標。若以上述第3A圖的實施例來說,上述步驟相當 於把上述所算出來的內插值369.76加上32之後,在乘上顯示面板的最大X座標240,之後再除以電容式傳感器的修正後之最大座標768。如此便可以得到如上所述的X軸之校準座標134。Step S1107: Perform steps S1004 to S1007 described above to obtain calibration coordinates. If the embodiment of Figure 3A above is used, the above steps are equivalent. After adding 32 to the above-mentioned interpolated value 369.76, it is multiplied by the maximum X coordinate 240 of the display panel, and then divided by the corrected maximum coordinate 768 of the capacitive sensor. Thus, the X-axis calibration coordinates 134 as described above can be obtained.
步驟S1108:判斷第一邊緣被碰觸或第二邊緣被碰觸。在此實施例,第一邊緣指的是離顯示面板X軸座標0最近的邊緣;第二邊緣指的是離顯示面板X軸座標239最近的邊緣。當第一邊緣被碰觸時,執行步驟S1110;當第二邊緣被碰觸時,執行步驟S1114。Step S1108: It is judged that the first edge is touched or the second edge is touched. In this embodiment, the first edge refers to the edge closest to the X-axis coordinate 0 of the display panel; the second edge refers to the edge that is closest to the X-axis coordinate 239 of the display panel. When the first edge is touched, step S1110 is performed; when the second edge is touched, step S1114 is performed.
步驟S1109:判斷第一特定感應電極所對應之數位值是否大於一參考數位值。如上所述,由於按壓在感應線X01的接觸面積越大時,感應線X01的等效電容會越大,相對的,得到數位值也會越大。因此,上述實施例是預設160作為一參考數位值。此值通常是以實驗或是工程師的經驗設定。Step S1109: Determine whether the digital value corresponding to the first specific sensing electrode is greater than a reference digital value. As described above, since the contact area of the sensing line X01 is larger, the equivalent capacitance of the sensing line X01 is larger, and as a result, the digital value is larger. Therefore, the above embodiment is preset 160 as a reference digit value. This value is usually set by the experience of an experiment or an engineer.
步驟S1110:當判斷為是時,則判定校準座標為第一特定感應電極所對應之座標。如上述實施例,當數位值大於160時,判定座標為32。Step S1110: When the determination is YES, it is determined that the calibration coordinate is a coordinate corresponding to the first specific sensing electrode. As in the above embodiment, when the digit value is greater than 160, the decision coordinate is 32.
步驟S1111:當第一特定感應電極所對應之數位值小於參考數位值時,根據第一特定感應電極所對應之數位值與參考數位值之比例,決定一第一邊緣感應座標值。由上述實施例可以知道,由於按壓在感應線X01的接觸面積越大時,感應線X01的等效電容會越大,相對的,得到數位值也會越大。因此只要知道,第一特定感應電極所對應之數位值,便可以依照此數位值與上述參考數位值(160)的 比例關係,例如上述的查找表,來得到第一邊緣感應座標值。一般來說,此比例關係建立在查找表上,當然本領域具有通常知識者可以利用內建運算數學式或是軟體的方式實施。Step S1111: When the digit value corresponding to the first specific sensing electrode is smaller than the reference digit value, determining a first edge sensing coordinate value according to a ratio of the digit value corresponding to the first specific sensing electrode to the reference digit value. It can be known from the above embodiment that the larger the contact area of the sensing line X01 is, the larger the equivalent capacitance of the sensing line X01 will be, and the larger the digital value will be. Therefore, as long as the digital value corresponding to the first specific sensing electrode is known, the digital value and the reference digital value (160) can be used according to the digital value. A proportional relationship, such as the lookup table described above, to obtain a first edge-sensing coordinate value. In general, this proportional relationship is based on a lookup table. Of course, those skilled in the art can implement the built-in mathematical or software.
步驟S1112:將第一邊緣感應座標值除以最大感應座標值後,乘上第一軸顯示座標數,得到一校準座標。Step S1112: After dividing the first edge sensing coordinate value by the maximum sensing coordinate value, multiplying the first axis display coordinate number to obtain a calibration coordinate.
步驟S1113:判斷第二特定感應電極所對應之數位值是否大於一參考數位值。同樣道理當偵測到僅有離該第二邊緣最近的一第二特定感應電極被碰觸時,先判定其對應之數位值是否大於參考數位值。Step S1113: Determine whether the digital value corresponding to the second specific sensing electrode is greater than a reference digital value. Similarly, when it is detected that only a second specific sensing electrode closest to the second edge is touched, it is first determined whether the corresponding digit value is greater than the reference digit value.
步驟S1114:當判斷為是時,則判定校準座標為第二特定感應電極所對應之座標。如上述實施例,當數位值大於160時,判定座標為736。Step S1114: When the determination is YES, it is determined that the calibration coordinate is a coordinate corresponding to the second specific sensing electrode. As in the above embodiment, when the digit value is greater than 160, the decision coordinate is 736.
步驟S1115:當第二特定感應電極所對應之數位值小於參考數位值時,根據第二特定感應電極所對應之數位值與參考數位值之比例,決定一第二邊緣感應座標值,其中,該第二邊緣感應座標值落在該最大感應座標值與該第一特定感應電極所對應之感應座標值之間。Step S1115: When the digital value corresponding to the second specific sensing electrode is smaller than the reference digital value, determining a second edge sensing coordinate value according to a ratio of the digital value corresponding to the second specific sensing electrode to the reference digital value, where The second edge sensing coordinate value falls between the maximum sensing coordinate value and the sensing coordinate value corresponding to the first specific sensing electrode.
步驟S1116:將第二邊緣感應座標值除以該最大感應座標值後,乘上第一軸顯示座標數,得到校準座標。Step S1116: After dividing the second edge sensing coordinate value by the maximum sensing coordinate value, multiplying the first axis display coordinate number to obtain a calibration coordinate.
本發明之一方面是利用內插的方式,來校準電容式傳感器與顯示面板之間的座標不匹配另一方面,由於電容式傳感器具有多個感應電極,每一個感應電極皆有一預定寬度,當僅有邊緣的感應電極被碰觸時,利用內插法便只能算出邊緣感應電極所對應的座標,如此可能造成顯示面板 的邊緣無法被觸碰到,因此,本發明的另一方面,則是利用邊緣的感應電極所感應到的等效電容所對應之數位值,來判定邊緣的座標,因此也解決了用電容式觸控板的座標的配置與顯示器的座標的配置不匹配之問題。One aspect of the present invention is to use an interpolation method to calibrate the coordinate mismatch between the capacitive sensor and the display panel. On the other hand, since the capacitive sensor has a plurality of sensing electrodes, each of the sensing electrodes has a predetermined width. When only the edge of the sensing electrode is touched, only the coordinates corresponding to the edge sensing electrode can be calculated by interpolation, which may cause the display panel. The edge of the invention cannot be touched. Therefore, in another aspect of the present invention, the coordinate value corresponding to the equivalent capacitance sensed by the sensing electrode of the edge is used to determine the coordinates of the edge, thereby also solving the capacitive type. The configuration of the coordinates of the touchpad does not match the configuration of the coordinates of the display.
在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於本發明之範圍。因此本發明之保護範圍當視後附之申請專利範圍所界定者為准。The specific embodiments of the present invention are intended to be illustrative only and not to limit the invention to the above embodiments, without departing from the spirit of the invention and the following claims. The scope of the invention and the various changes made are within the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
40‧‧‧顯示模組40‧‧‧Display module
41‧‧‧電容式傳感器41‧‧‧Capacitive sensor
X01~X12‧‧‧感應電極X01~X12‧‧‧Induction electrode
C10‧‧‧控制電路C10‧‧‧Control circuit
第1圖是根據本發明實施例所繪示的電容式觸控螢幕之結構剖面圖。1 is a cross-sectional view showing the structure of a capacitive touch screen according to an embodiment of the invention.
第2圖是根據本發明實施例所繪示的電容式傳感器41之結構上視圖。FIG. 2 is a structural top view of the capacitive sensor 41 according to an embodiment of the invention.
第3A圖與第3B圖分別是用以說明本發明實施例的電容式傳感器41的座標之定位方法的示意圖。3A and 3B are respectively schematic views for explaining a method of positioning the coordinates of the capacitive sensor 41 according to the embodiment of the present invention.
第4圖是電容式觸控板的座標的配置,與顯示器的座標的配置不匹配的示意圖。Figure 4 is a schematic diagram of the configuration of the coordinates of the capacitive touch panel, which does not match the configuration of the coordinates of the display.
第5圖是本發明實施例的非差動感測式的電容式傳感器之線性區域示意圖。Fig. 5 is a schematic view showing a linear region of a non-differential sensing type capacitive sensor according to an embodiment of the present invention.
第6圖是本發明實施例的非差動感測式的電容式傳感器之座標平移示意圖。Fig. 6 is a schematic diagram showing the coordinate translation of the non-differential sensing type capacitive sensor according to the embodiment of the present invention.
第7A~7C是導體按壓電容式傳感器41上的X軸感應線時,得到對應的數位值的對比關係示意圖。7A to 7C are diagrams showing a comparison relationship of corresponding digital values when the conductor presses the X-axis sensing line on the capacitive sensor 41.
第8圖是本發明實施例的差動感測式的電容式傳感器之線性區域示意圖。Fig. 8 is a view showing a linear region of a differential sensing type capacitive sensor according to an embodiment of the present invention.
第9圖是本發明實施例的差動感測式的電容式傳感器之座標平移示意圖。FIG. 9 is a schematic diagram showing the coordinate translation of the differential sensing type capacitive sensor according to the embodiment of the present invention.
第10圖是依照本發明實施例的觸控螢幕的座標校準方法之流程圖。FIG. 10 is a flow chart of a coordinate calibration method of a touch screen according to an embodiment of the invention.
第11圖是依照本發明實施例的觸控螢幕的座標校準方法之流程圖。11 is a flow chart of a coordinate calibration method of a touch screen according to an embodiment of the invention.
S1000~S1008‧‧‧本發明實施例的步驟S1000~S1008‧‧‧ steps of the embodiment of the present invention
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/123,677 US7990368B2 (en) | 2007-12-26 | 2008-05-20 | Method for calibrating coordinates of touch screen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1675407P | 2007-12-26 | 2007-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200928933A TW200928933A (en) | 2009-07-01 |
TWI401596B true TWI401596B (en) | 2013-07-11 |
Family
ID=40828068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97111811A TWI401596B (en) | 2007-12-26 | 2008-04-01 | Method for calibrating coordinates of touch screen |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN102331893B (en) |
TW (1) | TWI401596B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI463381B (en) * | 2009-08-28 | 2014-12-01 | Elan Microelectronics Corp | A Method to Improve the Edge Location of Capacitive Touchpad |
CN102023767B (en) * | 2009-09-14 | 2015-01-14 | 义隆电子股份有限公司 | Improvement method for capacitive touch pad edge positioning |
CN102109937B (en) * | 2009-12-24 | 2013-06-26 | 联阳半导体股份有限公司 | Locating device and locating method for touch device |
CN101882041B (en) * | 2010-03-12 | 2013-09-11 | 敦泰科技有限公司 | Capacitive touch screen for improving edge touch sensitive accuracy and data processing method thereof |
TW201218028A (en) | 2010-10-26 | 2012-05-01 | Novatek Microelectronics Corp | Coordinates algorithm of touch panel |
CN102467279A (en) * | 2010-11-08 | 2012-05-23 | 联咏科技股份有限公司 | Coordinate calculation for touch panel |
KR101239880B1 (en) * | 2011-10-05 | 2013-03-06 | (주)멜파스 | Touch sensing apparatus and method |
CN103164065A (en) * | 2011-12-16 | 2013-06-19 | 迅杰科技股份有限公司 | Point reporting device and point reporting method |
FR2990020B1 (en) * | 2012-04-25 | 2014-05-16 | Fogale Nanotech | CAPACITIVE DETECTION DEVICE WITH ARRANGEMENT OF CONNECTION TRACKS, AND METHOD USING SUCH A DEVICE. |
TWI480787B (en) * | 2012-10-25 | 2015-04-11 | Orise Technology Co Ltd | Method for improving linearity of touch system coordinates |
CN103034383B (en) * | 2012-11-30 | 2016-04-27 | 深圳市汇顶科技股份有限公司 | The method of touch-screen fringe region response user touch operation, system and terminal |
CN103870070B (en) * | 2012-12-12 | 2016-10-05 | 联想(北京)有限公司 | A kind of electric field method of calibration, device and electronic equipment |
TWI502424B (en) * | 2013-04-12 | 2015-10-01 | Elan Microelectronics Corp | Touch device and edge nonlinear compensation method for the touch device |
CN104516561A (en) * | 2013-09-29 | 2015-04-15 | 宸鸿光电科技股份有限公司 | Touch panel and touch display |
CN105159484B (en) * | 2014-06-16 | 2018-02-13 | 晨星半导体股份有限公司 | The method and contactor control device of the coordinate value of calibrating touch detection face plate edge |
CN105511676A (en) * | 2015-12-11 | 2016-04-20 | Tcl移动通信科技(宁波)有限公司 | Touch screen coordinate transformation method and mobile terminal |
CN105653915A (en) * | 2015-12-24 | 2016-06-08 | 深圳市万普拉斯科技有限公司 | Unlocking method and system for terminal with touch display screen |
CN109445636B (en) * | 2018-10-31 | 2020-08-14 | 上海海栎创微电子有限公司 | Edge touch coordinate compensation method for self-capacitance touch screen |
CN111816073B (en) * | 2020-07-06 | 2023-04-25 | 京东方科技集团股份有限公司 | Display module, display device and calibration method of display module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4710758A (en) * | 1985-04-26 | 1987-12-01 | Westinghouse Electric Corp. | Automatic touch screen calibration method |
US5751276A (en) * | 1996-05-23 | 1998-05-12 | Microsoft Corporation | Method for calibrating touch panel displays |
US6016140A (en) * | 1997-10-29 | 2000-01-18 | Nortel Networks Corporation | Automatic touch screen calibration |
TWI226012B (en) * | 2003-12-17 | 2005-01-01 | Wintek Corp | Neural network correcting method for touch panel |
TWI245252B (en) * | 2002-07-18 | 2005-12-11 | Gigno Technology Co Ltd | LCD and the touch-control method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3199312B2 (en) * | 1997-11-06 | 2001-08-20 | キヤノン株式会社 | Liquid crystal display |
JP2003066417A (en) * | 2001-08-22 | 2003-03-05 | Sharp Corp | Touch sensor integrated type display device |
TWI293423B (en) * | 2003-04-14 | 2008-02-11 | Henry K Obermeyer | Multi-axis joystick and transducer means therefore |
JP2007164470A (en) * | 2005-12-14 | 2007-06-28 | Alps Electric Co Ltd | Input device and electronic appliance using the input device |
-
2008
- 2008-04-01 TW TW97111811A patent/TWI401596B/en not_active IP Right Cessation
- 2008-06-30 CN CN 201110269188 patent/CN102331893B/en not_active Expired - Fee Related
- 2008-06-30 CN CN200810127253XA patent/CN101470561B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4710758A (en) * | 1985-04-26 | 1987-12-01 | Westinghouse Electric Corp. | Automatic touch screen calibration method |
US5751276A (en) * | 1996-05-23 | 1998-05-12 | Microsoft Corporation | Method for calibrating touch panel displays |
US6016140A (en) * | 1997-10-29 | 2000-01-18 | Nortel Networks Corporation | Automatic touch screen calibration |
TWI245252B (en) * | 2002-07-18 | 2005-12-11 | Gigno Technology Co Ltd | LCD and the touch-control method thereof |
TWI226012B (en) * | 2003-12-17 | 2005-01-01 | Wintek Corp | Neural network correcting method for touch panel |
Also Published As
Publication number | Publication date |
---|---|
CN101470561B (en) | 2011-11-23 |
CN101470561A (en) | 2009-07-01 |
CN102331893A (en) | 2012-01-25 |
CN102331893B (en) | 2013-08-07 |
TW200928933A (en) | 2009-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI401596B (en) | Method for calibrating coordinates of touch screen | |
US8482536B1 (en) | Compensation of signal values for a touch sensor | |
US9965079B2 (en) | Pressure-sensitive touch screen and touch display screen and electronic device | |
US7990368B2 (en) | Method for calibrating coordinates of touch screen | |
US10139950B2 (en) | Flexible display device and driving method thereof | |
US9069399B2 (en) | Gain correction for fast panel scanning | |
US9459736B2 (en) | Flexible capacitive sensor array | |
TWI516998B (en) | Noise compensating touch panel and touch device thereof | |
US8692802B1 (en) | Method and apparatus for calculating coordinates with high noise immunity in touch applications | |
US20220129102A1 (en) | Capacitive touch panel for sensing mechanical inputs to a device | |
WO2011024461A1 (en) | Input device | |
US20070070049A1 (en) | Base capacitance compensation for a touchpad sensor | |
US9921668B1 (en) | Touch panel controller integrated with host processor for dynamic baseline image update | |
JP2011221677A (en) | Electronic device and operation detection method | |
US20120105325A1 (en) | Capacitive finger navigation input device | |
US9465456B2 (en) | Reduce stylus tip wobble when coupled to capacitive sensor | |
KR20180039014A (en) | Pressure detection method, touch control chip and pressure detection module | |
US20110157074A1 (en) | Touch detecting device and method | |
TWI407357B (en) | Object sensing apparatus, touch sensing system and touch sensing method | |
US8654089B2 (en) | Touch sensing circuit and touch sensing method | |
US20100141607A1 (en) | Apparatus and method for recognizing multi touch point | |
US20140184557A1 (en) | Touch sensing apparatus | |
US9110588B2 (en) | Optical touch device and method for detecting touch point | |
US20150268750A1 (en) | Touchscreen apparatus and touch sensing method | |
CN101667086A (en) | Touch control screen and coordinate positioning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |