TWI400441B - Illumination system and method for providing a line of light - Google Patents

Illumination system and method for providing a line of light Download PDF

Info

Publication number
TWI400441B
TWI400441B TW097104829A TW97104829A TWI400441B TW I400441 B TWI400441 B TW I400441B TW 097104829 A TW097104829 A TW 097104829A TW 97104829 A TW97104829 A TW 97104829A TW I400441 B TWI400441 B TW I400441B
Authority
TW
Taiwan
Prior art keywords
light
lens
emitting diode
rectangular
diode array
Prior art date
Application number
TW097104829A
Other languages
Chinese (zh)
Other versions
TW200842399A (en
Inventor
戴安那 夏皮洛夫
Original Assignee
肯提克有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肯提克有限公司 filed Critical 肯提克有限公司
Publication of TW200842399A publication Critical patent/TW200842399A/en
Application granted granted Critical
Publication of TWI400441B publication Critical patent/TWI400441B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

照明系統及用於提供一列光線之方法Lighting system and method for providing a line of light 發明領域Field of invention

本申請案主張於2007年2月20日所提出之美國專利臨時申請案第60/890627號之優先權權益。The present application claims priority to U.S. Patent Application Serial No. 60/890,627, filed on Feb. 20, 2007.

本發明係有關用於自動光學檢測及驗證之系統與方法,特別是用於產生一列光線之方法與系統。The present invention relates to systems and methods for automated optical inspection and verification, and more particularly to methods and systems for generating a train of light.

發明背景Background of the invention

諸如但不限於印刷電路板(PCB)、晶圓及HDI等物體可用以一光點、一列光線或所謂區域照明的方式照射該物件部份區域之檢驗系統以作檢驗。Objects such as, but not limited to, printed circuit boards (PCBs), wafers, and HDIs can be illuminated by inspection of a portion of the object in a spot, array of light, or so-called area illumination.

從物體反射、散射及任意穿透物體的光將被偵測。Light reflected, scattered, and arbitrarily penetrating from objects will be detected.

在檢驗(評估)過程中,可以區域照明、點照明或線照明方式來照射物體。光點或一列光線可掃描該物體並允許系統來擷取該物體之影像。During the inspection (evaluation), the object can be illuminated by area illumination, point illumination or line illumination. A spot or array of rays scans the object and allows the system to capture an image of the object.

為了不在檢驗或評估過程中導致誤差,該列光線應是均勻的,特別是當根據檢測之比較被使用時。特別是,該照明裝置應符合以下(重要的)需求(i)在整列光線上光強度之空間均勻性;(ii)在整列光線上光強度之角度均勻性;(iii)寬角度範圍之照明(亦稱作高數值孔徑照明);(iv)能有控制角度覆蓋範圍的能力(可根據應用類型)、頻譜控制(可根據應用類型),(v)高效率,(vi)耐用,且(vii)低成本。In order not to cause errors in the inspection or evaluation process, the column of light should be uniform, especially when used in comparison to the test. In particular, the illuminating device should meet the following (important) requirements (i) spatial uniformity of light intensity over the entire array of rays; (ii) angular uniformity of light intensity over the entire array of rays; (iii) illumination over a wide range of angles (also known as high numerical aperture illumination); (iv) ability to control angular coverage (depending on application type), spectrum control (depending on application type), (v) high efficiency, (vi) durable, and ( Vii) low cost.

可以使用可包含反射光學元件(會聚面鏡)或折射光 學元件(會聚透鏡)之成像光學元件來提供一列光線。Can be used to include reflective optical elements (convergence mirrors) or refracted light The imaging optics of the component (convergence lens) provide a list of rays.

參考第1a圖,成像照明光學元件(以“成像光學元件”來表示)14將線性光源12轉換成在物體(未顯示)上之一列光線16(以“聚焦線”來表示)。該成像光學元件可以是折射式(透鏡)或反射式(會聚面鏡)的。受限於數值孔徑以及在沒有多孔(lacunose)設計下,以折射式光學元件來成像效率較差。這可由第1b圖中包含三個彼此隔開之覆蓋範圍26、24及22之二維光強度圖20來說明。反射式光學元件(橢圓或形狀更複雜之面鏡)並沒有上述之問題。這可用第1c圖中包含一單一連續覆蓋範圍32之二維光強度圖30來說明。Referring to Figure 1a, an imaging illumination optical element (represented by "imaging optics") 14 converts linear light source 12 into a column of rays 16 (represented by "focus lines") on an object (not shown). The imaging optical element can be a refractive (lens) or a reflective (converging mirror). Limited by numerical aperture and in the absence of a lacunose design, imaging efficiency is poor with refractive optical elements. This can be illustrated by a two-dimensional light intensity map 20 comprising three spaced apart coverages 26, 24 and 22 in Figure 1b. Reflective optics (elliptical or more complex mirrors) do not have the above problems. This can be illustrated by a two-dimensional light intensity map 30 comprising a single continuous coverage range 32 in Figure 1c.

照明設計成像方法的一般問題有:(1)與光源之局部非均勻性強烈相關;(2)微小的光機容忍度。這些缺點可藉由插入額外之混合或擴散元件而被部分克服,然而這會顯著地降低整體之設計效率。General problems with illumination design imaging methods are: (1) strongly correlated with local non-uniformities of the light source; (2) small optomechanical tolerance. These shortcomings can be partially overcome by inserting additional mixing or diffusing elements, however this can significantly reduce overall design efficiency.

非成像之方法包含將有混合或未混合之線性光源投射在大型區域。第2a-2c圖說明了不同的系統組配。第2a圖說明兩相互平行之線性光源42及44。每一個光源都在一大角度範圍(分別是52及54)以在這些角度範圍間造成部份交疊60。這種組配是很簡單的但卻受到性能設計上之限制。第2圖說明單一線性光源72其伴隨著一個包含一上方凹面部份74與一下方凸面部份76之集成腔體。光從這些部份所反射並照射在照明區域78上。這種组配之特徵係在於極佳的混合度、低效率及缺乏角度控制。第2c圖說明兩 相互平行之線性光源82及84,其下方伴隨著擴散板86,該擴散板之下伴隨著有一矩形照明型樣形成其上之物體。這種組配之特徵係在於有良好的混合性、低效率以及缺乏角度控制。Non-imaging methods involve projecting a linear source with or without mixing in a large area. Figures 2a-2c illustrate different system combinations. Figure 2a illustrates two linear light sources 42 and 44 that are parallel to each other. Each source is in a wide range of angles (52 and 54 respectively) to create a partial overlap 60 between these angular ranges. This combination is simple but limited by performance design. Figure 2 illustrates a single linear light source 72 accompanied by an integrated cavity including an upper concave portion 74 and a lower convex portion 76. Light is reflected from these portions and illuminates the illumination area 78. This combination is characterized by excellent mixing, low efficiency and lack of angular control. Figure 2c illustrates two The mutually parallel linear light sources 82 and 84 are accompanied by a diffuser plate 86 with a rectangular illumination pattern formed thereon. This combination is characterized by good mixing, low efficiency, and lack of angular control.

將需要提供有效率之方法與系統以用於提供一列光線,並且特別是用於控制此類一列光線之特性。There will be a need to provide efficient methods and systems for providing a list of rays, and in particular for controlling the characteristics of such a column of rays.

發明概要Summary of invention

一種照明系統其包含:(i)一放射準平行光線之第一矩形發光二極體陣列;及(ii)第一集光光學元件其至少包含一全內反射透鏡部份以及至少一折射透鏡部份。來自於該第一矩形發光二極體陣列的光被該第一集光光學元件導往一物件而在該物件上形成一列光線。An illumination system comprising: (i) a first rectangular light emitting diode array that emits quasi-parallel light rays; and (ii) a first light collecting optical element that includes at least one total internal reflection lens portion and at least one refractive lens portion Share. Light from the first rectangular light-emitting diode array is guided by the first light-collecting optical element to an object to form a line of light on the object.

一種用於提供一列光線之方法,該方法包含下列步驟:藉由一第一矩形發光二極體陣列而放射準平行光線;並且藉由至少包含一全內反射透鏡部份以及至少一折射透鏡部份之第一集光光學裝置而將該準平行光線集中以在一物件上形成一列光線。A method for providing a line of light, the method comprising the steps of: radiating quasi-parallel rays by a first rectangular array of light emitting diodes; and comprising at least one total internal reflection lens portion and at least one refractive lens portion The first collection of optical optics concentrates the quasi-parallel rays to form a line of light on an object.

圖式簡單說明Simple illustration

第1a-1c圖說明一種先前技術之成像照明光學裝置以及二維角度強度圖;第2a-2c圖說明先前技術之非成像照明光學裝置;第3a圖說明根據本發明之一實施例之照明光學裝置;第3b圖說明第3a圖之照明光學裝置之二角度維度強 度圖;第4a及4b圖說明根據本發明不同實施例之照明光學裝置;第5a圖說明一種LED以矩形方式排列之矩形LED陣列與一強度圖;第5b圖說明根據本發明之一實施例其之LED以蜂巢式來配置之一種矩形LED陣列以及一維之強度圖;第5c圖說明根據本發明之一實施例在一間隙、工作距離以及一LED間距之間的關係;第6圖說明根據本發明之不同實施例之照明光學裝置、控制器以及強度調變曲線;第7a圖說明根據本發明之不同實施例之照明光學裝置;第7b-7d圖說明根據本發明之不同實施例之集光透鏡;第8圖說明根據本發明之不同實施例第7圖之照明光學裝置之二維強度圖;第9圖說明根據本發明之不同實施例之照明光學裝置;第10圖說明根據本發明之一實施例之照明光學裝置;第11圖說明根據本發明之一實施例之照明光學裝置與集光光學裝置;以及第12圖為根據本發明之一實施例之一種方法之流程圖。1a-1c illustrate a prior art imaging illumination optics and a two-dimensional angular intensity map; Figures 2a-2c illustrate prior art non-imaging illumination optics; and Figure 3a illustrates illumination optics in accordance with an embodiment of the present invention Device; Figure 3b illustrates the two-dimensional dimension of the illumination optics of Figure 3a Figure 4a and 4b illustrate illumination optics in accordance with various embodiments of the present invention; Figure 5a illustrates a rectangular LED array in which the LEDs are arranged in a rectangular pattern and an intensity map; Figure 5b illustrates an embodiment in accordance with the present invention. A rectangular LED array in which the LEDs are configured in a honeycomb type and a one-dimensional intensity map; FIG. 5c illustrates a relationship between a gap, a working distance, and an LED pitch according to an embodiment of the present invention; FIG. 6 illustrates Illumination optics, controllers, and intensity modulation curves in accordance with various embodiments of the present invention; FIG. 7a illustrates illumination optics in accordance with various embodiments of the present invention; and FIGS. 7b-7d illustrate different embodiments in accordance with the present invention 8 is a two-dimensional intensity diagram of an illumination optical device according to a different embodiment of the present invention; FIG. 9 illustrates an illumination optical device according to various embodiments of the present invention; Illuminating optical device according to an embodiment of the invention; FIG. 11 illustrates an illumination optical device and a collecting optical device according to an embodiment of the present invention; and FIG. 12 is a view according to the present invention A flowchart of an embodiment of the method of application.

較佳實施例之詳細說明Detailed description of the preferred embodiment

第3a圖說明根據本發明根據本發明之一實施例之照明光學裝置102(亦稱為照明系統)。照明光學裝置102包含非成像光學元件。其包含矩形(如薄紙般)光源陣列100,該矩形光源陣列伴隨著集光光學元件(反射式或折射式)其將矩形(如薄紙般)光源陣列100所放射的光集中在狹窄的一列光線120內。第3b圖說明由照明光學裝置102所得到的連續覆蓋範圍-二維之光強度圖130包括一個單一連續覆蓋範圍132。Figure 3a illustrates an illumination optics device 102 (also referred to as an illumination system) in accordance with an embodiment of the present invention in accordance with the present invention. Illumination optics 102 includes non-imaging optical elements. It comprises a rectangular (e.g., tissue-like) array of light sources 100, along with a collection optics (reflective or refractive) that concentrates the light emitted by a rectangular (e.g., tissue-like) array of light sources 100 in a narrow array of rays. 120 inside. Figure 3b illustrates the continuous coverage obtained by illumination optics 102 - the two-dimensional light intensity map 130 includes a single continuous coverage range 132.

第4a圖說明根據本發明實施例之照明光學裝置166。多束準直光源150-156被沿著一彎曲平面配置(可連接至一凸狀薄板或與其整合)使得從這些準直光源所放出的所有光束(140-146)指向相同區域以提供一列光線160。這種組配並不包括集光光學元件,儘管看來簡單,但這種方法需要非常精密的技術以達到可接受的光均勻性程度。Figure 4a illustrates an illumination optics 166 in accordance with an embodiment of the present invention. The plurality of collimated light sources 150-156 are disposed along a curved plane (which can be coupled to or integrated with a convex sheet) such that all of the beams (140-146) emitted from the collimated sources point to the same area to provide a column of light. 160. This combination does not include concentrating optics, although it appears simple, this approach requires very sophisticated techniques to achieve acceptable levels of light uniformity.

第4b圖說明根據本發明實施例之照明光學裝置199。Figure 4b illustrates an illumination optics 199 in accordance with an embodiment of the present invention.

多束準平行光源170-178用經規劃的方式配置以形成一平面延伸之準平行光源。這種平面延伸之準平行光源伴隨著一作為集光光學元件之圓柱平面TIR(全內反射)透鏡202。由圓柱平面TIR透鏡202所產生之角度覆蓋範圍係寬廣的且無傳統折射光學元件所特有之像差。適合地,TIR透鏡202之中心部份係折射式的。如光束190-198所說明地,由準平行光源170-178所產生之光束180-188通過TIR透鏡202後將被導向列光線200。The multi-beam quasi-parallel light sources 170-178 are configured in a planned manner to form a planarly extending quasi-parallel source. This planarly extending quasi-parallel light source is accompanied by a cylindrical planar TIR (total internal reflection) lens 202 as a collecting optical element. The angular coverage produced by the cylindrical planar TIR lens 202 is broad and has no aberrations characteristic of conventional refractive optical elements. Suitably, the central portion of the TIR lens 202 is refractive. As illustrated by beams 190-198, beams 180-188 produced by quasi-parallel sources 170-178 will pass through TIR lens 202 and will be directed to column ray 200.

適合地,該延伸之準平行光源可包括一具有數個單獨光源之陣列。這些光源應可放射出狹窄的光束並在發光型樣與強度上實質地彼此相等。Suitably, the extended quasi-parallel light source can comprise an array of a plurality of individual light sources. These light sources should emit a narrow beam of light and be substantially equal to each other in terms of illuminating pattern and intensity.

根據本發明之一實施例,一發光二極體(LED)陣列被用來作為一準平行光源並且應該至少符合若干之下列條件:可視角(每一顆LED的)應不超過10度,該LED陣列應以六方最密堆積(“蜂巢”)的方式來配置(如第5b圖所述),由該等LED所放射出來的光應具有高的發光能量-約1000流明/100公釐,該等LED應為多色之LED(例如,可放射出紅光、黃光、藍/青色光以及諸如此類的光),該LED陣列所放射之光的色彩可以電子式控制,該發光角度之覆蓋應可藉由該等LED位置而電子式地控制,該LED陣列應具有一有效之冷卻機制。應注意該LED陣列應不須符合所有的這些要求並且各種數值(例如-強度值、可視角)都不是強制性的。In accordance with an embodiment of the present invention, an array of light emitting diodes (LEDs) is used as a quasi-parallel source and should meet at least some of the following conditions: the viewing angle (of each LED) should not exceed 10 degrees. The LED array should be arranged in the hexagonal closest packing ("honeycomb") (as described in Figure 5b), and the light emitted by the LEDs should have a high luminous energy - about 1000 lumens / 100 mm, The LEDs should be multi-colored LEDs (for example, red, yellow, blue/cyan, and the like), and the color of the light emitted by the LED array can be electronically controlled, and the illumination angle is covered. It should be electronically controllable by the LED locations, which should have an effective cooling mechanism. It should be noted that the LED array should not necessarily meet all of these requirements and various values (eg, intensity values, viewing angles) are not mandatory.

適合地,該LED陣列包含了具有窄發光角度之LED而使得能提供一準平行之光源。當更窄的光源可集中在更窄的光條帶內並具有更高的效率時,LED發光角度對該照明光學元件之集光效率有相當直接的影響。下列表格說明若干之模擬結果: Suitably, the LED array includes LEDs having a narrow illumination angle to enable a quasi-parallel source. When a narrower source of light can be concentrated in a narrower strip of light and has higher efficiency, the LED illumination angle has a fairly direct impact on the collection efficiency of the illumination optics. The following table illustrates several simulation results:

適合地,該LED陣列之該等LED被以六方最密堆積的方式來配置。Suitably, the LEDs of the LED array are arranged in a manner that is hexagonally packed.

第5a圖說明一矩形之LED陣列於其中LED 210-218係以矩形的方式來配置以及由該陣列所形成之強度圖219。第5b圖說明根據本發明之一實施例一矩形之LED陣列於其中LED 220-237係以六邊形的方式(亦稱為LED之六方堆積)來配置以及由該陣列所形成之強度圖239。第5c圖說明根據本發明之一實施例在一"不可見"之間隙265、工作距離252以及一LED間距250之間的關係。該間隙為不可見之意義為其在列光線270之覆蓋範圍內並未造成間隙Figure 5a illustrates a rectangular LED array in which the LEDs 210-218 are arranged in a rectangular manner and an intensity map 219 formed by the array. Figure 5b illustrates a rectangular LED array in which the LEDs 220-237 are arranged in a hexagonal manner (also referred to as hexagonal stacking of LEDs) and an intensity map formed by the array, in accordance with an embodiment of the present invention. . Figure 5c illustrates the relationship between an "invisible" gap 265, a working distance 252, and an LED spacing 250 in accordance with an embodiment of the present invention. The gap is invisible so that it does not cause a gap within the coverage of the column ray 270.

第5b圖之LED陣列(關於第5b圖之LED陣列)在列光線中提供了更好的空間與角度均勻度。The LED array of Figure 5b (for the LED array of Figure 5b) provides better spatial and angular uniformity in the column light.

如第5c圖所述,最小可被接受之LED陣列間距為集光幾何結構(工作距離、個別之LED尺寸)與集光光學元件之數值孔徑的函數。較長的工作距離(第5c圖之252)、較低之NA以及較大的LED尺寸可容忍較大的間距(250)。例如,17公釐之工作距離、5公釐之LED直徑以及1公釐之間距可形成一個在相鄰光束263與264(從相鄰之LED243與244射出)之間約1度的間隙但此間隙在列光線270中將不會被察覺。As shown in Figure 5c, the minimum acceptable LED array spacing is a function of the collection geometry (working distance, individual LED dimensions) and the numerical aperture of the collection optics. Longer working distances (252 of Figure 5c), lower NA, and larger LED sizes can tolerate larger spacing (250). For example, a working distance of 17 mm, an LED diameter of 5 mm, and a distance of 1 mm may form a gap of about 1 degree between adjacent beams 263 and 264 (ejected from adjacent LEDs 243 and 244) but this The gap will not be noticed in the column ray 270.

根據本發明之一實施例,該陣列中的每一個LED包括多個發光部件並且每一部件可放射出不同顏色的光。每一 個LED所放射出的光可藉由決定啟動哪一個發光部件而被電子式地控制。當使用這樣的LED時,每一群LED(每一群可包括一或多個LED)之顏色將可被電子式地控制。應注意到,一群LED可包括其之組合之一列、一行、一LED之二維子陣列、一列之一部份、一行之一部份。在一陣列中LED群組的控制方式可在控制機制的複雜度與該LED陣列之可操縱性間作權衡。因此,控制每一個單獨之LED的特徵在於最大的可操縱性但需要非常複雜的控制機制與複雜的接線。In accordance with an embodiment of the invention, each of the LEDs in the array includes a plurality of light emitting components and each component can emit light of a different color. Each The light emitted by the LEDs can be electronically controlled by determining which of the light-emitting components to activate. When such an LED is used, the color of each group of LEDs (each group may include one or more LEDs) will be electronically controllable. It should be noted that a group of LEDs may include a column, a row, a two-dimensional sub-array of LEDs, a portion of a column, and a portion of a row. The manner in which LED groups are controlled in an array can be traded off between the complexity of the control mechanism and the maneuverability of the LED array. Therefore, controlling each individual LED is characterized by maximum maneuverability but requires very complicated control mechanisms and complicated wiring.

根據本發明尚有之另一實施例,每一個LED(或甚至每一群LED)可以是單色的(並放出紫外至紅外光)。In accordance with yet another embodiment of the present invention, each LED (or even each group of LEDs) can be monochromatic (and emit ultraviolet to infrared light).

根據本發明仍尚有之另一實施例,該彩色的光可藉由使用彩色濾光片與特別組配之彩色濾光片來控制。According to still another embodiment of the present invention, the colored light can be controlled by using a color filter and a specially assembled color filter.

應注意到一多色LED陣列可放射出紅藍綠光、白光或其他顏色之組合。適合地,該LED陣列應能夠放射出紅光及/或黃光及/或藍光。It should be noted that a multi-color LED array can emit a combination of red, blue, green, white, or other colors. Suitably, the LED array should be capable of emitting red and/or yellow and/or blue light.

適合地,在色彩強度上之獨立電子式控制可允許將照明頻譜之調整以符合特定之應用需求。Suitably, independent electronic control over color intensity may allow adjustment of the illumination spectrum to meet specific application needs.

第6圖說明根據本發明之一實施例之LED陣列300、控制器310及一強度調變曲線330。FIG. 6 illustrates an LED array 300, a controller 310, and an intensity modulation curve 330 in accordance with an embodiment of the present invention.

LED陣列300包括(M+1)列與N行。其包括LED 300(0,1)-300(M,N)。The LED array 300 includes (M+1) columns and N rows. It includes LEDs 300 (0, 1) - 300 (M, N).

控制器310可控制LED陣列300之每一群LED的不同特性。如上所指出的控制器310可控制每一群LED。該 控制可包至少決定下列之一或其等之一組合:(i)LED角度覆蓋範圍(該覆蓋範圍意指一可視角其往外延伸並垂直於第8圖之紙面),該LED可被設置以在多個可視角之一放射出光(例如-大、中及狹窄的);(ii)強度(從多種強度中選出強度(二或多種)強度位準,強度調變曲線330提供了LED陣列300之不同像素之不同強度LED陣列300位準之一非限制性實例-其在LED陣列300之中心列具有一個峰值並且在LED陣列300之邊緣有最小值,這條強度調變曲線能夠補償由照明及成像光學元件所造成之強度非均勻性;(iii)色彩。Controller 310 can control different characteristics of each group of LEDs of LED array 300. The controller 310 as indicated above can control each group of LEDs. The The control package may determine at least one of the following or a combination thereof: (i) LED angle coverage (the coverage means a view angle extending outward and perpendicular to the paper of FIG. 8), the LED may be set to Light is emitted at one of a plurality of viewable angles (eg, -large, medium, and narrow); (ii) intensity (intensity (two or more) intensity levels are selected from a plurality of intensities, and intensity modulation curve 330 provides LED array 300 A non-limiting example of a different intensity LED array 300 level of different pixels - having a peak in the center column of the LED array 300 and having a minimum at the edge of the LED array 300, this intensity modulation curve can compensate for illumination And intensity non-uniformity caused by imaging optics; (iii) color.

在一非限制性實例中,控制器310能夠控制每一行之強度以及每一列之角度覆蓋範圍。該角度覆蓋範圍可以沿著掃描方線而改變。控制器310亦能控制整個陣列之色彩與明暗。In a non-limiting example, controller 310 can control the intensity of each row and the angular coverage of each column. The angular coverage can vary along the scan square. Controller 310 can also control the color and shading of the entire array.

第7a圖說明根據本發明一實施例之照明光學裝置500。Figure 7a illustrates an illumination optics device 500 in accordance with an embodiment of the present invention.

照明光學裝置500包括混合式光學元件550以及矩形LED陣列570。第7a圖亦說明光束541、542、543、551及552。Illumination optics 500 includes a hybrid optical element 550 and a rectangular LED array 570. Figure 7a also illustrates beams 541, 542, 543, 551 and 552.

矩形LED陣列570係平行於混合式透鏡500並且兩者皆垂直於列光線560。列光線560係垂直於第7a圖之紙面。Rectangular LED array 570 is parallel to hybrid lens 500 and both are perpendicular to column ray 560. The column ray 560 is perpendicular to the paper surface of Figure 7a.

矩形LED陣列570陣列往混合式透鏡500放射出準平行的光。為了簡化說明,僅展示出幾條往混合式透鏡500放射之光束。來自於矩形LED陣列570之準平行光係被混 合式透鏡550所導引以在物體上形成一列光線560。The array of rectangular LED arrays 570 emits quasi-parallel light toward the hybrid lens 500. To simplify the description, only a few light beams are emitted to the hybrid lens 500. The quasi-parallel light system from the rectangular LED array 570 is mixed The compound lens 550 is guided to form a line of rays 560 on the object.

混合式透鏡550之作用如一集光透鏡。混合式透鏡550之中心部份(中心部份刻面)520係一折射式透鏡(諸如但不限於由菲涅爾透鏡)。混合式透鏡550之一或多個周圍部份(提供TIR及折射機制兩者之外部刻面)係如由TIR透鏡510及530所述之全內反射透鏡。應注意混合式透鏡550係從第7a圖之紙面往外延伸。The hybrid lens 550 functions as a collecting lens. The central portion (central portion facet) 520 of the hybrid lens 550 is a refractive lens (such as, but not limited to, a Fresnel lens). One or more of the surrounding portions of hybrid lens 550 (providing external facets of both TIR and refractive mechanisms) are total internal reflection lenses as described by TIR lenses 510 and 530. It should be noted that the hybrid lens 550 extends outward from the sheet of Fig. 7a.

實質地與列光線560垂直的光束以及在相對於列光線之法線580定義了一小角度之光束傳播通過折射式透鏡520,如被折射以提供光束552之光束551所說明地。光束552與法線580形成一小角度559。相對於法線580定義一大角度之光束傳播通過一全內反射透鏡部份其被反射而形成光束542並接著被折射而提供光束543。光束543相對於法線580形成一小角度549。A beam substantially perpendicular to the column ray 560 and a beam defining a small angle relative to the normal 580 of the column ray propagate through the refracting lens 520 as illustrated by the beam 551 that is refracted to provide the beam 552. Beam 552 forms a small angle 559 with normal 580. A beam of light defining a large angle relative to normal 580 is transmitted through a total internal reflection lens portion which is reflected to form beam 542 and then refracted to provide beam 543. Beam 543 forms a small angle 549 with respect to normal 580.

多刻面之TIR部份510及530允許緊密且有效率之光集中在極高之N.A內(寬廣的角度覆蓋範圍)。The multi-faceted TIR sections 510 and 530 allow compact and efficient light to be concentrated in the very high N.A (wide angular coverage).

第8圖係說明根據本發明之不同實施例第7a(9)之照明光學裝置500之二維角度強度圖,可獲得相對連續之覆蓋範圍。Fig. 8 is a view showing a two-dimensional angular intensity map of the illumination optical device 500 of the seventh embodiment (9) according to different embodiments of the present invention, to obtain a relatively continuous coverage.

混合式透鏡550能促進在寬廣的角度覆蓋範圍內達到角度之均勻性。Hybrid lens 550 promotes uniformity of angle over a wide range of angular coverage.

應注意混合式透鏡550可由彼此隔開之多個透鏡來取代,如第7b、7c、7d、9、10及11圖所述。It should be noted that the hybrid lens 550 can be replaced by a plurality of lenses spaced apart from one another, as described in Figures 7b, 7c, 7d, 9, 10 and 11.

第7b-7d圖係說明根據本發明之不同實施例之集光透 鏡。7b-7d are diagrams illustrating light collection in accordance with various embodiments of the present invention mirror.

第7b圖說明折射式透鏡520'以及兩個FIR透鏡510'與530'。Figure 7b illustrates a refractive lens 520' and two FIR lenses 510' and 530'.

第7c圖係說明一中心透鏡522其包含一個被FIR部份522(1)及522(3)所圍繞之折射部份522(2)與FIR透鏡512及532,其每一者係對應於第7a圖之FIR透鏡510及530。Figure 7c illustrates a central lens 522 that includes a refractive portion 522(2) surrounded by FIR portions 522(1) and 522(3) and FIR lenses 512 and 532, each of which corresponds to the first FIR lenses 510 and 530 of Figure 7a.

第7d圖係說明一中心透鏡524其包含一個對應於第7a圖之折射式透鏡520之一部分之折射部份以及兩個其他之透鏡514及534,其每一個包含折射部份514(1)與534(1)以及FIR部份514(2)與534(2)。Figure 7d illustrates a central lens 524 that includes a refractive portion corresponding to a portion of the refractive lens 520 of Figure 7a and two other lenses 514 and 534, each of which includes a refractive portion 514(1) and 534 (1) and FIR sections 514 (2) and 534 (2).

應注意這些不同的透鏡可以是彼此平行的,並且另外地或可替代地與彼此近似,但並不一定要如此。藉由使用分光器或其他型式之導光光學元件這些透鏡可以如第9、10及11圖所述之非平行的方式來放置。It should be noted that these different lenses may be parallel to one another and additionally or alternatively approximate one another, but this need not be the case. These lenses can be placed in a non-parallel manner as described in Figures 9, 10 and 11 by using a beam splitter or other type of light guiding optical element.

第9圖說明根據本發明之一實施例之照明光學裝置600。Figure 9 illustrates an illumination optics 600 in accordance with an embodiment of the present invention.

照明光學裝置600包含:第一矩形發光二極體陣列690、第一集光透鏡680、分光器670、第二矩形發光二極體陣列650、第二集光透鏡630、第三矩形發光二極體陣列660與第三集光透鏡640。The illumination optical device 600 includes: a first rectangular light emitting diode array 690, a first light collecting lens 680, a beam splitter 670, a second rectangular light emitting diode array 650, a second collecting lens 630, and a third rectangular light emitting diode The body array 660 and the third collecting lens 640.

從第一LED二極體陣列690所放射出的光通過第一集光透鏡680將受分光器670(如光束602所述)導往物體610以形成列光線620同時傳播通過被定義在第二及第三集光透鏡630與640之間的空間635。如光束601所述的,從第 二矩形LED陣列650所放射出的光通過第二集光透鏡630將被導往列光線620。如光束603所述的,從第三矩形LED陣列660所放射出的光通過第三集光透鏡640將被導往物體610。第一集光透鏡680係一折射式透鏡(或至少部份包含這種折射式透鏡)。第二集光透鏡650與第三集光透鏡640為TIR透鏡(或至少部份包含這種TIR透鏡)。Light emitted from the first LED diode array 690 passes through the first collection lens 680 to be guided by the beam splitter 670 (as described by the beam 602) to the object 610 to form the column ray 620 while propagating through the second defined And a space 635 between the third collection lens 630 and 640. As described by beam 601, from the first Light emitted by the two rectangular LED arrays 650 is directed to the column of light rays 620 through the second collection lens 630. As described by beam 603, light emitted from third rectangular LED array 660 will be directed to object 610 through third collection lens 640. The first collection lens 680 is a refractive lens (or at least partially comprising such a refractive lens). The second collection lens 650 and the third collection lens 640 are TIR lenses (or at least partially include such TIR lenses).

該等矩形LED陣列之每一個(650、660與690)可以是如第8圖所述之LED陣列,其可放射出準平行的光並可以不同的方式(色彩、強度、光的型樣或其等之組合)來控制。Each of the rectangular LED arrays (650, 660, and 690) may be an LED array as described in FIG. 8 that emits quasi-parallel light and may be in a different manner (color, intensity, light pattern or It's a combination) to control.

該種照明之規劃係被設計來提供離軸(從矩形LED陣列690所放射出的光)與軸上(從矩形LED陣列650或660所放射出的光)集光光束之交疊。This illumination planning is designed to provide an overlap of the off-axis (light emitted from the rectangular LED array 690) and the collected beam on the shaft (light emitted from the rectangular LED array 650 or 660).

第10圖說明根據本發明之一實施例之照明光學裝置888。Figure 10 illustrates an illumination optics 888 in accordance with an embodiment of the present invention.

第10圖之照明光學裝置888因包含靠近於集光透鏡800、780及740之線性散射片790、770及760而與第9圖之照明光學裝置600不同。The illumination optics 888 of FIG. 10 differs from the illumination optics 600 of FIG. 9 by including linear diffusers 790, 770, and 760 that are adjacent to the collection lenses 800, 780, and 740.

應注意分光器(第9圖之670或第10圖之750)可具有梯度式之鍍層(在外側表面區域有100%之穿透率並且在內側表面區域有分光鍍層)。It should be noted that the beam splitter (670 of Figure 9 or 750 of Figure 10) may have a graded coating (100% penetration in the outer surface area and spectroscopic coating in the inner surface area).

第11圖說明根據本發明之一實施例之照明光學裝置900。Figure 11 illustrates an illumination optics 900 in accordance with an embodiment of the present invention.

照明光學裝置900包含分光器930、集光光學元件920以及矩形LED陣列910。來自於矩形LED陣列910之準平 行光通過集光光學元件920與分光器930已在物體960上形成一列光線950。從物體960所反射的光傳向分光器930並被分光器導往成像感測器940。Illumination optics 900 includes a beam splitter 930, a collection optics 920, and a rectangular LED array 910. Quasi-flat from rectangular LED array 910 The row of light has formed a line of rays 950 on the object 960 through the collection optics 920 and the beam splitter 930. Light reflected from the object 960 is transmitted to the beam splitter 930 and directed by the beam splitter to the imaging sensor 940.

第12圖說明根據本發明之一實施例之方法900。Figure 12 illustrates a method 900 in accordance with an embodiment of the present invention.

方法900包括藉由一第一矩形發光二極體陣列來放射出準平行光之階段9010。The method 900 includes a stage 9010 of emitting quasi-parallel light by a first array of rectangular light emitting diodes.

階段9020係在階段9010之後其藉由至少包含一全內反射透鏡部份及至少一折射透鏡部份之第一集光光學元件而將該準平行光集中以在一物體上形成一列光線。Stage 9020 is followed by stage 9010 by concentrating the quasi-parallel light to form a line of light on an object by a first light collecting optical element comprising at least one total internal reflection lens portion and at least one refractive lens portion.

階段9020一般包含允許實質垂直於該列光線之光束以及相對於該列光線之法線定義一小角度之光束傳播通過一折射透鏡部份並且允許相對於該列光線之法線定義一大角度之光束傳播通過一全內反射透鏡部份。Stage 9020 generally includes a beam that allows a beam substantially perpendicular to the column of rays and a small angle defined relative to a normal to the column of rays to propagate through a refractive lens portion and allows a large angle to be defined relative to a normal to the column of rays The beam propagates through a total internal reflection lens portion.

階段9020一般包含藉由包含一混合式透鏡之集光光學元件來將該光線集中,該混合式透鏡之一中心部份包含一折射透鏡並且其中該混合式透鏡之一周邊部份包含一全內反射透鏡。Stage 9020 generally includes concentrating the light by a collection optics comprising a hybrid lens, a central portion of the hybrid lens comprising a refractive lens and wherein a peripheral portion of the hybrid lens comprises a full interior Reflective lens.

階段9020可在階段915之前其係讓該準平行光通過位在該第一矩形發光二極體陣列與該第一集光光學裝置之間之散射元件。Stage 9020 can precede the stage 915 by passing the quasi-parallel light through a scattering element positioned between the first rectangular light emitting diode array and the first collection optics.

根據本發明之一實施例方法900包括以下階段:階段9030係藉由一第二矩形發光二極體陣列來放射出準平行光;階段9040係藉由一第二集光光學元件而將該準平行光集中以在一物體上形成一列光線;階段9050係藉由一第三 矩形發光二極體陣列來放射出準平行光;階段9060係藉由一第三集光光學元件而將來自於該第三矩形發光二極體陣列之該準平行光集中在一物體上形成一列光線;以及階段970其係藉由一分光器而將來自於該第一集光透鏡之準平行光導向該物體同時傳播通過被定義在該第二及該第三集光透鏡之間的空間;該第一集光透鏡包含一折射透鏡部份。該第二集光透鏡與該第三集光透鏡包含一全內反射透鏡部份。Method 900 according to an embodiment of the invention includes the following stages: stage 9030 emits quasi-parallel light by a second rectangular light emitting diode array; stage 9040 is quasi-parallel by a second light collecting optical element Parallel light concentrates to form a line of light on an object; stage 9050 is by a third a rectangular light emitting diode array to emit quasi-parallel light; a stage 9060, wherein the quasi-parallel light from the third rectangular light emitting diode array is concentrated on an object by a third light collecting optical element to form a column Light; and stage 970 directing quasi-parallel light from the first collection lens to the object while propagating through a space defined between the second and third collection lenses by a beam splitter; The first collecting lens comprises a refractive lens portion. The second collecting lens and the third collecting lens comprise a total internal reflection lens portion.

方法900可包含一般可包含將來自於每一個矩形發光二極體陣列的準平行光散射。Method 900 can include generally quasi-parallel light scattering from each rectangular array of light emitting diodes.

方法900通常可包含施加一控制方案之階段905。階段905可至少包含下列各項之一或其等之組合:(i)控制該第一矩形發光二極體陣列之每一群發光二極體之一強度;(ii)控制該第一矩形發光二極體陣列之每一群發光二極體之一色彩;(iii)控制該第一矩形發光二極體陣列之每一群發光二極體之一輻射型樣; 一般而言,階段9010包括藉由一第一矩形發光二極體陣列來放射出準平行光,而該第一矩形發光二極體陣列包含以蜂巢之形式來配置之數個二極體。Method 900 can generally include a stage 905 of applying a control scheme. Stage 905 can comprise at least one of the following: or a combination thereof: (i) controlling the intensity of one of each group of light-emitting diodes of the first rectangular light-emitting diode array; (ii) controlling the first rectangular light-emitting diode (iii) controlling a radiation pattern of each of the plurality of light-emitting diodes of the first rectangular light-emitting diode array; In general, stage 9010 includes emitting quasi-parallel light through a first rectangular array of light emitting diodes, the first rectangular array of light emitting diodes including a plurality of diodes configured in the form of a honeycomb.

本發明可利用一般工具、方法及部件來實施。故而,在此將不為該等工具、部件及方法作詳細之描述。為了提供本發明徹底之瞭解,許多特定之細節已詳述於先前之說明書中。然而應瞭解的是,即便沒有該等詳述之細節本發明亦可被實施。The invention can be implemented using general tools, methods, and components. Therefore, the tools, components and methods are not described in detail herein. In order to provide a thorough understanding of the present invention, numerous specific details are set forth in the Detailed Description. However, it should be understood that the invention may be practiced without the details of the details.

在本發明所揭示之內容中僅展示並描述若干例示性實施例及其變化之範例。應瞭解本發明可使用在其它各種不同之組合與環境以及在此已明確描述之發明概念所涵蓋之變化與修改中。Only a few exemplary embodiments and variations thereof are shown and described in the context of the present disclosure. It is to be understood that the invention may be susceptible to variations and modifications which may be employed in various other various combinations and environments.

12‧‧‧線性光源12‧‧‧Linear light source

14‧‧‧成像照明光學元件14‧‧‧ imaging illumination optics

20、30‧‧‧二維光強度圖20, 30‧‧‧Two-dimensional light intensity map

32、132‧‧‧覆蓋範圍32, 132‧‧ ‧ coverage

42、44、72、82、84‧‧‧線性光源42, 44, 72, 82, 84‧‧‧ linear light source

52、54‧‧‧角度範圍52, 54‧‧‧ angle range

60‧‧‧交疊60‧‧ ‧overlap

74‧‧‧凹面部份74‧‧‧ concave part

76‧‧‧凸面部份76‧‧‧ convex part

78‧‧‧照明區域78‧‧‧Lighting area

86、760、770、790‧‧‧散射片86, 760, 770, 790‧‧ ‧ diffusing film

100‧‧‧矩形光源陣列100‧‧‧Rectangular light source array

102、166、199、500、600、888、900‧‧‧照明光學裝置102, 166, 199, 500, 600, 888, 900‧‧‧ illumination optics

120、160、200、270、560、950‧‧‧列光線120, 160, 200, 270, 560, 950 ‧ ‧ columns of light

140、146‧‧‧光束140, 146‧‧‧ beam

150、156‧‧‧準直光源150, 156‧‧ ‧ collimated light source

170、178‧‧‧準平行光源170, 178‧‧ ‧ quasi-parallel light source

180、188‧‧‧光束180,188‧‧‧beam

202‧‧‧圓柱平面全內反射透鏡202‧‧‧Cylindrical Plane Total Internal Reflection Lens

210、218、220、237‧‧‧LED210, 218, 220, 237‧‧‧ LED

219、239‧‧‧強度圖219, 239‧‧‧ intensity map

250‧‧‧LED間距250‧‧‧LED spacing

252‧‧‧工作距離252‧‧‧Working distance

300、570、910‧‧‧LED陣列300, 570, 910‧‧‧ LED array

310‧‧‧控制器310‧‧‧ Controller

330‧‧‧強度調變曲線330‧‧‧ intensity modulation curve

510、530‧‧‧TIR透鏡510, 530‧‧‧TIR lens

550‧‧‧混合式光學元件550‧‧‧Hybrid optics

541、542、543、551、552、601、602、603‧‧‧光束541, 542, 543, 551, 552, 601, 602, 603 ‧ ‧ beams

549、559‧‧‧角度549, 559‧‧‧ angle

580‧‧‧法線580‧‧‧ normal

520'、522(2)‧‧‧折射式透鏡520', 522 (2) ‧ ‧ refracting lens

510'、530'、512、532‧‧‧FIR透鏡510', 530', 512, 532‧ ‧ FIR lenses

522(1)、522(3)、514(2)、534(2)‧‧‧FIR部份522(1), 522(3), 514(2), 534(2)‧‧‧FIR part

522、524‧‧‧中心透鏡522, 524‧‧‧ center lens

514(1)、534(1)‧‧‧折射部份514(1), 534(1)‧‧‧ Refracting part

610、960‧‧‧物體610, 960‧‧ objects

740、780、800‧‧‧集光透鏡740, 780, 800‧‧ ‧ collecting lens

650、660、690、910‧‧‧矩形發光二極體陣列650, 660, 690, 910‧‧‧ Rectangular LED array

630、640、680‧‧‧集光透鏡630, 640, 680‧‧ ‧ collecting lens

670、750、930‧‧‧分光器670, 750, 930‧‧ ‧ beamsplitter

940‧‧‧感測器940‧‧‧ sensor

905、9010、915、9020、9030、9040、9050、9060、970‧‧‧階段905, 9010, 915, 9020, 9030, 9040, 9050, 9060, 970‧‧

第1a-1c圖說明一種先前技術之成像照明光學元件以及二維角度強度圖;第2a-2c圖說明先前技術之非成像照明光學元件;第3a圖說明根據本發明之一實施例之照明光學元件;第3b圖說明第3a圖之照明光學元件之二角度維度強度圖;第4a及4b圖說明根據本發明不同實施例之照明光學元件;第5a圖說明一種LED以矩形方式排列之矩形LED陣列與一強度圖;第5b圖說明根據本發明之一實施例其之LED以蜂巢方式來配置之一種矩形LED陣列以及一維之強度圖;第5c圖說明根據本發明之一實施例在一間隙、工作距離以及一LED間距之間的關係;第6圖說明根據本發明之不同實施例之照明光學裝置、控制器以及強度調變曲線;第7a圖說明根據本發明之不同實施例之照明光學裝置;第7b-7d圖說明根據本發明之不同實施例之集光透鏡; 第8圖說明根據本發明之不同實施例第7圖之照明光學裝置之一二維強度圖;第9圖說明根據本發明之不同實施例之照明光學裝置;第10圖說明根據本發明之一實施例之照明光學裝置;第11圖說明根據本發明之一實施例之照明光學裝置與集光光學裝置;以及第12圖為根據本發明之一實施例之一種方法之流程圖。1a-1c illustrate a prior art imaging illumination optics and a two-dimensional angular intensity map; Figures 2a-2c illustrate prior art non-imaging illumination optics; and Figure 3a illustrates illumination optics in accordance with an embodiment of the present invention Figure 3b illustrates a two-angle dimensional intensity map of the illumination optics of Figure 3a; Figures 4a and 4b illustrate illumination optics in accordance with various embodiments of the present invention; and Figure 5a illustrates a rectangular LED with LEDs arranged in a rectangular pattern Array and an intensity map; FIG. 5b illustrates a rectangular LED array and a one-dimensional intensity map of the LEDs configured in a honeycomb manner according to an embodiment of the present invention; FIG. 5c illustrates an embodiment of the present invention in accordance with an embodiment of the present invention The relationship between the gap, the working distance, and an LED pitch; FIG. 6 illustrates illumination optics, controllers, and intensity modulation curves in accordance with various embodiments of the present invention; and FIG. 7a illustrates illumination in accordance with various embodiments of the present invention Optical device; Figures 7b-7d illustrate a collecting lens in accordance with various embodiments of the present invention; Figure 8 illustrates a two-dimensional intensity diagram of illumination optics according to Figure 7 of a different embodiment of the present invention; Figure 9 illustrates illumination optics in accordance with various embodiments of the present invention; and Figure 10 illustrates one of the aspects of the present invention Illumination optics of an embodiment; Figure 11 illustrates an illumination optics and collection optics in accordance with an embodiment of the present invention; and Figure 12 is a flow diagram of a method in accordance with an embodiment of the present invention.

100‧‧‧矩形光源陣列100‧‧‧Rectangular light source array

102‧‧‧照明光學裝置102‧‧‧Lighting optics

110‧‧‧集光光學元件110‧‧‧Light collecting optics

120‧‧‧一列光線120‧‧‧ a column of light

Claims (20)

一種照明系統,其包含:能放射出準平行光之一第一矩形發光二極體陣列;以及包含至少一全內反射透鏡部份及至少一折射透鏡部份之第一集光光學元件;其中來自於該第一矩形發光二極體陣列之該準平行光被該第一集光光學元件導向一物體以在該物體上形成一列光線。 An illumination system comprising: a first rectangular light emitting diode array capable of emitting quasi-parallel light; and a first light collecting optical element comprising at least one total internal reflection lens portion and at least one refractive lens portion; The quasi-parallel light from the first rectangular light emitting diode array is directed by the first light collecting optical element to an object to form a line of light on the object. 如申請專利範圍第1項之系統,其中實質垂直於該列光線之光束以及相對於該列光線之法線定義一小角度之光束傳播通過一折射透鏡部份,並且其中相對於該列光線之法線定義一大角度之光束傳播通過一全內反射透鏡部份。 The system of claim 1, wherein the light beam substantially perpendicular to the light of the column and the light beam defining a small angle with respect to a normal to the light of the column propagate through a refractive lens portion, and wherein the light is relative to the column of light The normal defines a large angle beam that propagates through a total internal reflection lens portion. 如申請專利範圍第1項之系統,其中該第一集光光學元件包含一混合式透鏡;其中該混合式透鏡之中心部份包含一折射透鏡,並且其中該混合式透鏡之周邊部份包含一全內反射透鏡。 The system of claim 1, wherein the first light collecting optical element comprises a hybrid lens; wherein a central portion of the hybrid lens comprises a refractive lens, and wherein a peripheral portion of the hybrid lens comprises a Total internal reflection lens. 如申請專利範圍第1項之系統,其包含位在該第一矩形發光二極體陣列與該第一集光光學元件之間之一線性散射元件。 A system of claim 1, comprising a linear scattering element positioned between the first rectangular light emitting diode array and the first light collecting optical element. 如申請專利範圍第1項之系統,更包含:一分光器;一第二矩形發光二極體陣列;一第二集光透鏡;一第三矩形發光二極體陣列以及一第三集光透鏡; 其中從該第一矩形發光二極體陣列所放射出的光通過該第一集光透鏡將被分光器導向物體,同時傳播通過被定義在該第二及該第三集光透鏡之間的空間;其中從該第二矩形發光二極體陣列所放射出的光通過該第二集光透鏡將被導向該物體;其中從該第三矩形發光二極體陣列所放射出的光通過該第三集光透鏡將被導向該物體;並且其中該第一集光透鏡包含一折射透鏡部份;其中該第二集光透鏡與該第三集光透鏡各包含一全內反射部份。 The system of claim 1, further comprising: a beam splitter; a second rectangular light emitting diode array; a second collecting lens; a third rectangular light emitting diode array and a third collecting lens ; The light emitted from the first rectangular light-emitting diode array is guided by the first light collecting lens to the object by the optical splitter while propagating through the space defined between the second and the third light collecting lens. Wherein the light emitted from the second rectangular light-emitting diode array is guided to the object through the second light collecting lens; wherein the light emitted from the third rectangular light-emitting diode array passes through the third The collecting lens will be directed to the object; and wherein the first collecting lens comprises a refractive lens portion; wherein the second collecting lens and the third collecting lens each comprise a total internal reflection portion. 如申請專利範圍第5項之系統,其包含數個散射元件,其中每一個散射元件係被定位在一矩形發光二極體陣列與一集光透鏡之間。 A system of claim 5, comprising a plurality of scattering elements, each of the scattering elements being positioned between a rectangular light emitting diode array and a collecting lens. 如申請專利範圍第1項之系統,更包含一控制器,其係用於控制該第一矩形發光二極體陣列之每一群發光二極體之強度。 The system of claim 1, further comprising a controller for controlling the intensity of each group of light emitting diodes of the first rectangular light emitting diode array. 如申請專利範圍第1項之系統,更包含一控制器,其係用於控制該第一矩形發光二極體陣列之每一群發光二極體之色彩。 The system of claim 1, further comprising a controller for controlling the color of each group of light emitting diodes of the first rectangular light emitting diode array. 如申請專利範圍第1項之系統,更包含一控制器,其係用於控制該第一矩形發光二極體陣列之每一群發光二極體之輻射型樣。 The system of claim 1, further comprising a controller for controlling a radiation pattern of each of the plurality of light emitting diodes of the first rectangular light emitting diode array. 如申請專利範圍第1項之系統,其中該第一矩形發光二極體陣列包含數個以蜂巢方式來配置之二極體。 The system of claim 1, wherein the first rectangular light emitting diode array comprises a plurality of diodes arranged in a honeycomb manner. 一種用於提供一列光線之方法,該方法包含下列步驟:藉由一第一矩形發光二極體陣列來放射出準平行光;以及藉由包含至少一全內反射透鏡部份及至少一折射透鏡部份之第一集光光學元件,而將該準平行光集中以在一物體上形成一列光線。 A method for providing a line of light, the method comprising the steps of: emitting quasi-parallel light by a first rectangular light emitting diode array; and comprising at least one total internal reflection lens portion and at least one refractive lens A portion of the first collection optical element concentrates the quasi-parallel light to form a line of light on an object. 如申請專利範圍第11項之方法,其包含允許實質垂直於該列光線之光束以及相對於該列光線之法線定義一小角度之光束傳播通過一折射透鏡部份,並且允許相對於該列光線之法線定義一大角度之光束傳播通過一全內反射透鏡部份。 The method of claim 11, comprising: allowing a beam substantially perpendicular to the column of rays and defining a small angle of light relative to a normal to the column of rays to propagate through a refractive lens portion and allowing relative to the column The normal of the light defines a large angle beam that propagates through a total internal reflection lens portion. 如申請專利範圍第11項之方法,其中該第一集光光學元件包含一混合式透鏡;其中該混合式透鏡之中心部份包含一折射透鏡,並且其中該混合式透鏡之周邊部份包含一全內反射透鏡。 The method of claim 11, wherein the first light collecting optical element comprises a hybrid lens; wherein a central portion of the hybrid lens comprises a refractive lens, and wherein a peripheral portion of the hybrid lens comprises a Total internal reflection lens. 如申請專利範圍第11項之方法,其包含使該準平行光通過被定位在該第一矩形發光二極體陣列與該第一集光光學元件之間之散射元件。 The method of claim 11, comprising passing the quasi-parallel light through a scattering element positioned between the first rectangular light emitting diode array and the first light collecting optical element. 如申請專利範圍第11項之方法,其更包含藉由一第二矩形發光二極體陣列來放射出準平行光;藉由一第二集光光學元件而將來自該第二矩形發光二極體陣列之該準平行光集中以在一物體上形成一列光線;藉由一第三矩形發光二極體陣列來放射出準平行光;藉由一第三集光光學元件而將來自於該第三矩形發光二極體陣列之該準 平行光集中以在一物體上形成一列光線;藉由一分光器而將來自於該第一集光透鏡之準平行光導向該物體同時傳播通過被定義在該第二及該第三集光透鏡之間的空間;其中該第一集光透鏡包含一折射透鏡部份;並且其中該第二及該第三集光透鏡包含一全內反射部份。 The method of claim 11, further comprising emitting quasi-parallel light by a second rectangular light emitting diode array; and receiving the second rectangular light emitting diode by a second light collecting optical element The quasi-parallel light of the body array is concentrated to form a line of light on an object; the quasi-parallel light is emitted by a third rectangular light emitting diode array; and the third light collecting optical element is derived from the first light collecting optical element The standard of the three rectangular light-emitting diode array Parallel light concentrates to form a line of light on an object; directing quasi-parallel light from the first collecting lens to the object while propagating through the second and third collecting lenses defined by the optical splitter a space between the first light collecting lens and a refractive lens portion; and wherein the second and third light collecting lenses comprise a total internal reflection portion. 如申請專利範圍第15項之方法,其包含使來自每一矩形發光二極體陣列之準平行光多重散射。 A method of claim 15, comprising multi-scattering quasi-parallel light from each rectangular array of light-emitting diodes. 如申請專利範圍第11項之方法,更包含控制該第一矩形發光二極體陣列之每一群發光二極體的強度之步驟。 The method of claim 11, further comprising the step of controlling the intensity of each of the plurality of light emitting diodes of the first rectangular light emitting diode array. 如申請專利範圍第11項之方法,其更包含控制該第一矩形發光二極體陣列之每一群發光二極體之色彩的步驟。 The method of claim 11, further comprising the step of controlling the color of each of the plurality of light-emitting diodes of the first rectangular light-emitting diode array. 如申請專利範圍第11項之方法,其更包含控制該第一矩形發光二極體陣列之每一群發光二極體之輻射型樣的步驟。 The method of claim 11, further comprising the step of controlling a radiation pattern of each of the plurality of light-emitting diodes of the first rectangular light-emitting diode array. 如申請專利範圍第11項之方法,其中該第一矩形發光二極體陣列包含以蜂巢方式來配置之數個二極體。 The method of claim 11, wherein the first rectangular light emitting diode array comprises a plurality of diodes configured in a honeycomb manner.
TW097104829A 2007-02-20 2008-02-12 Illumination system and method for providing a line of light TWI400441B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US89062707P 2007-02-20 2007-02-20

Publications (2)

Publication Number Publication Date
TW200842399A TW200842399A (en) 2008-11-01
TWI400441B true TWI400441B (en) 2013-07-01

Family

ID=39471760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097104829A TWI400441B (en) 2007-02-20 2008-02-12 Illumination system and method for providing a line of light

Country Status (4)

Country Link
CN (1) CN101675330B (en)
IL (1) IL189491A (en)
TW (1) TWI400441B (en)
WO (1) WO2008102339A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132290A1 (en) 2014-03-04 2015-09-11 Koninklijke Philips N.V. Beam shaping system and an illumination system using the same
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
US9645097B2 (en) 2014-06-20 2017-05-09 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
US10619823B2 (en) * 2017-04-10 2020-04-14 Ideal Industries Lighting Llc Optic assemblies and applications thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2295274A (en) * 1994-11-17 1996-05-22 Teledyne Ind Optical lens system for light emitting diodes
WO2000024062A1 (en) * 1998-10-21 2000-04-27 Koninklijke Philips Electronics N.V. Led module and luminaire
TW200607124A (en) * 2004-08-11 2006-02-16 Samsung Electro Mech Light emitting diode lens and backlight apparatus having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898267A (en) * 1996-04-10 1999-04-27 Mcdermott; Kevin Parabolic axial lighting device
TW330233B (en) * 1997-01-23 1998-04-21 Philips Eloctronics N V Luminary
US5895267A (en) * 1997-07-09 1999-04-20 Lsi Logic Corporation Method to obtain a low resistivity and conformity chemical vapor deposition titanium film
US6741351B2 (en) * 2001-06-07 2004-05-25 Koninklijke Philips Electronics N.V. LED luminaire with light sensor configurations for optical feedback
ATE481600T1 (en) * 2005-02-28 2010-10-15 Osram Opto Semiconductors Gmbh LED DISPLAY DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2295274A (en) * 1994-11-17 1996-05-22 Teledyne Ind Optical lens system for light emitting diodes
WO2000024062A1 (en) * 1998-10-21 2000-04-27 Koninklijke Philips Electronics N.V. Led module and luminaire
TW200607124A (en) * 2004-08-11 2006-02-16 Samsung Electro Mech Light emitting diode lens and backlight apparatus having the same

Also Published As

Publication number Publication date
IL189491A (en) 2016-09-29
TW200842399A (en) 2008-11-01
CN101675330A (en) 2010-03-17
CN101675330B (en) 2013-01-02
IL189491A0 (en) 2008-11-03
WO2008102339A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
CN100501493C (en) Circular lighting device
US6161941A (en) Light array system and method for illumination of objects imaged by imaging systems
US10295153B2 (en) Optical system for producing uniform illumination
US6598994B1 (en) Multi-angle inspection of manufactured products
US8077307B2 (en) Illumination system for optical inspection
US10563839B2 (en) System and method for preventing light spill
WO2016034929A1 (en) Color mixing optics for led lighting
KR20080036195A (en) Illumination system
US20130176729A1 (en) Lens structure, light source device and light source module
JP2003107390A (en) Systems and methods for increasing illumination density within a field of view of an imaging system
JPH112598A (en) Fine area lighting system
KR102272438B1 (en) Illumination system, inspection tool with illumination system, and method of operating an illumination system
TWI400441B (en) Illumination system and method for providing a line of light
TWI407093B (en) Method and system of controlling the illumination angle onto a target, and illumination device for illuminating a target
JP2012530342A (en) Lighting system for spot lighting
US8459830B2 (en) Light output device with partly transparent mirror
WO2019210709A1 (en) Light fixture
JP4498160B2 (en) Light irradiation device
JP2005098926A (en) Illuminating device
US11251347B2 (en) Semiconductor light source
Chaves et al. Inhomogeneous source uniformization using a shell mixer Köhler integrator
US11573079B2 (en) Lighting system with pattern element
TW201000822A (en) Optical adder
JP2010146986A (en) Lens for illumination, light-emitting device, plane light source, and liquid crystal display
TWI290223B (en) Adjustable light sources for image forming apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees