TWI398964B - A organic-inorganic lighting device and a method for fabricating the same - Google Patents

A organic-inorganic lighting device and a method for fabricating the same Download PDF

Info

Publication number
TWI398964B
TWI398964B TW98111271A TW98111271A TWI398964B TW I398964 B TWI398964 B TW I398964B TW 98111271 A TW98111271 A TW 98111271A TW 98111271 A TW98111271 A TW 98111271A TW I398964 B TWI398964 B TW I398964B
Authority
TW
Taiwan
Prior art keywords
organic
emitting device
inorganic light
zinc oxide
layer
Prior art date
Application number
TW98111271A
Other languages
Chinese (zh)
Other versions
TW201037854A (en
Inventor
Ching Fuh Lin
Chun Yu Lee
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW98111271A priority Critical patent/TWI398964B/en
Publication of TW201037854A publication Critical patent/TW201037854A/en
Application granted granted Critical
Publication of TWI398964B publication Critical patent/TWI398964B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

有機無機發光元件及其製作方法Organic inorganic light-emitting element and manufacturing method thereof

本發明係有關一種發光技術,特別是關於一種有機無機發光元件及其製作方法。The present invention relates to a light-emitting technique, and more particularly to an organic-inorganic light-emitting element and a method of fabricating the same.

自從1960年代發光二極體開始商品化以來,由於具有高耐震性、壽命長,同時耗電量少、發熱度小,所以其應用範圍遍及日常生活中的各項用品,如家電製品及各式儀器之指示燈或光源等。近年來,因多色彩及高亮度化之發展,應用範圍更朝向戶外顯示器發展,如大型戶外顯示看板及交通號誌燈。紅藍綠是全彩的三原色,對於全彩色戶外顯示看板而言,高亮度藍色或綠色發光二極體是不可或缺的。Since the commercialization of the light-emitting diode in the 1960s, due to its high shock resistance, long life, low power consumption and low heat generation, its application range covers everyday products such as home appliances and various types. Indicator light or light source of the instrument. In recent years, due to the development of multi-color and high brightness, the application range has been directed toward outdoor displays, such as large outdoor display billboards and traffic lights. Red, blue and green are the three primary colors of full color. For full-color outdoor display panels, high-brightness blue or green LEDs are indispensable.

在平面顯示器的發展上,有機發光二極體顯示器尤其重要。顧名思義,有機發光二極體顯示器係利用有機發光二極體(Organic Light Emitting Diodes)來作為發光源,且其依照所採用的發光材料,可劃分為兩種:一為小分子型,另一為高分子型。由於有機發光二極體具備以下符合多媒體時代顯示器的特性要求之優點,如無視角的限制、低製造成本、高應答速度(為液晶的百倍以上)、省電、可使用於可攜式機器的直流驅動、重量輕且可隨硬體設備小型化及薄型化等,因此,有機電致發光元件,在平面顯示器的系統中,具有極大的發展潛力,使有機發光二極體顯示器可望成為下一世代的新穎平面顯示器。Organic light-emitting diode displays are particularly important in the development of flat panel displays. As the name suggests, organic light-emitting diode displays use Organic Light Emitting Diodes as the light source, and they can be divided into two types according to the light-emitting materials used: one is a small molecule type, and the other is Polymer type. The organic light-emitting diode has the following advantages in conformity with the characteristics of the multimedia era display, such as no viewing angle limitation, low manufacturing cost, high response speed (more than 100 times that of liquid crystal), power saving, and can be used for a portable machine. DC drive, light weight, and miniaturization and thinning of hardware devices, etc. Therefore, organic electroluminescent elements have great potential for development in flat panel display systems, making organic light-emitting diode displays expected to be lower A new generation of flat panel displays.

然而,在有機發光二極體的發展上,大部分的有機材料對電洞傳導較為有利,而對電子傳導較為不利,因此容易造成元件的電子電洞對數量不均衡,使得元件效能難以提昇。但反觀對於無機發光二極體而言,在無機材料中,則是對電子傳導較為有利,而對電洞傳導較為不利。除此之外,在一般無機發光二極體的發展上,所必須考慮的就是複雜且昂貴的長晶設備,並且其製程溫度大都在攝氏300度以上,因此其製作成本相當高,舉例來說,一般習知的技術若欲在4-亞苯基 亞乙烯基(MEHPPV)所形成的有機層上成長氧化鋅薄膜,通常皆在真空環境下使用高製作成本之電子束蒸鍍(electron beam evaporation)法。However, in the development of organic light-emitting diodes, most of the organic materials are favorable for hole conduction, and are not favorable for electron conduction, so it is easy to cause the number of electronic hole pairs of components to be unbalanced, which makes the component performance difficult to improve. However, in the case of inorganic light-emitting diodes, in inorganic materials, it is advantageous for electron conduction, and is disadvantageous for hole conduction. In addition, in the development of general inorganic light-emitting diodes, it is necessary to consider complicated and expensive crystal growth equipment, and the process temperature is mostly above 300 degrees Celsius, so the production cost is quite high, for example, Generally known techniques if desired in 4-phenylene A zinc oxide film grown on an organic layer formed of vinylidene (MEHPPV) is usually subjected to a high-cost electron beam evaporation method in a vacuum environment.

因此,本發明係在針對上述之困擾,提出一種有機無機發光元件及其製作方法,以解決習知所產生的問題。Accordingly, the present invention has been made in view of the above problems, and an organic inorganic light-emitting element and a method of fabricating the same are provided to solve the problems caused by the prior art.

本發明之主要目的,在於提供一種有機無機發光元件及其製作方法,其係利用p型有機導電薄膜層結合n型無機之氧化鋅微奈米線陣列,其中有機薄膜以旋轉塗布法形成,微奈米線陣列以水熱法形成,此種方式可解決有機材料不利於電子的傳輸與無機二極體需複雜昂貴且高溫的真空長晶製程的難題,另外更可大幅降低製作成本。The main object of the present invention is to provide an organic inorganic light-emitting device and a method for fabricating the same, which are characterized in that a p-type organic conductive thin film layer is combined with an n-type inorganic zinc oxide micro-nanowire array, wherein the organic thin film is formed by a spin coating method. The nanowire array is formed by hydrothermal method. This method can solve the problem that the organic material is not conducive to the transmission of electrons and the complicated and expensive high temperature vacuum crystal growth process of the inorganic diode, and the production cost can be greatly reduced.

為達上述目的,本發明提供一種有機無機發光元件,包含一導電基板,在導電基板上依序設有一p型有機導電薄膜層、一種子層與一n型氧化鋅微奈米線陣列,且在氧化鋅微奈米線陣列上更設有一電極層。In order to achieve the above object, the present invention provides an organic inorganic light-emitting device comprising a conductive substrate, and a p-type organic conductive thin film layer, a sub-layer and an n-type zinc oxide micro-nanowire array are sequentially disposed on the conductive substrate, and An electrode layer is further disposed on the zinc oxide micro-nano line array.

本發明亦提供一種有機無機發光元件之製作方法,首先提供一導電基板,並在導電基板上利用旋轉塗布法形成一p型有機導電薄膜層,接著於有機導電薄膜層上形成一種子層,再來利用種子層於其上利用水熱法形成一n型氧化鋅微奈米線陣列,最後於氧化鋅微奈米線陣列上形成一電極層。The invention also provides a method for fabricating an organic inorganic light-emitting device. First, a conductive substrate is provided, and a p-type organic conductive thin film layer is formed on the conductive substrate by spin coating, and then a sub-layer is formed on the organic conductive thin film layer. The seed layer is used to form an n-type zinc oxide micro-nanowire array by hydrothermal method, and finally an electrode layer is formed on the zinc oxide micro-nano line array.

茲為使 貴審查委員對本發明之結構特徵及所達成之功效更有進一步之瞭解與認識,謹佐以較佳之實施例圖及配合詳細之說明,說明如後:For a better understanding and understanding of the structural features and the achievable effects of the present invention, please refer to the preferred embodiment and the detailed description.

為了解決有機材料在電子傳輸與在無機材料在製作成本上的問題,本發明提出一種有機無機發光元件,以下請參閱第1圖。In order to solve the problem of the organic material in the electron transport and the production cost of the inorganic material, the present invention proposes an organic inorganic light-emitting element, which will be referred to below in FIG.

本發明之結構包含一絕緣基板10,其上依序設有一第一電極層 12、一有機導電薄膜層14與一種子層16,在此種子層16上設有一氧化鋅微奈米線陣列18,且此氧化鋅微奈米線陣列18之頂端處上設有一第二電極層22,為了不讓第二電極層22有機會直接接觸種子層16,因此在此第二電極層22與種子層16之間,更設有一絕緣層20,此絕緣層20係位於氧化鋅微奈米線陣列18之每一條線材彼此的空隙內,且絕緣層20的厚度必須等於或小於上述之每一條線材的長度,使第二電極層22能直接接觸氧化鋅微奈米線陣列18之表面。此處是以絕緣層20之厚度低於氧化鋅微奈米線陣列18之線材長度為例。The structure of the present invention comprises an insulating substrate 10 on which a first electrode layer is sequentially disposed 12. An organic conductive thin film layer 14 and a sub-layer 16, wherein a seed layer 16 is provided with a zinc oxide micro-nanowire array 18, and a second electrode is disposed at the top end of the zinc oxide micro-nanowire array 18. The layer 22 is further provided with an insulating layer 20 between the second electrode layer 22 and the seed layer 16 in order to prevent the second electrode layer 22 from directly contacting the seed layer 16. The insulating layer 20 is located in the zinc oxide micro Each of the wires of the nanowire array 18 is in a space between each other, and the thickness of the insulating layer 20 must be equal to or smaller than the length of each of the wires, so that the second electrode layer 22 can directly contact the array of zinc oxide micro-nanowires 18 surface. Here, the length of the insulating layer 20 is lower than the length of the wire of the zinc oxide micro-nano line array 18 as an example.

請同時參閱第2圖,由電子顯微鏡觀察本發明之氧化鋅微奈米線陣列18的每一條線材之頂端處,發現其並非只有單一垂直種子層16往上成長的方向,而是有多種往上成長的方向,因此在氧化鋅微奈米線陣列18之每一條線材的頂端處彼此之間的空隙相當小,如此能使得第二電極層22可以僅設於氧化鋅微奈米線陣列18的頂端處,而不容易直接接觸到種子層16。Referring to FIG. 2 at the same time, the top end of each of the wires of the zinc oxide micro-nanowire array 18 of the present invention is observed by an electron microscope, and it is found that it is not only the direction in which the single vertical seed layer 16 grows upward, but a plurality of In the direction of growth, the gap between each other at the top end of each of the wires of the zinc oxide micro-nanowire array 18 is relatively small, so that the second electrode layer 22 can be disposed only on the zinc oxide micro-nanowire array 18 At the top end, it is not easy to directly contact the seed layer 16.

若氧化鋅微奈米線陣列18之每一條線材的間距本來就很小,則第二電極層22可以很容易就設置於氧化鋅微奈米線陣列18的頂端處,而不會接觸到種子層16,在此種情況下,設計上也不用在第二電極層22與種子層16之間設置絕緣層20,仍可使發光元件有良好的作動。If the pitch of each of the wires of the zinc oxide micro-nanowire array 18 is originally small, the second electrode layer 22 can be easily disposed at the top end of the zinc oxide micro-nanowire array 18 without being exposed to the seed. Layer 16, in this case, is also not designed to provide an insulating layer 20 between the second electrode layer 22 and the seed layer 16, still allowing the light-emitting element to perform well.

另外,絕緣基板10與其上的第一電極層12可用一導電基板來取代,其材質如矽或軟性導電材質,使有機導電薄膜層14可直接設於導電基板上。In addition, the insulating substrate 10 and the first electrode layer 12 thereon may be replaced by a conductive substrate made of a material such as germanium or a soft conductive material, so that the organic conductive thin film layer 14 can be directly disposed on the conductive substrate.

上述各元件在材料使用上,絕緣基板10之材質可為藍寶石、玻璃、石英或軟性絕緣材質;第一、第二電極層12、22之材質可為金、銀、鎳、鋁、白金、透明電極材料、氧化銦錫(ITO)、氧化鎵銦錫(gallium-indium-tin oxide,GITO)、氧化鋅銦錫(zinc-indium-tin oxide,ZITO)、氧化錫掺氟(fluorine-doped tin oxide,FTO)、氧化鋅、氧化鋁鋅[AZO(Al:ZnO)]或氧化銦鋅(IZO);絕緣層20之材料可為聚甲基丙烯酸甲酯[poly(methyl methacrylate,PMMA)]、聚苯乙烯 [poly(styrene)]、旋塗玻璃材料(SOG)、二氧化矽(SiO2 )、氮化矽(Si3 N4 );種子層16之材料係可為氧化鋅、金、錫或鈷。In the above materials, the material of the insulating substrate 10 may be sapphire, glass, quartz or soft insulating material; the materials of the first and second electrode layers 12 and 22 may be gold, silver, nickel, aluminum, platinum, and transparent. Electrode material, indium tin oxide (ITO), gallium-indium-tin oxide (GITO), zinc-indium-tin oxide (ZITO), fluorine-doped tin oxide , FTO), zinc oxide, aluminum oxide zinc [AZO (Al: ZnO)] or indium zinc oxide (IZO); the material of the insulating layer 20 may be poly (methyl methacrylate (PMMA)], poly Styrene [poly (styrene)], spin-on glass (SOG), cerium oxide (SiO 2 ), tantalum nitride (Si 3 N 4 ); the material of the seed layer 16 may be zinc oxide, gold, tin or cobalt.

另外,有機導電薄膜層14之材料可為高分子材料、小分子材料、可幫助電流通過之有機半導體材料、螢光發光分子、螢光發光分子摻雜磷光發光分子或螢光發光分子摻雜有機絕緣分子,其中,有機絕緣分子可為聚甲基丙烯酸甲酯或聚苯乙烯;有機半導體材料為聚3-己基噻吩[poly(3-hexylthiophene,P3HT)]、[poly(3-octylthiophene,P3OT)]、聚[N-乙烯基咔唑][poly(N-vinylcarbazole,PVK)]、聚〔2-甲氧基-5-[2-乙基己氧基]-[1,4-亞苯基亞乙烯基]〕〔poly[2-methoxy-5-(2-ethylhexyloxy)-(1,4-phenylenevinylene),MEHPPV]〕、聚[2-甲氧基-5-(3',7'-乙烷辛基氧)-I4-苯基 乙烯基]〔poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylenevinylene,MDMOPPV]〕、聚氟[poly(fluorine),PF]或N'-二苯基-N,N'-二(3-甲基苯基)-[1-1'-聯苯]-4,4'-二胺〔N’-diphenyl-N,N’-bis[3-methylphenyl]-[1,1’-biphenyl]-[4,4’-diamine],TPD〕。In addition, the material of the organic conductive thin film layer 14 may be a polymer material, a small molecular material, an organic semiconductor material capable of helping a current to pass through, a fluorescent light emitting molecule, a fluorescent light emitting molecule doped phosphorescent emitting molecule or a fluorescent emitting molecule doped organic The insulating molecule, wherein the organic insulating molecule is polymethyl methacrylate or polystyrene; the organic semiconductor material is poly(3-hexylthiophene (P3HT)], [poly(3-octylthiophene, P3OT) Poly(N-vinylcarbazole, PVK), poly[2-methoxy-5-[2-ethylhexyloxy]-[1,4-phenylene [vinyl]][poly[2-methoxy-5-(2-ethylhexyloxy)-(1,4-phenylenevinylene), MEHPPV]], poly[2-methoxy-5-(3',7'-B Alkyl octyloxy)-I4-phenylvinyl][poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene, MDMOPPV]], polyfluorine [poly(fluorine), PF] or N'-diphenyl-N,N'-bis(3-methylphenyl)-[1-1'-biphenyl]-4,4'-diamine [N'-diphenyl-N, N'-bis[3-methylphenyl]-[1,1'-biphenyl]-[4,4'-diamine], TPD].

在上述各元件的尺寸設計上介紹如下,有機導電薄膜層14之厚度在10奈米到1000奈米之間;種子層16的厚度在1奈米到100奈米之間;絕緣層20之厚度在1奈米到50微米之間;氧化鋅微奈米線陣列18之每一條線材彼此間的空隙距離在0.5奈米到500微米之間,且該每一條線材與種子層16接觸之截面寬度在2奈米到10微米之間,又該每一條線材長度在2奈米到50微米之間;若將氧化鋅微奈米線陣列18之每一條線材長度加上種子層16的厚度,則其總長度則在15奈米到50微米之間。In the dimension design of each of the above components, the thickness of the organic conductive thin film layer 14 is between 10 nm and 1000 nm; the thickness of the seed layer 16 is between 1 nm and 100 nm; the thickness of the insulating layer 20 Between 1 nm and 50 microns; each of the wires of the zinc oxide micro-nanowire array 18 has a gap distance between 0.5 nm and 500 microns, and the cross-sectional width of each of the wires in contact with the seed layer 16 Between 2 nm and 10 microns, each of the wires has a length between 2 nm and 50 microns; if each wire length of the zinc oxide micro-nano line array 18 is added to the thickness of the seed layer 16, Its total length is between 15 nm and 50 microns.

參閱完第1圖之第一實施例後,請繼續參閱其製作方法,請參閱第3(a)圖至第3(e)圖,首先如第3(a)圖所示,提供一絕緣基板10,並在絕緣基板10上依序形成一第一電極層12、一有機導電薄膜層14與一種子層16。其中形成有機導電薄膜層14之方法可為旋轉塗布法、 浸漬塗布法或噴墨印刷法,且在使用上述方法時所採用的溶液為氯仿(chloroform)、二氯甲烷(dichloromethane)、甲苯(toluene)、四氫扶喃(tetrahydrfuran)、1,2-二氯苯(1,2-dichlorobenzene)、1,4-二氯苯(1,4-dichlorobenzene)、氯苯(chlorobenzene)或正己烷(n-hexane)。After referring to the first embodiment of Fig. 1, please refer to the manufacturing method, please refer to the figures 3(a) to 3(e), firstly, as shown in Fig. 3(a), an insulating substrate is provided. 10, and a first electrode layer 12, an organic conductive thin film layer 14 and a sub-layer 16 are sequentially formed on the insulating substrate 10. The method of forming the organic conductive thin film layer 14 may be a spin coating method, The dip coating method or the ink jet printing method, and the solution used in the above method is chloroform, dichloromethane, toluene, tetrahydrfuran, 1,2-two. 1,2-dichlorobenzene, 1,4-dichlorobenzene, chlorobenzene or n-hexane.

另外形成種子層16的方法為旋轉塗布法、浸漬塗布法、蒸鍍法、濺鍍法、原子層沈積法、電化學沈積法、脈衝雷射沈積法、金屬有機物化學氣相沈積法。舉例來說,若種子層16之材料為金、錫或鈷時,則形成種子層16的方法為利用蒸鍍法或濺鍍法將金、錫或鈷之微奈米粒子鋪在有機導電薄膜層14上,其中金之微奈米粒子的粒徑可設計在2奈米到10微米之間。若種子層16之材料為該氧化鋅、金、錫或鈷時,則形成種子層16的方法為利用浸漬塗布法或旋轉塗布法將金、錫、鈷或氧化鋅之微奈米粒子鋪在有機導電薄膜層14上,其中金之微奈米粒子的粒徑可設計在2奈米到10微米之間,氧化鋅之微奈米粒子的粒徑在2奈米到10微米之間,且在使用浸漬塗布法或旋轉塗布法時所採取的溶液為可改變種子層16的親水性之異丙醇(isopropanol)、甲醇(methanol)、乙醇(ethyl alcohol)、丙三醇(glycerol)或丙醇(propanol)。Further, the method of forming the seed layer 16 is a spin coating method, a dip coating method, an evaporation method, a sputtering method, an atomic layer deposition method, an electrochemical deposition method, a pulsed laser deposition method, or a metal organic chemical vapor deposition method. For example, if the material of the seed layer 16 is gold, tin or cobalt, the seed layer 16 is formed by depositing gold, tin or cobalt micro-nano particles on the organic conductive film by evaporation or sputtering. On layer 14, wherein the particle size of the gold micro-nanoparticles can be designed to be between 2 nm and 10 microns. If the material of the seed layer 16 is the zinc oxide, gold, tin or cobalt, the method of forming the seed layer 16 is to deposit the micro-nano particles of gold, tin, cobalt or zinc oxide by dip coating or spin coating. On the organic conductive film layer 14, wherein the particle size of the gold micro-nano particles can be designed to be between 2 nm and 10 μm, and the particle size of the zinc oxide micro-nano particles is between 2 nm and 10 μm, and The solution taken when using the dip coating method or the spin coating method is isopropanol, methanol, ethyl alcohol, glycerol or C which can change the hydrophilicity of the seed layer 16. Alcohol (propanol).

接著如第3(b)圖所示,利用種子層16在其上形成氧化鋅微奈米線陣列18,其形成方法可為水熱法(hydrothermal method)、熱蒸鍍法(thermal evaporation)、化學氣相沈積法(chemical vapor deposition)、分子束磊晶法(molecular beam epitaxy)、陽極氧化鋁多孔模板法(AAO)、電化學法。Next, as shown in FIG. 3(b), the zinc oxide micro-nanowire array 18 is formed thereon by using the seed layer 16, and the formation method thereof may be a hydrothermal method, a thermal evaporation method, or a thermal evaporation method. Chemical vapor deposition, molecular beam epitaxy, anodized aluminum porous template (AAO), electrochemical method.

下一步驟如第3(c)圖所示,在種子層16上形成一絕緣層20,使此絕緣層20覆蓋種子層16與氧化鋅微奈米線陣列18,形成方法可為旋轉塗布法、浸漬塗布法、蒸鍍法、濺鍍法(sputtering)、原子層沈積法(atomic layer deposition)、電化學沈積法、脈衝雷射沈積法(plused laser deposition)、金屬有機物化學氣相沈積法(metalorganic chemical vapor deposition)。之後如第3(d)圖所示,利用蝕刻方式將絕緣層20之厚度蝕刻至小於或等於氧化鋅微奈米線 陣列18之線材長度。此處是以絕緣層20之厚度小於氧化鋅微奈米線陣列18之線材長度為例。In the next step, as shown in FIG. 3(c), an insulating layer 20 is formed on the seed layer 16, and the insulating layer 20 covers the seed layer 16 and the zinc oxide micro-nanowire array 18 by a spin coating method. , dip coating method, vapor deposition method, sputtering, atomic layer deposition, electrochemical deposition method, pulsed laser deposition method, metal organic chemical vapor deposition method Metalorganic chemical vapor deposition). Then, as shown in FIG. 3(d), the thickness of the insulating layer 20 is etched to less than or equal to the zinc oxide micro-nanowire by etching. The length of the wire of array 18. Here, the length of the insulating layer 20 is smaller than the length of the wire of the zinc oxide micronanoline array 18 as an example.

最後如第3(e)圖所示,於氧化鋅微奈米線陣列18之頂端處表面形成一第二電極層22,使絕緣層20設於第二電極層22與種子層16之間,並位於氧化鋅微奈米線陣列18之每一條線材彼此的空隙內。Finally, as shown in FIG. 3(e), a second electrode layer 22 is formed on the surface of the top end of the zinc oxide micro-nanowire array 18, and the insulating layer 20 is disposed between the second electrode layer 22 and the seed layer 16. And located in the gap between each of the wires of the zinc oxide micro-nanowire array 18.

本發明之發光元件若缺少絕緣層20時,則可省略第3(c)圖與第3(d)圖之步驟。When the light-emitting element of the present invention lacks the insulating layer 20, the steps of FIGS. 3(c) and 3(d) may be omitted.

另外,在上述第3(a)圖中提供一絕緣基板10與形成一第一電極層12之步驟中,可直接提供一導電基板來取代,使有機導電薄膜層14直接形成於該導電基板上。In addition, in the step of providing an insulating substrate 10 and forming a first electrode layer 12 in the above FIG. 3(a), a conductive substrate may be directly provided instead, and the organic conductive thin film layer 14 is directly formed on the conductive substrate. .

請參閱第4圖,此為本發明之第二實施例,其與第1圖的差異在於第一電極層12係被分為複數個第一電極區塊24,且每一個第一電極區塊24係以等間隔設置,另外有機導電薄膜層14、種子層16亦被分為複數個有機區塊26與種子區塊28,氧化鋅微奈米線陣列18被分為複數組氧化鋅微陣列30,第二電極層22係被分為複數個第二電極區塊32,在每一個第一電極區塊24上方分別依序設有一有機區塊26、一種子區塊28與一組氧化鋅微陣列30,絕緣層20係覆蓋種子層16與絕緣基板10,且絕緣層20之頂面係低於氧化鋅微奈米線陣列18之頂端處。Please refer to FIG. 4, which is a second embodiment of the present invention, which differs from FIG. 1 in that the first electrode layer 12 is divided into a plurality of first electrode blocks 24, and each of the first electrode blocks The 24 series are disposed at equal intervals, and the organic conductive thin film layer 14 and the seed layer 16 are also divided into a plurality of organic blocks 26 and seed blocks 28, and the zinc oxide micro-nano line array 18 is divided into complex array zinc oxide microarrays. 30. The second electrode layer 22 is divided into a plurality of second electrode blocks 32. An organic block 26, a sub-block 28 and a group of zinc oxide are sequentially disposed above each of the first electrode blocks 24. The microarray 30, the insulating layer 20 covers the seed layer 16 and the insulating substrate 10, and the top surface of the insulating layer 20 is lower than the top end of the zinc oxide micro-nano line array 18.

請繼續參閱本發明之第二實施例的製作方法,如第5(a)圖至第5(e)圖所示,其形成方法與第一實施例幾乎相同,差異如下。如第5(a)圖所示,第一電極層12是以複數個第一電極區塊24形成於絕緣基板10上,且每一個第一電極區塊24係以等間隔設置,另外在每一個第一電極區塊24上方分別依序形成一有機區塊26與一種子區塊28。接著如第5(b)圖所示,在每一個種子區塊28上係形成一組氧化鋅微陣列30。再來如第5(c)圖所示,在種子層16上形成一絕緣層20,使此絕緣層20覆蓋種子層16、絕緣基板10與氧化鋅微奈米線陣列18。之後如第5(d)圖所示,利用蝕刻方式將絕緣層20之頂面蝕刻至低於氧化鋅微奈 米線陣列18的頂端處。最後如第5(e)圖所示,於每一個氧化鋅微陣列30之頂端處表面形成一第二電極區塊32。Please refer to the manufacturing method of the second embodiment of the present invention. As shown in FIGS. 5(a) to 5(e), the forming method is almost the same as that of the first embodiment, and the difference is as follows. As shown in FIG. 5(a), the first electrode layer 12 is formed on the insulating substrate 10 by a plurality of first electrode blocks 24, and each of the first electrode blocks 24 is disposed at equal intervals, in addition to each An organic block 26 and a sub-block 28 are sequentially formed above a first electrode block 24. Next, as shown in Fig. 5(b), a set of zinc oxide microarrays 30 are formed on each of the seed blocks 28. Further, as shown in Fig. 5(c), an insulating layer 20 is formed on the seed layer 16, and the insulating layer 20 covers the seed layer 16, the insulating substrate 10, and the zinc oxide micro-nanowire array 18. Then, as shown in FIG. 5(d), the top surface of the insulating layer 20 is etched to a level lower than that of the zinc oxide micron. At the top of the rice noodle array 18. Finally, as shown in Fig. 5(e), a second electrode block 32 is formed on the surface of the top end of each of the zinc oxide microarrays 30.

請參閱第6圖,此為本發明之第三實施例,其結構上與第3圖之第二實施例略有不同,其差異的地方僅在於絕緣基板10與第一電極層12用一導電基板34來取代,此導電基板34具有複數個導電區塊36,此些導電區塊36以等間隔並排,每一個導電區塊36上方依序設有一有機區塊26、一種子區塊28與一組氧化鋅微陣列30。Please refer to FIG. 6 , which is a third embodiment of the present invention. The structure is slightly different from the second embodiment of FIG. 3 , and the difference is only that the insulating substrate 10 and the first electrode layer 12 are electrically conductive. Substituted by the substrate 34, the conductive substrate 34 has a plurality of conductive blocks 36. The conductive blocks 36 are arranged at equal intervals. Each of the conductive blocks 36 is sequentially provided with an organic block 26 and a sub-block 28 and A set of zinc oxide microarrays 30.

第三實施例的製作方法如第7(a)圖至第7(e)圖所示,首先如第7(a)圖所示,提供一具有複數導電區塊36之導電基板34,此些導電區塊36以等間隔並排,接著在每一個導電區塊36上方依序形成一有機區塊26與一種子區塊28。之後的第7(b)圖至第7(e)圖之步驟與第5(b)圖至第5(e)圖之步驟相同,故不再贅述。The manufacturing method of the third embodiment is as shown in FIGS. 7(a) to 7(e). First, as shown in FIG. 7(a), a conductive substrate 34 having a plurality of conductive blocks 36 is provided. The conductive blocks 36 are arranged side by side at equal intervals, and then an organic block 26 and a sub-block 28 are sequentially formed over each of the conductive blocks 36. The steps from the seventh (b) to the seventh (e) are the same as the steps from the fifth (b) to the fifth (e), and therefore will not be described again.

以下介紹實際製備本發明之有機無機發光元件的過程,請參閱第8(a)圖至第8(e)圖,首先如第8(a)圖所示,提供一材質為ITO之導電基板40。接著利用旋轉塗布法於導電基板40上形成一材質為p型之P3HT的有機導電薄膜層42,形成之後將整個樣品置入攝氏120度的環境下2小時,以進行熱退火(annealing),使樣品中的溶劑揮發掉。熱退火完成之後,利用旋轉塗布法並配合異丙醇溶液將氧化鋅微奈米粒子鋪設在有機導電薄膜層42上,之後再加熱至攝氏120度,以形成種子層44。之所以使用丙三醇溶液,是由於一般的有機導電薄膜層42為斥水性(hydrophobic),而氧化鋅種子層44為親水性(hydrophilic)的材料,兩者容易產生排斥,不容易結合在一起,因此在氧化鋅種子層44製作上,只要加入了醇類物質,就可以改變種子層44親水性的特質,使其能夠成功地成膜在有機導電薄膜層42上,且此作法可以用於任何基板,進而大幅提昇元件應用性。The process of actually preparing the organic inorganic light-emitting device of the present invention is described below. Referring to FIGS. 8(a) to 8(e), first, as shown in FIG. 8(a), a conductive substrate 40 made of ITO is provided. . Then, an organic conductive thin film layer 42 made of p-type P3HT is formed on the conductive substrate 40 by spin coating, and then the entire sample is placed in an environment of 120 degrees Celsius for 2 hours for thermal annealing. The solvent in the sample evaporates. After the thermal annealing is completed, the zinc oxide micro-nanoparticles are laid on the organic conductive thin film layer 42 by a spin coating method in combination with an isopropyl alcohol solution, and then heated to 120 ° C to form the seed layer 44. The reason why the glycerin solution is used is that the general organic conductive thin film layer 42 is hydrophobic, and the zinc oxide seed layer 44 is a hydrophilic material, which are easily repelled and are not easily bonded together. Therefore, in the preparation of the zinc oxide seed layer 44, the hydrophilicity of the seed layer 44 can be changed by adding an alcohol substance, so that it can be successfully formed on the organic conductive thin film layer 42, and this method can be used for Any substrate, which greatly enhances the applicability of the components.

在種子層44形成完之後,如第8(b)圖所示,可將整個樣品置入硝化鋅與四氮六甲圜(hexamethylenetetramine)的水溶液中,並外加攝氏90度的低溫,並持續3小時,以進行水熱法,如此便可在種子層44 上形成一n型之氧化鋅微奈米線陣列46。After the seed layer 44 is formed, as shown in Fig. 8(b), the entire sample can be placed in an aqueous solution of zinc nitrate and hexamethylenetetramine, and a low temperature of 90 degrees Celsius is applied for 3 hours. To perform hydrothermal methods, so that the seed layer 44 An n-type zinc oxide micro-nanowire array 46 is formed thereon.

下一步驟如第8(c)圖所示,利用旋轉塗布法在種子層44上形成一材質為PMMA的絕緣層48,使其同時覆蓋種子層44與氧化鋅微奈米線陣列46,此絕緣層46可電性隔離氧化鋅微奈米線陣列46之每一條線材。In the next step, as shown in FIG. 8(c), an insulating layer 48 made of PMMA is formed on the seed layer 44 by spin coating so as to cover the seed layer 44 and the zinc oxide micro-nanowire array 46 at the same time. The insulating layer 46 electrically isolates each of the wires of the zinc oxide micro-nanowire array 46.

接著便如第8(d)圖所示,利用氧電漿(oxygen plasma)對絕緣層48進行蝕刻,使絕緣層48之頂面低於氧化鋅微奈米線陣列46之頂端處。最後如第8(e)圖所示,於氧化鋅微奈米線陣列46之頂端處形成一材質為鋁之電極層50。由上述可知,本發明所有製程均為低成本低溫的溶液製程,因此本發明之技術並不侷限在硬式基板上,對於軟式基板依然適用,並可大面積的製作,使的其應用範圍大大提升。此外本發明不受長晶材料與基板晶格常數不匹配的限制,徹底解決長晶時遇到的瓶頸,這有別於以往昂貴、複雜、小面積的長晶製程,並大大降低製作成本,因此具有相當大的實用價值。Next, as shown in Fig. 8(d), the insulating layer 48 is etched using oxygen plasma so that the top surface of the insulating layer 48 is lower than the top end of the zinc oxide micro-nano line array 46. Finally, as shown in Fig. 8(e), an electrode layer 50 made of aluminum is formed at the top end of the zinc oxide micro-nanowire array 46. It can be seen from the above that all the processes of the present invention are low-cost and low-temperature solution processes, so the technology of the present invention is not limited to the rigid substrate, and is still applicable to the flexible substrate, and can be manufactured in a large area, so that the application range thereof is greatly improved. . In addition, the invention is not limited by the mismatch between the crystal constant of the crystal growth material and the substrate, and completely solves the bottleneck encountered in the growth of the crystal, which is different from the expensive, complicated and small-area long crystal process, and greatly reduces the production cost. Therefore, it has considerable practical value.

請參閱第9圖,此圖為上述實際製備後完成樣品之氧化鋅微奈米線陣列的X光繞射圖,此處使用的環境數據包含以銅(Cu)Kα輻射線作為X光光源,操作電壓與電流分別為40k伏特與25m安培,掃瞄速率為3度/分(degree/min)。在圖中,繞射峰值係位於2δ(Theta)=31.74°、34.44°、36.26°、47.48°、56.66°、62.93°,上述角度分別對應氧化鋅的晶面(100)、(002)、(101)、(102)、(110)、(103)。由此可證明,本發明之氧化鋅微奈米線陣列為六方晶系之纖維礦型結構,且氧化鋅微奈米線陣列之每一條線材並非只有單一垂直種子層往上成長的方向,而是有多種往上成長的方向。Please refer to FIG. 9 , which is an X-ray diffraction diagram of the zinc oxide micro-nano line array of the sample prepared after the above actual preparation. The environmental data used herein includes copper (Cu) Kα radiation as the X-ray source. The operating voltage and current were 40 kV and 25 m amps, respectively, and the scanning rate was 3 degrees/min. In the figure, the diffraction peaks are located at 2δ(Theta)=31.74°, 34.44°, 36.26°, 47.48°, 56.66°, 62.93°, and the above angles correspond to the crystal faces (100), (002), ( 101), (102), (110), (103). It can be confirmed that the zinc oxide micro-nanowire array of the present invention is a hexagonal fiber-optic structure, and each of the wires of the zinc oxide micro-nanoline array does not have a single vertical seed layer that grows upward. There are many directions for growing up.

請參閱第10圖,長短虛線為上述實際製備後完成樣品之測量數據,其中有機導電薄膜層的厚度為240奈米,以下稱樣品A;實線為上述實際製備後完成樣品之測量數據,其中有機導電薄膜層的厚度為300奈米,以下稱樣品B;長虛線為一ITO基板上依序成長有P3HT之有機導電薄膜層與一鋁電極層之樣品的測量數據,以下稱樣品C。 由圖可知,樣品A與樣品B的驅動電壓皆約在2伏特,係比樣品C之驅動電壓低,且在約10伏特時,樣品A的電流大於樣品B的電流,樣品B的電流大於樣品C的電流。這些現象的原因如下,其一為載子在氧化鋅微奈米線陣列與有機導電薄膜層之異質接面中的移動率,比在有機導電薄膜層裡的移動率高,其二為載子在氧化鋅微奈米線陣列與有機導電薄膜層之異質接面中的注入面積,亦比在有機導電薄膜層裡的注入面積大,綜合上述兩種理由,可知樣品A的電流會大於樣品C之電流,樣品C之驅動電壓高於樣品A之驅動電壓。另外,樣品A的電流之所以大於樣品B的電流,是因為樣品之有機導電薄膜層之厚度要樣品B薄的緣故。Please refer to Fig. 10, the long and short dash line is the measurement data of the sample after the actual preparation described above, wherein the thickness of the organic conductive film layer is 240 nm, hereinafter referred to as sample A; the solid line is the measurement data of the sample after the actual preparation described above, wherein The thickness of the organic conductive thin film layer is 300 nm, hereinafter referred to as sample B; the long broken line is measurement data of a sample of an organic conductive thin film layer of P3HT and an aluminum electrode layer sequentially grown on an ITO substrate, hereinafter referred to as sample C. As can be seen from the figure, the driving voltages of sample A and sample B are both about 2 volts, which is lower than the driving voltage of sample C, and at about 10 volts, the current of sample A is greater than the current of sample B, and the current of sample B is larger than that of sample. C current. The reason for these phenomena is as follows. One is that the mobility of the carrier in the heterojunction of the zinc oxide micro-nanowire array and the organic conductive thin film layer is higher than that in the organic conductive thin film layer, and the second is the carrier. The injection area in the heterojunction between the zinc oxide micro-nanowire array and the organic conductive thin film layer is also larger than that in the organic conductive thin film layer. For the above two reasons, the current of the sample A is larger than that of the sample C. The current of the sample C is higher than the driving voltage of the sample A. In addition, the current of the sample A is larger than the current of the sample B because the thickness of the organic conductive thin film layer of the sample is such that the sample B is thin.

為了更瞭解樣品A與樣品B的關係,請繼續參閱第11圖,長虛線代表樣品A,實線代表樣品B,長短虛線代表樣品C。為了讓三種樣品發光,所施加的直流電壓為10伏特。從圖中可知,樣品A的發光強度為樣品C的1.5倍,且樣品A之最強發光強度的波長為652奈米,樣品C之最強發光強度的波長為670奈米。這是由於在有機導電薄膜層上成長氧化鋅奈米線陣列會導致有機導電薄膜層表面的電子結構有所改變,且此改變是由於P3HT分子與氧化鋅奈米線陣列的氫氧根離子群互相作用所造成的,因此當載子在氧化鋅奈米線陣列與有機導電薄膜層的介面覆合時,就會發生如圖所示之波長藍移(blue-shifted)及發光強度增強的情形。除此之外,氧化鋅奈米線陣列的存在可以加強載子注入以使電子電洞覆合的機率提高。此種樣品A之發光元件可以應用製作於白、紅、藍、綠光之電激發光元件上。To better understand the relationship between sample A and sample B, please continue to refer to Figure 11, where the long dashed line represents sample A, the solid line represents sample B, and the long and short dashed lines represent sample C. In order to illuminate the three samples, the applied DC voltage was 10 volts. As can be seen from the figure, the luminescence intensity of sample A is 1.5 times that of sample C, and the wavelength of the strongest luminescence intensity of sample A is 652 nm, and the wavelength of the strongest luminescence intensity of sample C is 670 nm. This is because the growth of the zinc oxide nanowire array on the organic conductive thin film layer causes the electronic structure of the surface of the organic conductive thin film layer to be changed, and this change is due to the hydroxide ion group of the P3HT molecule and the zinc oxide nanowire array. Interacted by the interaction, so when the carrier is covered by the interface of the zinc oxide nanowire array and the organic conductive thin film layer, the blue-shifted wavelength and the enhanced luminous intensity appear as shown. . In addition, the presence of a zinc oxide nanowire array can enhance carrier injection to increase the probability of electron hole cladding. The light-emitting element of such a sample A can be applied to an electroluminescent element made of white, red, blue or green light.

但反觀樣品B,它的最強發光強度的波長與樣品C相同,由圖中所看到的結果可歸納一結論,其係為電子電洞覆合的位置與有機導電薄膜層的厚度有關,且樣品B的有機導電薄膜層的厚度較樣品A厚,因此樣品B之載子無法在氧化鋅奈米線陣列與有機導電薄膜層的介面覆合,同樣地也沒有藍移現象發生。However, in contrast to sample B, the wavelength of its strongest luminescence intensity is the same as that of sample C. The results seen in the figure can be summarized as follows: the position where the electron hole is covered is related to the thickness of the organic conductive film layer, and Since the thickness of the organic conductive thin film layer of the sample B was thicker than that of the sample A, the carrier of the sample B could not be overlapped with the interface of the zinc oxide nanowire array and the organic conductive thin film layer, and similarly, no blue shift occurred.

請參閱第12圖,其中虛線所代表的是樣品D的測量數據,樣品D 與上述樣品C之結構類似,差異僅在於有機導電薄膜層之材質以PF代替P3HT;實線所代表的是樣品E的測量數據,樣品E與上述樣品A之結構類似,差異僅在於有機導電薄膜層之材質以PF代替P3HT。由圖可知,在電壓等於10伏特時,樣品E的電流約是樣品D的5倍。Please refer to Figure 12, where the dotted line represents the measurement data of sample D, sample D Similar to the structure of the above sample C, the difference is only that the material of the organic conductive film layer is replaced by P3HT by PF; the solid line represents the measurement data of the sample E, and the sample E is similar to the structure of the sample A described above, and the difference lies only in the organic conductive film. The material of the layer is PF instead of P3HT. As can be seen from the figure, when the voltage is equal to 10 volts, the current of sample E is about 5 times that of sample D.

請繼續參閱第13圖,虛線代表樣品D的測量數據,實線代表樣品E的測量數據,為了讓此二種樣品發光,所施加的直流電壓為12伏特。由圖可知,樣品D之發光強度峰值波長為426奈米、450奈米、491奈米,樣品E之發光強度峰值波長則為483奈米、566奈米,故此種樣品E可以應用製作於白光之電激發光元件上,另從樣品D與樣品E比較起來,發現樣品E相對於樣品D產生了波長紅移(red-shifted)現象。會產生此現象的原因在於,樣品E在進行水熱法的過程中,氧化鋅表面的氫氧根離子群已經與PF產生反應,且PF之聚合物鏈係與氧化鋅微奈米線陣列之表面結合在一起,此種結合反應會導致發光能量的降低與紅移現象的發生。Please continue to refer to Figure 13, the dashed line represents the measurement data of sample D, and the solid line represents the measurement data of sample E. For the two samples to emit light, the applied DC voltage is 12 volts. As can be seen from the figure, the peak wavelength of the luminescence intensity of sample D is 426 nm, 450 nm, 491 nm, and the peak wavelength of the luminescence intensity of sample E is 483 nm, 566 nm, so this sample E can be applied to white light. On the electroluminescent element, another sample D was compared with the sample E, and it was found that the sample E produced a wavelength red-shifted phenomenon with respect to the sample D. The reason for this phenomenon is that during the hydrothermal process of sample E, the hydroxide ion group on the surface of zinc oxide has reacted with PF, and the polymer chain of PF and the array of zinc oxide micro-nanowires When the surfaces are bonded together, such a binding reaction causes a decrease in luminescence energy and a red shift phenomenon.

綜上所述,本發明提出的有機無機發光元件及其製作方法,不但可以解決有機材料不利於電子的傳輸與無機二極體需複雜昂貴且高溫的真空長晶製程的難題,另外更可大幅降低製作成本,相當具有實用價值。In summary, the organic-inorganic light-emitting device and the manufacturing method thereof provided by the invention can solve the problem that the organic material is not conducive to the transmission of electrons and the complicated and expensive high-temperature vacuum crystal growth process of the inorganic diode, and the method can be greatly improved. Reducing the cost of production is quite practical.

以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, so that the shapes, structures, features, and spirits described in the claims of the present invention are equally varied and modified. All should be included in the scope of the patent application of the present invention.

10‧‧‧絕緣基板10‧‧‧Insert substrate

12‧‧‧第一電極層12‧‧‧First electrode layer

14‧‧‧有機導電薄膜層14‧‧‧Organic conductive film layer

16‧‧‧種子層16‧‧‧ seed layer

18‧‧‧氧化鋅微奈米線陣列18‧‧‧Zinc Oxide Micro-Nano Array

20‧‧‧絕緣層20‧‧‧Insulation

22‧‧‧第二電極層22‧‧‧Second electrode layer

24‧‧‧第一電極區塊24‧‧‧First electrode block

26‧‧‧有機區塊26‧‧‧Organic blocks

28‧‧‧種子區塊28‧‧‧Seed blocks

30‧‧‧氧化鋅微陣列30‧‧‧Zinc oxide microarray

32‧‧‧第二電極區塊32‧‧‧Second electrode block

34‧‧‧導電基板34‧‧‧Electrical substrate

36‧‧‧導電區塊36‧‧‧Conducting blocks

38‧‧‧電極區塊38‧‧‧Electrode block

40‧‧‧導電基板40‧‧‧Electrical substrate

42‧‧‧有機導電薄膜層42‧‧‧Organic conductive film layer

44‧‧‧種子層44‧‧‧ seed layer

46‧‧‧氧化鋅微奈米線陣列46‧‧‧Zinc oxide micro-nano line array

48‧‧‧絕緣層48‧‧‧Insulation

50‧‧‧電極層50‧‧‧electrode layer

第1圖為本發明之第一實施例的結構立體圖。Fig. 1 is a perspective view showing the structure of a first embodiment of the present invention.

第2圖為本發明之氧化鋅微奈米線陣列之掃瞄式電子顯微鏡圖。Figure 2 is a scanning electron micrograph of the zinc oxide micro-nanowire array of the present invention.

第3(a)圖至第3(e)圖為本發明製作第一實施例之各步驟結構剖視圖。3(a) to 3(e) are cross-sectional views showing the steps of the first embodiment of the present invention.

第4圖為本發明之第二實施例的結構立體圖。Fig. 4 is a perspective view showing the structure of a second embodiment of the present invention.

第5(a)圖至第5(e)圖為本發明製作第二實施例之各步驟結構剖視圖。5(a) to 5(e) are cross-sectional views showing the steps of the second embodiment of the present invention.

第6圖為本發明之第三實施例的結構立體圖。Figure 6 is a perspective view showing the structure of a third embodiment of the present invention.

第7(a)圖至第7(e)圖為本發明製作第三實施例之各步驟結構剖視圖。7(a) to 7(e) are cross-sectional views showing the steps of the third embodiment of the present invention.

第8(a)圖至第8(e)圖為本發明之實際製備發光元件之各步驟結構剖視圖。8(a) to 8(e) are cross-sectional views showing the steps of the steps of actually fabricating a light-emitting element of the present invention.

第9圖為本發明之氧化鋅微奈米線陣列的X光繞射圖。Figure 9 is an X-ray diffraction pattern of the zinc oxide micro-nanowire array of the present invention.

第10圖為本發明之以聚3-己基噻吩形成有機導電薄膜層之發光元件結構,與其餘發光元件結構之電流與電壓比較曲線圖。Fig. 10 is a graph showing the comparison of current and voltage with the structure of the light-emitting element of the organic electroconductive thin film layer formed by poly-3-hexylthiophene in the present invention and the structure of the remaining light-emitting elements.

第11圖為本發明之以聚3-己基噻吩形成有機導電薄膜層之發光元件結構,與其餘發光元件結構之發光強度與波長比較曲線圖。Fig. 11 is a graph showing the structure of a light-emitting element in which an organic conductive thin film layer is formed of poly-3-hexylthiophene according to the present invention, and the light-emitting intensity and wavelength of the remaining light-emitting element structure.

第12圖為本發明之以聚氟形成有機導電薄膜層之發光元件結構,與其餘發光元件結構之電流與電壓比較曲線圖。Fig. 12 is a graph showing the comparison of current and voltage with the structure of the light-emitting element in which the organic conductive thin film layer is formed of polyfluoride, and the structure of the remaining light-emitting elements.

第13圖為本發明之以聚氟形成有機導電薄膜層之發光元件結構,與其餘發光元件結構之正規化發光強度與波長比較曲線圖。Fig. 13 is a graph showing the comparison of the normalized luminous intensity and the wavelength of the structure of the light-emitting element in which the organic conductive thin film layer is formed of polyfluoride, and the structure of the remaining light-emitting elements.

10‧‧‧絕緣基板10‧‧‧Insert substrate

12‧‧‧第一電極層12‧‧‧First electrode layer

14‧‧‧有機導電薄膜層14‧‧‧Organic conductive film layer

16‧‧‧種子層16‧‧‧ seed layer

18‧‧‧氧化鋅微奈米線陣列18‧‧‧Zinc Oxide Micro-Nano Array

20‧‧‧絕緣層20‧‧‧Insulation

22‧‧‧第二電極層22‧‧‧Second electrode layer

Claims (37)

一種有機無機發光元件,包含:一導電基板,由複數個導電區塊所組成;一有機導電薄膜層,位於該些導電區塊上;一種子層,其係設於該有機導電薄膜層上;一氧化鋅微奈米線陣列,其係設於該種子層上;以及一第二電極層,其係由複數個電極層區塊所組成,並設於該氧化鋅微奈米線陣列上。 An organic inorganic light-emitting device comprising: a conductive substrate composed of a plurality of conductive blocks; an organic conductive film layer on the conductive blocks; and a sub-layer disposed on the organic conductive film layer; An array of zinc oxide micro-nanowires disposed on the seed layer; and a second electrode layer composed of a plurality of electrode layer blocks disposed on the array of zinc oxide micro-nanowires. 如申請專利範圍第1項所述之有機無機發光元件,其中該第二電極層之材質為金、銀、鎳、鋁、白金、透明電極材料、氧化銦錫(ITO)、氧化鎵銦錫(gallium-indium-tin oxide,GITO)、氧化鋅銦錫(zinc-indium-tin oxide,ZITO)、氧化錫掺氟(fluorine-doped tin oxide,FTO)、氧化鋅、氧化鋁鋅[AZO(Al:ZnO)]或氧化銦鋅(IZO)。 The organic inorganic light-emitting device according to claim 1, wherein the second electrode layer is made of gold, silver, nickel, aluminum, platinum, transparent electrode material, indium tin oxide (ITO), gallium indium tin oxide ( Gallium-indium-tin oxide (GITO), zinc-indium-tin oxide (ZITO), fluorine-doped tin oxide (FTO), zinc oxide, aluminum oxide zinc [AZO (Al: ZnO)] or indium zinc oxide (IZO). 如申請專利範圍第1項所述之有機無機發光元件,更包含一絕緣層,其係設於該第二電極層與該種子層之間,並位於該氧化鋅微奈米線陣列之每一條線材的彼此空隙內,且該第二電極層係直接接觸該氧化鋅微奈米線陣列之表面。 The organic inorganic light-emitting device of claim 1, further comprising an insulating layer disposed between the second electrode layer and the seed layer and located in each of the zinc oxide micro-nano line arrays The wires are in the gaps of each other, and the second electrode layer is in direct contact with the surface of the array of zinc oxide micro-nanowires. 如申請專利範圍第3項所述之有機無機發光元件,其中該絕緣層之材料為聚甲基丙烯酸甲酯[poly(methyl methacrylate,PMMA)]、聚苯乙烯[poly(styrene)]、旋塗玻璃材料(SOG)、二氧化矽(SiO2 )、氮化矽(Si3 N4 )。The organic inorganic light-emitting device according to claim 3, wherein the material of the insulating layer is poly(methyl methacrylate (PMMA), polystyrene [poly(styrene)], spin coating Glass material (SOG), cerium oxide (SiO 2 ), tantalum nitride (Si 3 N 4 ). 如申請專利範圍第3項所述之有機無機發光元件,其中該絕緣層之厚度係小於或等於該氧化鋅微奈米線陣列之每一條線材的長度。 The organic inorganic light-emitting device according to claim 3, wherein the thickness of the insulating layer is less than or equal to the length of each of the wires of the zinc oxide micro-nanowire array. 如申請專利範圍第3項所述之有機無機發光元件,其中該絕緣層之厚度在1奈米到50微米之間。 The organic inorganic light-emitting device according to claim 3, wherein the insulating layer has a thickness of between 1 nm and 50 μm. 如申請專利範圍第1項所述之有機無機發光元件,其中該有機導電薄膜層之材料為高分子材料、小分子材料、有機半導體材料、螢光發光分子、螢光發光分子摻雜磷光發光分子或螢光發光分子摻雜有 機絕緣分子。 The organic-inorganic light-emitting device according to claim 1, wherein the material of the organic conductive thin film layer is a polymer material, a small molecular material, an organic semiconductor material, a fluorescent light emitting molecule, and a fluorescent light emitting molecule doped phosphorescent emitting molecule. Or fluorescent luminescent molecules doped Machine insulation molecules. 如申請專利範圍第7項所述之有機無機發光元件,其中該有機絕緣分子為聚甲基丙烯酸甲酯或聚苯乙烯。 The organic inorganic light-emitting element according to claim 7, wherein the organic insulating molecule is polymethyl methacrylate or polystyrene. 如申請專利範圍第7項所述之有機無機發光元件,其中該有機半導體材料為聚3-己基噻吩[poly(3-hexylthiophene,P3HT)]、[poly(3-octylthiophene,P3OT)]、聚[N-乙烯基咔唑][poly(N-vinylcarbazole,PVK)]、聚〔2-甲氧基-5-[2-乙基己氧基]-[1,4-亞苯基亞乙烯基]〕〔poly[2-methoxy-5-(2-ethylhexyloxy)-(1,4-phenylenevinylene),MEHPPV]〕、聚[2-甲氧基-5-(3',7'-乙烷辛基氧)-1,4-苯基 乙烯基]〔poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylenevinylene,MDMOPPV]〕、聚氟[poly(fluorine),PF]或N'-二苯基-N,N'-二(3-甲基苯基)-[1-1'-聯苯]-4,4'-二胺〔N’-diphenyl-N,N’-bis[3-methylphenyl]-[1,1’-biphenyl]-[4,4’-diamine],TPD〕。 The organic-inorganic light-emitting device according to claim 7, wherein the organic semiconductor material is poly(3-hexylthiophene (P3HT), poly(3-octylthiophene, P3OT), poly[ N-vinylcarbazole [PV], poly[2-methoxy-5-[2-ethylhexyloxy]-[1,4-phenylene vinylene] ][poly[2-methoxy-5-(2-ethylhexyloxy)-(1,4-phenylenevinylene), MEHPPV]], poly[2-methoxy-5-(3',7'-ethaneoctyloxy) )-1,4-phenylvinyl][poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene, MDMOPPV]], polyfluorine [poly(fluorine), PF] Or N'-diphenyl-N,N'-bis(3-methylphenyl)-[1-1'-biphenyl]-4,4'-diamine [N'-diphenyl-N, N' -bis[3-methylphenyl]-[1,1'-biphenyl]-[4,4'-diamine], TPD]. 如申請專利範圍第1項所述之有機無機發光元件,其中該種子層之材料係為氧化鋅、金、錫或鈷。 The organic-inorganic light-emitting device according to claim 1, wherein the material of the seed layer is zinc oxide, gold, tin or cobalt. 如申請專利範圍第1項所述之有機無機發光元件,其中該導電基板之材質為矽或軟性導電材質。 The organic-inorganic light-emitting device according to claim 1, wherein the conductive substrate is made of tantalum or a soft conductive material. 如申請專利範圍第1項所述之有機無機發光元件,其中該氧化鋅微奈米線陣列之每一條線材長度在2奈米到50微米之間。 The organic-inorganic light-emitting device of claim 1, wherein each of the wires of the zinc oxide micro-nanowire array has a length of between 2 nm and 50 μm. 如申請專利範圍第1項所述之有機無機發光元件,其中該氧化鋅微奈米線陣列之每一條線材與該種子層接觸之截面寬度在2奈米到10微米之間。 The organic-inorganic light-emitting device according to claim 1, wherein each of the wires of the zinc oxide micro-nanowire array is in contact with the seed layer in a cross-sectional width of between 2 nm and 10 μm. 如申請專利範圍第1項所述之有機無機發光元件,其中該氧化鋅微奈米線陣列之每一條線材彼此間的空隙距離在0.5奈米到500微米之間。 The organic-inorganic light-emitting device of claim 1, wherein each of the wires of the zinc oxide micro-nanowire array has a gap distance of between 0.5 nm and 500 μm. 如申請專利範圍第1項所述之有機無機發光元件,其中該有機導電 薄膜層之厚度在10奈米到1000奈米之間。 An organic inorganic light-emitting element according to claim 1, wherein the organic conductive material The thickness of the film layer is between 10 nm and 1000 nm. 如申請專利範圍第1項所述之有機無機發光元件,其中該種子層的厚度在1奈米到100奈米之間。 The organic-inorganic light-emitting device of claim 1, wherein the seed layer has a thickness of between 1 nm and 100 nm. 如申請專利範圍第1項所述之有機無機發光元件,其中該氧化鋅微奈米線陣列之每一條線材長度加上該種子層的厚度之總長度在15奈米到50微米之間。 The organic-inorganic light-emitting device of claim 1, wherein the length of each of the wire lengths of the zinc oxide micro-nanowire array plus the thickness of the seed layer is between 15 nm and 50 μm. 一種有機無機發光元件之製作方法,包含下列步驟:提供一導電基板,並在該導電基板上形成一有機導電薄膜層;於該有機導電薄膜層上形成一種子層;利用該種子層於其上形成一氧化鋅微奈米線陣列;形成一絕緣層於該種子層上,再用蝕刻方式將該絕緣層之厚度蝕刻至小於或等於該氧化鋅微奈米線陣列之線材長度,且該絕緣層位於該氧化鋅微奈米線陣列之每一條線材的彼此空隙內;以及於該絕緣層與該氧化鋅微奈米線陣列上形成一第二電極層,其係直接接觸該氧化鋅微奈米線陣列之表面。 A method for fabricating an organic inorganic light-emitting device, comprising the steps of: providing a conductive substrate, forming an organic conductive thin film layer on the conductive substrate; forming a sub-layer on the organic conductive thin film layer; using the seed layer thereon Forming an array of zinc oxide micro-nanowires; forming an insulating layer on the seed layer, and etching the thickness of the insulating layer to a length less than or equal to a wire length of the zinc oxide micro-nanoline array by etching, and the insulating a layer is located in a gap between each of the wires of the zinc oxide micro-nanowire array; and a second electrode layer is formed on the insulating layer and the zinc oxide micro-nanoline array, which is in direct contact with the zinc oxide micron The surface of the rice noodle array. 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中提供該導電基板之步驟包含下列步驟:提供一絕緣基板;以及於該絕緣基板上形成一第一電極層,以供該有機導電薄膜層形成於其上。 The method for fabricating an organic-inorganic light-emitting device according to claim 18, wherein the step of providing the conductive substrate comprises the steps of: providing an insulating substrate; and forming a first electrode layer on the insulating substrate for the An organic conductive film layer is formed thereon. 如申請專利範圍第19項所述之有機無機發光元件之製作方法,其中該絕緣基板之材質為藍寶石、玻璃、石英或軟性絕緣材質。 The method for fabricating an organic-inorganic light-emitting device according to claim 19, wherein the insulating substrate is made of sapphire, glass, quartz or a soft insulating material. 如申請專利範圍第19項所述之有機無機發光元件之製作方法,其中該第一、第二電極層之材質為金、銀、鎳、鋁、白金、透明電極材料、氧化銦錫(ITO)、氧化鎵銦錫(gallium-indium-tin oxide,GITO)、氧化鋅銦錫(zinc-indium-tin oxide,ZITO)、氧化錫掺氟(fluorine-doped tin oxide,FTO)、氧化鋅、氧化鋁鋅[AZO(Al:ZnO)]或氧化銦鋅(IZO)。 The method for fabricating an organic-inorganic light-emitting device according to claim 19, wherein the first and second electrode layers are made of gold, silver, nickel, aluminum, platinum, a transparent electrode material, or indium tin oxide (ITO). , gallium-indium-tin oxide (GITO), zinc-indium-tin oxide (ZITO), fluorine-doped tin oxide (FTO), zinc oxide, aluminum oxide Zinc [AZO (Al: ZnO)] or indium zinc oxide (IZO). 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中形成該絕緣層之方法為旋轉塗布法(spin coating)、浸漬塗布法(dip coating)、蒸鍍法(evaporation)、濺鍍法(sputtering)、原子層沈積法(atomic layer deposition)、電化學沈積法(electrochemical deposition)、脈衝雷射沈積法(plused laser deposition)、金屬有機物化學氣相沈積法(metalorganic chemical vapor deposition)。 The method for producing an organic-inorganic light-emitting device according to claim 18, wherein the method of forming the insulating layer is spin coating, dip coating, evaporation, or sputtering. Sputtering, atomic layer deposition, electrochemical deposition, plused laser deposition, metalorganic chemical vapor deposition. 如申請專利範圍第18項所述之有機無機發光元件,其中該絕緣層之材料為聚甲基丙烯酸甲酯[poly(methyl methacrylate,PMMA)]、聚苯乙烯[poly(styrene)]、旋塗玻璃材料(SOG)、二氧化矽(SiO2 )、氮化矽(Si3 N4 )。The organic inorganic light-emitting device according to claim 18, wherein the material of the insulating layer is poly(methyl methacrylate (PMMA), polystyrene [poly(styrene)], spin coating Glass material (SOG), cerium oxide (SiO 2 ), tantalum nitride (Si 3 N 4 ). 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中形成該種子層的方法為旋轉塗布法、浸漬塗布法、蒸鍍法、濺鍍法、原子層沈積法、電化學沈積法、脈衝雷射沈積法、金屬有機物化學氣相沈積法。 The method for fabricating an organic-inorganic light-emitting device according to claim 18, wherein the seed layer is formed by a spin coating method, a dip coating method, an evaporation method, a sputtering method, an atomic layer deposition method, or an electrochemical deposition method. Method, pulsed laser deposition method, metal organic chemical vapor deposition method. 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中該種子層之材料係為氧化鋅、金、錫或鈷。 The method for producing an organic-inorganic light-emitting device according to claim 18, wherein the material of the seed layer is zinc oxide, gold, tin or cobalt. 如申請專利範圍第25項所述之有機無機發光元件之製作方法,其中該種子層之材料為該金、錫或鈷時,則形成該種子層的方法為利用蒸鍍法或濺鍍法將該金、錫或鈷之微奈米粒子鋪在該有機導電薄膜層上。 The method for fabricating an organic-inorganic light-emitting device according to claim 25, wherein when the material of the seed layer is gold, tin or cobalt, the seed layer is formed by evaporation or sputtering. The gold, tin or cobalt micro-nanoparticles are deposited on the organic conductive film layer. 如申請專利範圍第25項所述之有機無機發光元件之製作方法,其中該種子層之材料為該氧化鋅、金、錫或鈷時,則形成該種子層的方法為利用浸漬塗布法或旋轉塗布法將該金、錫、鈷或氧化鋅之微奈米粒子鋪在該有機導電薄膜層上。 The method for fabricating an organic-inorganic light-emitting device according to claim 25, wherein when the material of the seed layer is the zinc oxide, gold, tin or cobalt, the seed layer is formed by dip coating or rotation. The gold, tin, cobalt or zinc oxide micro-nanoparticles are deposited on the organic conductive thin film layer by a coating method. 如申請專利範圍第27項所述之有機無機發光元件之製作方法,其中該浸漬塗布法與該旋轉塗布法所使用的溶液為異丙醇(isopropanol)、甲醇(methanol)、乙醇(ethyl alcohol)、丙三醇 (glycerol)或丙醇(propanol)。 The method for producing an organic-inorganic light-emitting device according to claim 27, wherein the solution used in the dip coating method and the spin coating method is isopropanol, methanol, or ethyl alcohol. ,Glycerol (glycerol) or propanol. 如申請專利範圍第27項所述之有機無機發光元件之製作方法,其中該氧化鋅之微奈米粒子的粒徑在2奈米到10微米之間。 The method for producing an organic-inorganic light-emitting device according to claim 27, wherein the zinc oxide micro-nanoparticle has a particle diameter of between 2 nm and 10 μm. 如申請專利範圍第26項或第27項所述之有機無機發光元件之製作方法,其中該金之微奈米粒子的粒徑在2奈米到10微米之間。 The method for producing an organic-inorganic light-emitting device according to claim 26, wherein the gold micro-nanoparticle has a particle diameter of from 2 nm to 10 μm. 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中形成該氧化鋅微奈米線陣列的方法為水熱法(hydrothermal method)、熱蒸鍍法(thermal evaporation)、化學氣相沈積法(chemical vapor deposition)、分子束磊晶法(molecular beam epitaxy)、陽極氧化鋁多孔模板法(AAO)、電化學法。 The method for producing an organic-inorganic light-emitting device according to claim 18, wherein the method for forming the zinc oxide micro-nanoline array is a hydrothermal method, a thermal evaporation method, a chemical gas method. Chemical vapor deposition, molecular beam epitaxy, anodized aluminum porous template (AAO), electrochemical method. 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中形成該有機導電薄膜層之方法為旋轉塗布法、浸漬塗布法或噴墨印刷法。 The method for producing an organic-inorganic light-emitting device according to claim 18, wherein the method of forming the organic conductive thin film layer is a spin coating method, a dip coating method, or an inkjet printing method. 如申請專利範圍第32項所述之有機無機發光元件之製作方法,其中該旋轉塗布法、該浸漬塗布法或該噴墨印刷法所使用的溶液為氯仿(chloroform)、二氯甲烷(dichloromethane)、甲苯(toluene)、四氫扶喃(tetrahydrfuran)、1,2-二氯苯(1,2-dichlorobenzene)、1,4-二氯苯(1,4-dichlorobenzene)、氯苯(chlorobenzene)或正己烷(n-hexane)。 The method for producing an organic-inorganic light-emitting device according to claim 32, wherein the spin coating method, the dip coating method, or the solution used in the inkjet printing method is chloroform or dichloromethane. , toluene, tetrahydrfuran, 1,2-dichlorobenzene, 1,4-dichlorobenzene, chlorobenzene or N-hexane. 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中該有機導電薄膜層之材料為高分子材料、小分子材料、有機半導體材料、螢光發光分子、螢光發光分子摻雜磷光發光分子或螢光發光分子摻雜有機絕緣分子。 The method for fabricating an organic-inorganic light-emitting device according to claim 18, wherein the material of the organic conductive thin film layer is a polymer material, a small molecular material, an organic semiconductor material, a fluorescent light emitting molecule, and a fluorescent light emitting molecule doping. The phosphorescent or fluorescent emitting molecule is doped with an organic insulating molecule. 如申請專利範圍第34項所述之有機無機發光元件之製作方法,其中該有機絕緣分子為聚甲基丙烯酸甲酯或聚苯乙烯。 The method for producing an organic-inorganic light-emitting device according to claim 34, wherein the organic insulating molecule is polymethyl methacrylate or polystyrene. 如申請專利範圍第34項所述之有機無機發光元件之製作方法,其中該有機半導體材料為聚3-己基噻吩[poly(3-hexylthiophene,P3HT)]、[poly(3-octylthiophene,P3OT)]、聚[N-乙烯基咔 唑][poly(N-vinylcarbazole,PVK)]、聚〔2-甲氧基-5-[2-乙基己氧基]-[1,4-亞苯基亞乙烯基]]〔poly[2-methoxy-5-(2-ethylhexyloxy)-(1,4-phenylenevinylene),MEHPPV]〕、聚[2-甲氧基-5-(3',7'-乙烷辛基氧)-1,4-苯基 乙烯基]〔poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylenevinylene,MDMOPPV]〕、聚氟[poly(fluorine),PF]或N'-二苯基-N,N'-二(3-甲基苯基)-[1-1'-聯苯]-4,4'-二胺〔N’-diphenyl-N,N’-bis[3-methylphenyl]-[1,1’-biphenyl]-[4,4’-diamine],TPD〕。 The method for fabricating an organic-inorganic light-emitting device according to claim 34, wherein the organic semiconductor material is poly(3-hexylthiophene (P3HT), [poly(3-octylthiophene, P3OT)] Poly [N-vinyl fluorene Azole][poly(N-vinylcarbazole,PVK)], poly[2-methoxy-5-[2-ethylhexyloxy]-[1,4-phenylenevinylidene]][poly[2 -methoxy-5-(2-ethylhexyloxy)-(1,4-phenylenevinylene), MEHPPV]], poly[2-methoxy-5-(3',7'-ethaneoctyloxy)-1,4 -Phenylvinyl][poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene, MDMOPPV]], polyfluorine [poly(fluorine), PF] or N'- Phenyl-N,N'-bis(3-methylphenyl)-[1-1'-biphenyl]-4,4'-diamine [N'-diphenyl-N, N'-bis[3- Methylphenyl]-[1,1'-biphenyl]-[4,4'-diamine], TPD]. 如申請專利範圍第18項所述之有機無機發光元件之製作方法,其中該導電基板之材質為矽或軟性導電材質。 The method for fabricating an organic-inorganic light-emitting device according to claim 18, wherein the conductive substrate is made of tantalum or a soft conductive material.
TW98111271A 2009-04-03 2009-04-03 A organic-inorganic lighting device and a method for fabricating the same TWI398964B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98111271A TWI398964B (en) 2009-04-03 2009-04-03 A organic-inorganic lighting device and a method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98111271A TWI398964B (en) 2009-04-03 2009-04-03 A organic-inorganic lighting device and a method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201037854A TW201037854A (en) 2010-10-16
TWI398964B true TWI398964B (en) 2013-06-11

Family

ID=44856830

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98111271A TWI398964B (en) 2009-04-03 2009-04-03 A organic-inorganic lighting device and a method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI398964B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500050B (en) * 2011-02-25 2015-09-11 Univ Nat Taiwan Method of producing conductive thin film
US9633907B2 (en) 2014-05-28 2017-04-25 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned nanowire formation using double patterning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Lee, Chun-Yu et al., "ZnO nanorods/P3HT nanocomposite film light emitting diodes", Optical Fiber Communication & Optoelectronic Exposition & Conference, Nov. 2 2008, Pages: 1-3. *
Lee, Chun-Yu et al., "White Light Electroluminescence from Zinc Oxide Nanowire Composites", Nanotechnology, 2008. NANO ’08. 8th IEEE Conference, Aug. 21 2008, Pages:120-123. *

Also Published As

Publication number Publication date
TW201037854A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
Yang et al. Toward full-color electroluminescent quantum dot displays
CN100365836C (en) Nanowire light emitting device and method of fabricating the same
Liu et al. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands
JP4205075B2 (en) Nanowire light emitting device and manufacturing method thereof
Kim et al. Paper as a substrate for inorganic powder electroluminescence devices
US8486749B2 (en) Micro/nanostructure PN junction diode array thin-film solar cell and method for fabricating the same
US8878231B2 (en) Light emission device and manufacturing method thereof
US9064998B2 (en) Light emitting diode and method for manufacturing the same
US20080237611A1 (en) Electroluminescent device having improved contrast
US20080237612A1 (en) Device having spacers
CN103460424A (en) Active matrix dilute source enabled vertical organic light emitting transistor
US20110168976A1 (en) Micro- and nano-structured led and oled devices
TW200845433A (en) Quantum dot light emitting device
US20060197436A1 (en) ZnO nanotip electrode electroluminescence device on silicon substrate
CN103608937A (en) Ultra small LED and method for manufacturing same
KR20180018659A (en) Micro-LED display without transmission
JP2009535767A (en) Organic light-emitting diode with structured electrode
CN104157333A (en) Electrode, an electronic device, and a method for manufacturing an optoelectronic device
Yu et al. High-efficiency, large-area, flexible top-emitting quantum-dot light-emitting diode
US8143778B2 (en) Organic-inorganic lighting device and a method for fabricating the same
Wang et al. Efficient quantum-dot light-emitting diodes based on solvent-annealed SnO2 electron-transport layers
TWI398964B (en) A organic-inorganic lighting device and a method for fabricating the same
Lee et al. High-Resolution Multicolor Patterning of InP Quantum Dot Films by Atomic Layer Deposition of ZnO
Yu et al. Intaglio-type random silver networks as the cathodes for efficient full-solution processed flexible quantum-dot light-emitting diodes
CN109545994B (en) Electroluminescent device, manufacturing method thereof and display device