TWI398742B - Method for optimizing generator parameters by taguchi method and fuzzy inference - Google Patents

Method for optimizing generator parameters by taguchi method and fuzzy inference Download PDF

Info

Publication number
TWI398742B
TWI398742B TW98141092A TW98141092A TWI398742B TW I398742 B TWI398742 B TW I398742B TW 98141092 A TW98141092 A TW 98141092A TW 98141092 A TW98141092 A TW 98141092A TW I398742 B TWI398742 B TW I398742B
Authority
TW
Taiwan
Prior art keywords
control factor
fuzzy
optimal
control
generator
Prior art date
Application number
TW98141092A
Other languages
Chinese (zh)
Other versions
TW201120592A (en
Inventor
Fei Bin Hsiao
Chung Neng Huang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW98141092A priority Critical patent/TWI398742B/en
Publication of TW201120592A publication Critical patent/TW201120592A/en
Application granted granted Critical
Publication of TWI398742B publication Critical patent/TWI398742B/en

Links

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

應用田口方法以及模糊推論決定發電機最佳參數之方法Method of determining the optimal parameters of generators by using Taguchi method and fuzzy inference

本發明係關於一種發電機參數最佳化方法,尤指一種應用田口方法以及模糊推論決定發電機最佳參數之方法。The invention relates to a method for optimizing the parameters of a generator, in particular to a method for applying the Taguchi method and the fuzzy inference to determine the optimal parameters of the generator.

按,如何提升發電機的發電效能一直是該領域的研究目標,意即期望以低輸入扭矩來達到高發電效率,然而為了滿足此兩項相斥的設計目標,設計者必須從中尋找出制衡點來提升發電機整體性能,而發電機的各項性能表現係決定於發電機的製程參數,因此,製程參數的最佳化便成為發電機設計時的最高原則,然而,影響發電機效率的製程參數相當多,這使得要找出最佳的參數組合變得十分困難,以往製程參數的決定,大多依賴前人所累積的經驗計算法則,並透過不斷嘗試錯誤、修正才得以完成,不但消耗了大量的人力、成本且直接影響生產週期的延緩,使生產工廠在此競爭激烈的市場上處於很不利的地位。According to, how to improve the generator's power generation efficiency has always been the research goal in this field, which means to achieve high power generation efficiency with low input torque. However, in order to meet these two repulsive design goals, designers must find a balance point. To improve the overall performance of the generator, and the performance of the generator is determined by the process parameters of the generator. Therefore, the optimization of the process parameters becomes the highest principle in the design of the generator. However, the process affecting the efficiency of the generator There are quite a lot of parameters, which makes it difficult to find the best combination of parameters. Most of the previous process parameters are determined by the empirical calculations accumulated by the predecessors, and they are completed by constantly trying to make mistakes and corrections. A large amount of manpower, cost and directly affect the delay of the production cycle, so that the production plant is in a very disadvantageous position in this highly competitive market.

為了解決此問題,前人便導入一次一因子法、全因子法與部分因子法來尋找最佳化參數,然而,上述之各種方法於使用上分別具有不夠系統化、再現性低以及過於繁雜...等缺點,因此,前人不得不尋找更加適合的參數最佳化方法,其中,田口法已被證明為一種非常有效的參數最佳化方法,其概係導入統計的概念,使操作者可以適量的實驗次數便可得到最佳的參數組合,由於其不需要複雜的演算流程,並同時允許多個參數變因,使得尋找最佳參數組合的流程得以簡化及系統化。In order to solve this problem, the predecessors introduced a one-factor method, a full factor method and a partial factor method to find the optimal parameters. However, the above various methods are not systematic enough, low reproducibility and too complicated. .. and other shortcomings, therefore, the predecessors had to find a more suitable parameter optimization method, in which the Taguchi method has been proved to be a very effective parameter optimization method, which introduces the concept of statistical introduction to the operator The optimal combination of parameters can be obtained with an appropriate number of experiments. Since it does not require a complicated calculation process and allows multiple parameter variations at the same time, the process of finding the optimal parameter combination is simplified and systematic.

然,田口法雖為非常有效且適合的方法,但要同時兼顧高發電效率以及低齒槽扭矩兩相斥的設計目標,便顯出傳統田口法的不足,也就是說,在多項參數的決定過程中,田口方法可能無法判斷出所有最佳參數。However, although the Taguchi method is a very effective and suitable method, it must simultaneously consider the design goals of high power generation efficiency and low cogging torque, which shows the deficiency of the traditional Taguchi method, that is, the decision of multiple parameters. In the process, the Taguchi method may not be able to determine all the best parameters.

本發明之主要目的在於提供一種應用田口方法以及模糊推論決定發電機最佳參數之方法,希望藉此設計,改善習知發電機參數最佳化方法具有不夠系統化、再現性低以及過於繁雜...等問題。The main object of the present invention is to provide a method for applying the Taguchi method and fuzzy inference to determine the optimal parameters of the generator, and it is hoped that the design and the improvement of the conventional generator parameter optimization method are not systematic, reproducible and too complicated... And other issues.

為達前揭目的,本發明包含以下步驟:定義複數個功能需求,並選擇適當的發電機參數作為控制因子,且各控制因子包含至少二不同的位準;針對所定義之複數功能需求分別以田口方法實驗,得到各控制因子之不同位準的功能量化數據;自功能量化數據決定出各功能需求下各控制因子的最佳位準,進而組成該功能需求下的最佳控制因子組合;比較各功能需求之最佳控制因子組合,萃取出同時滿足的各功能需求最佳化的控制因子;判斷是否具有待定之控制因子,若所有控制因子皆已決定,即完成參數設計;若尚具有待定之控制因子,意即用田口方法無法決定所有同時滿足各功能需求的控制因子,則利用模糊推論尋找待定控制因子的最佳位準;執行模糊推論,將待定的控制因子作為輸入變數,各功能需求作為輸出變數,並定義輸入變數與輸出變數的模糊集合,其中,模糊規則中之子集合即為所述之輸入變數的各位準;定義模糊規則,並將各輸入變數之子集合代入模糊規則,得到所有輸入變數子集合的排列組合,以及各組合所推論得到的輸出變數結果;自模糊推論得到的輸出變數結果決定出同時滿足各功能需求的輸入變數,得到待定之最佳化控制因子;結合田口方法與模糊推論所得到的最佳控制因子,得到多目的最佳化之製造參數。To achieve the foregoing, the present invention comprises the steps of: defining a plurality of functional requirements, and selecting appropriate generator parameters as control factors, and each control factor includes at least two different levels; for the defined complex functional requirements, respectively The Taguchi method experiment obtains the functional quantified data of different levels of each control factor; the functional quantification data determines the optimal level of each control factor under each functional requirement, and then forms the optimal control factor combination under the functional demand; The optimal combination of control factors for each functional requirement, extracting the control factors that optimize the functional requirements that are simultaneously satisfied; determining whether there are control factors to be determined, and if all the control factors have been determined, the parameter design is completed; if it still has to be determined The control factor means that the Taguchi method cannot determine all the control factors that satisfy the requirements of each function at the same time, then use the fuzzy inference to find the optimal level of the undetermined control factor; perform the fuzzy inference, and take the control factor to be determined as the input variable, each function Demand as an output variable and defining the modulus of the input variable and the output variable a set, wherein the set of children in the fuzzy rule is the order of the input variables; defining the fuzzy rule, and substituting the subset of the input variables into the fuzzy rule, obtaining the permutation combination of all the input variable subsets, and deducing the combinations The obtained output variable result; the output variable result obtained from the fuzzy inference determines the input variable that satisfies the functional requirements at the same time, and obtains the optimal control factor to be determined; combined with the optimal control factor obtained by the Taguchi method and the fuzzy inference, it is multi-purpose. Optimized manufacturing parameters.

本發明係利用田口方法尋找發電機的最佳化參數,利用其系統化、流程簡潔明確的優點以適量的實驗次數便可完成優化的目的,並搭配模糊推論來克服田口方法無法針對兩相斥功能需求作完整的參數優化之缺點,補足田口方法無法決定的所有參數之問題,進而提供一系統化、再現性高並可同時滿足多項功能需求的參數最佳化方法。The invention utilizes the Taguchi method to find the optimal parameters of the generator, and utilizes the advantages of systemization and simple and clear process to complete the optimization with a proper number of experiments, and with fuzzy inference to overcome the Taguchi method cannot be aimed at two repels. The functional requirements are the shortcomings of the complete parameter optimization, complementing all the parameters that cannot be determined by the Taguchi method, and thus providing a parameter optimization method that is systematic, highly reproducible and can simultaneously satisfy multiple functional requirements.

本發明係應用田口方法以及模糊推論來決定發電機參數,並以軟體模擬以及實機實驗,以證明應用本發明決定之參數的發電機具有較佳的性能表現,其操作流程概是利用電腦模擬軟體RMxprt來建構發電機原型的模型後,再採用該模型為基礎,以田口方法搭配模糊推論來探討如何修改該永磁發電機之參數,俾使原型發電機之齒槽扭矩最小化而發電效率最大化,其中,請參閱第二圖,該發電機(2)概包含一定子(21)以及樞設於該定子(21)內的一轉子(22),該定子(21)內緣分佈有間隔並列設置的定子槽(211),該原型發電機的參數與資料如表1、表2所示,而該原型發電機的性能 表現如表3所示。The invention applies the Taguchi method and the fuzzy inference to determine the generator parameters, and uses the software simulation and the real machine experiment to prove that the generator applying the parameters determined by the invention has better performance, and the operation procedure is to use the computer simulation. After the software RMxprt is used to construct the model of the generator prototype, based on the model, the Taguchi method and fuzzy inference are used to discuss how to modify the parameters of the permanent magnet generator to minimize the cogging torque of the prototype generator and the power generation efficiency. Maximizing, wherein, referring to the second figure, the generator (2) comprises a stator (21) and a rotor (22) pivoted in the stator (21), and the inner edge of the stator (21) is distributed Stator slots (211) arranged side by side, the parameters and data of the prototype generator are shown in Table 1, Table 2, and the performance of the prototype generator The performance is shown in Table 3.

請參閱第一圖所示,為本發明應用田口方法以及模糊推論決定發電機最佳參數之方法的流程示意圖,其包含以下步驟:Please refer to the first figure, which is a schematic flow chart of the method for applying the Taguchi method and the fuzzy inference to determine the optimal parameters of the generator, which comprises the following steps:

一、定義複數個功能需求,並選擇適當的發電機參數作為控制因子(101),其中,各控制因子包含至少二不同的位準,實際操作如下所述:本較佳實施例定義二個功能需求,分別為I.發電機的效率、II.齒槽扭矩,並選擇可能影響發電機特性最劇之參數作為控制因子。請參閱表4所示,分別為A.槽極數比(位準分別為03:01及08:09)、B.斜槽寬度(位準分別為無斜槽、斜半槽寬度及斜一槽寬度)、C.磁石材料(位準分別為n30sh、n33sh及n35sh之不同強度的磁石)、D.線圈匝數(位 準分別為36匝、38匝及40匝)、E.定子槽型(如第三圖至第五圖所示,位準分別為Type-1(211a)、Type-2(211b)及Type-3(211c)之槽型)、F.線徑寬度(位準分別為0.7mm、0.8mm及0.9mm)、G.齒槽開口寬度(位準分別為1.0mm、1.1mm及1.2mm)與H.氣隙平均寬度(位準分別為0.8mm、0.9mm及1.0mm),其中,除了控制因子A只有兩個位準外,其它每個控制因子皆設定為三個位準。1. Defining a plurality of functional requirements and selecting appropriate generator parameters as control factors (101), wherein each control factor includes at least two different levels, the actual operation is as follows: the preferred embodiment defines two functions The demand is I. Generator efficiency, II. cogging torque, and select the parameters that may affect the generator characteristics as the control factor. Please refer to Table 4, which are A. slot pole ratio (level: 03:01 and 08:09 respectively), B. chute width (level is no chute, oblique half slot width and oblique one respectively) Slot width), C. magnet material (magnets of different strengths of n30sh, n33sh and n35sh, respectively), D. coil turns (bits) The standard is 36匝, 38匝 and 40匝), E. stator slot type (as shown in the third to fifth figures, the levels are Type-1 (211a), Type-2 (211b) and Type- respectively. 3 (211c) groove type), F. wire diameter width (levels are 0.7mm, 0.8mm and 0.9mm respectively), G. gullet opening width (levels are 1.0mm, 1.1mm and 1.2mm respectively) and H. Air gap average width (levels are 0.8mm, 0.9mm and 1.0mm respectively), wherein each control factor is set to three levels except that the control factor A has only two levels.

二、針對所定義之複數功能需求,分別以田口方法實驗(102),得到各控制因子之不同位準的功能量化數據,實際操作如下所述:本較佳實施例選擇使用L 18(38 )直交表,分別對功能需求I.發電機的效率,以及功能需求II.齒槽扭矩做兩組田口方法實驗,而每一組田口方法實驗各包含18次試驗,分別如表5及表6所示,其中,各控制因子的位準係以阿拉伯數字1~3表示,舉例來說,第1次試驗的控制因子A(槽極數比)為位準1,意即第1次試驗所使用的槽極數比為03:01;第10次試驗的控制因子A(槽極數比)為位準2,意即第10次試驗所使用的槽極數比為08:09,其餘依此類推便不再贅述。2. For the defined complex function requirements, the Taguchi method experiment (102) is used to obtain functional quantized data of different levels of each control factor. The actual operation is as follows: The preferred embodiment selects L 18 (3 8 ) The orthogonal table, respectively, for the functional requirements I. Generator efficiency, and functional requirements II. Cogging torque is done in two sets of Taguchi method experiments, and each group of Taguchi method experiments contains 18 trials, as shown in Table 5 and Table 6, respectively. As shown, the level of each control factor is represented by Arabic numerals 1 to 3. For example, the control factor A (slot ratio) of the first test is level 1, which means the first test site. The slot ratio used is 03:01; the control factor A (slot pole ratio) of the 10th test is level 2, which means that the slot ratio used in the 10th test is 08:09, and the rest depends on Such a push will not be repeated.

三、自功能量化數據決定各功能需求下各控制因子的最佳位準,進而組成該功能需求下的最佳控制因子組合,實際操作如下所述:利用表5,分別計算各控制因子於不同位準的效率S/N平均值,如A1的效率S/N平均值係第1至第9次試驗的S/N值平均而得,而B1的效率S/N平均值係第1至第3次、第10至第12次試驗的S/N值平均而得,其餘依此類推, 各控制因子之各位準的效率S/N平均值如表7所示,並依表7將各位準的效率S/N平均值繪製如第六圖,根據第六圖,選擇效率最高的控制因子組合(A1,B3,C1,D2,E2,F2,G1,H1); 3. The functional quantized data determines the optimal level of each control factor under each functional requirement, and then constitutes the optimal combination of control factors under the functional requirements. The actual operation is as follows: using Table 5, each control factor is calculated separately. The average S/N of the efficiency of the level, such as the average S/N of the efficiency of A1 is obtained by averaging the S/N values of the first to the ninth test, and the average S/N of the efficiency of B1 is the first to the first The S/N values of the 3rd and 10th to the 12th tests are averaged, and the others are equivalent. The average S/N of the efficiency of each control factor is shown in Table 7, and will be based on Table 7. The efficiency S/N average value is drawn as shown in the sixth figure. According to the sixth figure, the most efficient control factor combination is selected (A1, B3, C1, D2, E2, F2, G1, H1);

利用表6,分別計算各控制因子於不同位準的齒槽扭矩S/N平均值,其結果如表8所示,並依表8將各控制因子之各位準的齒槽扭矩S/N平均值繪製如第七圖,根據第七圖,選擇齒槽扭矩最小的控制因子組合(A1,B3,C2,D2,E2,F2,G2,H3)。Using Table 6, the average value of the cogging torque S/N of each control factor at different levels is calculated. The results are shown in Table 8, and the cogging torque S/N of each control factor is averaged according to Table 8. The value is plotted as in the seventh figure. According to the seventh figure, the combination of control factors (A1, B3, C2, D2, E2, F2, G2, H3) with the smallest cogging torque is selected.

四、比較各功能需求之最佳控制因子組合,萃取出同時滿足的各功能需求最佳化的控制因子(103),實際操作如下所述:觀察效率最高的控制因子組合(A1,B3,C1,D2,E2,F2,G1,H1),以及齒槽扭矩最小的控制因子組合(A1,B3,C2,D2,E2,F2,G2,H3),則可得到同時滿足效率最大化以及齒槽扭矩最小化的控制因子:(A1、B3、D2、E2、F2),以達成最低齒槽扭矩與最高效率之設計目標。4. Compare the optimal control factor combinations for each functional requirement, and extract the control factors (103) that optimize the functional requirements that are simultaneously satisfied. The actual operation is as follows: the combination of the most effective control factors (A1, B3, C1) , D2, E2, F2, G1, H1), and the combination of control factors (A1, B3, C2, D2, E2, F2, G2, H3) with the lowest cogging torque, can simultaneously achieve maximum efficiency and cogging Control factors for torque minimization: (A1, B3, D2, E2, F2) to achieve the lowest cogging torque and highest efficiency design goals.

五、判斷是否具有待定之控制因子(104),若所有控制因子皆已決定,即完成參數設計;若尚具有待定之控制因子,意即用田口方法無法決定所有同時滿足各功能需求的控制因子,則利用模糊推論尋找待定控制因子的最佳位準。實際操作如下所述:由於以田口方法無法決定控制因子C.磁石材料、G.齒槽開口寬度及H.氣隙平均寬度的最佳化位準,意即無法決定所有同時滿足效率最大化以及齒槽扭矩最小化需求的控制因子,因此,上述C,G,H三種控制因子則需使用模糊推論來尋找最佳的位準。5. Determine whether there is a control factor to be determined (104). If all the control factors have been determined, the parameter design is completed. If there is still a control factor to be determined, it means that the control factor that satisfies the functional requirements at the same time cannot be determined by the Taguchi method. Then, use fuzzy inference to find the optimal level of the undetermined control factor. The actual operation is as follows: Since the Taguchi method cannot determine the optimal level of the control factor C. magnet material, G. cogging opening width and H. air gap average width, it means that it is impossible to determine all the simultaneous maximization of efficiency and The cogging torque minimizes the control factor of the demand. Therefore, the above three control factors C, G, and H need to use fuzzy inference to find the best level.

六、執行模糊推論(105),將待定的控制因子作為輸入變數,各功能需求作為輸出變數,並定義輸入變數與輸出變數的模糊集合,實際操作如下所述:以氣隙平均寬度(mm)、磁槽開口寬度(mm)與磁石強度來當數入變數,效率(%)與齒槽扭矩(N*m)來當輸出變數,請參閱第八圖至第十二圖,定義輸入變數與輸出變數的模糊集合為: 磁石強度={較弱(n30sh),普通(n33sh),較強(n35sh)};齒槽開口寬度(mm)={小,中,大};氣隙平均寬度(mm)={小,中,大};效率(%)={劣,略差,尚可,良,優};齒槽扭矩(N*m)={極佳,佳,普通,略大,太大}。6. Perform fuzzy inference (105), take the undetermined control factor as the input variable, each function requirement as the output variable, and define the fuzzy set of the input variable and the output variable. The actual operation is as follows: the average width of the air gap (mm) , the opening width of the magnetic groove (mm) and the strength of the magnet to count the variables, efficiency (%) and cogging torque (N * m) to output variables, please refer to the eighth to twelfth figures, define the input variables and The fuzzy set of output variables is: Magnet strength = {weak (n30sh), normal (n33sh), strong (n35sh)}; slot opening width (mm) = {small, medium, large}; air gap average width (mm) = {small, medium , large}; efficiency (%) = {inferior, slightly worse, fair, good, excellent}; cogging torque (N*m) = {excellent, good, ordinary, slightly larger, too large}.

七、定義模糊規則,並將各輸入變數之子集合代入模糊規則,得到所有子集合的排列組合,以及各組合所推論得到的輸出變數結果,實際操作如下所述:請參閱表9所示,為本較佳實施例之模糊規則;請參閱第十三圖所示,將各輸入變數之子集合代入模糊規則後,得到所有輸入變數子集合的排列組合,以及各組合所推論得到的輸出變數結果,並可進一步繪製成一模糊規則決策圖。7. Define the fuzzy rule, and substitute the sub-set of each input variable into the fuzzy rule to obtain the arrangement and combination of all the sub-sets, and the output variable result inferred by each combination. The actual operation is as follows: See Table 9, for The fuzzy rule of the preferred embodiment; referring to the thirteenth figure, after substituting the sub-sets of the input variables into the fuzzy rule, obtaining the permutation and combination of all the input variable sub-sets, and the output variable results inferred by each combination, It can be further drawn into a fuzzy rule decision diagram.

八、自模糊推論結果,決定出同時滿足各功能需求的輸入變數(106),得到待定之最佳化控制因子,實際操作如下所述:觀察該模糊規則決策圖,萃取出同時滿足效率最大化以及齒槽扭矩最小化的輸入變數組合,得到最佳化的控制因子:最佳的控制因子組合為(C2,G1,H2)。8. The result of the fuzzy inference is determined, and the input variables satisfying the requirements of each function are determined (106), and the optimized control factor to be determined is obtained. The actual operation is as follows: Observing the fuzzy rule decision map, extracting and simultaneously satisfying the efficiency maximization And the combination of input variables that minimizes cogging torque, resulting in an optimized control factor: the optimal combination of control factors is (C2, G1, H2).

九、結合田口方法與模糊推論所得到的最佳控制因子(107),得到多目的最佳化之製造參數:最佳的參數組合為(A1,B3,C2,D2,E2,F2,G1,H2),意即發電機之最佳參數為控制因子A:槽極數比為03:01;控制因子B:斜槽寬度為斜一槽寬度;控制因子C:磁石材料為n33sh;控制因子D:線圈匝數為38匝;控制因子E:定子槽型為Type-2;控制因子F:線徑寬度為0.8mm;控制因子G:齒槽開口寬度為1.0mm;控制因子H:氣隙平均寬度為0.9mm。9. Combine the best control factor (107) obtained by Taguchi method and fuzzy inference to obtain multi-purpose optimized manufacturing parameters: the best combination of parameters is (A1, B3, C2, D2, E2, F2, G1, H2) ), meaning that the optimal parameters of the generator are control factor A: slot ratio is 03:01; control factor B: chute width is oblique slot width; control factor C: magnet material is n33sh; control factor D: The number of turns of the coil is 38 匝; the control factor E: the stator slot type is Type-2; the control factor F: the wire diameter is 0.8 mm; the control factor G: the slot opening width is 1.0 mm; the control factor H: the average width of the air gap It is 0.9mm.

根據本實施例決定之最佳化參數修改發電機原型機後,再以RMxprt軟體模擬,其模擬結果如表10所示,比較表3與表10可知,結果其輸出效率由原先未優化前之75.07%增加到84.7528%,齒槽扭矩由原先未優化前之0.3016(N*m)減小到0.2616(N*m)。After modifying the generator prototype according to the optimized parameters determined in this embodiment, the simulation is performed by RMxprt software. The simulation results are shown in Table 10. Comparing Table 3 and Table 10, the output efficiency is not optimized before. 75.07% increased to 84.7528%, and the cogging torque was reduced from 0.3016 (N*m) before the original optimization to 0.2616 (N*m).

並依上述最佳化參數進行實機製作,並測試其性能輸出數據如表11所示,觀察轉速為1100(RPM)時的數據,與表10之模擬結果比較後發現,實機測試與模擬結果的齒槽扭矩誤差約為3.11%、輸出電壓的誤差約為0.79%、輸出電流的誤差約為6.28%、效率的誤差約為3.3%……,其 誤差皆在可接受之範圍內,由此可証明本發明的可行性及準確性。According to the above optimized parameters, the actual machine is produced, and the performance output data is shown in Table 11. The data at the speed of 1100 (RPM) is observed. Compared with the simulation results in Table 10, the actual machine test and simulation are found. The resulting cogging torque error is about 3.11%, the output voltage error is about 0.79%, the output current error is about 6.28%, and the efficiency error is about 3.3%. The errors are all within an acceptable range, thereby demonstrating the feasibility and accuracy of the present invention.

(2)‧‧‧發電機(2) ‧‧‧Generator

(21)‧‧‧定子(21) ‧‧‧ Stator

(211)(211a)(211b)(211c)‧‧‧定子槽(211) (211a) (211b) (211c) ‧ ‧ stator slots

(22)‧‧‧轉子(22) ‧‧‧Rotor

第一圖:為本創作之方塊流程圖。The first picture: the block diagram of the creation.

第二圖:為發電機之示意圖。Figure 2: Schematic diagram of the generator.

第三圖:為發電機之Type-1定子槽型示意圖。The third picture is a schematic diagram of the Type-1 stator slot type of the generator.

第四圖:為發電機之Type-2定子槽型示意圖。Figure 4: Schematic diagram of the Type-2 stator slot for the generator.

第五圖:為發電機之Type-3定子槽型示意圖。Figure 5: Schematic diagram of the Type-3 stator slot for the generator.

第六圖:為各控制因子之各位準的效率S/N平均值示意圖。Figure 6: Schematic diagram of the efficiency S/N average for each control factor.

第七圖:為各控制因子之各位準的齒槽扭矩S/N平均值示意圖。Figure 7: Schematic diagram of the average S/N of the cogging torque for each control factor.

第八圖:為磁石強度之模糊集合示意圖。Figure 8: Schematic diagram of the fuzzy set of magnet strength.

第九圖:為齒槽開口寬度之模糊集合示意圖。Figure IX: Schematic diagram of the fuzzy set of the slot opening width.

第十圖:為氣隙平均寬度之模糊集合示意圖。Figure 10: Schematic diagram of the fuzzy set of the average width of the air gap.

第十一圖:為發電效率之模糊集合示意圖。Figure 11: Schematic diagram of the fuzzy set of power generation efficiency.

第十二圖:為齒槽扭矩之模糊集合示意圖。Figure 12: Schematic diagram of the fuzzy set of cogging torque.

第十三圖:為模糊規則決策圖。Thirteenth figure: A fuzzy rule decision diagram.

Claims (2)

一種應用田口方法以及模糊推論決定發電機最佳參數之方法,其包含以下步驟:定義複數個功能需求,並選擇適當的發電機參數作為控制因子,且各控制因子包含至少二不同的位準;針對所定義之複數功能需求分別以田口方法實驗,得到各控制因子之不同位準的功能量化數據;自功能量化數據決定出各功能需求下各控制因子的最佳位準,進而組成該功能需求下的最佳控制因子組合;比較各功能需求之最佳控制因子組合,萃取出同時滿足的各功能需求最佳化的控制因子;判斷是否具有待定之控制因子,若所有控制因子皆已決定,即完成參數設計;若尚具有待定之控制因子,意即用田口方法無法決定所有同時滿足各功能需求的控制因子,則利用模糊推論尋找待定控制因子的最佳位準;執行模糊推論,將待定的控制因子作為輸入變數,各功能需求作為輸出變數,並定義輸入變數與輸出變數的模糊集合,其中,模糊規則中之子集合即為所述之輸入變數的各位準;定義模糊規則,並將各輸入變數之子集合代入模糊規則,得到所有輸入變數子集合的排列組合,以及各組合所推論得到的輸出變數結果;自模糊推論得到的輸出變數結果決定出同時滿足各功能需求的輸入變數,得到待定之最佳化控制因子;結合田口方法與模糊推論所得到的最佳控制因子,得 到多目的最佳化之製造參數。 A method for applying a Taguchi method and a fuzzy inference to determine an optimal parameter of a generator, comprising the steps of: defining a plurality of functional requirements, and selecting an appropriate generator parameter as a control factor, and each control factor includes at least two different levels; According to the defined complex function requirements, the Taguchi method is used to obtain the functional quantized data of different levels of each control factor; the functional quantized data determines the optimal level of each control factor under each functional requirement, and then constitutes the functional requirement. The optimal combination of control factors; compare the optimal combination of control factors for each functional requirement, extract the control factors that optimize the functional requirements that are simultaneously met; determine whether there are control factors to be determined, and if all control factors have been determined, That is, the parameter design is completed; if there is still a control factor to be determined, that is, the Taguchi method cannot determine all the control factors satisfying the functional requirements at the same time, the fuzzy inference is used to find the optimal level of the undetermined control factor; the fuzzy inference is executed and will be determined. Control factor as input variable, each function demand as input a variable, and defining a fuzzy set of input variables and output variables, wherein the subset of the fuzzy rules is the order of the input variables; defining the fuzzy rules, and substituting the subset of the input variables into the fuzzy rules to obtain all the input variables The permutation and combination of sub-sets, and the output variable results deduced from each combination; the output variable results obtained from the fuzzy inference determine the input variables that satisfy the functional requirements at the same time, and obtain the optimal control factors to be determined; combined with the Taguchi method and fuzzy Infer the best control factor obtained, Manufacturing parameters optimized for multiple purposes. 如申請專利範圍第1項所述之應用田口方法以及模糊推論決定發電機最佳參數之方法,其中,定義功能需求包含發電機的效率及齒槽扭矩,該控制因子包含槽極數比、斜槽寬度、磁石材料、線圈匝數、定子槽型、線徑寬度、齒槽開口寬度以及氣隙平均寬度。 The method for applying the Taguchi method and the fuzzy inference to determine the optimal parameters of the generator, as described in claim 1, wherein the definition function requirement includes the efficiency of the generator and the cogging torque, and the control factor includes the slot ratio and the skew. Slot width, magnet material, number of turns of the coil, stator slot shape, wire diameter width, slot opening width, and air gap average width.
TW98141092A 2009-12-02 2009-12-02 Method for optimizing generator parameters by taguchi method and fuzzy inference TWI398742B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98141092A TWI398742B (en) 2009-12-02 2009-12-02 Method for optimizing generator parameters by taguchi method and fuzzy inference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98141092A TWI398742B (en) 2009-12-02 2009-12-02 Method for optimizing generator parameters by taguchi method and fuzzy inference

Publications (2)

Publication Number Publication Date
TW201120592A TW201120592A (en) 2011-06-16
TWI398742B true TWI398742B (en) 2013-06-11

Family

ID=45045228

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98141092A TWI398742B (en) 2009-12-02 2009-12-02 Method for optimizing generator parameters by taguchi method and fuzzy inference

Country Status (1)

Country Link
TW (1) TWI398742B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555163B (en) * 2015-09-28 2019-10-18 高雄第一科技大学 Stamping die class bores the method for carbon Coating optimization parameter and the stamping die using it
CN110390157B (en) * 2019-07-18 2021-01-15 浙江大学 Doubly salient hybrid excitation generator optimization design method based on Taguchi method
CN115730405A (en) * 2022-11-28 2023-03-03 中南林业科技大学 Furniture structure optimization method based on grey Taguchi method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402332A (en) * 1992-06-23 1995-03-28 J.M. Voith Gmbh Method for optimizing the efficiency of a set of machines comprising a turbine and a generator
CN1287710A (en) * 1998-10-29 2001-03-14 罗伯特·博施有限公司 Method for the optimized control in terms of output and efficiency of synchronous machines
TW200628697A (en) * 2005-01-14 2006-08-16 Vrb Power Systems Inc Power generation system incorporating a vanadium redox battery and a direct current wind turbine generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402332A (en) * 1992-06-23 1995-03-28 J.M. Voith Gmbh Method for optimizing the efficiency of a set of machines comprising a turbine and a generator
CN1287710A (en) * 1998-10-29 2001-03-14 罗伯特·博施有限公司 Method for the optimized control in terms of output and efficiency of synchronous machines
TW200628697A (en) * 2005-01-14 2006-08-16 Vrb Power Systems Inc Power generation system incorporating a vanadium redox battery and a direct current wind turbine generator

Also Published As

Publication number Publication date
TW201120592A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
CN109600006B (en) Solving method for electromagnetic design of surface-mounted permanent magnet motor
CN108563912B (en) Method for analyzing air gap field of surface-mounted permanent magnet synchronous motor
Tong et al. A quasi-three-dimensional magnetic equivalent circuit model of a double-sided axial flux permanent magnet machine considering local saturation
Hwang et al. A fuzzy-based Taguchi method for multiobjective design of PM motors
TWI398742B (en) Method for optimizing generator parameters by taguchi method and fuzzy inference
Si et al. Multi-objective optimization of surface-mounted and interior permanent magnet synchronous motor based on Taguchi method and response surface method
CN108073755B (en) Multi-objective optimization design method for switched reluctance motor system of electric vehicle
CN108736773B (en) Multi-objective optimization method for disc type permanent magnet synchronous generator in small wind power generation system
CN106777566B (en) Switched reluctance machines structure parameter optimizing method based on adaptive drosophila algorithm
CN112468035A (en) Method for selecting full-speed-domain optimal-efficiency control magnetization state of adjustable-flux permanent magnet synchronous motor and online control method
CN110390157B (en) Doubly salient hybrid excitation generator optimization design method based on Taguchi method
CN111062462A (en) Local search and global search fusion method and system based on differential evolution algorithm
Meng et al. Machine learning technique based multi-level optimization design of a dual-stator flux modulated machine with dual-PM excitation
Wu et al. Robust optimization of a rare-earth-reduced high-torque-density Pm motor for electric vehicles based on parameter sensitivity region
CN107240026B (en) Community discovery method suitable for noise network
Vun et al. The development of an electromagnetic analytical design tool for megawatt-scale YASA generators
Wu et al. Quality control of low-cost electric machines for electric vehicles by DOE assisted six sigma DMADV method
CN104038135B (en) A kind of torque motor structure parameter optimization method
CN113743806B (en) Searching method for non-convex double-target optimal power flow global solution of power system
CN106169008A (en) A kind of method determining brushless double-fed machine rotor optimal design parameters
CN206894472U (en) Non-homogeneous sectional type permanent magnet linear synchronous motor excitation topological structure
Shao et al. Multi-objective design optimization of synchronous reluctance machines based on the analytical model and the evolutionary algorithms
CN112468033A (en) Permanent magnet synchronous motor maximum power control current track searching method and online control method
Lee et al. Analytical method of torque calculation for interior permanent magnet synchronous machines
CN118171412A (en) Design method of shaft-holding synchronous generator based on motor performance optimization

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees