TWI397264B - Fractional-n phase-locked-loop and method - Google Patents

Fractional-n phase-locked-loop and method Download PDF

Info

Publication number
TWI397264B
TWI397264B TW98115959A TW98115959A TWI397264B TW I397264 B TWI397264 B TW I397264B TW 98115959 A TW98115959 A TW 98115959A TW 98115959 A TW98115959 A TW 98115959A TW I397264 B TWI397264 B TW I397264B
Authority
TW
Taiwan
Prior art keywords
error signal
signal
time difference
value
generate
Prior art date
Application number
TW98115959A
Other languages
Chinese (zh)
Other versions
TW200947873A (en
Inventor
Chia Liang Lin
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Publication of TW200947873A publication Critical patent/TW200947873A/en
Application granted granted Critical
Publication of TWI397264B publication Critical patent/TWI397264B/en

Links

Description

分數-N相鎖裝置與方法Fractional-N phase lock device and method

本發明係關於相鎖迴路,特別是關於具有相位雜訊消除功能之分數-N相鎖迴路(digital fractional-N phase lock loop)。The present invention relates to phase locked loops, and more particularly to a digital fractional-N phase lock loop having phase noise cancellation.

一般數位相鎖迴路(Digital Phase Lock Loop,Digital PLL)接收一具有第一頻率之參考時脈,且相應地產生一具有第二頻率之輸出時脈。其中,輸出時脈係相位鎖定(Phase-locked)於參考時脈之相位,且輸出時脈之第二頻率高於第一頻率N倍。如第1A圖所示,一典型的數位相鎖迴路100A包含有一時間至數位轉換器(Time-to-digital converter,TDC)110、一數位迴路濾波器(Digital loop filter)120、一數位控制振盪器DCO(digitally controlled oscillator)130、以及一除N電路(divide-by-N circuit)140A。時間至數位轉換器(TDC)110係用以量測一具有第一頻率之參考時脈REF與一具有第三頻率之回授時脈FB間的時間差值,且相應地產生表示該時間差值之一時間差值訊號TD。迴路濾波器120係用以濾波該時間差值訊號TD(可為數位訊號),且產生一控制碼C。數位控制振盪器130係依據控制碼產生具有第二頻率之輸出時脈OUT。除N電路140A係將具有第二頻率之輸出時脈OUT除以一除數值(divisor)N,以產生具有第三頻率之回授時脈FB。需注意,該第二頻率(即輸出時脈OUT之頻率,且同時為數位控制振盪器130之震盪頻率)係由控制碼C之數值所控制。一實施例,輸出時脈OUT之頻率(即第二頻率,亦為數位控制振盪器130之震盪頻率)係依據控制碼之數值增加(減少)而增加(減少)。而由於除N電路140A之除N功能,該第二頻率之頻率將高於第三頻率N倍。當控制碼C太小(太大)時,第二頻率亦會太低(太高);且相應地,第三頻率亦會太低(太高)。依此方式,回授時脈FB將會太慢(太快),且因此落後(超前)參考時脈REF。結果,導致時間差值訊號TD為正值(負值),此正值(負值)表示參考時脈REF與回授時脈FB之時間差值。須注意,數位迴路濾波器120通常包含有積分功能。由於數位迴路濾波器120之積分功能,時間差值訊號TD為正值(負值)時,將使控制碼C增加(減少)。於此閉迴路(closed-loop)之方式,控制碼C被調整(即增加或減少)可使回授時脈FB的時序(timing)(即頻率或相位)能夠追蹤(track)參考時脈REF的時序。於穩態下,控制碼C係穩定下來(settle)而為一適當的數值,且時間差值訊號TD的平均值(mean value)必須為零(zero),否則控制碼C將會因為數位迴路濾波器120之積分功能而失效(blow up),且無法穩定下來。因此,於穩態下,第三頻率必須等於第一頻率。結果,由於除N電路140A之處理使第二頻率高於第三頻率N倍,所以第二頻率必須高於第一頻率N倍。A digital phase lock loop (Digital Phase Lock Loop, Digital PLL) receives a reference clock having a first frequency and correspondingly generates an output clock having a second frequency. The output clock phase is phase-locked to the phase of the reference clock, and the second frequency of the output clock is N times higher than the first frequency. As shown in FIG. 1A, a typical digital phase locked loop 100A includes a time-to-digital converter (TDC) 110, a digital loop filter 120, and a digitally controlled oscillation. A digitally controlled oscillator (DCO) 130 and a divide-by-N circuit 140A. A time to digital converter (TDC) 110 is configured to measure a time difference between a reference clock REF having a first frequency and a feedback clock FB having a third frequency, and correspondingly generating the time difference One time difference signal TD. The loop filter 120 is configured to filter the time difference signal TD (which may be a digital signal) and generate a control code C. The digitally controlled oscillator 130 generates an output clock OUT having a second frequency in accordance with the control code. The divide-by-N circuit 140A divides the output clock OUT having the second frequency by a divisor N to generate a feedback clock FB having a third frequency. It should be noted that the second frequency (ie, the frequency of the output clock OUT, and at the same time the oscillation frequency of the digitally controlled oscillator 130) is controlled by the value of the control code C. In one embodiment, the frequency of the output clock OUT (ie, the second frequency, also the oscillation frequency of the digitally controlled oscillator 130) is increased (decreased) depending on the value of the control code being increased (decreased). And because of the divide by N function of the N circuit 140A, the frequency of the second frequency will be N times higher than the third frequency. When the control code C is too small (too large), the second frequency will also be too low (too high); and accordingly, the third frequency will also be too low (too high). In this way, the feedback clock FB will be too slow (too fast), and therefore backward (leading) reference clock REF. As a result, the time difference signal TD is positive (negative value), and this positive value (negative value) represents the time difference between the reference clock REF and the feedback clock FB. It should be noted that the digital loop filter 120 typically includes an integral function. Due to the integral function of the digital loop filter 120, when the time difference signal TD is positive (negative value), the control code C is increased (decreased). In this closed-loop manner, the control code C is adjusted (ie, increased or decreased) to enable the timing (ie, frequency or phase) of the feedback clock FB to track the reference clock REF. Timing. In steady state, the control code C is settle and is an appropriate value, and the mean value of the time difference signal TD must be zero (zero), otherwise the control code C will be due to the digital loop. The integral function of the filter 120 is blow up and cannot be stabilized. Therefore, at steady state, the third frequency must be equal to the first frequency. As a result, since the second frequency is N times higher than the third frequency by the processing of the N circuit 140A, the second frequency must be N times higher than the first frequency.

第1A圖數位相鎖迴路100A之除N電路140A可便利地使用除N計數器(例如將N設為整數(integer))實現。然而,因為計數器之除數須要為整數,但若N 不為整數,則直接使用具有一固定除數之計數器來實現將無法正常運作。若要實現用來處理非整數N(non-integerN )之除N功能,須假設N =N int +α,其中N int 為整數,α為0~1之間的分數(fractional number),且須要可任意設定(shuffle)計數器之除數值。一實施例,除數值可任意設定N int 與(N int +1);只要(N int +1)除數值之可能性(probability)為α、與N int 除數值可能性為(1-α),有效的除數值將等於N int +α。習知技術中,三角積分調變器(delta-sigma modulator)常用於動態設定該除數值。The divide-by-N circuit 140A of the digital phase lock loop 100A of FIG. 1A can be conveniently implemented using a divide-by-N counter (for example, setting N to an integer). However, because the divisor of the counter needs to be an integer, if N is not an integer, then directly using a counter with a fixed divisor will not work properly. To implement the divide-by-N function for dealing with non-integer N , we must assume N = N int +α, where N int is an integer and α is a fractional number between 0 and 1, and It is necessary to arbitrarily set (shuffle) the divisor value of the counter. In one embodiment, the divisor value can be arbitrarily set to N int and ( N int +1); as long as the probability of ( N int +1) divisible value is α, and the probability of dividing by N int is (1-α) The effective divisor value will be equal to N int +α. In the prior art, a delta-sigma modulator is often used to dynamically set the divisor value.

將數位鎖相迴路100A之除N電路140A以第1B圖具有除N與除分數功能之數位鎖相迴路PLL 100B來替換實施。一實施例之電路140B包含有一雙模數除法器(Dual-modulus divider,DMD)150與一三角積分調變器(Delta-sigma modulator,DSM)160。雙模數除法器150用以將輸出時脈OUT除以一除數值N int 或(N int +1),且依據二進制碼CARRY產生回授時脈FB。而三角積分調變器160用以接收分數值α,且依據回授時脈FB提供之一時序來調變分數值α成為二進制碼CARRY。三角積分調變器160之目的係用以產生二進制碼CARRY,例如產生CARRY為0,可能為α、或1、可能為(1-α),且CARRY的平均值等於α。依此方式,輸出時脈OUT被除以任意設定在N int and(N int +1)之間之數值,且平均值為N int + α的除數值,以產生回授時脈FB。The divide-by-N circuit 140A of the digital phase locked loop 100A is replaced by a digital phase locked loop PLL 100B having a divide-by-N and divide-and-score function in FIG. Circuit 140B of an embodiment includes a dual-modulus divider (DMD) 150 and a delta-sigma modulator (DSM) 160. The dual modulus divider 150 is configured to divide the output clock OUT by a divisor value N int or ( N int +1) and generate a feedback clock FB according to the binary code CARRY. The triangular integral modulator 160 is configured to receive the fractional value α, and adjust the fractional value α to become the binary code CARRY according to a timing provided by the feedback clock FB. The purpose of the delta-sigma modulator 160 is to generate a binary code CARRY, for example to produce CARRY as 0, possibly alpha, or 1, possibly (1-alpha), and the average of CARRY is equal to a. In this manner, the output clock OUT is divided by a value arbitrarily set between N int and ( N int +1), and the average value is a divisor value of N int + α to generate a feedback clock FB.

任意選擇(Shuffling)除N電路之除數值可有效地達到除N與除分數(fractional-N division)的效果。本實施例,於穩態下,參考時脈REF與回授時脈FB的平均時間差值(即時間差值訊號TD之平均值)仍然等於零,但是瞬間的(instantaneous)時間差值不為零,且最大值幾乎可為T DCO /2。其中,T DCO 係表示輸出時脈OUT之一時間週期,且除數值係任意設定為N int 與(N int +1)之間的數值。瞬間的時間差值將引起時間差值訊號TD產生瞬間雜訊,造成控制碼C出現雜訊,進而導致輸出時脈OUT產生相位雜訊。The divisor value of the N-circuit can be effectively achieved by arbitrarily selecting (Shuffling) in addition to N and fractional- N division. In this embodiment, at steady state, the average time difference between the reference clock REF and the feedback clock FB (ie, the average value of the time difference signal TD) is still equal to zero, but the instantaneous time difference is not zero. And the maximum value can be almost T DCO /2. Wherein, T DCO represents one time period of the output clock OUT, and the divisor value is arbitrarily set to a value between N int and ( N int +1). The instantaneous time difference will cause the time difference signal TD to generate instantaneous noise, causing noise in the control code C, which will cause phase noise in the output clock OUT.

除了由任意選擇除數值產生相位雜訊之外,非理想的時間至數位轉換器110(於第1A圖或第1B圖中)也會於輸出時脈OUT中貢獻(contribute)相位雜訊。如第1C圖所示,時間差值訊號TD應為參考時脈REF與回授時脈FB時間差的一比值,如圖示中破折線170所繪示。然而,實際上,時間至數位轉換器之特性將會如弧線180般偏離破折線170。此由理想的直線偏離問題,將使時間差值訊號TD產生誤差而對輸出時脈OUT產生出不想要的相位雜訊。In addition to generating phase noise by arbitrarily selecting the divisor value, the non-ideal time-to-digital converter 110 (in Figure 1A or Figure 1B) also contributes phase noise in the output clock OUT. As shown in FIG. 1C, the time difference signal TD should be a ratio of the time difference between the reference clock REF and the feedback clock FB, as indicated by the dashed line 170 in the figure. However, in practice, the characteristics of the time to digital converter will deviate from the dashed line 170 as an arc 180. This problem of ideal linear deviation will cause an error in the time difference signal TD to produce unwanted phase noise to the output clock OUT.

本發明之目的之一係在提供一種可消除相位雜訊之分數-N相鎖迴路。One of the objects of the present invention is to provide a fractional-N phase lock loop that eliminates phase noise.

本發明之目的之一係在提供一種分數-N相鎖迴路,以減少或避免因瞬間時間差值所導致輸出時脈之相位雜訊。One of the objects of the present invention is to provide a fractional-N phase lock loop to reduce or avoid phase noise of the output clock due to instantaneous time difference.

本發明之目的之一係在提供一種分數-N相鎖迴路,以減少或避免因非理想的時間至數位轉換器所導致輸出時脈之相位雜訊。One of the objects of the present invention is to provide a fractional-N phase lock loop to reduce or avoid phase noise of the output clock due to non-ideal time to digital converters.

本發明之一實施例提供了一種數位分數-N相鎖迴路。該數位分數-N相鎖迴路包含有:一時間至數位轉換器,用以將一參考時脈與一回授時脈之時間差值轉換為一時間差值訊號;一消除電路,用以接收時間差值訊號,且依據時間差值訊號與一瞬間誤差訊號產生一餘值誤差訊號(Residual error signal);一數位迴路濾波器,用以濾波餘值誤差訊號,以產生一控制碼;一數位控制振盪器,用以依據控制碼之控制產生一輸出時脈;一除法電路,用以接收一分數值(Fractional number),以產生該瞬間誤差訊號;且依據該分數值之控制將輸出時脈除以一除數值,以產生回授時脈。One embodiment of the present invention provides a digital fractional-N phase locked loop. The digital fraction-N phase lock loop includes: a time to digital converter for converting a time difference between a reference clock and a feedback clock into a time difference signal; and a cancellation circuit for receiving time a difference signal, and generating a residual error signal according to the time difference signal and the instantaneous error signal; a digital loop filter for filtering the residual error signal to generate a control code; a digital control An oscillator for generating an output clock according to the control of the control code; a dividing circuit for receiving a fractional value to generate the instantaneous error signal; and dividing the output clock according to the control of the fractional value Divide the value to generate a feedback clock.

本發明之一實施例提供了一種用以減少數位分數-N相鎖迴路(digital fractional-N phase lock loop)相位雜訊之方法,包含有下列步驟:首先,量化一參考時脈與一回授時脈之時間差值,以產生一時間差值訊號;依據時間差值訊號與一瞬間誤差訊號,產生一餘值誤差訊號(Residual error signal);接著,濾波餘值誤差訊號,以產生一控制 碼;利用控制碼控制一振盪器,以產生一輸出時脈;接收一0與1間的分數值,以產生瞬間誤差訊號;之後,依據分數值將輸出時脈除以一除數值。An embodiment of the present invention provides a method for reducing digital fractional-N phase lock loop phase noise, comprising the following steps: first, quantifying a reference clock and a feedback time a time difference value of the pulse to generate a time difference signal; generating a residual error signal according to the time difference signal and a momentary error signal; and then filtering the residual error signal to generate a control a code; an oscillator is controlled by the control code to generate an output clock; a fractional value between 0 and 1 is received to generate an instantaneous error signal; and thereafter, the output clock is divided by a division value according to the fractional value.

以下之說明將舉出本發明之數個較佳的示範實施例,熟悉本領域者應可理解,本發明可採用各種可能的方式實施,並不限於下列示範之實施例或實施例中的特徵。另外,眾所知悉之細節不再重覆顯示或贅述,以避免模糊本發明之重點。The following description of the preferred embodiments of the present invention will be understood by those skilled in the art that the invention may be practiced in various possible ways and not limited to the features of the following exemplary embodiments or embodiments . In addition, details are not repeatedly shown or described in detail to avoid obscuring the invention.

仍請參考第1B圖,於一典型的分數-N相鎖迴路(fractional-N PLL)100B中,除N分數(fractional-N division)功能可有效地由任意設定雙模數除法器(Dual-modulus divider,DMD)150之除數值來執行。但是,任意設定除數值將造成參考時脈REF與回授時脈FB間之時間差之瞬間誤差。該時間差之瞬間誤差係由時間至數位轉換器110量測並數位化。然而,時間至數位轉換器110通常是非理想的,因此,會產生如前述時間至數位轉換器110之失真。本發明將可消除時間差之瞬間誤差與時間至數誤轉換器110因非理想所造成的失真。Still referring to Figure 1B, in a typical fractional-N phase-locked loop (fractional- N PLL) 100B, the fractional- N division function can effectively set the dual-modulus divider arbitrarily (Dual- The modulus divider, DMD) 150 divisor value is executed. However, setting the divisor value arbitrarily will cause an instantaneous error in the time difference between the reference clock REF and the feedback clock FB. The instantaneous error of this time difference is measured and digitized by time to digital converter 110. However, the time to digital converter 110 is typically non-ideal and, therefore, produces distortion to the digital converter 110 as previously described. The present invention will eliminate the instantaneous error of the time difference and the distortion of the time-to-digital converter 110 due to non-ideality.

本發明各實施例利用級數展開式(series expansion)(即一組基本函數的線性組合(a linear combination of a set of basis functions)來描繪出時間至數位轉換器之非理想特性。在非限制之示例性實施例中,可採用雷建德多項式(雷建德多項式級數(Legendre polynomials series))來實施。雷建德多項式包含有一雷建德多項式之線性組合。雷建德多項式之第一部份之項次(first few terms)列示如下:P 0 (x )=1 (1)Embodiments of the present invention utilize a series expansion of a set of basis functions to describe the non-ideal characteristics of a time to digital converter. In an exemplary embodiment, the Lei Jiande polynomial (Legendre polynomials series) can be implemented. The Lei Jiande polynomial includes a linear combination of Lei Jiande polynomials. The first of the Lei Jiande polynomials The first few terms are listed as follows: P 0 ( x )=1 (1)

P 1 (x )=x (2) P 1 ( x )= x (2)

P 2 (x )=(3x 2 -1)/2 (3) P 2 ( x )=(3 x 2 -1)/2 (3)

P 3 (x )=(5x 3 -3x )/2 (4) P 3 ( x )=(5 x 3 -3 x )/2 (4)

P 4 (x )=(35x 4 -30x 2 +3)/8 (5) P 4 ( x )=(35 x 4 -30 x 2 +3)/8 (5)

P 5 (x )=(63x 5 -70x 3 +15x )/8 (6) P 5 ( x )=(63 x 5 -70 x 3 +15 x )/8 (6)

雷建德多項式在區間[-1,1]為正交(Orthogonal)。詳細的說,可適用於下列關係式: 其中,δ mn 為克羅內克爾函數(Kronecker-delta function),即 The Lei Jiande polynomial is orthogonal (Orthogonal) in the interval [-1, 1]. In detail, it can be applied to the following relations: Where δ mn is the Kronecker-delta function, ie

雷建德多項式可被使用來作為一組基本方程式,以表示時間至數位轉換器之轉換特性。令參考時脈REF與回授時脈FB間之時間差值之瞬間誤差為ε ,可使用雷建德多項式之序列展開(即雷建德多項式的線性組合)表示時間差訊號TD(即時間至數位轉換器TDC之輸出):TD=c 0 P 0 (ε )+c 1 P 1 (ε )+c 2 P 2 (ε )+c 3 P 3 (ε )+c 4 P 4 (ε )+c 5 P 5 (ε )+… (9)The Lei Jiande polynomial can be used as a set of basic equations to represent the conversion characteristics of time to digital converters. The instantaneous error of the time difference between the reference clock REF and the feedback clock FB is ε , and the time difference signal TD (ie, time-to-digital conversion) can be represented by the sequence expansion of the Lei Jiande polynomial (ie, the linear combination of Lei Jiande polynomials) Output of TDC): TD= c 0 P 0 ( ε )+ c 1 P 1 ( ε )+ c 2 P 2 ( ε )+ c 3 P 3 ( ε )+ c 4 P 4 ( ε )+ c 5 P 5 ( ε )+... (9)

於數位分數-N相鎖迴路中利用一三角積分調變器(delta-sigma modulator)任意設定除數值,ε 的值(即參考時脈REF與回授時脈FB時間差之瞬間誤差)可被準確地預測。若展開係數(c 0 ,c 1 ,c 2 ,c 3 ,...)也為已知,則時間差值訊號TD之誤差亦可準確地預估並予以消除。The divisor value is arbitrarily set by a delta-sigma modulator in the digital fraction-N phase lock loop, and the value of ε (ie, the instantaneous error of the time difference between the reference clock REF and the feedback clock FB) can be accurately prediction. If the expansion coefficients ( c 0 , c 1 , c 2 , c 3 , ...) are also known, the error of the time difference signal TD can also be accurately estimated and eliminated.

第2A圖顯示本發明一實施例之數位分數-N相鎖迴路200A之示意圖。數位分數-N相鎖迴路200A包含有一時間至數位轉換器(time-to-digital converter,TDC)210、一消除電路(Cancellation circuit)215、一數位迴路濾波器(Digital loop filter)220、一數位控制振盪器(Digitally controlled oscillator,DCO)230、以及一除法電路(Divider circuit)240。一實施例,消除電路215包含有一加總電路(summation circuit)270與一適應性級數展開函數單元280A。一實施例,除法電路240包含有一雙模數除法器(dual-modulus divider,DMD)250與一個三角積分調變器(Delta-sigma modulator,DSM)260。Figure 2A shows a schematic diagram of a digital fraction-N phase lock loop 200A in accordance with one embodiment of the present invention. The digital fraction-N phase lock loop 200A includes a time-to-digital converter (TDC) 210, a cancellation circuit 215, a digital loop filter 220, and a digital bit. A Digitally Controlled Oscillator (DCO) 230, and a Divider circuit 240. In one embodiment, the cancellation circuit 215 includes a summing circuit (summation) Circuit) 270 and an adaptive series expansion function unit 280A. In one embodiment, the divide circuit 240 includes a dual-modulus divider (DMD) 250 and a delta-sigma modulator (DSM) 260.

一實施例,時間至數位轉換器210用以量測參考時脈REF與回授時脈FB之時間差值,且相應地產生用以表示該時間差值之一時間差值訊號TD(為數位訊號)。加總電路270係用以將時間差值訊號TD減去一預設誤差訊號PE,以產生一餘值誤差訊號(Residual error signal)RE。而數位迴路濾波器220係用以濾波餘值誤差訊號RE,且產生控制碼C。數位控制振盪器230係用以依據控制碼C產生輸出時脈OUT。雙模數除法器250係用以將輸出時脈OUT除以一除數值,以產生回授時脈FB。其中,除數值係由一個二進位運載訊號CARRY所控制。而三角積分調變器260係用以將一分數數值α 調變至該二進位運載訊號CARRY,且依據回授時脈FB提供之時脈產生一時間瞬間誤差訊號ε 。適應性級數展開函數單元280A係用以接收瞬間誤差訊號ε 與餘值誤差訊號RE,且產生預設誤差訊號PE。預設誤差訊號PE可用雷建德多項式級數展開表示: In one embodiment, the time-to-digital converter 210 is configured to measure the time difference between the reference clock REF and the feedback clock FB, and correspondingly generate a time difference signal TD (which is a digital signal) for indicating the time difference. ). The summing circuit 270 is configured to subtract the time difference signal TD by a predetermined error signal PE to generate a residual error signal RE. The digital loop filter 220 is used to filter the residual error signal RE and generate the control code C. The digitally controlled oscillator 230 is operative to generate an output clock OUT in accordance with the control code C. The dual modulus divider 250 is configured to divide the output clock OUT by a divide value to generate a feedback clock FB. Among them, the divisor value is controlled by a binary carry signal CARRY. The triangular integral modulator 260 is configured to adjust a fractional value α to the binary carry signal CARRY, and generate a time instant error signal ε according to the clock provided by the feedback clock FB. The adaptive series expansion function unit 280A is configured to receive the instantaneous error signal ε and the residual error signal RE, and generate a preset error signal PE. The preset error signal PE can be expressed by the Lei Jiande polynomial series expansion:

其中,該些具有小帽(hat)之係數表示方程式(9)中雷建德多項式級數之估計係數。一實施例,該些估計係數可採用以最小均平方(least mean square,LMS)為基礎的演算法: Among them, the coefficients with hats represent the estimated coefficients of the Lei Jiande polynomial series in equation (9). In one embodiment, the estimated coefficients may be based on a least mean square (LMS) algorithm:

其中,μ 為一適應性常數(adaptation constant)。該常數必須足夠小以確保適應性運算的收斂。上標“(old)”表示適應性運算前的一舊的數值(old value),而上標“(new)”表示適應性運算後的一新數值。實 際上,假若時間差值訊號TD被標準化(normalized)與T DCO /2有關(即TD=±1當參考時脈REF與回授時脈FB之時間差為±T DCO /2(其中T DCO 表示輸出時脈OUT之一周期(cycle period))且瞬間誤差訊號ε 亦被標準化(在區間[-1,1]),則μ 的典型數值為0.01。須注意,μ 越大收斂的速度越快,但適應性雜訊(adaptation noise)越大;相反地,μ 越小收斂的速度越慢,但適應性雜訊(adaptation noise)越小。實際上,μ 可在初始狀態時設定為較大的值以幫助收斂;而在收斂之後將μ 設定為較小的值以減少適應性雜訊。一實施例,在初始狀態時,將所有的估計係數設為零且將不會被適應性調整(adapted)直到數位分數-N相鎖迴路達到穩態狀態(steady state condition)。此穩態狀態可由計時器暫停(time-out)來確認(其係依據一預設時間來設置,此預設時間為數位分數-N相鎖迴路達到穩態的時間)、或是由確認時間差值訊號TD已完全落入標準時間區間[-1,1]來確認。該適應性運算可連續或間歇地執行。Where μ is an adaptation constant. This constant must be small enough to ensure convergence of the adaptive operation. The superscript "(old)" indicates an old value before the adaptive operation, and the superscript "(new)" indicates a new value after the adaptive operation. In fact, if the time difference signal TD is normalized to be related to T DCO /2 (ie TD = ±1 when the time difference between the reference clock REF and the feedback clock FB is ± T DCO /2 (where T DCO represents the output) The clock period is cycled and the instantaneous error signal ε is also normalized (in the interval [-1, 1]), then the typical value of μ is 0.01. It should be noted that the larger the μ , the faster the convergence. However, the larger the adaptation noise is; on the contrary, the smaller the μ is, the slower the convergence is, but the smaller the adaptation noise is. In fact, μ can be set to a larger value in the initial state. Values to help converge; and μ is set to a smaller value after convergence to reduce adaptive noise. In one embodiment, in the initial state, all estimated coefficients are set to zero and will not be adaptively adjusted ( Adapted) until the digital fraction-N phase lock loop reaches a steady state condition. This steady state state can be confirmed by a timer timeout (which is set according to a preset time, this preset time For the digital fraction-N phase lock loop to reach steady state time), or by confirming the time difference The signal TD has been completely confirmed by falling into the standard time interval [-1, 1]. The adaptive operation can be performed continuously or intermittently.

簡言之,於一典型實施例中,第2A圖顯示之適應性級數展開函數單元280A係接收瞬間誤差訊號ε 與餘值誤差訊號RE,且依據方程式(10)、(11)與方程式(1)~(6)定義之雷建德多項式來產生預設誤差訊號PE。當雷建德多項式展開(方程式(10))之項次之數值依據使用者之判定選擇時,通常係選擇4~6個項次即足夠得到滿意的準確度。再者,熟悉本領域之技術者可以各種方式、形式實施所有的方程式,只要保有數學上的等效(mathematical equivalence)即可。舉例而言,可轉換雷建德多項式級數至泰勒級數(Taylor series)藉由蒐集瞬間誤差ε 同階(order of power)之項(即蒐集所有ε 的項、所有的ε 2 項、所有的ε 3 項、...)。Briefly, in an exemplary embodiment, the adaptive series expansion function unit 280A shown in FIG. 2A receives the instantaneous error signal ε and the residual error signal RE, and according to equations (10), (11), and equations ( The Lei Jiande polynomial defined by 1)~(6) is used to generate the preset error signal PE. When the value of the Lei Jiande polynomial expansion (equation (10)) is selected according to the user's judgment, it is usually sufficient to select 4 to 6 items to obtain satisfactory accuracy. Moreover, those skilled in the art can implement all the equations in various ways and forms as long as mathematical equivalence is maintained. For example, Legendre polynomials can be converted to a Taylor series (Taylor series) instantaneous error [epsilon] collected by the same order (order of power) of the item (i.e., [epsilon] collected all the items, all items of ε 2, all ε 3 items, ...).

第2B圖顯示本發明另一實施例之數位分數-N相鎖迴路200B之示意圖。該級數展開係以時間差值訊號TD為基礎(替代餘值誤差訊號RE)。於此,一替換的適應性級數展開函數單元280B係用來替代第2A圖之適應性級數展開函數單元280A。相同的雷建德多項式級數(方程式(10))仍然用來估算預測誤差訊號PE,但其係數部份則採用下列公式:Figure 2B shows a schematic diagram of a digital fraction-N phase lock loop 200B in accordance with another embodiment of the present invention. The series expansion is based on the time difference signal TD (instead of the residual error signal RE). Here, an alternative adaptive series expansion function unit 280B is used in place of the adaptive series expansion function unit 280A of FIG. 2A. The same Lei Jiande polynomial series (Equation (10)) is still used to estimate the prediction error signal PE, but the coefficient part uses the following formula:

其中,n=0,1,2,3,...,且〈A ,B 〉表示A乘以B(A times B)的統計平均(statistical average)。簡言之,於本替換之實施例中,第2B圖之適應性級數展開函數單元280B係接收瞬間誤差訊號ε與時間差值訊號TD,且依據方乘式(10)、(12)與由方程式(1)~(6)定義之雷建德多項式來產生預測誤差訊號PE。須注意,再次聲明熟悉本領域之技術者可依據其需求以各種方式、形式實施所有的方程式,只要保有數學上的等效(mathematical equivalence)即可。再者,須注意方程式(12)之單位係預先得知的常數,不需要根據數字估算出。假若瞬間誤差訊號係被標準化且落於預設區間,例如[1,-1],如此便可預先知道,而不須執行下列數字的估算Where n = 0, 1, 2, 3, ..., and < A , B > represents the statistical average of A times B (A times B). In short, in the alternative embodiment, the adaptive series expansion function unit 280B of FIG. 2B receives the instantaneous error signal ε and the time difference signal TD, and according to the square multiplication formulas (10), (12) and The prediction error signal PE is generated by a Lei Jiande polynomial defined by equations (1) to (6). It should be noted that it is again stated that those skilled in the art can implement all equations in various ways and forms according to their needs, as long as mathematical equivalence is maintained. Furthermore, it should be noted that the unit of equation (12) is a constant known in advance and does not need to be estimated based on the number. If the instantaneous error signal is normalized and falls within a preset interval, such as [1, -1], it can be known in advance without performing the estimation of the following numbers.

根據方程式(7)之正交特性。一實施例,於初始狀態下所有估測係數係設定為零,且將不會使用於適應性運算(adapted)直到數位分數-N相鎖迴路達到穩態狀態(steady state condition)。須注意,適應性運算(adaptation)(方程式(12))可連續或間歇地實施。According to the orthogonality of equation (7). In one embodiment, all of the estimated coefficients are set to zero in the initial state and will not be used for adaptation until the digital fractional-N phase locked loop reaches a steady state condition. It should be noted that the adaptation (equation (12)) can be implemented continuously or intermittently.

本發明第2A、2B圖實施例之時間至數位轉換器210與數位控制震盪器230為本領域技術者所熟悉之技術,因此不再贅述其細節。而若不熟悉時間至數位轉換器,可參考美國專利US7205924號。若不熟悉數位控制振盪器可參考美國專利第US7183860號。The time-to-digital converter 210 and the digitally controlled oscillator 230 of the embodiment of the second and second embodiments of the present invention are familiar to those skilled in the art, and thus the details thereof will not be described again. If you are not familiar with the time to digital converter, please refer to US Pat. No. 7,059,924. If it is not familiar with the digitally controlled oscillator, reference is made to U.S. Patent No. 7,718,860.

數位迴路濾波器220可由電路設計者判定依據所需之濾波響應來選擇。於一示例性之實施例中,數位迴路濾波器220可執行下列離散時間系統響應式:H (z )=K P z -1 +K I z -1 /(1-z -1 ) (14)The digital loop filter 220 can be selected by the circuit designer to select based on the desired filter response. In an exemplary embodiment, digital loop filter 220 may perform the following discrete-time system response: H ( z ) = K P z -1 + K I z -1 /(1- z -1 ) (14)

其中,KP 與KI 兩參數可由電路設計者指定。Among them, the two parameters of K P and K I can be specified by the circuit designer.

雙模數除法器250可為一計數式除法器(counter-based divider),其採用之除數值可為Nint (當CARRY為1)或Nint +1(當CARRY為0)。其中,Nint 為數位分數N型相鎖迴路(200A或200B)之數位分數除算比例(fractional division ratio)之整數部份。本領域之技術者只要熟悉相鎖迴路便會熟悉計數式雙模數除法電路之實施方式,因此不再贅述其細節。The dual modulus divider 250 can be a counter-based divider that can have a divisor value of N int (when CARRY is 1) or N int +1 (when CARRY is 0). Where N int is the integer part of the fractional division ratio of the digital fractional N-type interlocking loop (200A or 200B). Those skilled in the art will be familiar with the implementation of the counting type dual modulus division circuit as long as they are familiar with the phase locking circuit, and thus the details thereof will not be described again.

第3圖顯示本發明一實施例之三角積分調變器300之示意圖。三角積分調變器300適用於實施第2A或2B圖中的三角積分調變器260。調變器300係與回授時脈FB同步運作。調變器300包含有一第一加總電路310、一積分器320、舍入運算器(Rounding operator)330、一第二加總電路340、以及一增益/延遲(gain/delay)元件350。調變器300基本上為一累積器(accumulator),其利用積分器320累加分數α (其中0<α <1)。舍入運算器330將累加量進行含入運算,以產生運載訊號CARRY。當累加量超過0.5,運載訊號CARRY為1,且第一加總電路310將累加器之數值-1;而當累加量未超過0.5,運載訊號CARRY為0,此時不須將累加器之數值減去任何數值。依此方式,累加量可被控制在區間[-0.5,0.5],且運載訊號CARRY僅可為0或1。Fig. 3 is a view showing a triangular integral modulator 300 according to an embodiment of the present invention. The delta-sigma modulator 300 is adapted to implement the delta-sigma modulator 260 of the 2A or 2B diagram. The modulator 300 operates in synchronization with the feedback clock FB. The modulator 300 includes a first summing circuit 310, an integrator 320, a rounding operator 330, a second summing circuit 340, and a gain/delay element 350. The modulator 300 is basically an accumulator that accumulates the fraction α (where 0 < α < 1) using the integrator 320. The rounding operator 330 performs an inclusion operation on the accumulated amount to generate the carry signal CARRY. When the accumulated amount exceeds 0.5, the carrier signal CARRY is 1, and the first summing circuit 310 will accumulate the value -1; and when the accumulated amount does not exceed 0.5, the carrier signal CARRY is 0, and the value of the accumulator is not required at this time. Subtract any value. In this way, the accumulated amount can be controlled in the interval [-0.5, 0.5], and the carrier signal CARRY can only be 0 or 1.

瞬間誤差訊號ε係利用第二加總電路340計算舍入運算器330之輸入輸出時間差,且由增益/延遲元件350對該時間差進行延遲及/或縮放產生。如第3圖所示,增益/延遲元件350標記之因子(factor)z-1表示一單位延遲,而因子2為增益因子用以確認瞬間誤差ε之結果是否被標準化落於區間[-1,1]中。The instantaneous error signal ε is used by the second summing circuit 340 to calculate the input and output time difference of the rounding operator 330, and is generated by the gain/delay element 350 by delaying and/or scaling the time difference. As shown in FIG. 3, the factor z-1 of the gain/delay element 350 indicates a unit delay, and the factor 2 is a gain factor to confirm whether the result of the instantaneous error ε is normalized to the interval [-1, 1].

只要不脫離本發明之精神與範圍,本發明之技術可以各種替換的實施例來實現。舉例而言,較高階的三角積分調變器(DSM)亦可使用於本發明。依此方式,進位訊號CARRY不為二進制訊號,而會變為多階整數訊號(Multi-level integer signal),且雙模數除法器須要以多模數除法器來替換。The technology of the present invention can be implemented in various alternative embodiments without departing from the spirit and scope of the invention. For example, a higher order triangular integral modulator (DSM) can also be used with the present invention. In this way, the carry signal CARRY is not a binary signal, but becomes a multi-level integer signal, and the dual modulus divider needs to be replaced by a multi-modulus divider.

另外,各種類的級數展開式亦可用來替換雷建德多項式級數。舉例而言,可利用泰勒級數(Taylor series)、傅利葉級數(Fourier series)、...來替換。熟悉本領域之技術者在不脫離本發明之精神與範疇下,可依據其需求自行判定,以選擇適當的數學級數展開式來應用。例如,選擇泰勒級數來替換時,只須分別將定義於方程式(1)~(6)(n=0~5)之雷建德多項式之方程式Pn(x)替換為(n=0~5)。然而,須注意,方程式之冪次(power functions)彼此不為正交。也就是說,不與正交,假設n不等於m。(兩方程式正交係必須在兩方程式之間沒有統計相關性(zero statistical correlation)才成立。依此方式,第2B圖之實施例200B與方程式(12)合併使用來進行適應性運算(adaptation)並不適當,因為方程式(12)係以正交特性為基礎,方程式(12)的合併使用只有在基礎方程式之展開為正交時才適當。然而,第2B圖之實施例200B仍然可以使用,只要替換之適應性運算包含有格萊姆-施密特正交化方法(Gram-Schmidt orthgonalization)即可。格萊姆-施密特正交化方法為本領域之技術者所熟悉,不再贅述其細節;若不熟悉者,可參考標準的數學教科書。無論如何,在選擇使用第2B圖之實施例200B時,可採用作為級數展開的該些正交方程式。In addition, various types of series expansion can also be used to replace the Lei Jiande polynomial series. For example, it can be replaced with a Taylor series, a Fourier series, .... Those skilled in the art can arbitrarily determine the appropriate mathematical series expansion to apply according to their needs without departing from the spirit and scope of the present invention. For example, when selecting a Taylor series to replace, simply replace the equation Pn(x) of the Lei Jiande polynomial defined in equations (1)~(6)(n=0~5) with (n=0~5). However, it should be noted that the power functions of the equations are not orthogonal to each other. That is, Not with Orthogonal, assuming n is not equal to m. (The two-equation orthogonal system must be established without a zero statistical correlation between the two equations. In this way, the embodiment 200B of FIG. 2B is combined with equation (12) for adaptive operation (adaptation). Not appropriate, since equation (12) is based on orthogonal properties, the combined use of equation (12) is only appropriate if the expansion of the basic equation is orthogonal. However, embodiment 200B of Figure 2B can still be used, As long as the adaptive operation of the replacement includes the Gram-Schmidt orthgonalization method, the Gram-Schmidt orthogonalization method is familiar to those skilled in the art, no longer The details are described; if not, refer to the standard mathematics textbook. In any case, when the embodiment 200B of FIG. 2B is selected, the orthogonal equations developed as a series may be employed.

以上雖以實施例說明本發明,但並不因此限定本發明之範圍,只要不脫離本發明之要旨,熟悉本領域之技術者可進行各種變形或變更,均落入本發明之申請專利範圍之範疇。The present invention has been described in the above, but the scope of the present invention is not limited thereto, and various modifications and changes can be made by those skilled in the art without departing from the scope of the invention. category.

100A、100B、200A、200B‧‧‧相鎖迴路100A, 100B, 200A, 200B‧‧‧ phase lock loop

110、210‧‧‧轉換器110, 210‧‧‧ converter

120、220‧‧‧濾波器120, 220‧‧‧ filter

130、230‧‧‧壓控振盪器130, 230‧‧‧voltage controlled oscillator

140A、140B、240‧‧‧除法電路140A, 140B, 240‧‧‧ division circuit

150、250‧‧‧除法器150, 250‧‧‧ divider

160、260‧‧‧調變器160, 260‧‧ ‧ modulator

270、310、340‧‧‧加總電路270, 310, 340‧‧ ‧ total circuit

280A、280B‧‧‧適應性級數展開函數單元280A, 280B‧‧‧Adaptive series expansion function unit

320‧‧‧積分器320‧‧‧ integrator

330...舍入運算器330. . . Rounding operator

350...增益/延遲元件350. . . Gain/delay element

第1A圖顯示習知數位相鎖迴路之示意圖。Figure 1A shows a schematic diagram of a conventional digital phase lock loop.

第1B圖顯示習知數位分數N型相鎖迴路之示意圖。Figure 1B shows a schematic diagram of a conventional digital fractional N-type phase locked loop.

第1C圖顯示一時間至數位轉換器之轉換特性。Figure 1C shows the conversion characteristics of a time to digital converter.

第2A圖顯示本發明一實施例之數位分數N型相鎖迴路之示意圖。2A is a schematic diagram showing a digital fractional N-type phase locked loop in accordance with an embodiment of the present invention.

第2B圖顯示本發明另一實施例之數位分數N型相鎖迴路之示意圖。2B is a schematic diagram showing a digital fractional N-type phase locked loop according to another embodiment of the present invention.

第3圖顯示第2A、2B圖中三角積分調變器之實施例之示意圖。Figure 3 is a schematic diagram showing an embodiment of a triangular integral modulator in Figures 2A and 2B.

200A‧‧‧相鎖迴路200A‧‧‧phase lock loop

210‧‧‧轉換器210‧‧‧ converter

220‧‧‧濾波器220‧‧‧ filter

230‧‧‧壓控振盪器230‧‧‧Variable Control Oscillator

240‧‧‧除法電路240‧‧‧Division circuit

250‧‧‧除法器250‧‧‧ divider

260‧‧‧調變器260‧‧‧Transformer

270‧‧‧加總電路270‧‧‧ total circuit

280A‧‧‧適應性級數展開函數單元280A‧‧‧Adaptive series expansion function unit

Claims (21)

一種相鎖迴路之裝置,包含有:一時間至數位轉換器,用以將一參考時脈與一回授時脈之時間差值轉換為一時間差值訊號;一消除電路,用以接收該時間差值訊號,且依據該時間差值訊號與一瞬間誤差訊號產生一餘值誤差訊號;一數位迴路濾波器,用以濾波該餘值誤差訊號,以產生一控制碼;一數位控制振盪器,用以依據該控制碼之控制產生一輸出時脈;以及一除法電路,用以接收一分數值(Fractional number),以產生該瞬間誤差訊號;且依據該分數值之控制將該輸出時脈除以一除數值,以產生該回授時脈;其中,該瞬間誤差訊號表示該參考時脈與該回授時脈時間差之瞬間誤差。A phase lock loop device includes: a time to digital converter for converting a time difference between a reference clock and a feedback clock into a time difference signal; and a cancellation circuit for receiving the time a difference signal, and generating a residual error signal according to the time difference signal and a momentary error signal; a digital loop filter for filtering the residual error signal to generate a control code; a digitally controlled oscillator, Generating an output clock according to the control of the control code; and a dividing circuit for receiving a fractional value to generate the instantaneous error signal; and dividing the output clock according to the control of the fractional value The value is divided by a value to generate the feedback clock; wherein the instantaneous error signal indicates an instantaneous error of the time difference between the reference clock and the feedback clock. 如申請專利範圍第1項所記載之裝置,其中該消除電路包含有:一級數展開單元(Series expansion),用以映射(Mapping)該瞬間誤差訊號至一預設誤差訊號;以及一加總電路,將該時間差值減去一預設誤差訊號,以產生該餘值誤差訊號。The device of claim 1, wherein the cancellation circuit comprises: a series expansion unit (Map expansion) for mapping the instantaneous error signal to a preset error signal; The circuit subtracts the time difference from a predetermined error signal to generate the residual error signal. 如申請專利範圍第2項所記載之裝置,其中該級數展開單元係適用於最小化該瞬間誤差訊號與該餘值訊號之相關性(Correlation)。The apparatus of claim 2, wherein the series expansion unit is adapted to minimize Correlation of the instantaneous error signal with the residual signal. 如申請專利範圍第2項所記載之裝置,其中該級數展開單元係適用於計算該時間差值訊號與該瞬間誤差訊號之相關性(Correlation)。The device as recited in claim 2, wherein the series expansion unit is adapted to calculate a correlation (Correlation) of the time difference signal with the instantaneous error signal. 如申請專利範圍第2項所記載之裝置,其中該級數展開單元係一具有適應性係數(Adaptive coefficient)之冪次級數(Power series)。The apparatus of claim 2, wherein the series expansion unit is a power series having an adaptive coefficient. 如申請專利範圍第5項所記載之裝置,其中該適應性係數係以最小均方值(Least mean square,LMS)演算法為基礎。The device as recited in claim 5, wherein the adaptability coefficient is based on a Least Mean Square (LMS) algorithm. 如申請專利範圍第1項所記載之裝置,其中該級數展開單元為一具有適應性係數之雷建德多項式(Legendre polynomial)級數。The apparatus of claim 1, wherein the series expansion unit is a Legendre polynomial series having an adaptive coefficient. 如申請專利範圍第7項所記載之裝置,其中該適應性係數係以最小均方值(Least mean square,LMS)演算法為基礎。The device as recited in claim 7, wherein the adaptability coefficient is based on a Least Mean Square (LMS) algorithm. 如申請專利範圍第1項所記載之裝置,其中該除法電路包含有:一三角積分調變器(Delta-sigma modulator,DSM),用以接收該分數值,以產生一運載訊號(CARRY signal)與該瞬間誤差訊號;以及一除法器,用以依據該運載訊號(CARRY signal)之控制,將該輸出時脈除以一除數因子(divisor factor)。The device of claim 1, wherein the dividing circuit comprises: a delta-sigma modulator (DSM) for receiving the fractional value to generate a CARRY signal. And the instantaneous error signal; and a divider for dividing the output clock by a divisor factor according to the control of the CARRY signal. 如申請專利範圍第9項所記載之裝置,其中該三角積分調變器之運作與該回授訊號同步。The device of claim 9, wherein the operation of the delta-sigma modulator is synchronized with the feedback signal. 如申請專利範圍第9項所記載之裝置,其中當該運載訊號(CARRY signal)為邏輯1時,該除數值為一第一整數;當該運載訊號(CARRY signal)為邏輯0時,該除數值為一第二整數。The device of claim 9, wherein when the CARRY signal is logic 1, the divisor value is a first integer; and when the CARRY signal is logic 0, the divisor is The value is a second integer. 如申請專利範圍第9項所記載之裝置,其中該三角積分調變器包含有至少一積分器(integrator)。The apparatus of claim 9, wherein the delta-sigma modulator comprises at least one integrator. 如申請專利範圍第12項所記載之裝置,其中該三角積分調變器包含有一舍入電路(Rounding circuit)。The device of claim 12, wherein the delta-sigma modulator comprises a rounding circuit. 如申請專利範圍第1項所記載之裝置,其中該分數值係介於0與1之間。The device as recited in claim 1, wherein the score is between 0 and 1. 一種用以減少分數-N相鎖迴路(fractional-N phase lock loop)相位雜訊之方法,包含有:量化一參考時脈與一回授時脈之時間差值,以產生一時間差值訊號;依據該時間差值訊號與一瞬間誤差訊號,產生一餘值誤差訊號;濾波該餘值誤差訊號,以產生一控制碼;利用該控制碼控制一振盪器,以產生一輸出時脈;接收一分數值,以產生該瞬間誤差訊號;以及依據該分數值將該輸出時脈除以一除數值;其中,該瞬間誤差訊號表示該參考時脈與該回授時脈時間差之瞬間誤差。A method for reducing fractional-N phase lock loop phase noise includes: quantizing a time difference between a reference clock and a feedback clock to generate a time difference signal; Generating a residual error signal according to the time difference signal and the instantaneous error signal; filtering the residual error signal to generate a control code; using the control code to control an oscillator to generate an output clock; receiving one Dividing the value to generate the instantaneous error signal; and dividing the output clock by a dividing value according to the fractional value; wherein the instantaneous error signal indicates an instantaneous error of the time difference between the reference clock and the feedback clock. 如申請專利範圍第15項所記載之方法,更包含:以該分數值執行三角積分調變,產生一運載訊號(CARRY signal)與該瞬間誤差訊號;其中,該除數值相對應該運載訊號(CARRY signal)。The method as recited in claim 15 further includes: performing a trigonometric integral modulation on the fractional value to generate a CARRY signal and the instantaneous error signal; wherein the divisor value corresponds to the carrier signal (CARRY) Signal). 如申請專利範圍第15項所記載之方法,其中產生該餘值誤差訊號之步驟包含:利用一級數展開式映射(mapping)該瞬間誤差訊號至該預設誤差訊號;其中,該級數展開式包含有分別有各自之係數的多數個基礎方程式之一線性組合(Linear combination)。The method of claim 15, wherein the step of generating the residual error signal comprises: mapping the instantaneous error signal to the preset error signal by using a first-order number expansion; wherein the series expansion The formula includes a linear combination of a plurality of basic equations each having a respective coefficient. 如申請專利範圍第17項所記載之方法,其中產生該餘值誤差訊號之步驟更包含:採用該些係數中的一係數,係依據一個別基礎方程式與該餘值誤差訊號之間的相關性、或該個別基礎方程式與時間差值訊號間之相關性來選擇。The method of claim 17, wherein the step of generating the residual error signal further comprises: using a coefficient of the coefficients according to a correlation between a base equation and the residual error signal. Or, the correlation between the individual base equation and the time difference signal is selected. 如申請專利範圍第17項所記載之方法,其中該級數展開式為一冪次級數(Power series)。The method of claim 17, wherein the series expansion is a power series. 如申請專利範圍第17項所記載之之方法,其中該級數展開式為一雷建德多項式(Legendre polynomial)級數。The method of claim 17, wherein the series expansion is a Legendre polynomial series. 如申請專利範圍第15項所記載之之方法,其中該分數值係介於0與1之間。The method of claim 15, wherein the score is between 0 and 1.
TW98115959A 2008-05-15 2009-05-14 Fractional-n phase-locked-loop and method TWI397264B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5359608P 2008-05-15 2008-05-15

Publications (2)

Publication Number Publication Date
TW200947873A TW200947873A (en) 2009-11-16
TWI397264B true TWI397264B (en) 2013-05-21

Family

ID=44870438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98115959A TWI397264B (en) 2008-05-15 2009-05-14 Fractional-n phase-locked-loop and method

Country Status (1)

Country Link
TW (1) TWI397264B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876997B1 (en) * 2012-01-19 2018-07-10 삼성전자 주식회사 Oscillator auto trimming method and a semiconductor device using thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580376B2 (en) * 2000-07-10 2003-06-17 Silicon Laboratories, Inc. Apparatus and method for decimating a digital input signal
US6946884B2 (en) * 2002-04-25 2005-09-20 Agere Systems Inc. Fractional-N baseband frequency synthesizer in bluetooth applications
TWI258921B (en) * 2003-12-29 2006-07-21 Teradyne Inc Multi-stage numeric counter oscillator
TW200731677A (en) * 2005-12-05 2007-08-16 Realtek Semiconductor Corp Frequency synthesizer and thereof method
US7327820B2 (en) * 2003-11-05 2008-02-05 Massachusetts Institute Of Technology Method and apparatus for reducing quantization noise in fractional-N frequency synthesizers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580376B2 (en) * 2000-07-10 2003-06-17 Silicon Laboratories, Inc. Apparatus and method for decimating a digital input signal
US6946884B2 (en) * 2002-04-25 2005-09-20 Agere Systems Inc. Fractional-N baseband frequency synthesizer in bluetooth applications
US7327820B2 (en) * 2003-11-05 2008-02-05 Massachusetts Institute Of Technology Method and apparatus for reducing quantization noise in fractional-N frequency synthesizers
TWI258921B (en) * 2003-12-29 2006-07-21 Teradyne Inc Multi-stage numeric counter oscillator
TW200731677A (en) * 2005-12-05 2007-08-16 Realtek Semiconductor Corp Frequency synthesizer and thereof method

Also Published As

Publication number Publication date
TW200947873A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
US7999623B2 (en) Digital fractional-N phase lock loop and method thereof
US5825253A (en) Phase-locked-loop with noise shaper
CN108667458B (en) fractional-N digital PLL capable of eliminating quantization noise from sigma-delta modulator
JP5307291B2 (en) Two-point modulated digital phase-locked loop using accumulator and phase digital converter
TWI589122B (en) Phase noise tolerant sampling
US8717074B2 (en) Reference clock compensation for fractional-N phase lock loops (PLLs)
JP6360386B2 (en) Spread spectrum clock generation circuit
US8058915B2 (en) Digital phase-locked loop and digital phase-frequency detector thereof
US8988121B2 (en) Method and apparatus for generating a reference signal for a fractional-N frequency synthesizer
US7271666B1 (en) Method and apparatus for canceling jitter in a fractional-N phase-lock loop (PLL)
KR102418966B1 (en) Digital phase locked loop and driving method thereof
US7279990B2 (en) Sigma-delta modulator for PLL circuits
US20140354336A1 (en) Digital PLL With Hybrid Phase/Frequency Detector and Digital Noise Cancellation
Waheed et al. Spurious-free time-to-digital conversion in an ADPLL using short dithering sequences
JP2012039551A (en) Pll frequency synthesizer, radio communication device, and control method of pll frequency synthesizer
Seong et al. 17.3 A− 58dBc-Worst-Fractional-Spur and− 234dB-FoM jitter, 5.5 GHz Ring-DCO-Based Fractional-N DPLL Using a Time-Invariant-Probability Modulator, Generating a Nonlinearity-Robust DTC-Control Word
US20140354335A1 (en) Digital Phase Locked Loop with Hybrid Delta-Sigma Phase/Frequency Detector
US7724093B2 (en) Phase locked loop with two-step control
Madoglio et al. Quantization effects in all-digital phase-locked loops
Levantino et al. Nonlinearity cancellation in digital PLLs
TWI397264B (en) Fractional-n phase-locked-loop and method
CN101667832B (en) Fractional-N phase lock device and method thereof
JP2015100081A (en) Spread spectrum clock generator and control method thereof
Lee et al. A 6-GHz All-Digital Fractional-$ N $ Frequency Synthesizer Using FIR-Embedded Noise Filtering Technique
KR101601023B1 (en) Spread spectrum clock generator with digital compensator and method for generating clock using the same