TWI396308B - Light emitting device and method of manufacturing the same - Google Patents

Light emitting device and method of manufacturing the same Download PDF

Info

Publication number
TWI396308B
TWI396308B TW99107890A TW99107890A TWI396308B TW I396308 B TWI396308 B TW I396308B TW 99107890 A TW99107890 A TW 99107890A TW 99107890 A TW99107890 A TW 99107890A TW I396308 B TWI396308 B TW I396308B
Authority
TW
Taiwan
Prior art keywords
metal layer
layer
metal
dielectric layer
substrate
Prior art date
Application number
TW99107890A
Other languages
Chinese (zh)
Other versions
TW201133947A (en
Inventor
Si Chen Lee
yu wei Jiang
Yi Ting Wu
Ming Wei Tsai
Pei En Chang
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW99107890A priority Critical patent/TWI396308B/en
Priority to US12/728,377 priority patent/US8242527B2/en
Publication of TW201133947A publication Critical patent/TW201133947A/en
Application granted granted Critical
Publication of TWI396308B publication Critical patent/TWI396308B/en

Links

Landscapes

  • Led Devices (AREA)

Description

發光裝置及其製造方法Light emitting device and method of manufacturing same

本發明是有關於一種發光裝置及其製造方法,且特別是有關於一種紅外光發光裝置及其製造方法。The present invention relates to a light-emitting device and a method of fabricating the same, and more particularly to an infrared light-emitting device and a method of fabricating the same.

紅外光發光裝置主要係應用於光通訊產業上。目前的紅外光發光裝置僅能夠利用少數方法完成,例如以磊晶技術(Epitaxy)來完成,並且使用半導體元件(III-V族元素)為原料來製作。但是,中長波長之紅外光元件必須於低溫下製作,故需要昂貴的冷凍設備。或者,傳統的紅外光元件需使用到多層膜結構,而增加製程的複雜度。此外,目前紅外光元件之頻譜之半高寬(Full width at half maximum,FWHM)Δλ與尖峰波長(Peak)λ之比值(Δλ/λ)並不理想。Infrared light emitting devices are mainly used in the optical communication industry. The current infrared light-emitting device can be completed only by a few methods, for example, by epitaxial technology, and is fabricated using a semiconductor element (Group III-V element) as a raw material. However, medium and long wavelength infrared light components must be fabricated at low temperatures, so expensive refrigeration equipment is required. Alternatively, conventional infrared light elements require the use of a multilayer film structure to increase process complexity. In addition, the ratio of the full width at half maximum (FWHM) Δλ to the peak wavelength (Peak) λ (Δλ/λ) of the infrared light element is not ideal.

請參照第1A圖、第1B圖及第2圖,第1A圖係繪示先前技術之紅外光發光裝置1之示意圖,第1B圖係繪示第1A圖中紅外光發光裝置1之上視圖,而第2圖係繪示第1A圖中紅外光發光裝置1之頻譜圖。繪示於第1A圖之紅外光發光裝置1係由El-Kady等人於“Photonics and Nanostructures-Fundamentals and Applications”,Volume 1,Issue 1,69-77(2003)中所揭露。El-Kady等人利用黃光製程(Photo process)在矽基板10表面製作出週期性的光阻。接著,於矽基板10表面蒸鍍上金屬12以及保護層(如石墨) 14,再利用深蝕刻(Deep reactive ion etching)技術將矽基板10蝕刻出5μm深的孔洞,以獲得週期性表面結構(Periodic surface texture)。孔洞的黑體輻射源可以耦合光子形成表面電漿子(Surface plasmon,SP)的形式。如第2圖所示,半高寬(Δλ)與尖峰波長(λ)之比值(Δλ/λ)約為11.9%。然而,這樣的比值係無法滿足某些應用上之需求。因此,如何發展出可在高溫下操作且具有較低之半高寬(Δλ)與尖峰波長(λ)之比值(Δλ/λ)之紅外光發光元件,為業界所致力解決之問題之一。Please refer to FIG. 1A, FIG. 1B and FIG. 2 . FIG. 1A is a schematic diagram of a prior art infrared light emitting device 1 , and FIG. 1B is a top view of the infrared light emitting device 1 in FIG. 1A . 2 is a spectrum diagram of the infrared light emitting device 1 in FIG. 1A. The infrared light emitting device 1 shown in Fig. 1A is disclosed by El-Kady et al., "Photonics and Nanostructures-Fundamentals and Applications", Volume 1, Issue 1, 69-77 (2003). El-Kady et al. used a photo process to create a periodic photoresist on the surface of the germanium substrate 10. Next, a metal 12 and a protective layer (such as graphite) are deposited on the surface of the ruthenium substrate 10, and the ruthenium substrate 10 is etched into a hole of 5 μm deep by a deep reactive ion etching technique to obtain a periodic surface structure ( Periodic surface texture). The black body radiation source of the hole can be coupled to the photon to form a surface plasmon (SP). As shown in Fig. 2, the ratio of the full width at half maximum (Δλ) to the peak wavelength (λ) (Δλ/λ) is about 11.9%. However, such ratios are not sufficient for certain applications. Therefore, how to develop an infrared light-emitting element that can operate at a high temperature and has a ratio (Δλ/λ) of a low half-height width (Δλ) to a peak wavelength (λ) is one of the problems that the industry has solved.

有鑑於此,本發明係有關於一種利用設計不同之介電層厚度,對介電層之波導模態作有效的調控,致使發光裝置可在高溫下操作,且可放射出頻寬較窄之紅外光。In view of this, the present invention relates to an effective regulation of a waveguide mode of a dielectric layer by designing different dielectric layer thicknesses, so that the light-emitting device can be operated at a high temperature and can emit a narrow bandwidth. Infrared light.

根據本發明之一方面,提出一種發光裝置,用以產生紅外光。此發光裝置包括一基板、一第一金屬層、一介電層、以及一第二金屬層。基板具有一第一表面。第一金屬層形成於基板之第一表面上。介電層形成於第一金屬層上,介電層之厚度係大於一特定值。第二金屬層形成於介電層上。當該發光裝置被加熱時,該介電層具有一波導模態,使得該發光裝置所產生之紅外光於該介電層中傳遞,於該波導模態中所產生之該紅外光之波長係與該介電層之厚度相關。According to an aspect of the invention, a lighting device is proposed for generating infrared light. The light emitting device includes a substrate, a first metal layer, a dielectric layer, and a second metal layer. The substrate has a first surface. The first metal layer is formed on the first surface of the substrate. The dielectric layer is formed on the first metal layer, and the thickness of the dielectric layer is greater than a specific value. A second metal layer is formed on the dielectric layer. When the illuminating device is heated, the dielectric layer has a waveguide mode such that infrared light generated by the illuminating device is transmitted in the dielectric layer, and the wavelength of the infrared light generated in the waveguide mode is It is related to the thickness of the dielectric layer.

根據本發明之另一方面,提出一種發光裝置之製造方法。此發光裝置用以產生紅外光。此方法包括下列步驟。提供一基板,基板具有一第一表面。形成一第一金屬層於基板之第一表面上。形成一特定厚度之介電層於第一金屬層上。形成一第二金屬層於介電層上。當發光裝置被加熱時,介電層具有一波導模態,使得發光裝置所產生之紅外光於介電層中傳遞,於波導模態中所產生之紅外光之波長係與介電層之厚度相關。According to another aspect of the present invention, a method of fabricating a light emitting device is provided. This illuminating device is used to generate infrared light. This method includes the following steps. A substrate is provided, the substrate having a first surface. Forming a first metal layer on the first surface of the substrate. A dielectric layer of a particular thickness is formed over the first metal layer. A second metal layer is formed on the dielectric layer. When the illuminating device is heated, the dielectric layer has a waveguide mode such that the infrared light generated by the illuminating device is transmitted in the dielectric layer, and the wavelength of the infrared light generated in the waveguide mode and the thickness of the dielectric layer Related.

根據本發明之更一方面,提出一種發光裝置,用以產生紅外光。此發光裝置包括一基板、一第一金屬層、一介電層、以及一第二金屬層。基板具有一第一表面。第一金屬層形成於基板之第一表面上。介電層形成於第一金屬層上,介電層之厚度係小於一特定值。第二金屬層形成於介電層上。第二金屬層具有至少一第一孔洞。According to a further aspect of the invention, a lighting device is proposed for generating infrared light. The light emitting device includes a substrate, a first metal layer, a dielectric layer, and a second metal layer. The substrate has a first surface. The first metal layer is formed on the first surface of the substrate. The dielectric layer is formed on the first metal layer, and the thickness of the dielectric layer is less than a specific value. A second metal layer is formed on the dielectric layer. The second metal layer has at least one first hole.

為讓本發明之上述內容能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to make the above-mentioned contents of the present invention more comprehensible, the following specific embodiments, together with the drawings, are described in detail below:

本揭露書係提出一種發光裝置及其製造方法。發光裝置用以產生紅外光。發光裝置包括一基板、一第一金屬層、一介電層以及一第二金屬層。基板具有一第一表面。第一金屬層形成於基板之第一表面上。介電層形成於第一金屬層上,介電層之厚度係大於一特定值。第二金屬層形成於介電層上。當發光裝置被加熱時,由於介電層之厚度大於一特定值,使得介電層具有一波導模態,讓發光裝置所產生之紅外光可在介電層中傳遞。更且介電層之波導模態所產生之紅外光之波長可藉由調變介電層之厚度來調整之。亦即,介電層之波導模態所產生之紅外光之波長與介電層之厚度相關。The present disclosure proposes a light emitting device and a method of fabricating the same. A light emitting device is used to generate infrared light. The light emitting device includes a substrate, a first metal layer, a dielectric layer and a second metal layer. The substrate has a first surface. The first metal layer is formed on the first surface of the substrate. The dielectric layer is formed on the first metal layer, and the thickness of the dielectric layer is greater than a specific value. A second metal layer is formed on the dielectric layer. When the illuminating device is heated, since the thickness of the dielectric layer is greater than a specific value, the dielectric layer has a waveguide mode, and the infrared light generated by the illuminating device can be transmitted in the dielectric layer. Furthermore, the wavelength of the infrared light generated by the waveguide mode of the dielectric layer can be adjusted by the thickness of the modulation dielectric layer. That is, the wavelength of the infrared light generated by the waveguide mode of the dielectric layer is related to the thickness of the dielectric layer.

第一實施例First embodiment

請參照第3圖,其繪示依照本揭露書之發光裝置的第一實施例之示意圖。如第3圖所示,發光裝置20包括基板210、第一金屬層230、介電層250、第二金屬層270以及第三金屬層290。基板210具有一第一表面211。第一金屬層230形成於基板210之第一表面211上。介電層250形成於第一金屬層230上。介電層250之厚度係大於一特定值,例如1微米(μm)。第二金屬層270形成於介電層250上。第二金屬層270具有一特定之厚度,例如約為3至40奈米(nm)。Please refer to FIG. 3, which is a schematic diagram showing a first embodiment of a light emitting device according to the present disclosure. As shown in FIG. 3, the light emitting device 20 includes a substrate 210, a first metal layer 230, a dielectric layer 250, a second metal layer 270, and a third metal layer 290. The substrate 210 has a first surface 211. The first metal layer 230 is formed on the first surface 211 of the substrate 210. A dielectric layer 250 is formed on the first metal layer 230. The thickness of the dielectric layer 250 is greater than a specific value, such as 1 micrometer (μm). The second metal layer 270 is formed on the dielectric layer 250. The second metal layer 270 has a specific thickness, for example, about 3 to 40 nanometers (nm).

第一金屬層230係作為背景輻射抑制層及紅外光反射層,具有抑制來自基板210之背景輻射以及反射介電層250所產生之紅外光的功能。由於本實施例之第二金屬層270之厚度夠薄,故使得介電層250所產生之紅外光,部分被第二金屬層270反射,部分可穿透第二金屬層270。The first metal layer 230 functions as a background radiation suppression layer and an infrared light reflection layer, and has a function of suppressing background radiation from the substrate 210 and reflecting infrared light generated by the dielectric layer 250. Since the thickness of the second metal layer 270 of the embodiment is thin enough, the infrared light generated by the dielectric layer 250 is partially reflected by the second metal layer 270 and partially penetrates the second metal layer 270.

在本實施例中,第三金屬層290作為發光裝置20之電流導通的加熱源。當第三金屬層290被通以電流時,發光裝置20會被加熱。當發光裝置20被加熱時,來自基板210之背景輻射會被第一金屬層230所阻擋,且第一金屬層230本身之放射率(Emissivity)很小,並不會產生很大之熱輻射。再者,由於介電層250之厚度大於特定值,使得介電層250具有一波導模態。介電層250之熱輻射會被侷限在第一金屬層230及第二金屬層270中來回震盪,且在介電層250中傳遞。當介電層250吸收熱輻射之後,介電層250之電子將由外層軌域躍遷到內層軌域,熱輻射將被轉換成光能。介電層250之熱輻射反覆在介電層250中傳遞與共振之結果,使得一特定紅外光波長的光的強度會被大大地增加。In the present embodiment, the third metal layer 290 serves as a heating source for the conduction of the current of the light-emitting device 20. When the third metal layer 290 is energized, the light emitting device 20 is heated. When the illuminating device 20 is heated, the background radiation from the substrate 210 is blocked by the first metal layer 230, and the first metal layer 230 itself has a small emissivity and does not generate much thermal radiation. Moreover, since the thickness of the dielectric layer 250 is greater than a specific value, the dielectric layer 250 has a waveguide mode. The thermal radiation of the dielectric layer 250 is confined to and oscillated in the first metal layer 230 and the second metal layer 270 and transmitted in the dielectric layer 250. After the dielectric layer 250 absorbs the thermal radiation, the electrons of the dielectric layer 250 will transition from the outer rail domain to the inner rail domain, and the thermal radiation will be converted into light energy. The thermal radiation of the dielectric layer 250 is repeated as a result of the transmission and resonance in the dielectric layer 250 such that the intensity of light at a particular infrared light wavelength is greatly increased.

更詳細地說,基板210可為導體基板、絕緣基板、或半導體基板。第一金屬層230之材質係可選自由金(Au)、銀(Ag)及反射率和放射率在中紅外光波段分別介於0.5至1及0至0.5之金屬及其組合所組成的群組。介電層250之材質可為氧化物(Oxide)、氮化物(Nitride)、或其它介電材料或絕緣材料。第二金屬層270係至少包括銀(Ag)及反射率在中紅外光波段介於0.5至1之金屬二者之一。第三金屬層290至少包含鉬(Mo)金屬及電導係數(electrical conductivity)介於103 至6x105 (1/公分-歐姆)之金屬二者之一。In more detail, the substrate 210 may be a conductor substrate, an insulating substrate, or a semiconductor substrate. The material of the first metal layer 230 is selected from the group consisting of gold (Au), silver (Ag), and a combination of metals and combinations of reflectance and emissivity in the mid-infrared band of 0.5 to 1 and 0 to 0.5, respectively. group. The material of the dielectric layer 250 may be an oxide (Oxide), a nitride (Nitride), or other dielectric material or insulating material. The second metal layer 270 is at least one of silver (Ag) and a metal having a reflectance of 0.5 to 1 in the mid-infrared light band. The third metal layer 290 contains at least one of molybdenum (Mo) metal and a metal having an electrical conductivity of 10 3 to 6 x 10 5 (1/cm-ohm).

在本實施例中,第三金屬層290係形成於基板210之第二表面213上,其中,第二表面213係與第一表面211相對。然而,第三金屬層290並不限於形成於基板210之第二表面213上,也可形成於基板210與第一金屬層230之間。或者是直接以第一金屬層230取代第三金屬層290以作為加熱源,又或者是不需使用到第三金屬層290而可直接對基板210加熱即可。In the embodiment, the third metal layer 290 is formed on the second surface 213 of the substrate 210, wherein the second surface 213 is opposite to the first surface 211. However, the third metal layer 290 is not limited to be formed on the second surface 213 of the substrate 210, and may be formed between the substrate 210 and the first metal layer 230. Alternatively, the third metal layer 290 may be directly replaced by the first metal layer 230 as a heating source, or the substrate 210 may be directly heated without using the third metal layer 290.

由於本實施例係藉由讓介電層250之厚度具有一特定值,使得介電層250具有一波導模態,如此發光裝置被加熱時所產生之紅外光能在介電層250中被傳遞。更且,紅外光反覆在介電層250中傳遞與共振之結果,可得到半高寬(Δλ)與尖峰波長(λ)之比值(Δλ/λ)約3%之紅外光,其係優於第1A圖及第1B圖所示之紅外光發光裝置1的半高寬與尖峰波長之比值。此外,本實施例更可藉由調整介電層之厚度來達到調整紅外波波長的目的。Since the dielectric layer 250 has a waveguide mode by allowing the thickness of the dielectric layer 250 to have a specific value, the infrared light energy generated when the light-emitting device is heated is transmitted in the dielectric layer 250. . Moreover, as a result of the infrared light repeatedly transmitting and resonating in the dielectric layer 250, infrared light having a ratio of a half-height width (Δλ) to a peak wavelength (λ) (Δλ/λ) of about 3% can be obtained, which is superior to The ratio of the full width at half maximum and the peak wavelength of the infrared light emitting device 1 shown in Figs. 1A and 1B. In addition, in this embodiment, the purpose of adjusting the wavelength of the infrared wave can be achieved by adjusting the thickness of the dielectric layer.

請參照第4A~4E圖,其繪示第一實施例之發光裝置20的製造方法之一例。此方法包括下列步驟。首先,如第4A圖所示,提供基板210。接著,如第4B圖所示,形成一第一金屬層230於基板210之第一表面211上,例如以蒸鍍(Vapor deposition)製程形成第一金屬層230。第一金屬層230之厚度可為100奈米(nm),但不以此為限。接著,如第4C圖所示,形成厚度大於特定值之介電層250於第一金屬層230上,例如以蒸鍍製程形成介電層250,但不以此為限。接著,如第4D圖所示,形成第二金屬層270於介電層250上,例如以蒸鍍製程形成第二金屬層270,但不以此為限。最後,如第4E圖所示,形成第三金屬層290於基板210之與第一表面211相對之第二表面213上,例如以蒸鍍製程形成第三金屬層290,但不以此為限;或者是形成第三金屬層290於基板210之第一表面211與第一金屬層230之間(未繪示)。第三金屬層290之厚度可為300nm,但不以此為限。Referring to FIGS. 4A to 4E, an example of a method of manufacturing the light-emitting device 20 of the first embodiment is shown. This method includes the following steps. First, as shown in FIG. 4A, a substrate 210 is provided. Next, as shown in FIG. 4B, a first metal layer 230 is formed on the first surface 211 of the substrate 210, and the first metal layer 230 is formed, for example, by a Vapor deposition process. The thickness of the first metal layer 230 may be 100 nanometers (nm), but is not limited thereto. Next, as shown in FIG. 4C, a dielectric layer 250 having a thickness greater than a specific value is formed on the first metal layer 230, for example, a dielectric layer 250 is formed by an evaporation process, but is not limited thereto. Next, as shown in FIG. 4D, the second metal layer 270 is formed on the dielectric layer 250, for example, the second metal layer 270 is formed by an evaporation process, but is not limited thereto. Finally, as shown in FIG. 4E, the third metal layer 290 is formed on the second surface 213 of the substrate 210 opposite to the first surface 211, for example, by forming a third metal layer 290 by an evaporation process, but not limited thereto. Or forming a third metal layer 290 between the first surface 211 of the substrate 210 and the first metal layer 230 (not shown). The thickness of the third metal layer 290 may be 300 nm, but is not limited thereto.

第二實施例Second embodiment

請參照第5圖,其繪示依照本揭露書之發光裝置的第二實施例之示意圖。如第5圖所示,發光裝置30包括基板310、第一金屬黏著層320、第一金屬層330、第二金屬黏著層340、介電層350、第二金屬層370以及第三金屬層390。本實施例之發光裝置30與第一實施例之發光裝置20不同之處在於本實施例之發光裝置30更包括第一金屬黏著層320以及第二金屬黏著層340。如第5圖所示,第一金屬黏著層320形成於基板310與第一金屬層330之間,而第二金屬黏著層340形成於第一金屬層330與介電層350之間。Please refer to FIG. 5, which is a schematic view showing a second embodiment of a light-emitting device according to the present disclosure. As shown in FIG. 5, the light emitting device 30 includes a substrate 310, a first metal adhesion layer 320, a first metal layer 330, a second metal adhesion layer 340, a dielectric layer 350, a second metal layer 370, and a third metal layer 390. . The illuminating device 30 of the present embodiment is different from the illuminating device 20 of the first embodiment in that the illuminating device 30 of the present embodiment further includes a first metal adhesive layer 320 and a second metal adhesive layer 340. As shown in FIG. 5 , the first metal adhesion layer 320 is formed between the substrate 310 and the first metal layer 330 , and the second metal adhesion layer 340 is formed between the first metal layer 330 and the dielectric layer 350 .

若第一金屬層330與基板310之物理性質,如鍵結強度(bonded strength)太小的話,直接將第一金屬層330形成於基板310上,會使得其彼此之間的牢固性不佳。因此,選自一物理性質介於基板310與第一金屬層330之間的第一金屬黏著層320,可增加基板310之第一表面311與第一金屬層330之第一表面331之間的牢固性。相似的,選自一物理性質介於第一金屬層330與介電層350之間的第二金屬黏著層340,可以增加第一金屬層330之第二表面332與介電層350之第一表面351的牢固性。如此,當發光裝置30被加熱至高溫時,可大幅降低基板與第一金屬層、或第一金屬層與介電層之間產生剝離之機率。If the physical properties of the first metal layer 330 and the substrate 310, such as the bonded strength, are too small, the first metal layer 330 is directly formed on the substrate 310, which may result in poor robustness to each other. Therefore, the first metal adhesion layer 320, which is physically between the substrate 310 and the first metal layer 330, can be added between the first surface 311 of the substrate 310 and the first surface 331 of the first metal layer 330. Firmness. Similarly, selecting a second metal adhesion layer 340 having a physical property between the first metal layer 330 and the dielectric layer 350 may increase the first surface 332 of the first metal layer 330 and the first of the dielectric layer 350. The firmness of the surface 351. Thus, when the light-emitting device 30 is heated to a high temperature, the probability of occurrence of peeling between the substrate and the first metal layer or between the first metal layer and the dielectric layer can be greatly reduced.

上述之第一金屬黏著層320與第二金屬黏著層340之材質係選自由表面鍵結強度大於20百萬帕(Mpa)之過渡金屬(transition metal),例如鈦(Ti)、鉻(Cr)、鉭(Ta)及鋯(Zr)等及表面鍵結強度大於金(Au)與二氧化矽(SiO2 )之金屬及其組合所組成的群組。The material of the first metal adhesion layer 320 and the second metal adhesion layer 340 is selected from a transition metal having a surface bonding strength of more than 20 MPa, such as titanium (Ti) or chromium (Cr). A group consisting of tantalum (Ta) and zirconium (Zr) and the like, and a metal having a surface bonding strength greater than that of gold (Au) and cerium oxide (SiO 2 ) and combinations thereof.

第三實施例Third embodiment

請參照第6A圖,其繪示依照本揭露書之發光裝置40的第三實施例之示意圖,第6B圖為第6A圖之發光裝置40之上視圖。如第6A圖所示,發光裝置40包括基板410、第一金屬黏著層420、第一金屬層430、第二金屬黏著層440、介電層450、第二金屬層470以及第三金屬層490。本實施例之發光裝置40與第二實施例之發光裝置30不同之處在於,本實施例之第二金屬層470具有至少一孔洞。如第6A及6B圖所示,本實施例係以第二金屬層470具有多個孔洞471為例作說明。Please refer to FIG. 6A, which is a schematic diagram of a third embodiment of a light-emitting device 40 according to the present disclosure, and FIG. 6B is a top view of the light-emitting device 40 of FIG. 6A. As shown in FIG. 6A, the light emitting device 40 includes a substrate 410, a first metal adhesion layer 420, a first metal layer 430, a second metal adhesion layer 440, a dielectric layer 450, a second metal layer 470, and a third metal layer 490. . The illuminating device 40 of the present embodiment is different from the illuminating device 30 of the second embodiment in that the second metal layer 470 of the embodiment has at least one hole. As shown in FIGS. 6A and 6B, the present embodiment is described by taking a plurality of holes 471 of the second metal layer 470 as an example.

由於第二金屬層470具有至少一孔洞471,因此,當發光裝置40被加熱時,在介電層450之波導模態中傳遞之紅外光可經由孔洞471穿透出。因此,本實施例之第二金屬層470之厚度並沒有特定範圍之限制。此外,此至少一孔洞471可以微影製程(Lithography)形成。Since the second metal layer 470 has at least one hole 471, the infrared light transmitted in the waveguide mode of the dielectric layer 450 can be penetrated through the hole 471 when the light emitting device 40 is heated. Therefore, the thickness of the second metal layer 470 of the present embodiment is not limited by a specific range. Furthermore, the at least one hole 471 can be formed by Lithography.

再者,由於第二金屬層470具有至少一孔洞471,當發光裝置40被加熱時,也會引發介電層450和第二金屬層470之介面、以及第二金屬層470和空氣之介面的表面電漿模態。亦即,當發光裝置40被加熱時,介電層450具有兩種模態,一種是表面電漿模態,另一種是波導模態。波導模態所產生之紅外光係與介電層450之厚度相關,而於表面電漿模態中,藉由介電層450和第二金屬層470之介面、以及第二金屬層470和空氣之介面附近的電場振動(Oscillation),來產生之紅外光。由於電場振動之頻率係與孔洞之排列週期有關,因此,表面電漿模態所產生之紅外光係與第二金屬層470之孔洞471的排列週期相關。因此,可藉由縮小孔洞471的排列週期,使得表面電漿模態所產生之紅外光之波長減少,而使表面電漿模態所產生之紅外光與波導模態所產生之紅外光的波長不同。Moreover, since the second metal layer 470 has at least one hole 471, when the light-emitting device 40 is heated, the interface between the dielectric layer 450 and the second metal layer 470, and the interface between the second metal layer 470 and the air interface are also induced. Surface plasma mode. That is, when the light emitting device 40 is heated, the dielectric layer 450 has two modes, one is a surface plasma mode and the other is a waveguide mode. The infrared light generated by the waveguide mode is related to the thickness of the dielectric layer 450, and in the surface plasma mode, the interface between the dielectric layer 450 and the second metal layer 470, and the second metal layer 470 and air. The electric field vibration near the interface (Oscillation) to generate infrared light. Since the frequency of the electric field vibration is related to the arrangement period of the holes, the infrared light generated by the surface plasma mode is related to the arrangement period of the holes 471 of the second metal layer 470. Therefore, by reducing the arrangement period of the holes 471, the wavelength of the infrared light generated by the surface plasma mode is reduced, and the infrared light generated by the surface plasma mode and the wavelength of the infrared light generated by the waveguide mode are reduced. different.

請參照第7圖,其繪示第6A圖之發光裝置的頻譜圖。當第三金屬層490被通以電流時,發光裝置40會被加熱,可量測到發光裝置40所發射之光線之頻譜如第7圖所示。在第7圖中,介電層450之波導模態的基本模態所產生之紅外光波長係對應於空心方型所標示之紅外光波長,介電層450之表面電漿模態所產生之紅外光波長則是對應於菱形所標示之紅外光波長。如第7圖所示,當介電層450之厚度由1.1μm逐漸增加至2.6μm,介電層450之波導模態的基本模態所產生之紅外光波長會遠離介電層450之表面電漿模態所產生之紅外光波長。因此,可藉由設計不同之介電層450的厚度,可調整所產生之紅外光之波長。Please refer to FIG. 7, which shows a spectrogram of the light-emitting device of FIG. 6A. When the third metal layer 490 is energized, the light-emitting device 40 is heated, and the spectrum of the light emitted by the light-emitting device 40 can be measured as shown in FIG. In FIG. 7, the wavelength of the infrared light generated by the basic mode of the waveguide mode of the dielectric layer 450 corresponds to the wavelength of the infrared light indicated by the hollow square shape, and the surface plasma mode of the dielectric layer 450 is generated. The wavelength of the infrared light corresponds to the wavelength of the infrared light indicated by the diamond. As shown in FIG. 7, when the thickness of the dielectric layer 450 is gradually increased from 1.1 μm to 2.6 μm, the wavelength of the infrared light generated by the basic mode of the waveguide mode of the dielectric layer 450 is far from the surface of the dielectric layer 450. The wavelength of the infrared light produced by the slurry mode. Therefore, the wavelength of the generated infrared light can be adjusted by designing the thickness of the different dielectric layer 450.

於實際實驗之結果,如第8圖所示,本實施例之發光裝置所產生之紅外光的半高寬(Δλ)與尖峰波長(λ)之比值(Δλ/λ)可以降低到約3%。藉此,本實施例可以提供一個可在高溫操作,且為頻帶較窄之紅外光光源。As a result of actual experiments, as shown in FIG. 8, the ratio of the full width at half maximum (Δλ) of the infrared light generated by the light-emitting device of the present embodiment to the peak wavelength (λ) (Δλ/λ) can be reduced to about 3%. . Thereby, the present embodiment can provide an infrared light source that can operate at a high temperature and has a narrow frequency band.

第四實施例Fourth embodiment

請參照第9圖,其繪示依照本發明之發光裝置的第四實施例之示意圖。如第9圖所示,發光裝置50包括基板510、第一金屬層530、介電層550、第二金屬層570以及第三金屬層590。本實施例之發光裝置50與第一實施例之發光裝置20不同之處在於,本實施例之介電層550之厚度係小於一特定值,且第二金屬層570具有至少一孔洞571。如第9圖所示,本實施例係以第二金屬層570具有多個孔洞571為例作說明。Please refer to FIG. 9, which is a schematic view showing a fourth embodiment of a light-emitting device according to the present invention. As shown in FIG. 9, the light emitting device 50 includes a substrate 510, a first metal layer 530, a dielectric layer 550, a second metal layer 570, and a third metal layer 590. The illuminating device 50 of the present embodiment is different from the illuminating device 20 of the first embodiment in that the thickness of the dielectric layer 550 of the present embodiment is less than a specific value, and the second metal layer 570 has at least one hole 571. As shown in FIG. 9, the present embodiment is described by taking a plurality of holes 571 of the second metal layer 570 as an example.

由於本揭露書之其它些實施例係藉由介電層之厚度大於特定值,使得介電層具有波導模態,藉此來產生紅外光。相較下,本實施例係藉由減少介電層之厚度,使得發光裝置所產生之紅外光係由表面電漿模態所產生的。Other embodiments of the present disclosure provide infrared light by virtue of the thickness of the dielectric layer being greater than a particular value such that the dielectric layer has a waveguide mode. In contrast, in the present embodiment, by reducing the thickness of the dielectric layer, the infrared light generated by the light-emitting device is generated by the surface plasma mode.

在本實施例中,藉由介電層550之厚度小於特定值,例如,500nm,介電層550與第二金屬層570產生表面電漿模態並且耦合到第一金屬層530。如第10圖所示,介電層550之厚度越小,介電層550與第二金屬層570產生的表面電漿模態與誘發的介電層550與第一金屬層530產生的表面電漿模態耦合愈強,而使得介電層550的折射係數(refractive index)改變,進而影響發光波長,更明確的說,發光波長與週期和介電層550的折射係數有關。如第11圖所示,當介電層550之厚度接近100nm時,表面電漿模態所產生之紅外光的半高寬(Δλ)與尖峰波長(λ)之比值(Δλ/λ)約為10%。其亦優於第1A圖及第1B圖所示之紅外光發光裝置1的半高寬與尖峰波長之比值。In the present embodiment, the dielectric layer 550 and the second metal layer 570 generate a surface plasma modality and are coupled to the first metal layer 530 by the thickness of the dielectric layer 550 being less than a specific value, for example, 500 nm. As shown in FIG. 10, the smaller the thickness of the dielectric layer 550, the surface plasma mode generated by the dielectric layer 550 and the second metal layer 570 and the surface electrical power generated by the induced dielectric layer 550 and the first metal layer 530. The stronger the slurry mode coupling, the more the refractive index of the dielectric layer 550 changes, which in turn affects the wavelength of the light. More specifically, the wavelength of the light is related to the refractive index of the period and dielectric layer 550. As shown in FIG. 11, when the thickness of the dielectric layer 550 is close to 100 nm, the ratio of the full width at half maximum (Δλ) of the infrared light generated by the surface plasma mode to the peak wavelength (λ) (Δλ/λ) is about 10%. It is also superior to the ratio of the full width at half maximum to the peak wavelength of the infrared light emitting device 1 shown in FIGS. 1A and 1B.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

1...紅外光發光裝置1. . . Infrared light emitting device

10...矽基板10. . .矽 substrate

12...金屬12. . . metal

14...保護層14. . . The protective layer

20、30、40、50...發光裝置20, 30, 40, 50. . . Illuminating device

210、310、410、510...基板210, 310, 410, 510. . . Substrate

211、311...基板之第一表面211, 311. . . First surface of the substrate

213...基板之第二表面213. . . Second surface of the substrate

230、330、430、530...第一金屬層230, 330, 430, 530. . . First metal layer

250、350、450、550...介電層250, 350, 450, 550. . . Dielectric layer

270、370、470、570...第二金屬層270, 370, 470, 570. . . Second metal layer

290、390、490、590...第三金屬層290, 390, 490, 590. . . Third metal layer

331...第一金屬層之第一表面331. . . First surface of the first metal layer

332...第一金屬層之第二表面332. . . Second surface of the first metal layer

351...介電層之第一表面351. . . First surface of the dielectric layer

471、571...孔洞471, 571. . . Hole

第1A圖係繪示先前技術之紅外光發光裝置之示意圖。Fig. 1A is a schematic view showing a prior art infrared light emitting device.

第1B圖係繪示第1A圖中紅外光發光裝置之上視圖。Fig. 1B is a top view showing the infrared light emitting device in Fig. 1A.

第2圖係繪示第1A圖中紅外光發光裝置之頻譜圖。Fig. 2 is a spectrum diagram showing the infrared light emitting device in Fig. 1A.

第3圖係繪示本揭露書之發光裝置之第一實施例的示意圖。Figure 3 is a schematic view showing a first embodiment of the light-emitting device of the present disclosure.

第4A~4E圖係繪示第一實施例之發光裝置的製造流程。4A to 4E are views showing a manufacturing process of the light-emitting device of the first embodiment.

第5圖係繪示本揭露書之發光裝置之第二實施例的示意圖。Figure 5 is a schematic view showing a second embodiment of the light-emitting device of the present disclosure.

第6A圖係繪示本揭露書之發光裝置之第三實施例的示意圖。Figure 6A is a schematic view showing a third embodiment of the light-emitting device of the present disclosure.

第6B圖係繪示第6A圖中發光裝置之上視圖。Fig. 6B is a top view showing the illuminating device of Fig. 6A.

第7圖係繪示第6A圖中發光裝置之頻譜圖。Figure 7 is a diagram showing the spectrum of the light-emitting device of Figure 6A.

第8圖係繪示第6A圖中發光裝置之另一頻譜圖。Figure 8 is a diagram showing another spectrum of the light-emitting device of Figure 6A.

第9圖係繪示本揭露書之發光裝置之第四實施例的示意圖。Figure 9 is a schematic view showing a fourth embodiment of the light-emitting device of the present disclosure.

第10圖係繪示第9圖中發光裝置在不同介電層厚度時,表面電漿耦合對於介電層折射率的變化圖。Figure 10 is a graph showing the change of surface plasma coupling to the refractive index of the dielectric layer when the light-emitting device of Figure 9 is at different dielectric layer thicknesses.

第11圖係繪示第9圖中發光裝置之頻譜圖。Figure 11 is a diagram showing the spectrum of the light-emitting device of Figure 9.

20...發光裝置20. . . Illuminating device

210...基板210. . . Substrate

211...基板之第一表面211. . . First surface of the substrate

213...基板之第二表面213. . . Second surface of the substrate

230...第一金屬層230. . . First metal layer

250...介電層250. . . Dielectric layer

270...第二金屬層270. . . Second metal layer

290...第三金屬層290. . . Third metal layer

Claims (19)

一種發光裝置(light emitting device),用以產生紅外光,包括:一基板,該基板具有一第一表面;一第一金屬層,形成於該基板之該第一表面上;一介電層(dielectric layer),形成於該第一金屬層上,該介電層之厚度係大於一特定值;以及一第二金屬層,形成於該介電層上;其中,當該發光裝置被加熱時,該介電層具有一波導模態,使得該發光裝置所產生之紅外光於該介電層中傳遞,於該波導模態中所產生之該紅外光之波長係與該介電層之厚度相關。A light emitting device for generating infrared light includes: a substrate having a first surface; a first metal layer formed on the first surface of the substrate; and a dielectric layer ( a dielectric layer formed on the first metal layer, the dielectric layer having a thickness greater than a specific value; and a second metal layer formed on the dielectric layer; wherein, when the light emitting device is heated, The dielectric layer has a waveguide mode such that infrared light generated by the light emitting device is transmitted in the dielectric layer, and the wavelength of the infrared light generated in the waveguide mode is related to the thickness of the dielectric layer . 如申請專利範圍第1項所述之發光裝置,更包括一第一金屬黏著層及一第二金屬黏著層,該第一金屬黏著層形成於該基板與該第一金屬層之間,該第二金屬黏著層形成於該第一金屬層與該介電層之間,該第一金屬黏著層與該第二金屬黏著層之材質係選自由表面鍵結強度大於20百萬帕(Mpa)之過渡金屬(transition metal)及表面鍵結強度大於金(Au)與二氧化矽(SiO2)之金屬及其組合所組成的群組。The illuminating device of claim 1, further comprising a first metal adhesive layer and a second metal adhesive layer, the first metal adhesive layer being formed between the substrate and the first metal layer, the first a second metal adhesion layer is formed between the first metal layer and the dielectric layer, and the material of the first metal adhesion layer and the second metal adhesion layer is selected from a surface bonding strength greater than 20 megapascals (Mpa). A transition metal and a group having a surface bonding strength greater than that of gold (Au) and cerium oxide (SiO2) and combinations thereof. 如申請專利範圍第1項所述之發光裝置,更包括一第三金屬層,形成於該基板與該第一金屬層之間或該基板之一第二表面上,該第二表面係與該第一表面相對。The illuminating device of claim 1, further comprising a third metal layer formed between the substrate and the first metal layer or a second surface of the substrate, the second surface The first surface is opposite. 如申請專利範圍第3項所述之發光裝置,其中該第三金屬層至少包含鉬(Mo)金屬及電導係數(electrical conductivity)介於103 至6x105 (1/公分-歐姆)之金屬二者之一。The illuminating device of claim 3, wherein the third metal layer comprises at least molybdenum (Mo) metal and a metal having an electrical conductivity of 10 3 to 6×10 5 (1/cm-ohm) One of them. 如申請專利範圍第1項所述之發光裝置,其中該第一金屬層之材質係選自由金(Au)、銀(Ag)及反射率及放射率在中紅外光波段分別介於0.5至1及0至0.5之金屬及其組合所組成的群組。The illuminating device of claim 1, wherein the material of the first metal layer is selected from the group consisting of gold (Au), silver (Ag), and reflectance and emissivity in the mid-infrared band of 0.5 to 1 respectively. And a group of metals from 0 to 0.5 and combinations thereof. 如申請專利範圍第1項所述之發光裝置,其中該第二金屬層之厚度約為3至40奈米(nm)。The illuminating device of claim 1, wherein the second metal layer has a thickness of about 3 to 40 nanometers (nm). 如申請專利範圍第1項所述之發光裝置,其中該第二金屬層具有至少一第一孔洞,當該發光裝置被加熱時,該至少一第一孔洞使該介電層具有一表面電漿模態,於該表面電漿模態中所產生之該紅外光之波長係與於該波導模態中所產生之該紅外光之波長不同。The illuminating device of claim 1, wherein the second metal layer has at least one first hole, and the at least one first hole causes the dielectric layer to have a surface plasma when the illuminating device is heated In the modality, the wavelength of the infrared light generated in the surface plasma mode is different from the wavelength of the infrared light generated in the waveguide mode. 如申請專利範圍第1項所述之發光裝置,其中該第二金屬層係至少包含銀(Ag)及反射率在中紅外光波段介於0.5至1之金屬二者之一。The illuminating device of claim 1, wherein the second metal layer comprises at least one of silver (Ag) and a metal having a reflectance of 0.5 to 1 in the mid-infrared light band. 如申請專利範圍第1項所述之發光裝置,其中該基板為導體基板、絕緣基板或半導體基板。The light-emitting device according to claim 1, wherein the substrate is a conductor substrate, an insulating substrate or a semiconductor substrate. 一種發光裝置(Light emitting device)之製造方法,該發光裝置用以產生紅外光,該方法包括:提供一基板,該基板具有一第一表面;形成一第一金屬層於該基板之該第一表面上;形成一特定厚度之介電層(dielectric layer)於該第一金屬層上;以及形成一第二金屬層於該介電層上;其中,當該發光裝置被加熱時,該介電層具有一波導模態,使得該發光裝置所產生之紅外光於該介電層中傳遞,於該波導模態中所產生之該紅外光之波長係與該介電層之厚度相關。A method of manufacturing a light emitting device for generating infrared light, the method comprising: providing a substrate having a first surface; forming the first metal layer on the first of the substrate Forming a dielectric layer of a specific thickness on the first metal layer; and forming a second metal layer on the dielectric layer; wherein, when the light emitting device is heated, the dielectric The layer has a waveguide mode such that infrared light generated by the illumination device is transmitted in the dielectric layer, and the wavelength of the infrared light generated in the waveguide mode is related to the thickness of the dielectric layer. 如申請專利範圍第10項所述之方法,更包括:形成一第一金屬黏著層於該基板與該第一金屬層之間;以及形成一第二金屬黏著層形成於該第一金屬層與該介電層之間。The method of claim 10, further comprising: forming a first metal adhesion layer between the substrate and the first metal layer; and forming a second metal adhesion layer formed on the first metal layer Between the dielectric layers. 如申請專利範圍第10項所述之方法,其中該第一金屬層係以蒸鍍(vapor deposition)製程形成於該基板之該第一表面上。The method of claim 10, wherein the first metal layer is formed on the first surface of the substrate by a vapor deposition process. 如申請專利範圍第10項所述之方法,其中該介電層係以蒸鍍製程形成於該第一金屬層上。The method of claim 10, wherein the dielectric layer is formed on the first metal layer by an evaporation process. 如申請專利範圍第10項所述之方法,其中該第二金屬層具有至少一第一孔洞。The method of claim 10, wherein the second metal layer has at least one first hole. 如申請專利範圍第14項所述之方法,其中該第二金屬層之該至少一第一孔洞係以微影製程(lithography)形成,當該發光裝置被加熱時,該至少一第一孔洞使該介電層具有一表面電漿模態,於該表面電漿模態中所產生之該紅外光之波長係與於該波導模態中所產生之該紅外光之波長不同。The method of claim 14, wherein the at least one first hole of the second metal layer is formed by lithography, and the at least one first hole is made when the light emitting device is heated. The dielectric layer has a surface plasma mode, and the wavelength of the infrared light generated in the surface plasma mode is different from the wavelength of the infrared light generated in the waveguide mode. 如申請專利範圍第10項所述之方法,更包括:形成一第三金屬層於該基板與該第一金屬層之間或該基板之一第二表面上,該第一表面係與該第二表面相對。The method of claim 10, further comprising: forming a third metal layer between the substrate and the first metal layer or a second surface of the substrate, the first surface system and the first surface The two surfaces are opposite. 如申請專利範圍第10項所述之方法,其中該第三金屬層係以蒸鍍製程形成。The method of claim 10, wherein the third metal layer is formed by an evaporation process. 一種發光裝置(light emitting device),用以產生紅外光,包括:一基板,該基板具有一第一表面;一第一金屬層,形成於該基板之該第一表面上;一介電層(dielectric layer),形成於該第一金屬層上,該介電層之厚度係小於500奈米(nm);以及一第二金屬層,形成於該介電層上;其中,該第二金屬層具有至少一第一孔洞。A light emitting device for generating infrared light includes: a substrate having a first surface; a first metal layer formed on the first surface of the substrate; and a dielectric layer ( a dielectric layer formed on the first metal layer, the dielectric layer having a thickness of less than 500 nanometers (nm); and a second metal layer formed on the dielectric layer; wherein the second metal layer There is at least one first hole. 如申請專利範圍第18項所述之發光裝置,其中,當該發光裝置被加熱時,該介電層具有一表面電漿模態,使得該發光裝置所產生之紅外光於該介電層和該第二金屬層之介面以及該第二金屬層和空氣之介面傳遞。The illuminating device of claim 18, wherein when the illuminating device is heated, the dielectric layer has a surface plasma mode such that infrared light generated by the illuminating device is in the dielectric layer and The interface of the second metal layer and the interface of the second metal layer and the air are transferred.
TW99107890A 2006-11-02 2010-03-17 Light emitting device and method of manufacturing the same TWI396308B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99107890A TWI396308B (en) 2010-03-17 2010-03-17 Light emitting device and method of manufacturing the same
US12/728,377 US8242527B2 (en) 2006-11-02 2010-03-22 Light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99107890A TWI396308B (en) 2010-03-17 2010-03-17 Light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201133947A TW201133947A (en) 2011-10-01
TWI396308B true TWI396308B (en) 2013-05-11

Family

ID=46751321

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99107890A TWI396308B (en) 2006-11-02 2010-03-17 Light emitting device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI396308B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212312A1 (en) 2020-04-21 2021-10-28 重庆康佳光电技术研究院有限公司 Light-emitting diode and light purification method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092311A (en) * 2003-04-26 2004-11-03 한국과학기술원 Structure and fabrication method for one-dimensional metallo-dielectric photonic crystal with antireflection film
US20070034978A1 (en) * 2004-06-17 2007-02-15 Pralle Martin U Photonic crystal emitter, detector and sensor
TW200802929A (en) * 2006-06-14 2008-01-01 Univ Nat Taiwan Light emitting device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040092311A (en) * 2003-04-26 2004-11-03 한국과학기술원 Structure and fabrication method for one-dimensional metallo-dielectric photonic crystal with antireflection film
US20070034978A1 (en) * 2004-06-17 2007-02-15 Pralle Martin U Photonic crystal emitter, detector and sensor
TW200802929A (en) * 2006-06-14 2008-01-01 Univ Nat Taiwan Light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201133947A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
US6611085B1 (en) Photonically engineered incandescent emitter
JP3576859B2 (en) Light emitting device and system using the same
US7418179B2 (en) Surface plasmon devices
US8242527B2 (en) Light emitting device and method of manufacturing the same
CN107850289B (en) Optically enhanced solid state light converter
JP5689934B2 (en) light source
JP2005501383A5 (en)
WO2003081673A1 (en) Surface plasmon devices
JP5470654B2 (en) Mounting method of superconducting single photon detector
Feng et al. SiO2/TiO2 distributed Bragg reflector near 1.5 μm fabricated by e-beam evaporation
JP2011222211A (en) Infrared light source
JP2005340625A5 (en)
TWI396308B (en) Light emitting device and method of manufacturing the same
JP6828920B2 (en) Heating type light source
US20070290189A1 (en) Light emitting device and method of manufacturing the same
JP6217120B2 (en) Wavelength conversion element and wavelength conversion device
WO2024087270A1 (en) Mems infrared light source with improved photoelectric conversion efficiency
CN204290028U (en) Based on the practical saturable absorption device of two-dimensional layer material
JP2010123819A (en) Laser medium
TWI430327B (en) Thermal emitter and fabricating method thereof
JP5344393B2 (en) Mounting method of superconducting single photon detector components
CN113193105B (en) Superconducting nanowire single photon detector based on topological optimization
JP2004140323A (en) Semiconductor laser and its manufacturing method
US10672947B2 (en) Method for producing light-emitting device
JPH07302953A (en) Semiconductor laser element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees