TWI394200B - Method and system for introducing process fluid through a chamber component - Google Patents
Method and system for introducing process fluid through a chamber component Download PDFInfo
- Publication number
- TWI394200B TWI394200B TW97120698A TW97120698A TWI394200B TW I394200 B TWI394200 B TW I394200B TW 97120698 A TW97120698 A TW 97120698A TW 97120698 A TW97120698 A TW 97120698A TW I394200 B TWI394200 B TW I394200B
- Authority
- TW
- Taiwan
- Prior art keywords
- chamber
- processing
- dielectric
- opening
- component
- Prior art date
Links
Landscapes
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
本發明係關於一種經由腔室構件導入處理流體的方法與系統,尤其係關於一種經由處理系統中之腔室構件而導入處理流體的方法與系統。The present invention relates to a method and system for introducing a treatment fluid via a chamber member, and more particularly to a method and system for introducing a treatment fluid via a chamber member in a treatment system.
在半導體產業中,積體電路(IC,integrated circuits)的製造典型上係利用電漿,在處理室內產生並且協助從基板移除材料以及將材料沉積在基板上所需的表面化學作用。一般而言,吾人可在真空條件下藉由在電場存在時加熱電子,至具有足以維持與所供應之處理氣體產生游離碰撞的能量,而在處理室內形成電漿。此外,受熱電子可具有足以維持解離碰撞的能量,並因此選擇處於預定條件下(例如腔室壓力、氣體流率等等)的特定氣體組,以產生一群適合在腔室內執行的特定處理(例如從基板移除材料的蝕刻處理或將材料加至基板的沉積處理)之帶電物種以及化學反應性物種。在半導體製造中,存在許多用以產生電漿的技術,包含但不限於電容耦合式電漿(CCP,capacitively coupled plasma)系統、感應耦合式電漿(ICP,inductively coupled plasma)系統、電子迴旋共振(ECR,electron cyclotron resonance)電漿系統、螺旋波電漿系統、表面波電漿系統、開槽平面天線(SPA,slotted plane antenna)電漿系統等等。電漿係由所供應之處理氣體與在無線射頻(RF,radio frequency)或微波頻譜之頻率下傳遞的電磁(EM,electro-magnetic)之間的交互作用所形成。所有這些系統的共通點為利用介電構件,透過其或於其中,可造成電場。再者,理想上係可經由這些介電構件導入處理氣體,而避免在這些介電構件內的電崩潰或放電。In the semiconductor industry, the fabrication of integrated circuits (ICs) typically utilizes plasma, the surface chemistry that is generated within the processing chamber and assists in removing material from the substrate and depositing the material on the substrate. In general, we can form a plasma in a processing chamber under vacuum conditions by heating electrons in the presence of an electric field to an energy sufficient to maintain a free collision with the supplied process gas. In addition, the heated electrons may have sufficient energy to sustain the dissociation collision, and thus select a particular gas group under predetermined conditions (eg, chamber pressure, gas flow rate, etc.) to produce a population of specific treatments suitable for execution within the chamber (eg, Charged species and chemically reactive species that remove the etch process of the material from the substrate or the deposition process that adds the material to the substrate. In semiconductor manufacturing, there are many techniques for generating plasma, including but not limited to capacitively coupled plasma (CCP) systems, inductively coupled plasma (ICP) systems, and electron cyclotron resonance. (ECR, electron cyclotron resonance) plasma system, spiral wave plasma system, surface wave plasma system, slotted planar antenna (SPA) plasma system, and the like. The plasma is formed by the interaction between the supplied process gas and electromagnetic (EM) that is transmitted at the frequency of the radio frequency (RF) or the frequency spectrum of the microwave. The commonality of all of these systems is the use of dielectric members through which an electric field can be generated. Furthermore, it is desirable to introduce process gases via these dielectric members while avoiding electrical breakdown or discharge within these dielectric members.
本發明係關於一種經由腔室構件導入處理流體的方法與系統。此外,提供一種經由腔室構件將處理流體導入電漿處理系統的方法與系統。The present invention relates to a method and system for introducing a treatment fluid via a chamber member. Further, a method and system for introducing a treatment fluid into a plasma processing system via a chamber member is provided.
再者,提供一種經由介電構件導入處理流體的方法與系統。又,提供一種經由存在電場之介電構件導入處理流體的方法與系統。Furthermore, a method and system for introducing a treatment fluid via a dielectric member is provided. Further, a method and system for introducing a treatment fluid via a dielectric member in the presence of an electric field is provided.
依照一實施例,說明一種經由腔室構件將處理流體導入處理系統的方法與系統。此腔室構件包含腔室元件,此腔室元件具有位於腔室元件之供應側上的第一表面以及位於腔室元件之處理側上的第二表面,其中處理側係相對於供應側。再者,此腔室構件包含螺旋狀導管,此導管從供應側延伸至處理側而穿過腔室元件,其中此螺旋狀導管包含用以接收處理流體的入口以及用以分配此處理流體的出口。In accordance with an embodiment, a method and system for introducing a treatment fluid into a treatment system via a chamber member is illustrated. The chamber member includes a chamber member having a first surface on a supply side of the chamber member and a second surface on a processing side of the chamber member, wherein the treatment side is relative to the supply side. Further, the chamber member includes a helical conduit extending from the supply side to the treatment side through the chamber member, wherein the helical conduit includes an inlet for receiving a treatment fluid and an outlet for dispensing the treatment fluid .
依照另一實施例,說明一種製造穿過腔室元件之導管的方法,包含:形成開口,此開口從腔室元件上的供應側延伸至腔室元件上的處理側而穿過腔室元件,此開口具有內表面;形成具有外表面的嵌入元件,此外表面用以嚙合於開口的內表面;在嵌入元件的外表面內形成一個以上的溝槽,以使一個以上溝槽中的每一個溝槽包含形成在供應側的入口以及形成在處理側的出口;以及將嵌入元件嵌入至腔室元件的開口內。In accordance with another embodiment, a method of making a conduit through a chamber component is illustrated, comprising: forming an opening that extends from a supply side on a chamber component to a processing side on the chamber component and through the chamber component, The opening has an inner surface; an inset member having an outer surface is formed, and wherein the surface is adapted to engage the inner surface of the opening; more than one groove is formed in the outer surface of the inlay member to allow each of the more than one groove The trough includes an inlet formed on the supply side and an outlet formed on the processing side; and the embedding element is embedded within the opening of the chamber element.
依照另一實施例,說明一種處理系統,包含:處理室,包含處理空間;處理氣體供應系統,與處理室流體連通,並且用以將處理氣體流導入至處理室;氣體分配系統,耦合至處理室,並且用以透過入口以接收處理氣體流,以及將處理氣體流分配在處理空間內,其中氣體分配系統包含耦合至入口的氣體注入裝置,而其中氣體注入裝置包含從入口端延伸至出口端的螺旋狀導管;載台,耦合至處理室,並且用以支撐為曝露於處理氣體而位在處理室中的基板;以及真空幫浦系統,耦合至處理室,並且用以排空處理室。In accordance with another embodiment, a processing system is illustrated comprising: a processing chamber including a processing space; a process gas supply system in fluid communication with the processing chamber and for introducing a process gas stream into the processing chamber; a gas distribution system coupled to the processing a chamber for receiving the process gas stream through the inlet and distributing the process gas stream within the processing space, wherein the gas distribution system includes a gas injection device coupled to the inlet, and wherein the gas injection device includes a gas injection device extending from the inlet end to the outlet end a spiral conduit; a stage coupled to the processing chamber and configured to support a substrate positioned in the processing chamber for exposure to the processing gas; and a vacuum pumping system coupled to the processing chamber and for evacuating the processing chamber.
在為解釋之目的而非限制的隨後說明中,提出特定細節,例如真空或電漿處理系統的特定幾何以及各種不同部件的說明。然而,吾人應瞭解在離開這些特定細節的其他實施例中,本發明仍可被實施。In the following description for purposes of explanation and not limitation, specific details are set forth, such as the specific geometry of the vacuum or plasma processing system, and the description of the various components. However, it should be understood that the invention may be practiced in other embodiments that depart from these specific details.
在材料處理方法學中,電漿通常用以在基板上促進產生表面化學,以促使從基板移除材料,或促使在基板上形成用以沉積材料的薄膜形成反應。在蝕刻基板期間,電漿可用以產生反應性化學物質,這些反應性化學物質適合與基板表面上的某些材料產生反應。再者,在蝕刻基板期間,電漿可用以產生帶電的物質,這些帶電物質可用於將能量輸送至基板上的表面反應。In material processing methodology, plasma is typically used to promote surface chemistry on a substrate to facilitate removal of material from the substrate or to facilitate formation of a film formation reaction on the substrate to deposit the material. During etching of the substrate, the plasma can be used to generate reactive chemicals that are suitable for reacting with certain materials on the surface of the substrate. Furthermore, during etching of the substrate, the plasma can be used to produce charged species that can be used to deliver energy to the surface reaction on the substrate.
依照一範例,圖案蝕刻包含將例如光阻的光敏材料薄層施加至基板的上表面,此光敏材料薄層隨後被圖案化以提供遮罩,此遮罩用以將此種圖案轉印至位於基板上的下層薄膜。光敏材料的圖案化通常包含:例如使用微影蝕刻系統,將光敏材料曝露至電磁(EM,electro-magnetic)放射的幾何圖案,然後使用顯影溶劑,移除光敏材料被照射的部分(此為正光阻的情況),或移除未被照射的部分(此為負光阻的情況)。According to an example, the pattern etching comprises applying a thin layer of photosensitive material, such as a photoresist, to the upper surface of the substrate, the thin layer of photosensitive material then being patterned to provide a mask for transferring the pattern to the location The underlying film on the substrate. Patterning of the photosensitive material typically involves, for example, using a lithography etching system, exposing the photosensitive material to a geometric pattern of electromagnetic (EM) radiation, and then using a developing solvent to remove the portion of the photosensitive material that is illuminated (this is a positive light) The case of resistance, or the part that is not irradiated (this is the case of negative photoresist).
依然參考本範例,如圖1A至1C所示,包含具有圖案2之光敏層3(例如圖案化的光阻)的遮罩可用於將特徵圖案轉印至位於基板5上之例如薄膜4的材料內,此薄膜可例如為一層多結晶矽(多晶矽)。例如使用電漿輔助蝕刻,將圖案2轉印至薄膜4,以形成例如閘結構的特徵部6,並且在蝕刻之後,移除遮罩3。Still referring to this example, as shown in FIGS. 1A through 1C, a mask comprising a photosensitive layer 3 having a pattern 2 (eg, patterned photoresist) can be used to transfer a pattern of features to a material such as film 4 on substrate 5. The film may, for example, be a layer of polycrystalline germanium (polycrystalline germanium). The pattern 2 is transferred to the film 4, for example using plasma assisted etching, to form features 6, such as a gate structure, and after etching, the mask 3 is removed.
傳統上,電漿輔助蝕刻處理包含腐蝕性處理氣體的使用,例如含鹵素的氣體(例如HF、HCl、HBr、Cl2 、NF3 、Cx Fy 、Cx Fy Hz 等等)。此外,在電漿存在時使用此種氣體會導致具高度攻擊性的化學物質,然後這些化學物質會攻擊並且腐蝕腔室表面。因此,通常以厚的腔室構件保護電漿處理系統,這些腔室構件係具有耐 腐蝕性,或當腐蝕時貢獻給化學物質,這些化學物質對於發生在基板上的處理係無害的。再者,在電漿形成期間,必須透過腔室構件耦合電磁功率,並因此若干腔室構件可包含介電材料。Traditionally, plasma-assisted etching process includes the use of corrosive process gas, for example, a halogen-containing gas (e.g. HF, HCl, HBr, Cl 2 , NF 3, C x F y, C x F y H z , etc.). In addition, the use of such gases in the presence of plasma can result in highly aggressive chemicals that can then attack and corrode the surface of the chamber. Thus, plasma processing systems are typically protected by thick chamber members that are resistant to corrosion or contribute to chemicals when corroded, which are not deleterious to the processing circuitry that occurs on the substrate. Again, during plasma formation, electromagnetic power must be coupled through the chamber members, and thus several chamber members can comprise a dielectric material.
依照一實施例,電漿處理系統1a被顯示於圖2,此系統包含:電漿處理室10;基板載台20,於其上固定待處理的基板25;以及真空幫浦系統50。基板25可為半導體基板、晶圓、平面顯示器、或液晶顯示器。電漿處理室10可用以在位於基板25之表面附近的處理區域45中促使電漿的產生。經由氣體分配系統40,導入可游離氣體或氣體混合物,此氣體分配系統用以減少或使導入至基板25的污染物降至最低。對於已知的處理氣體流,可使用真空幫浦系統50調整處理壓力。電漿可用以產生特定於預定材料處理的物質,及/或促進從基板25的曝露表面移除材料。電漿處理系統1a可用以處理具有任何期望尺寸的基板,例如200mm的基板、300mm的基板、或更大的基板。According to an embodiment, a plasma processing system 1a is shown in FIG. 2, the system comprising: a plasma processing chamber 10; a substrate carrier 20 on which a substrate 25 to be processed is fixed; and a vacuum pump system 50. The substrate 25 can be a semiconductor substrate, a wafer, a flat panel display, or a liquid crystal display. The plasma processing chamber 10 can be used to promote plasma generation in the processing region 45 located near the surface of the substrate 25. A free gas or gas mixture is introduced via gas distribution system 40 to reduce or minimize contaminants introduced to substrate 25. For known process gas streams, the vacuum pump system 50 can be used to adjust the process pressure. The plasma can be used to produce a material that is specific to the predetermined material treatment, and/or to facilitate removal of material from the exposed surface of the substrate 25. The plasma processing system 1a can be used to process substrates having any desired size, such as a 200 mm substrate, a 300 mm substrate, or a larger substrate.
基板25可經由例如機械式箝制系統或電氣式箝制系統(例如靜電箝制系統)的箝制系統28,而固定於基板載台20。再者,基板載台20可包含用以調節及/或控制基板載台20以及基板25之溫度的加熱系統(無圖示)或冷卻系統(無圖示)。加熱系統或冷卻系統可包含熱傳流體的再循環流,當進行冷卻時,此再循環流可接收來自基板載台20的熱,並且將熱傳遞至熱交換器系統(無圖示);而當進行加熱時,其可將來自熱交換器系統的熱傳遞至基板載台20。在其他實施例中,例如電阻加熱元件、或熱-電加熱器/冷卻器的加熱/冷卻元件可被包含在基板載台20中,並且包含在電漿處理室10的室壁以及位於電漿處理系統1a內的任何其他部件中。The substrate 25 can be secured to the substrate stage 20 via a clamping system 28 such as a mechanical clamping system or an electrical clamping system (eg, an electrostatic clamping system). Furthermore, the substrate stage 20 can include a heating system (not shown) or a cooling system (not shown) for adjusting and/or controlling the temperature of the substrate stage 20 and the substrate 25. The heating system or cooling system may comprise a recycle stream of heat transfer fluid that, when cooled, may receive heat from the substrate stage 20 and transfer heat to the heat exchanger system (not shown); When heated, it can transfer heat from the heat exchanger system to the substrate stage 20. In other embodiments, a heating/cooling element such as a resistive heating element, or a thermo-electric heater/cooler may be included in the substrate stage 20 and included in the chamber wall of the plasma processing chamber 10 and in the plasma. Processing in any other component within system 1a.
此外,熱傳氣體可經由背側氣體供應系統26而輸送至基板25的背側,以改善基板25與基板載台20之間的氣-隙熱導。當基板的溫度控制被要求升高或降低溫度時,吾人可利用此種系統。舉例而言,背側氣體供應系統可包含兩區域氣體分配系統,於其中氦的氣-隙壓力可在基板25的中央與邊緣之間進行獨立的變化。Additionally, the heat transfer gas may be delivered to the back side of the substrate 25 via the back side gas supply system 26 to improve the gas-gap thermal conductivity between the substrate 25 and the substrate stage 20. When the temperature control of the substrate is required to increase or decrease the temperature, we can use such a system. For example, the backside gas supply system can include a two-zone gas distribution system in which the gas-gap pressure of the helium can be independently varied between the center and the edge of the substrate 25.
在圖2所示之實施例中,基板載台20可包含電極,透過此電極,無線射頻(RF,radio frequency)功率可被耦合至處理區域45中的處理電漿。例如,吾人可經由從無線射頻產生器30透過任意的阻抗匹配網路32而傳輸至基板載台20的無線射頻功率,使基板載台20以無線射頻電壓產生電性偏壓。無線射頻偏壓可用以加熱電子,而形成並且維持電漿。在此種構造中,此系統可作為反應性離子蝕刻(RIE,reactive ion etch)反應器,於其中此腔室以及上部氣體注入電極可作為接地面。典型用於無線射頻偏壓的頻率可從約0.1 MHz至約100 MHz分佈。用於電漿處理的無線射頻系統係熟習本項技藝者所熟知。In the embodiment shown in FIG. 2, substrate stage 20 can include electrodes through which radio frequency (RF) power can be coupled to the processing plasma in processing region 45. For example, the substrate radio 20 can be electrically biased by the radio frequency voltage via wireless RF power transmitted from the radio frequency generator 30 through any of the impedance matching networks 32 to the substrate stage 20. A wireless radio frequency bias can be used to heat the electrons to form and maintain the plasma. In such a configuration, the system can function as a reactive ion etch (RIE) reactor in which the chamber and the upper gas injection electrode can serve as a ground plane. Typical frequencies for wireless RF biasing can be distributed from about 0.1 MHz to about 100 MHz. Radio frequency systems for plasma processing are well known to those skilled in the art.
或者,以多重頻率將無線射頻功率施加至基板載台電極。再者,阻抗匹配網路32可藉由減少反射的功率,而改善無線射頻功率對電漿處理室10內之電漿的傳遞。匹配網路佈局(例如L-型、π- 型、T-型等等)以及自動控制方法係熟習本項技藝者所熟知。Alternatively, wireless radio frequency power is applied to the substrate stage electrodes at multiple frequencies. Moreover, the impedance matching network 32 can improve the transfer of radio frequency power to the plasma within the plasma processing chamber 10 by reducing the reflected power. Match network layout (eg L-type, π- Type, T-type, etc.) and automatic control methods are well known to those skilled in the art.
真空幫浦系統50可包含:渦輪分子式真空幫浦(TMP,turbo-molecular vacuum pump),其排空速度可達每秒約5000公升(以上);以及閘閥,用以調節腔室壓力。在習知用於乾式電漿蝕刻的電漿處理裝置中,可利用每秒1000至3000公升的渦輪分子式真空幫浦。渦輪分子式真空幫浦可用於典型小於約50 mTorr的低壓處理。對高壓處理(即大於約100 mTorr)而言,可使用機械式增壓幫浦以及乾式粗抽幫浦。再者,用以監測腔室壓力的裝置(無圖示)可耦合至電漿處理室10。此壓力量測裝置可例如為從MKS Instruments,Inc.(Andover,MA)所購得之Type 628B Baratron絕對電容式真空計。The vacuum pump system 50 can include a turbo-molecular vacuum pump (TMP) with an evacuation speed of up to about 5,000 liters per second (above) and a gate valve to regulate chamber pressure. In a plasma processing apparatus conventionally used for dry plasma etching, a turbo molecular vacuum pump of 1000 to 3000 liters per second can be utilized. Turbomolecular vacuum pumps can be used for low pressure processing typically less than about 50 mTorr. For high pressure processing (ie greater than about 100 mTorr), mechanical booster pumps and dry rough pumps can be used. Further, means (not shown) for monitoring chamber pressure can be coupled to the plasma processing chamber 10. The pressure measuring device can be, for example, a Type 628B Baratron absolute capacitive vacuum gauge available from MKS Instruments, Inc. (Andover, MA).
控制器55包含微處理器、記憶體、以及數位I/O埠,此控制器可產生控制電壓,此控制電壓足以傳遞與啟動對電漿處理系統1a的輸入,以及來自電漿處理系統1a的監測器輸出。此外,控制器55可耦合至無線射頻產生器30、阻抗匹配網路32、氣體分配系統40、真空幫浦系統50、以及基板加熱/冷卻系統(無圖示)、背 側氣體供應系統26、及/或箝制系統28,並與其交換資訊。舉例而言,儲存在記憶體中的程式可依照處理配方,而用以啟動對電漿處理系統1a之上述部件的輸入,以在基板25上執行電漿輔助處理。控制器55的一種範例為可從Dell Corporation,Austin,Texas所購得的DELL PRECISION WORKSTATION 610TM 。The controller 55 includes a microprocessor, a memory, and a digital I/O port that generates a control voltage sufficient to transfer and initiate input to the plasma processing system 1a, as well as from the plasma processing system 1a. Monitor output. Additionally, controller 55 can be coupled to wireless RF generator 30, impedance matching network 32, gas distribution system 40, vacuum pump system 50, and substrate heating/cooling system (not shown), backside gas supply system 26, And/or clamp system 28 and exchange information with it. For example, the program stored in the memory can be used to initiate input to the above-described components of the plasma processing system 1a in accordance with the processing recipe to perform a plasma assisted process on the substrate 25. One of the example of the controller 55 to be available from Dell Corporation, Austin, Texas DELL PRECISION WORKSTATION 610 TM.
控制器55可相對於電漿處理系統1a而就近設置,或其可相對於電漿處理系統1a而進行遠端設置。例如,控制器55可使用直接連接、網內網路、及/或網際網路,而與電漿處理系統1a交換資料。控制器55可耦合至例如位於顧客端(即裝置製造者等等)的網內網路,或其可耦合至例如位於供應者端(即設備製造商)的網內網路。或者或此外,控制器55可耦合至網際網路。再者,另一個電腦(即控制器、伺服器等等)可經由直接連接、網內網路、及/或網際網路,而使用控制器55。The controller 55 can be disposed in proximity to the plasma processing system 1a, or it can be remotely disposed relative to the plasma processing system 1a. For example, controller 55 can exchange data with plasma processing system 1a using a direct connection, an intranet, and/or an internet. The controller 55 can be coupled to, for example, an intranet located at the customer premises (i.e., device manufacturer, etc.), or it can be coupled to, for example, an intranet located at the provider end (i.e., device manufacturer). Alternatively or in addition, controller 55 can be coupled to the internet. Furthermore, another computer (i.e., controller, server, etc.) can use controller 55 via a direct connection, an intranet, and/or the Internet.
在圖3所示之實施例中,電漿處理系統1b可類似於圖2的實施例,並且除了參照圖2所述的這些部件之外,更包含固定式、或機械式或電氣式旋轉磁場系統60,以潛在地增加電漿密度及/或改善電漿處理均勻度。此外,控制器55可耦合至磁場系統60,以調節旋轉的速度以及場強度。旋轉磁場的設計與實現係熟習本項技藝者所熟知。In the embodiment shown in FIG. 3, the plasma processing system 1b can be similar to the embodiment of FIG. 2 and includes, in addition to the components described with reference to FIG. 2, a stationary, or mechanical or electrical rotating magnetic field. System 60 to potentially increase plasma density and/or improve plasma processing uniformity. Additionally, controller 55 can be coupled to magnetic field system 60 to adjust the speed of rotation as well as the field strength. The design and implementation of a rotating magnetic field is well known to those skilled in the art.
在圖4所示之實施例中,電漿處理系統1c可類似於圖2或圖3的實施例,並且可更包含上部電極70,無線射頻功率可從無線射頻產生器72透過任意的阻抗匹配網路74而耦合至此電極。用於施加至上部電極之無線射頻功率的頻率可從約0.1 MHz至約200 MHz分佈。此外,用於施加至下部電極之功率的頻率可從約0.1 MHz至約100 MHz分佈。此外,控制器55被耦合至無線射頻產生器72以及阻抗匹配網路74,以控制對上部電極70的無線射頻功率施加。上部電極的設計與實現係熟習本項技藝者所熟知。如同顯示,上部電極70以及氣體分配系統40可被設計在同一腔室組件內。In the embodiment shown in FIG. 4, the plasma processing system 1c can be similar to the embodiment of FIG. 2 or FIG. 3, and can further include an upper electrode 70 through which wireless RF power can be transmitted through any impedance matching. Network 74 is coupled to this electrode. The frequency of the radio frequency power applied to the upper electrode can be distributed from about 0.1 MHz to about 200 MHz. Furthermore, the frequency for the power applied to the lower electrode can be distributed from about 0.1 MHz to about 100 MHz. In addition, controller 55 is coupled to radio frequency generator 72 and impedance matching network 74 to control radio frequency power application to upper electrode 70. The design and implementation of the upper electrode is well known to those skilled in the art. As shown, the upper electrode 70 and gas distribution system 40 can be designed within the same chamber assembly.
在圖5所示之實施例中,電漿處理系統1d可類似於圖2與圖3之實施例,並且可更包含感應線圈80,無線射頻功率係經由無線射頻產生器82透過選用的阻抗匹配網路84而耦合至此線圈。無線射頻功率從感應線圈80透過介電窗(無圖示)被感應耦合至電漿處理區域45。用於施加至感應線圈80之無線射頻功率的頻率可從約10 MHz至約100 MHz分佈。同樣地,用於施加至夾頭電極之功率的頻率可從約0.1 MHz至約100 MHz分佈。此外,開槽法拉第屏障(無圖示)可用以降低感應線圈80與電漿之間的電容耦合。此外,可使控制器55耦合至無線射頻產生器82以及阻抗匹配網路84,以控制對感應線圈80的功率施加。In the embodiment shown in FIG. 5, the plasma processing system 1d can be similar to the embodiment of FIGS. 2 and 3, and can further include an inductive coil 80 that is selectively impedance matched via the radio frequency generator 82. Network 84 is coupled to this coil. Radio frequency power is inductively coupled from the induction coil 80 through a dielectric window (not shown) to the plasma processing region 45. The frequency of the radio frequency power applied to the induction coil 80 can be distributed from about 10 MHz to about 100 MHz. Likewise, the frequency for the power applied to the collet electrodes can be distributed from about 0.1 MHz to about 100 MHz. Additionally, a slotted Faraday barrier (not shown) may be used to reduce the capacitive coupling between the induction coil 80 and the plasma. Additionally, controller 55 can be coupled to wireless RF generator 82 and impedance matching network 84 to control power application to induction coil 80.
在一替代實施例中,如圖6所示,電漿處理系統1e可類似於圖5的實施例,並且可更包含感應線圈80',此線圈係從上方與電漿處理區域45相連通之「螺形」線圈或「薄片形」線圈,如同在變壓器耦合電漿(TCP,transformer coupled plasma)反應器中一般。 感應耦合電漿(ICP,inductively coupled plasma)源或變壓器耦合電漿(TCP)源的設計與實現係熟習本項技藝者所熟知。In an alternate embodiment, as shown in FIG. 6, the plasma processing system 1e can be similar to the embodiment of FIG. 5, and can further include an induction coil 80' that is in communication with the plasma processing region 45 from above. A "spiral" coil or a "slice" coil is used in a transformer-coupled plasma (TCP) reactor. The design and implementation of an inductively coupled plasma (ICP) source or a transformer coupled plasma (TCP) source is well known to those skilled in the art.
或者,吾人可使用電子迴旋共振(ECR,electron cyclotron resonance)形成電漿。在又另一實施例中,電漿係由螺旋波的發射所形成。在又另一實施例中,電漿係由傳播表面波所形成。上述每一個電漿源係熟習本項技藝者所熟知。Alternatively, we can form a plasma using electron cyclotron resonance (ECR). In yet another embodiment, the plasma is formed by the emission of a spiral wave. In yet another embodiment, the plasma is formed by propagating surface waves. Each of the above plasma sources is well known to those skilled in the art.
在圖7所示之實施例中,電漿處理系統1f可類似於圖2與圖3的實施例,並且可更包含表面波電漿(SWP,surface wave plasma)源80"。表面波電漿源80"可包含開槽天線,例如徑向線開槽天線(RLSA,radial line slot antenna),微波功率可經由微波產生器82'透過任意的阻抗匹配網路84'而耦合至此天線。In the embodiment shown in FIG. 7, the plasma processing system 1f can be similar to the embodiment of FIGS. 2 and 3, and can further include a surface wave plasma (SWP) source 80". Surface wave plasma Source 80" may include a slotted antenna, such as a radial line slot antenna (RLSA), to which microwave power may be coupled via microwave generator 82' through any impedance matching network 84'.
在以下說明中,描述一種氣體分配系統,其用以經由形成在腔室元件內的氣體注入裝置,將處理氣體導入至處理系統。此氣體分配系統(如標號40所示)可例如用於圖2至圖7所述的電漿處理系統任何其中之一,或用於具有出自圖2至圖5之系統之任何 特徵組合的電漿處理系統。再者,此氣體分配系統可例如用於任何需要經由腔室元件導入處理氣體的基板處理系統。In the following description, a gas distribution system is described for introducing a process gas into a processing system via a gas injection device formed in a chamber component. This gas distribution system (shown by reference numeral 40) can be used, for example, in any of the plasma processing systems described in Figures 2-7, or in any of the systems having the systems from Figures 2 through 5. A combined plasma processing system. Again, this gas distribution system can be used, for example, for any substrate processing system that requires the introduction of process gases via chamber elements.
以下參考圖8A、8B以及8C,依照一實施例描述流體分配系統200以及製造流體分配系統200的方法。流體分配系統200被設置成耦合至處理室,並且用以接收來自處理流體供應系統的處理流體流,以及將此處理流體流分配在處理室內。舉例而言,此處理流體可包含氣體、液體、或多相流體,此多相流體包含懸浮在液體中的固體材料(例如漿體)、懸浮在氣體中的固體材料、或懸浮在液體中的氣體材料。或者,例如,此處理流體可包含固體粉末。Referring now to Figures 8A, 8B, and 8C, a fluid dispensing system 200 and a method of making the fluid dispensing system 200 are depicted in accordance with an embodiment. Fluid dispensing system 200 is configured to be coupled to the processing chamber and to receive a flow of processing fluid from the processing fluid supply system and to distribute the processing fluid flow within the processing chamber. For example, the treatment fluid can comprise a gas, a liquid, or a multi-phase fluid comprising a solid material (eg, a slurry) suspended in a liquid, a solid material suspended in a gas, or suspended in a liquid. Gas material. Alternatively, for example, the treatment fluid can comprise a solid powder.
流體分配系統200包含腔室元件210,此腔室元件包含位於腔室元件210之供應側214的第一表面以及位於腔室元件210之處理側216的第二表面,於其中處理側係相對於供應側。腔室元件210包含具有內表面212的開口220,此內表面係從供應側至處理側形成而穿過腔室元件210。吾人可使用任何習知加工程序形成開口220。腔室元件210可由導電性材料、非導電性材料、或半導電性材料所製造。舉例來說,腔室元件210可由金屬或金屬合金所製造,例如鋁或鋁合金。此外,腔室元件210可包含形成在其表面上的保護性塗膜。例如,此塗膜可包含陶瓷塗膜或表面陽極化。腔室元件210可由石英、矽、單晶矽、多晶矽、氮化矽、碳化矽、碳、玻璃石墨、氧化鋁、藍寶石、氮化鋁等等加以製造。The fluid dispensing system 200 includes a chamber component 210 that includes a first surface on the supply side 214 of the chamber component 210 and a second surface on the processing side 216 of the chamber component 210, wherein the processing side is relative to Supply side. The chamber component 210 includes an opening 220 having an inner surface 212 that is formed from the supply side to the processing side through the chamber element 210. The opening 220 can be formed by any of the conventional processing procedures. The chamber component 210 can be fabricated from a conductive material, a non-conductive material, or a semi-conductive material. For example, the chamber component 210 can be fabricated from a metal or metal alloy, such as aluminum or an aluminum alloy. Further, the chamber member 210 may include a protective coating film formed on a surface thereof. For example, the coating film may comprise a ceramic coating film or surface anodization. The chamber element 210 may be fabricated from quartz, tantalum, single crystal germanium, polycrystalline germanium, tantalum nitride, tantalum carbide, carbon, glass graphite, alumina, sapphire, aluminum nitride, and the like.
此外,流體分配系統200包含用以嵌入開口220內的嵌入元件230。嵌入元件230包含形成在嵌入元件230之外表面內的溝槽232,其以螺旋狀的路徑從位於腔室元件210之第一表面上之嵌入元件230的入口端234延伸至位於腔室元件210之第二表面上之嵌入元件230的出口端236。吾人可使用車床以及刻針將溝槽232刻劃在嵌入元件230的外表面內,或者可使用旋轉刻針將其加以刻劃。嵌入元件230可由相同於腔室元件210的材料所製造,或者嵌入元件230可由不同於腔室元件210的材料所製造。Additionally, fluid dispensing system 200 includes an inlay element 230 for embedding within opening 220. The inlay element 230 includes a groove 232 formed in an outer surface of the inlay element 230 that extends in a helical path from the inlet end 234 of the inlay element 230 on the first surface of the chamber element 210 to the chamber element 210 The exit end 236 of the inlay element 230 on the second surface. The lathe 232 can be scored in the outer surface of the inlay element 230 using a lathe and a stylus, or it can be scored using a rotating stylus. The inlay element 230 can be fabricated from the same material as the chamber element 210, or the inlaid element 230 can be fabricated from a different material than the chamber element 210.
一旦在嵌入元件230的外表面上形成溝槽232之後,嵌入元件230會被嵌入至腔室元件210的開口220內,以形成氣體注入裝置240,此氣體注入裝置具有如圖8B之參考符號238所示從腔室元件210的供應側至腔室元件210的處理側延伸的螺旋形導管。吾人可藉由下列方式使嵌入元件230被腔室元件210所固定:將嵌入元件230熔融在腔室元件210的開口220內;將嵌入元件230壓裝(press fitting)至腔室元件210的開口220內;將嵌入元件230熱裝(thermally fitting)至腔室元件210的開口220內;將嵌入元件230熔焊(welding)在腔室元件210的開口220內;將嵌入元件230硬焊(brazing)在腔室元件210的開口220內;或將嵌入元件230機械式地箝制在腔室元件210的開口220內;或其兩種以上的組合。Once the groove 232 is formed on the outer surface of the inlay element 230, the inlay element 230 will be embedded into the opening 220 of the chamber element 210 to form a gas injection device 240 having reference numeral 238 as in Figure 8B. A helical conduit extending from the supply side of the chamber element 210 to the treated side of the chamber element 210 is shown. The insert member 230 can be secured by the chamber member 210 by melting the insert member 230 within the opening 220 of the chamber member 210; press fitting the insert member 230 to the opening of the chamber member 210. 220; thermally fitting the inlay element 230 into the opening 220 of the chamber element 210; welding the inlay element 230 within the opening 220 of the chamber element 210; brazing the inlaid element 230 ) within the opening 220 of the chamber element 210; or mechanically clamping the inlay element 230 within the opening 220 of the chamber element 210; or a combination of two or more thereof.
舉例而言,腔室元件210以及嵌入元件230可由石英加以製造,以及接合劑可包含石英熔塊。為了製造石英熔塊,將掺雜物放入磨碎的石英中,以降低其熔化溫度。然後,石英熔塊可懸浮在例如丙酮的溶劑內,並且使用噴塗設備以及遮罩技術施加至腔室元件210與嵌入元件230的接合表面。一旦熔塊塗膜被施加在接合表面之後,腔室元件210與嵌入元件230可在窯爐的機械性壓力下連接在一起,並且用足以熔化此熔塊的溫度進行燒製。石英熔融處理係石英處理技術領域中具有通常知識者所熟知。For example, the chamber element 210 and the inlay element 230 can be fabricated from quartz, and the bonding agent can comprise a quartz frit. To make a quartz frit, the dopant is placed in the ground quartz to lower its melting temperature. The quartz frit can then be suspended in a solvent such as acetone and applied to the joint surface of the chamber element 210 and the inlay element 230 using a spray coating apparatus and a masking technique. Once the frit coating is applied to the joining surface, the chamber member 210 and the insert member 230 can be joined together under mechanical pressure of the kiln and fired at a temperature sufficient to melt the frit. Quartz melt processing is well known to those skilled in the art of quartz processing.
在本示範實施例中,嵌入元件230的橫剖面被顯示為環狀或實質上環狀。然而,此橫剖面可採用任何隨意的形狀。例如,此橫剖面可為長圓形(ovular)、三腳形、方形、矩形、或任何多邊形。同樣地,在本示範實施例中,溝槽232的螺旋狀路徑被顯示對從供應側至處理側延伸的一軸圍繞至少一圈(沿著嵌入元件230之外表面的360度旋轉),而在本實施例的情況下為多圈。然而,溝槽232的螺旋狀路徑可實質上為一圈,或一圈以上(例如多圈),或少於一圈(小於360度旋轉)。舉例而言,少於一圈的路徑可包含沿著多邊橫剖面上之一邊或一邊的一部分延伸的路徑。或者,溝槽232 的路徑可為直線。In the exemplary embodiment, the cross-section of the inlay element 230 is shown as being annular or substantially annular. However, this cross section can take any random shape. For example, the cross section can be an ovular, a tripod, a square, a rectangle, or any polygon. Likewise, in the exemplary embodiment, the helical path of the groove 232 is shown to surround at least one turn (360 degrees of rotation along the outer surface of the inlay element 230) about a shaft extending from the supply side to the processing side, while In the case of this embodiment, it is a plurality of turns. However, the helical path of the grooves 232 can be substantially one turn, or more than one turn (eg, multiple turns), or less than one turn (less than 360 degrees of rotation). For example, a path that is less than one turn may include a path that extends along a portion of one or one side of the polygonal cross-section. Or, the groove 232 The path can be a straight line.
再者,腔室元件210或嵌入元件230或兩者可包含對正特徵部,其用以嚙合於位在腔室元件210或嵌入元件230上的各特徵部,以確保嵌入元件230在腔室元件210內的精確對正。Furthermore, the chamber element 210 or the inlay element 230 or both may include a alignment feature for engaging the features located on the chamber element 210 or the inlay element 230 to ensure that the inlay element 230 is in the chamber Precise alignment within component 210.
雖然在圖8A至8C中僅顯示一個溝槽232,但可在嵌入元件230的外表面內形成複數溝槽,每一個溝槽係彼此獨立。此外,複數溝槽中的每一個溝槽可被設計,以在嵌入元件230的出口端236具有不同的出口角度。再者,複數溝槽中的每一個溝槽可被設計,以在出口端236或入口端234或在沿著嵌入元件230之螺旋狀路徑長度的任何位置,具有不同的大小尺寸、直徑或橫剖面側向尺寸。又,複數溝槽中的每一個溝槽可被設計,以具有不同側向尺寸的螺旋線。Although only one trench 232 is shown in Figures 8A through 8C, a plurality of trenches may be formed in the outer surface of the embedded component 230, each trench being independent of one another. Moreover, each of the plurality of grooves can be designed to have a different exit angle at the exit end 236 of the inlay element 230. Furthermore, each of the plurality of grooves can be designed to have different sizes, diameters or cross-sections at the exit end 236 or the inlet end 234 or at any location along the length of the helical path of the embedded element 230. Profile lateral dimension. Also, each of the plurality of grooves can be designed to have spirals of different lateral dimensions.
溝槽232的直徑或橫剖面側向尺寸可從約5微米至約5mm分佈。或者,溝槽232的直徑或側向尺寸可從約10微米至約3mm分佈。又或者,溝槽232的直徑或側向尺寸可從約50微米至約2mm分佈。舉例而言,此直徑或側向尺寸可為大約50微米或大約1mm或大約2mm。The diameter or cross-sectional lateral dimension of the grooves 232 can be distributed from about 5 microns to about 5 mm. Alternatively, the diameter or lateral dimension of the grooves 232 can be distributed from about 10 microns to about 3 mm. Still alternatively, the diameter or lateral dimension of the grooves 232 can be distributed from about 50 microns to about 2 mm. For example, the diameter or lateral dimension can be about 50 microns or about 1 mm or about 2 mm.
依照另一實施例,嵌入元件230可被形成在另一個嵌入元件(其可被形成在另一個嵌入元件內等等)內。嵌入元件230可或可不與另一個嵌入元件為同心狀。於其內形成嵌入元件230的另一個嵌入元件亦可包含形成在其外表面上的一個以上螺旋狀溝槽。According to another embodiment, the inlay element 230 can be formed within another inlay element (which can be formed within another inlay element, etc.). The inlay element 230 may or may not be concentric with another inlay element. The other inlay element in which the inlay element 230 is formed may also comprise more than one helical groove formed on its outer surface.
以下參考圖9A、9B以及9C,依照另一實施例描述流體分配系統300以及製造流體分配系統300的方法。流體分配系統300被設置成耦合至處理室,並且用以接收來自處理流體供應系統的處理流體流,以及將此處理流體流分配在處理室內。舉例而言,此處理流體可包含氣體、液體、或多相流體,此多相流體包含懸浮在液體中的固體材料(例如漿體)、懸浮在氣體中的固體材料、或懸浮在液體中的氣體材料。或者,例如,此處理流體可包含固體粉末。Referring now to Figures 9A, 9B, and 9C, a fluid dispensing system 300 and a method of making the fluid dispensing system 300 are depicted in accordance with another embodiment. Fluid dispensing system 300 is configured to be coupled to the processing chamber and to receive a flow of processing fluid from the processing fluid supply system and to distribute the processing fluid flow within the processing chamber. For example, the treatment fluid can comprise a gas, a liquid, or a multi-phase fluid comprising a solid material (eg, a slurry) suspended in a liquid, a solid material suspended in a gas, or suspended in a liquid. Gas material. Alternatively, for example, the treatment fluid can comprise a solid powder.
流體分配系統300包含腔室元件310,此腔室元件包含位於腔室元件310之供應側上的第一表面以及位於腔室元件310之處理側上的第二表面,於其中處理側係相對於供應側。腔室元件310包含具有成形內表面312的開口320,此內表面係從供應側至處理側形成而穿過腔室元件310。例如,成形內表面312可包含錐形內表面。或者,成形內表面312可包含階梯形表面、凹表面、或凸表面、或其組合。吾人可使用習知加工程序形成開口320。腔室元件310可由導電性材料、非導電性材料、或半導電性材料加以製造。舉例而言,腔室元件310可由金屬或金屬合金所製造,例如鋁或鋁合金。此外,腔室元件310可包含形成在其表面上的保護性塗膜。例如,此塗膜可包含陶瓷塗膜或表面陽極化。腔室元件310可由石英、矽、單晶矽、多晶矽、氮化矽、碳化矽、碳、玻璃石墨、氧化鋁、藍寶石、氮化鋁等等加以製造。The fluid dispensing system 300 includes a chamber component 310 that includes a first surface on a supply side of the chamber component 310 and a second surface on a processing side of the chamber component 310, wherein the processing side is relative to Supply side. The chamber element 310 includes an opening 320 having a shaped inner surface 312 that is formed through the chamber element 310 from the supply side to the processing side. For example, the shaped inner surface 312 can comprise a tapered inner surface. Alternatively, the shaped inner surface 312 can comprise a stepped surface, a concave surface, or a convex surface, or a combination thereof. The opening 320 can be formed by a conventional processing program. The chamber component 310 can be fabricated from a conductive material, a non-conductive material, or a semi-conductive material. For example, the chamber element 310 can be fabricated from a metal or metal alloy, such as aluminum or an aluminum alloy. Further, the chamber member 310 may include a protective coating film formed on a surface thereof. For example, the coating film may comprise a ceramic coating film or surface anodization. The chamber component 310 can be fabricated from quartz, tantalum, single crystal germanium, polycrystalline germanium, tantalum nitride, tantalum carbide, carbon, glass graphite, alumina, sapphire, aluminum nitride, and the like.
此外,流體分配系統300包含用以嵌入開口320內的成形嵌入元件330。成形嵌入元件330的外表面形狀可被設計成與開口320之成形內表面312的形狀相配合。成形嵌入元件330包含形成在成形嵌入元件330之外表面內的溝槽332,其以螺旋狀路徑從位於腔室元件310之第一表面上之成形嵌入元件330的入口端334延伸至位於腔室元件310之第二表面上之成形嵌入元件330的出口端336。吾人可使用車床以及截割嘴(cutting tip)將溝槽332刻劃在成形嵌入元件330的外表面內,或者可使用旋轉截割嘴將其加以刻劃。成形嵌入元件330可由相同於腔室元件310的材料所製造,或者成形嵌入元件330可由不同於腔室元件310的材料所製造。Additionally, fluid dispensing system 300 includes a shaped inlay element 330 for embedding within opening 320. The outer surface shape of the shaped inlay element 330 can be designed to match the shape of the shaped inner surface 312 of the opening 320. The shaped inlay element 330 includes a groove 332 formed in an outer surface of the shaped inlay element 330 that extends in a helical path from the inlet end 334 of the shaped inlay element 330 on the first surface of the chamber element 310 to the chamber The second end surface of element 310 forms an exit end 336 of the inlay element 330. The groove 332 can be scored in the outer surface of the shaped insert member 330 using a lathe and a cutting tip, or it can be scored using a rotary cutting nozzle. The shaped insert element 330 can be fabricated from the same material as the chamber element 310, or the shaped insert element 330 can be fabricated from a different material than the chamber element 310.
一旦在嵌入元件330的外表面上形成溝槽332之後,成形嵌入元件330會被嵌入至腔室元件310的開口320內,以形成氣體注入裝置340,此氣體注入裝置具有如圖9B之參考符號338所示從腔室元件310的供應側延伸至腔室元件310的處理側的螺旋形導管。吾人可藉由將腔室元件310定向,以使開口320的內表面 312支撐成形嵌入元件330,而使成形嵌入元件330被腔室元件310所佔據。例如,成形嵌入元件330可安置在腔室元件310的開口320內。或者,吾人可藉由下列方式佔有成形嵌入元件330:將成形嵌入元件330熔融在腔室元件310的開口320內;將成形嵌入元件330熔焊在腔室元件310的開口320內;將成形嵌入元件330硬焊在腔室元件310的開口320內;或將成形嵌入元件330機械式地箝制在腔室元件310的開口320內;或其兩種以上的組合。Once the groove 332 is formed on the outer surface of the inlay element 330, the shaped inlay element 330 will be embedded into the opening 320 of the chamber element 310 to form a gas injection device 340 having a reference symbol as in Figure 9B. 338 extends from the supply side of the chamber element 310 to the helical conduit on the processing side of the chamber element 310. The inner surface of the opening 320 can be oriented by orienting the chamber element 310 The 312 supports the shaped inlay element 330 such that the shaped inlay element 330 is occupied by the chamber element 310. For example, the shaped inlay element 330 can be disposed within the opening 320 of the chamber element 310. Alternatively, one can occupy the shaped insert element 330 by melting the shaped insert element 330 within the opening 320 of the chamber element 310; welding the shaped insert element 330 within the opening 320 of the chamber element 310; Element 330 is brazed within opening 320 of chamber element 310; or shaped insert element 330 is mechanically clamped within opening 320 of chamber element 310; or a combination of two or more thereof.
舉例而言,腔室元件310以及成形嵌入元件330可由石英加以製造,以及接合劑可包含石英熔塊。為了製造石英熔塊,將掺雜物放入磨碎的石英中,以降低其熔化溫度。然後,石英熔塊可懸浮在例如丙酮的溶劑內,並且使用噴塗設備以及遮罩技術施加至腔室元件310與成形嵌入元件330的接合表面。一旦熔塊塗膜被施加在接合表面之後,腔室元件310與成形嵌入元件330可在窯爐的機械性壓力下連接在一起,並且用足以熔化此熔塊的溫度進行燒製。石英熔融處理係石英處理技術領域中具有通常知識者所熟知。For example, the chamber element 310 and the shaped inlay element 330 can be fabricated from quartz, and the bonding agent can comprise a quartz frit. To make a quartz frit, the dopant is placed in the ground quartz to lower its melting temperature. The quartz frit can then be suspended in a solvent such as acetone and applied to the bonding surface of the chamber element 310 and the shaped inlay element 330 using a spray coating apparatus and a masking technique. Once the frit coating is applied to the joining surface, the chamber element 310 and the forming insert 330 can be joined together under mechanical pressure of the kiln and fired at a temperature sufficient to melt the frit. Quartz melt processing is well known to those skilled in the art of quartz processing.
在本示範實施例中,成形嵌入元件330的橫剖面被顯示為環狀或實質上環狀。然而,此橫剖面可採用任何隨意的形狀。例如,此橫剖面可為長圓形、三腳形、方形、矩形、或任何多邊形。同樣地,在本示範實施例中,溝槽332的螺旋狀路徑被顯示對從供應側至處理側延伸的一軸圍繞至少一圈(沿著成形嵌入元件330之外表面的360度旋轉),而在本實施例的情況下為多圈。然而,溝槽332的螺旋狀路徑可實質上為一圈,或一圈以上(例如多圈),或少於一圈(小於360度旋轉)。舉例而言,少於一圈的路徑可包含沿著多邊橫剖面上之一邊或一邊的一部分延伸的路徑。In the exemplary embodiment, the cross-section of the shaped insert member 330 is shown as being annular or substantially annular. However, this cross section can take any random shape. For example, the cross section can be oblong, tripod, square, rectangular, or any polygon. Likewise, in the exemplary embodiment, the helical path of the groove 332 is shown to surround at least one turn (360 degrees of rotation along the outer surface of the shaped inlay element 330) about a shaft extending from the supply side to the processing side. In the case of the present embodiment, it is a plurality of turns. However, the helical path of the grooves 332 may be substantially one turn, or more than one turn (eg, multiple turns), or less than one turn (less than 360 degrees of rotation). For example, a path that is less than one turn may include a path that extends along a portion of one or one side of the polygonal cross-section.
再者,腔室元件310或成形嵌入元件330或兩者可包含對正特徵部,其用以與位在腔室元件310或成形嵌入元件330上的各特徵部相嚙合,以確保嵌入元件330在腔室元件310內的精確對正。Furthermore, the chamber element 310 or the shaped inlay element 330 or both may include a aligning feature for engaging the features located on the chamber element 310 or the shaped inlay element 330 to ensure the embedding element 330 Precise alignment within the chamber element 310.
雖然在圖9A至9C中僅顯示一個溝槽332,但可在成形嵌入元件330的外表面內形成複數溝槽,每一個溝槽係彼此獨立。此外,複數溝槽中的每一個溝槽可被設計成在嵌入構件330的出口端336具有不同的出口角度。再者,複數溝槽中的每一個溝槽可被設計成在出口端336或入口端334或在沿著嵌入構件330之螺旋狀路徑長度的任何位置上具有不同的尺寸、直徑或橫剖面側向尺寸。又,複數溝槽中的每一個溝槽可被設計成具有不同側向尺寸的螺旋線。Although only one trench 332 is shown in Figures 9A through 9C, a plurality of trenches may be formed in the outer surface of the shaped inlay member 330, each trench being independent of one another. Moreover, each of the plurality of grooves can be designed to have a different exit angle at the exit end 336 of the insert member 330. Furthermore, each of the plurality of grooves can be designed to have a different size, diameter or cross-sectional side at the exit end 336 or the inlet end 334 or at any location along the helical path length of the insert member 330. To the size. Also, each of the plurality of grooves can be designed as a helix having a different lateral dimension.
溝槽332的直徑或橫剖面側向尺寸可從約5微米至約5mm分佈。或者,溝槽332的直徑或側向尺寸可從約10微米至約3mm 分佈。又或者,溝槽332的直徑或側向尺寸可從約50微米至約2mm分佈。舉例而言,此直徑或側向尺寸可為大約50微米或大約1mm或大約2mm。The diameter or cross-sectional lateral dimension of the grooves 332 can be distributed from about 5 microns to about 5 mm. Alternatively, the diameter or lateral dimension of the grooves 332 can range from about 10 microns to about 3 mm. distributed. Still alternatively, the diameter or lateral dimension of the grooves 332 can be distributed from about 50 microns to about 2 mm. For example, the diameter or lateral dimension can be about 50 microns or about 1 mm or about 2 mm.
依照另一實施例,嵌入元件330可被形成在另一個嵌入元件(其可被形成在另一個嵌入元件內等等)內。嵌入元件330可或可不與另一個嵌入元件為同心狀。於其內形成嵌入元件330的另一個嵌入元件亦可包含形成在其外表面上的一個以上螺旋狀溝槽。According to another embodiment, the inlay element 330 can be formed within another inlay element (which can be formed within another inlay element, etc.). The inlay element 330 may or may not be concentric with another inlay element. The other embedded component in which the embedded component 330 is formed may also include more than one helical groove formed on its outer surface.
雖然,在圖8A、8B、8C、9A、9B以及9C中,腔室元件210(或310)被顯示具有單一氣體注入裝置240(340),但腔室元件210(或310)可包含複數個氣體注入裝置。此外,吾人可以各種不同的密度形態,在腔室元件上配置複數個氣體注入裝置。例如,較多的氣體注入裝置可被形成在靠近腔室元件的中央,而較少的氣體注入裝置可被形成在靠近腔室元件的外圍。或者,例如,可將較多的氣體注入裝置形成在靠近腔室元件的外圍,而將較少的氣體注入裝置形成在靠近腔室元件的中央。又,溝槽的尺寸可根據腔室元件上之氣體注入裝置的位置,而在一氣體注入裝置內或從一氣體注入裝置至另一個氣體注入裝置加以變化。例如,可將較大的溝槽形成在靠近腔室元件的中央,而將較小的溝槽形成在靠近腔室元件的外圍。或者,例如,可將較大的溝槽形成在靠近腔室元件 的外圍,而將較小的溝槽形成在靠近腔室元件的中央。Although, in FIGS. 8A, 8B, 8C, 9A, 9B, and 9C, the chamber element 210 (or 310) is shown having a single gas injection device 240 (340), the chamber element 210 (or 310) can include a plurality of Gas injection device. In addition, we can arrange a plurality of gas injection devices on the chamber components in various density configurations. For example, more gas injection means can be formed near the center of the chamber element, and fewer gas injection means can be formed near the periphery of the chamber element. Alternatively, for example, more gas injection means may be formed near the periphery of the chamber element, and fewer gas injection means may be formed near the center of the chamber element. Further, the size of the groove can vary depending on the position of the gas injection means on the chamber member, or in a gas injection device or from a gas injection device to another gas injection device. For example, a larger groove can be formed near the center of the chamber element and a smaller groove can be formed near the periphery of the chamber element. Or, for example, a larger trench can be formed close to the chamber component The periphery is formed with a smaller groove near the center of the chamber element.
以下參考圖10A,依照另一實施例描述氣體分配系統400。氣體分配系統400包含具有氣體注入裝置440的腔室元件410,此氣體注入裝置440與形成通過此腔室元件410的開口毗連,其被設置成耦合至處理室構件405,並且用以接收來自處理氣體供應系統的處理氣體流,以及將此處理氣體流分配在處理室內。腔室元件410可為位於處理室構件405內的可嵌入與可卸除元件。Referring now to Figure 10A, a gas distribution system 400 is depicted in accordance with another embodiment. The gas distribution system 400 includes a chamber element 410 having a gas injection device 440 that is contiguous with an opening formed through the chamber element 410, configured to be coupled to the process chamber member 405, and for receiving from a process The process gas stream of the gas supply system, and the process gas stream is distributed within the process chamber. The chamber element 410 can be an embeddable and detachable element located within the process chamber member 405.
氣體分配系統400包含成形外表面,其用以與形成在處理室構件405內之開口的內表面相嚙合。假使腔室元件410為可嵌入與可卸除元件,由於不需更換整個處理室構件405,所以操作者可更為輕易地並以降低的費用,移除並更換腔室元件410。Gas distribution system 400 includes a contoured outer surface for engaging an inner surface of an opening formed in processing chamber member 405. If the chamber member 410 is an insertable and detachable member, the operator can remove and replace the chamber member 410 more easily and at a reduced cost since the entire process chamber member 405 need not be replaced.
以下參考圖10B與10C,依照另一實施例描述氣體分配系統450。氣體分配系統450包含腔室元件460,此腔室元件具有形成在第二氣體注入裝置464內的第一氣體注入裝置462,第二氣體注入裝置464毗連形成通過此腔室元件的開口,腔室元件460被設置成耦合至處理室。第一氣體注入裝置462以及第二氣體注入裝置464用以接收來自處理氣體供應系統的處理氣體流,並且將此處理氣體流分配在處理室內。第一氣體注入裝置462以及第二氣體注入裝置464可為同心或可不為同心。Referring now to Figures 10B and 10C, a gas distribution system 450 is depicted in accordance with another embodiment. The gas distribution system 450 includes a chamber element 460 having a first gas injection device 462 formed in a second gas injection device 464 that adjoins an opening through the chamber element, the chamber Element 460 is configured to be coupled to the processing chamber. The first gas injection device 462 and the second gas injection device 464 are configured to receive a process gas stream from the process gas supply system and distribute the process gas stream within the process chamber. The first gas injection device 462 and the second gas injection device 464 can be concentric or not concentric.
以下參考圖11A與11B,依照一實施例描述氣體分配系統500。氣體分配系統500被設置成耦合至處理室,並且用以透過氣體供應入口510接收來自處理氣體供應系統的處理氣體流,以及將位於充氣室532內的此處理氣體流分配至與處理室中之處理空間流體連通的複數開口538。再者,氣體分配系統500包含氣體注入裝置520,此裝置係位在氣體分配系統500的入口510,其中氣體注入裝置520可用以將處理氣體流的動量擴散到充氣室532內,而使處理氣體以降低充氣室內之不均勻度的方式,被分配至複數開口538的每一個開口。此外,氣體注入裝置520可用以防止或降低處理氣體流透過氣體注入裝置520發生放電的可能性。Referring now to Figures 11A and 11B, a gas distribution system 500 is depicted in accordance with an embodiment. A gas distribution system 500 is configured to be coupled to the processing chamber and to receive a process gas stream from the process gas supply system through the gas supply inlet 510 and to distribute the process gas stream located within the plenum 532 to the process chamber A plurality of openings 538 in which the space is in fluid communication. Further, the gas distribution system 500 includes a gas injection device 520 that is positioned at the inlet 510 of the gas distribution system 500, wherein the gas injection device 520 can be used to diffuse the momentum of the process gas stream into the plenum 532, allowing the process gas to be processed Each opening of the plurality of openings 538 is distributed in a manner that reduces the unevenness in the plenum. Additionally, gas injection device 520 can be used to prevent or reduce the likelihood of a process gas stream passing through gas injection device 520.
如圖11A所示,氣體分配系統500可包含上部組件540,其被設置成耦合至處理室。上部組件540可或可不包含電極組件。上部組件540可被耦合至如圖2、圖3以及圖5中的電接地,或者上部組件540可被耦合至如圖4與圖6中的電源。上部組件540可包含電極組件,此電極組件具有第一板542以及耦合至第一板542的第二板544,氣體供應入口510係透過第一板542加以形成,其中第一與第二板的結合可用以將氣體注入裝置520保持在形成於第二板544中的支撐架548與第一板542的表面546之間。例如彈性體密封環的真空密封裝置可用以在第一板542、第二板544與氣體注入裝置520之間提供真空密封。或者,包含氣體注入裝置520的上部組件540可由單獨一塊所構成。As shown in FIG. 11A, gas distribution system 500 can include an upper assembly 540 that is configured to be coupled to a processing chamber. Upper assembly 540 may or may not include an electrode assembly. Upper assembly 540 can be coupled to electrical ground as in Figures 2, 3, and 5, or upper assembly 540 can be coupled to a power supply as in Figures 4 and 6. The upper assembly 540 can include an electrode assembly having a first plate 542 and a second plate 544 coupled to the first plate 542, the gas supply inlet 510 being formed through the first plate 542, wherein the first and second plates The combination can be used to hold the gas injection device 520 between the support frame 548 formed in the second plate 544 and the surface 546 of the first plate 542. A vacuum seal such as an elastomeric seal ring can be used to provide a vacuum seal between the first plate 542, the second plate 544, and the gas injection device 520. Alternatively, the upper assembly 540 comprising the gas injection device 520 can be constructed as a single piece.
此外,氣體分配系統500包含氣體注入系統530,此氣體注入系統耦合至上部組件540並且用以接收來自氣體注入裝置520的處理氣體流。氣體注入系統530包含外殼534以及耦合至外殼534的氣體分配板536,其中氣體分配板536包含複數個開口538,這些開口可促使從充氣室532至處理室中之處理空間的處理氣體流變得均勻。In addition, gas distribution system 500 includes a gas injection system 530 that is coupled to upper assembly 540 and that is configured to receive a flow of process gas from gas injection device 520. The gas injection system 530 includes a housing 534 and a gas distribution plate 536 coupled to the housing 534, wherein the gas distribution plate 536 includes a plurality of openings 538 that cause the process gas flow from the plenum 532 to the processing space in the processing chamber to become Evenly.
如圖11B所示,氣體注入裝置520包含設置成由第二板544中之支撐架佔有的端緣529,並且更包含:擴散器入口522,被設置成與氣體供應入口510耦合;擴散器出口524,被設置成與氣體注入系統530中的充氣室532耦合;以及螺旋狀通道526,從擴散器入口522延伸至擴散器出口524。螺旋狀通道526可包含以上述方式所形成的通道。As shown in FIG. 11B, the gas injection device 520 includes an end edge 529 that is disposed to be occupied by a support in the second plate 544, and further includes a diffuser inlet 522 that is configured to couple with the gas supply inlet 510; a diffuser outlet 524, configured to couple with the plenum 532 in the gas injection system 530; and a helical passage 526 extending from the diffuser inlet 522 to the diffuser outlet 524. The helical channel 526 can include channels formed in the manner described above.
氣體分配板536中的複數個開口538能夠以從1個開口至大約1000個開口的數量加以排列,並且理想上其可以從大約10個開口至大約100個開口的數量加以排列。氣體分配板536可被設計具有複數個開口538,每一個開口具有從大約0.5mm至大約10mm分佈的直徑,並且理想上可從大約0.5mm至大約2mm分佈。或者,氣體分配板536可被設計具有複數個開口538,每一個 開口具有從大約1mm至大約20mm分佈的長度,並且理想上可從大約1mm至大約3mm分佈。The plurality of openings 538 in the gas distribution plate 536 can be arranged in an amount from one opening to about 1000 openings, and ideally they can be arranged from about 10 openings to about 100 openings. Gas distribution plate 536 can be designed with a plurality of openings 538, each having a diameter distributed from about 0.5 mm to about 10 mm, and desirably can be distributed from about 0.5 mm to about 2 mm. Alternatively, gas distribution plate 536 can be designed with a plurality of openings 538, each The openings have a length that is distributed from about 1 mm to about 20 mm, and desirably can be distributed from about 1 mm to about 3 mm.
藉由利用氣體注入裝置520,吾人可降低充氣室532內的壓力變化,尤其係靠近擴散器出口524的壓力變化,並且可減輕通過複數個開口538之處理氣體之不均勻通量的潛在性。此外,例如,處理氣體以一角度進入充氣室532,因此,在進入充氣室532時,對此處理氣體提供側向速度,並且使此處理氣體側向分佈通過充氣室532。此外,吾人可降低充氣室的高度,並且可省略在充氣室532內位於充氣室532的入口平面與氣體分配板536之間使用習知擋板,因此可使氣體注入系統530的總厚度降低。氣體注入系統530可由介電材料加以製造。充氣室的高度可被設計成小於約5mm,並且理想上充氣室的高度可被設計成小於約3mm。By utilizing the gas injection device 520, we can reduce pressure variations within the plenum 532, particularly near the diffuser outlet 524, and mitigate the potential for uneven flux of process gases through the plurality of openings 538. Further, for example, the process gas enters the plenum 532 at an angle such that upon entering the plenum 532, the process gas is provided with a lateral velocity and the process gas is laterally distributed through the plenum 532. In addition, the height of the plenum can be lowered, and conventional baffles can be omitted between the inlet plane of the plenum 532 and the gas distribution plate 536 within the plenum 532, thus reducing the overall thickness of the gas injection system 530. Gas injection system 530 can be fabricated from a dielectric material. The height of the plenum can be designed to be less than about 5 mm, and ideally the height of the plenum can be designed to be less than about 3 mm.
包含上部組件540、氣體注入裝置520、以及氣體注入系統530的氣體分配系統500,可由例如鋁或陽極處理鋁的金屬或陶瓷所製造。這些構件的任何其中之一可由石英、矽、單晶矽、多晶矽、氮化矽、碳化矽、碳、玻璃石墨、氧化鋁、藍寶石、氮化鋁等等或其兩種以上的組合加以製造。此外,例如這些構件之內表面的這些部分的任何其中之一可塗佈有陶瓷材料,例如氧化鋁或氧化釔。舉例而言,例如這些構件之內表面的這些部分的任何其中之一可塗佈有包含Al2 O3 、Sc2 O3 、Sc2 F3 、YF3 、La2 O3 、Y2 O3 、或Dy2 O3 的材料。或者,這些表面可塗佈有Ⅲ族元素。A gas distribution system 500 comprising an upper assembly 540, a gas injection device 520, and a gas injection system 530 can be fabricated from a metal or ceramic such as aluminum or anodized aluminum. Any one of these members may be made of quartz, tantalum, single crystal germanium, polycrystalline germanium, tantalum nitride, tantalum carbide, carbon, glass graphite, alumina, sapphire, aluminum nitride, or the like, or a combination of two or more thereof. Further, for example, any of these portions of the inner surface of these members may be coated with a ceramic material such as alumina or yttria. For example, any one of these portions, such as the inner surface of these members, may be coated with Al 2 O 3 , Sc 2 O 3 , Sc 2 F 3 , YF 3 , La 2 O 3 , Y 2 O 3 , or Dy 2 O 3 material. Alternatively, these surfaces may be coated with a Group III element.
在一範例中,上部組件540係由具有或不具有表面陽極化的鋁所製造。上部組件540可作為電極組件,並且其可被耦合至電源,例如無線射頻(RF,radio frequency)電源。氣體注入系統530可由例如石英的介電材料所製造,以允許從上部組件540透過氣體注入系統530將無線射頻功率耦合至處理空間內的處理氣體。此外,氣體注入裝置520可由例如石英的介電材料所製造。當處理氣體含有例如HBr、Cl2 、NF3 等等的腐蝕性氣體時,氣體注入裝置520以及氣體注入系統530可由石英加以製造,以使位於處 理室中的基板污染降至最低。In one example, the upper component 540 is fabricated from aluminum with or without surface anodization. The upper component 540 can function as an electrode assembly and can be coupled to a power source, such as a radio frequency (RF) power source. Gas injection system 530 can be fabricated from a dielectric material, such as quartz, to allow wireless RF power to be coupled from the upper assembly 540 through gas injection system 530 to the process gas within the processing space. Further, the gas injection device 520 can be fabricated from a dielectric material such as quartz. When the process gas containing, for example HBr, Cl 2, NF 3 and the like corrosive gases, gas injection means 520 and a gas injection system 530 may be manufactured of quartz, so that contamination of the substrate down to a minimum located in the processing chamber.
以下參考圖12,依照另一實施例描述形成在表面波電漿(SWP)源630中的氣體分配系統620。表面波電漿源630被設置成耦合至處理室,而氣體分配系統620用以接收來自處理氣體供應系統的處理氣體流,並且將此處理氣體流分配在處理室中的處理空間內。如圖12所示,電漿源630可包含開槽天線,例如徑向線開槽天線(RLSA)。Referring now to Figure 12, a gas distribution system 620 formed in a surface wave plasma (SWP) source 630 is depicted in accordance with another embodiment. A surface wave plasma source 630 is configured to be coupled to the processing chamber, and a gas distribution system 620 is configured to receive the process gas stream from the process gas supply system and distribute the process gas stream within the process space in the process chamber. As shown in FIG. 12, the plasma source 630 can include a slotted antenna, such as a radial line slotted antenna (RLSA).
此開槽天線包含同軸饋伺器(coaxial feed)638,此同軸饋伺器具有內導體640、外導體642、以及隔離部分641。此外,電漿源630包含:電磁(EM)波發射器643,包含慢波板644;開槽天線646,具有狹縫648;以及共振器板650。狹縫的數量、狹縫的幾何、狹縫的尺寸、以及狹縫的分佈,係可對在處理室內所形成之電漿提供空間均勻性的所有要素。例如,可以數字方式計算出精確的共振器板650尺寸(即厚度、以及直徑)。The slotted antenna includes a coaxial feed 638 having an inner conductor 640, an outer conductor 642, and an isolation portion 641. In addition, the plasma source 630 includes an electromagnetic (EM) wave launcher 643 including a slow wave plate 644, a slotted antenna 646 having a slit 648, and a resonator plate 650. The number of slits, the geometry of the slit, the size of the slit, and the distribution of the slits are all elements that provide spatial uniformity to the plasma formed within the processing chamber. For example, the exact resonator plate 650 size (ie, thickness, and diameter) can be calculated digitally.
波發射器643包含用以將微波功率發射至處理室內的微波發射器。此微波發射器可被耦合至微波源,例如2.45GHz的微波電源,於其中微波功率經由同軸饋伺器638而被耦合至微波發射器。微波源所產生的微波能量可透過波導器(無圖示)導引至用以吸收反射回微波振盪器之微波能量的隔離器(無圖示),然後經由同軸轉換器(無圖示)將此能量轉換成同軸橫向電磁波(TEM,transverse electromagnetic wave)模式。調諧器可用於阻抗匹配,以及改善功率傳遞。微波能量經由同軸饋伺器638而耦合至微波發射器,此處會發生從同軸饋伺器638的橫向電磁波模式變為橫向磁波(TM,transverse magnetic wave)模式的另一個模式改變。Wave transmitter 643 includes a microwave emitter for transmitting microwave power into the processing chamber. This microwave emitter can be coupled to a microwave source, such as a 2.45 GHz microwave power source, where microwave power is coupled to the microwave emitter via coaxial feed 638. The microwave energy generated by the microwave source can be guided through a waveguide (not shown) to an isolator (not shown) for absorbing microwave energy reflected back to the microwave oscillator, and then via a coaxial converter (not shown) This energy is converted into a coaxial transverse electromagnetic wave (TEM) mode. Tuners can be used for impedance matching as well as improved power transfer. Microwave energy is coupled to the microwave emitter via coaxial feed 638 where another mode change from the transverse electromagnetic wave mode of coaxial feed 638 to the transverse magnetic wave (TM) mode occurs.
依然參考圖12,電漿源630被耦合至處理室,於其中吾人可使用密封裝置654,以在室壁652與電漿源630之間形成真空密封。密封裝置654可包含彈性體密封環。電漿源630可包含一個以上的冷卻通道656,其用以調節及/或控制電漿源630的溫度。Still referring to FIG. 12, plasma source 630 is coupled to the processing chamber where a sealing device 654 can be used to form a vacuum seal between chamber wall 652 and plasma source 630. Sealing device 654 can include an elastomeric sealing ring. The plasma source 630 can include more than one cooling passage 656 for regulating and/or controlling the temperature of the plasma source 630.
同軸饋伺器638的內導體640以及外導體642可包含例如金 屬的導電性材料,而慢波板644以及共振器板650可包含介電材料。於後者中,慢波板644以及共振器板650可包含相同的材料。或者,慢波板644以及共振器板650可包含不同的材料。介電材料可例如包含石英。Inner conductor 640 and outer conductor 642 of coaxial feed 638 may comprise, for example, gold The conductive material of the genus, and the slow wave plate 644 and the resonator plate 650 may comprise a dielectric material. In the latter, the slow wave plate 644 and the resonator plate 650 may comprise the same material. Alternatively, the slow wave plate 644 and the resonator plate 650 can comprise different materials. The dielectric material can, for example, comprise quartz.
吾人可決定為製造慢波板644以及共振器板650所選擇的材料,以降低相對於自由空間波長的傳播電磁波波長,並且可決定慢波板644以及共振器板650的尺寸,以確保形成有效將電磁能量發射進入處理室的駐波。The material selected for the slow wave plate 644 and the resonator plate 650 can be determined to reduce the wavelength of the propagating electromagnetic wave relative to the free space wavelength, and the size of the slow wave plate 644 and the resonator plate 650 can be determined to ensure effective formation. A standing wave that emits electromagnetic energy into the processing chamber.
依舊參考圖12,氣體分配系統620包含穿過內導體所形成的入口658以及穿過共振器板650所形成的氣體注入裝置655。氣體注入裝置655包含入口端,此入口端被設置成耦合至入口658,並且透過其而接收處理氣體流。吾人可使用上述技術的任何其中之一,在共振器板650內製造氣體注入裝置655。Still referring to FIG. 12, gas distribution system 620 includes an inlet 658 formed through the inner conductor and a gas injection device 655 formed through the resonator plate 650. Gas injection device 655 includes an inlet end that is configured to be coupled to inlet 658 and receive a flow of process gas therethrough. A gas injection device 655 can be fabricated in the resonator plate 650 using any of the techniques described above.
如圖12所示,吾人可利用單一氣體注入裝置655。然而,或者,在共振器板650內可構成複數個氣體注入裝置。此外,吾人可以各種不同的密度形態,將複數個氣體注入裝置配置在共振器板650上。氣體注入裝置655可包含沿著如圖12所示之螺旋狀路徑的單一溝槽,或者氣體注入裝置655可包含沿著螺旋狀路徑的複數溝槽。在複數溝槽中的每一個溝槽可包含不同的出口角度。舉例而言,如圖12所示,擁有具有不同出口角度之複數溝槽的單一氣體注入裝置655可用以將處理氣體分配到整個處理室。As shown in Figure 12, a single gas injection device 655 can be utilized. Alternatively, however, a plurality of gas injection devices may be formed within the resonator plate 650. In addition, a plurality of gas injection devices can be disposed on the resonator plate 650 in a variety of different density configurations. Gas injection device 655 can include a single groove along a helical path as shown in Figure 12, or gas injection device 655 can include a plurality of grooves along a helical path. Each of the plurality of grooves may include a different exit angle. For example, as shown in FIG. 12, a single gas injection device 655 having a plurality of grooves having different exit angles can be used to distribute the process gas throughout the processing chamber.
以下參考圖13,依照又另一實施例描述表面波電漿(SWP)源730。表面波電漿源730可類似於圖12之實施例,於其中相同的參考符號指定對應的部分。表面波電漿源730被設置成耦合至處理室,而氣體分配系統620用以接收來自處理氣體供應系統的處理氣體流,並且將此處理氣體流分配在位於處理室中的處理空間內。如圖13所示,電漿源730可包含開槽天線,例如徑向線開槽天線(RLSA)。Referring now to Figure 13, a surface wave plasma (SWP) source 730 is depicted in accordance with yet another embodiment. Surface wave plasma source 730 can be similar to the embodiment of Figure 12, in which like reference numerals designate corresponding parts. The surface wave plasma source 730 is configured to be coupled to a processing chamber, and the gas distribution system 620 is configured to receive a process gas stream from the process gas supply system and distribute the process gas stream within a process space located in the process chamber. As shown in Figure 13, the plasma source 730 can include a slotted antenna, such as a radial line slotted antenna (RLSA).
如圖13所示,表面波電漿源730包含具有起伏表面760的成 形共振器板750。例如,起伏表面760可被修改,以改善處理室中電漿的空間均勻性。As shown in FIG. 13, surface wave plasma source 730 includes a undulating surface 760. Shape resonator plate 750. For example, the undulating surface 760 can be modified to improve the spatial uniformity of the plasma in the processing chamber.
以下參考圖14,提供一種製造穿過腔室元件之螺旋狀導管的方法。此方法包含流程圖800,其起始於810,於其中形成從腔室元件上之供應側延伸至腔室元件上之處理側而穿過腔室元件的開口,其中此開口具有內表面。腔室元件可包含圖1至圖13所述之構件的任何其中之一。Referring now to Figure 14, a method of making a helical conduit through a chamber element is provided. The method includes a flow diagram 800, starting at 810, in which an opening is formed extending from a supply side on a chamber element to a processing side on a chamber element, wherein the opening has an inner surface. The chamber element can comprise any one of the components described in Figures 1-13.
在820中,形成具有外表面的嵌入元件,此外表面用以嚙合於開口的內表面。At 820, an inlay member having an outer surface is formed, and in addition the surface is adapted to engage the inner surface of the opening.
在830中,於嵌入元件的外表面內形成一個以上的溝槽。形成一個以上的這些溝槽,以使一個以上的這些溝槽包含形成在腔室元件之供應側的入口以及形成在腔室元件之處理側的出口。一個以上的這些溝槽可包含一個以上的螺旋狀溝槽。At 830, more than one groove is formed in the outer surface of the inlay element. More than one of the grooves are formed such that more than one of the grooves includes an inlet formed on the supply side of the chamber member and an outlet formed on the processing side of the chamber member. More than one of these grooves may include more than one helical groove.
在840中,將嵌入元件嵌入至腔室元件的開口內。At 840, the inlay element is embedded within the opening of the chamber element.
雖然以上僅詳述本發明之若干實施例,但熟習本項技藝者可輕易地明白在實質上不離開本發明之新穎教示與優點的這些實施例中,許多修改係可行的。因此,所有此種修改應被包含在本發明的範圍內。While only a few embodiments of the present invention have been described in detail, those skilled in the art can readily appreciate that many modifications are possible in the embodiments without departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of the present invention.
1a‧‧‧電漿處理系統1a‧‧‧Plastic processing system
1b‧‧‧電漿處理系統1b‧‧‧Plastic Processing System
1c‧‧‧電漿處理系統1c‧‧‧ Plasma Processing System
1d‧‧‧電漿處理系統1d‧‧‧Plastic Processing System
1e‧‧‧電漿處理系統1e‧‧‧Plastic Processing System
1f‧‧‧電漿處理系統1f‧‧‧Plastic Processing System
2‧‧‧圖案2‧‧‧ pattern
3‧‧‧光敏層3‧‧‧Photosensitive layer
4‧‧‧薄膜4‧‧‧film
5‧‧‧基板5‧‧‧Substrate
6‧‧‧特徵部6‧‧‧Characteristic Department
10‧‧‧電漿處理室10‧‧‧ Plasma processing room
20‧‧‧基板載台20‧‧‧Substrate stage
25‧‧‧基板25‧‧‧Substrate
26‧‧‧背側氣體供應系統26‧‧‧Backside gas supply system
28‧‧‧箝制系統28‧‧‧Clamping system
30‧‧‧無線射頻產生器30‧‧‧radio frequency generator
32‧‧‧阻抗匹配網路32‧‧‧ impedance matching network
40‧‧‧氣體分配系統40‧‧‧Gas distribution system
45‧‧‧處理區域45‧‧‧Processing area
50‧‧‧真空幫浦系統50‧‧‧vacuum pump system
55‧‧‧控制器55‧‧‧ Controller
60‧‧‧旋轉磁場系統60‧‧‧Rotating magnetic field system
70‧‧‧上部電極70‧‧‧ upper electrode
72‧‧‧無線射頻產生器72‧‧‧ Radio Frequency Generator
74‧‧‧阻抗匹配網路74‧‧‧ impedance matching network
80‧‧‧感應線圈80‧‧‧Induction coil
80'‧‧‧感應線圈80'‧‧‧Induction coil
80"‧‧‧表面波電漿源80"‧‧‧ surface wave plasma source
82‧‧‧無線射頻產生器82‧‧‧radio frequency generator
82'‧‧‧微波產生器82'‧‧‧Microwave Generator
84‧‧‧阻抗匹配網路84‧‧‧ impedance matching network
84'‧‧‧阻抗匹配網路84'‧‧‧ impedance matching network
200‧‧‧流體分配系統200‧‧‧Fluid distribution system
210‧‧‧腔室元件210‧‧‧ chamber components
212‧‧‧內表面212‧‧‧ inner surface
214‧‧‧供應側214‧‧‧Supply side
216‧‧‧處理側216‧‧‧ treatment side
220‧‧‧開口220‧‧‧ openings
230‧‧‧嵌入元件230‧‧‧ embedded components
232‧‧‧溝槽232‧‧‧ trench
234‧‧‧入口端234‧‧‧ entrance end
236‧‧‧出口端236‧‧‧export end
238‧‧‧延伸方向238‧‧‧Extension direction
240‧‧‧氣體注入裝置240‧‧‧ gas injection device
300‧‧‧流體分配系統300‧‧‧Fluid distribution system
310‧‧‧腔室元件310‧‧‧Cell components
312‧‧‧成形內表面312‧‧‧ Formed inner surface
320‧‧‧開口320‧‧‧ openings
330‧‧‧成形嵌入元件330‧‧‧ Formed embedded components
332‧‧‧溝槽332‧‧‧ trench
334‧‧‧入口端334‧‧‧ entrance end
336‧‧‧出口端336‧‧‧export end
338‧‧‧延伸方向338‧‧‧ Extension direction
340‧‧‧氣體注入裝置340‧‧‧ gas injection device
400‧‧‧氣體分配系統400‧‧‧Gas distribution system
405‧‧‧處理室構件405‧‧‧Processing room components
410‧‧‧腔室元件410‧‧‧Cell components
440‧‧‧氣體注入裝置440‧‧‧ gas injection device
450‧‧‧氣體分配系統450‧‧‧Gas distribution system
460‧‧‧腔室元件460‧‧‧ chamber components
462‧‧‧第一氣體注入裝置462‧‧‧First gas injection device
464‧‧‧第二氣體注入裝置464‧‧‧Second gas injection device
500‧‧‧氣體分配系統500‧‧‧Gas distribution system
510‧‧‧氣體供應入口510‧‧‧ gas supply entrance
520‧‧‧氣體注入裝置520‧‧‧ gas injection device
522‧‧‧擴散器入口522‧‧‧Diffuser inlet
524‧‧‧擴散器出口524‧‧‧Diffuser exit
526‧‧‧螺旋狀通道526‧‧‧ spiral passage
529‧‧‧端緣529‧‧‧ edge
530‧‧‧氣體注入系統530‧‧‧ gas injection system
532‧‧‧充氣室532‧‧‧Inflatable room
534‧‧‧外殼534‧‧‧Shell
536‧‧‧氣體分配板536‧‧‧ gas distribution board
538‧‧‧開口538‧‧‧ openings
540‧‧‧上部組件540‧‧‧ upper components
542‧‧‧第一板542‧‧‧ first board
544‧‧‧第二板544‧‧‧ second board
546‧‧‧表面546‧‧‧ surface
548‧‧‧支撐架548‧‧‧Support frame
620‧‧‧氣體分配系統620‧‧‧Gas distribution system
630‧‧‧表面波電漿源630‧‧‧ Surface wave plasma source
638‧‧‧同軸饋伺器638‧‧‧Coaxial feeder
640‧‧‧內導體640‧‧‧ inner conductor
641‧‧‧隔離部分641‧‧‧Isolated part
642‧‧‧外導體642‧‧‧Outer conductor
643‧‧‧電磁波發射器643‧‧‧Electromagnetic wave launcher
644‧‧‧慢波板644‧‧‧ Slow wave board
646‧‧‧開槽天線646‧‧‧Slotted antenna
648‧‧‧狹縫648‧‧‧slit
650‧‧‧共振器板650‧‧‧Resonator board
652‧‧‧室壁652‧‧‧ room wall
654‧‧‧密封裝置654‧‧‧ Sealing device
655‧‧‧氣體注入裝置655‧‧‧ gas injection device
656‧‧‧冷卻通道656‧‧‧Cooling channel
658‧‧‧入口658‧‧‧ Entrance
730‧‧‧表面波電漿源730‧‧‧Surface wave plasma source
750‧‧‧成形共振器板750‧‧‧Shaped resonator plate
760‧‧‧起伏表面760‧‧‧ undulating surface
800‧‧‧流程圖800‧‧‧ Flowchart
810‧‧‧形成穿過腔室元件的開口810‧‧‧ forming an opening through the chamber element
820‧‧‧形成用以與開口相嚙合的嵌入元件820‧‧‧ Forming an embedded component for engagement with the opening
830‧‧‧在嵌入元件的外表面內形成一個以上的螺旋狀溝槽830‧‧‧ More than one spiral groove formed in the outer surface of the embedded component
840‧‧‧將嵌入元件嵌入至腔室元件的開口內840‧‧‧ Embed the embedded component into the opening of the chamber element
在隨附圖式中:圖1A至1C顯示用於對薄膜進行圖案蝕刻的程序示意圖;圖2顯示依照一實施例之電漿處理系統的示意圖;圖3顯示依照另一實施例之電漿處理系統的示意圖;圖4顯示依照另一實施例之電漿處理系統的示意圖;圖5顯示依照另一實施例之電漿處理系統的示意圖;圖6顯示依照另一實施例之電漿處理系統的示意圖;圖7顯示依照另一實施例之電漿處理系統的示意圖;圖8A、8B以及8C顯示依照一實施例的氣體分配開口以及製 造此開口的方法;圖9A、9B以及9C顯示依照另一實施例的氣體分配開口以及製造此開口的方法;圖10A顯示依照另一實施例的氣體分配開口;圖10B與10C顯示依照另一實施例的氣體分配開口;圖11A與11B顯示依照另一實施例的氣體分配系統;圖12顯示依照另一實施例的氣體分配系統;圖13顯示依照又另一實施例的氣體分配系統;及圖14顯示依照另一實施例之製造氣體分配開口的方法。1A to 1C show schematic diagrams of a process for pattern etching a film; FIG. 2 shows a schematic view of a plasma processing system in accordance with an embodiment; and FIG. 3 shows plasma processing in accordance with another embodiment. Figure 4 shows a schematic view of a plasma processing system in accordance with another embodiment; Figure 5 shows a schematic view of a plasma processing system in accordance with another embodiment; Figure 6 shows a plasma processing system in accordance with another embodiment Figure 7 shows a schematic view of a plasma processing system in accordance with another embodiment; Figures 8A, 8B and 8C show a gas distribution opening and system in accordance with an embodiment. FIG. 9A, 9B, and 9C show a gas distribution opening and a method of manufacturing the same according to another embodiment; FIG. 10A shows a gas distribution opening according to another embodiment; FIGS. 10B and 10C show another a gas distribution system of an embodiment; FIGS. 11A and 11B show a gas distribution system according to another embodiment; FIG. 12 shows a gas distribution system according to another embodiment; and FIG. 13 shows a gas distribution system according to still another embodiment; Figure 14 shows a method of making a gas distribution opening in accordance with another embodiment.
800‧‧‧流程圖800‧‧‧ Flowchart
810‧‧‧形成穿過腔室元件的開口810‧‧‧ forming an opening through the chamber element
820‧‧‧形成與開口相嚙合的嵌入元件820‧‧‧ Forming an embedded component that engages the opening
830‧‧‧在嵌入元件的外表面內形成一個以上的螺旋狀溝槽830‧‧‧ More than one spiral groove formed in the outer surface of the embedded component
840‧‧‧將嵌入元件嵌入至腔室元件的開口內840‧‧‧ Embed the embedded component into the opening of the chamber element
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97120698A TWI394200B (en) | 2008-06-04 | 2008-06-04 | Method and system for introducing process fluid through a chamber component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97120698A TWI394200B (en) | 2008-06-04 | 2008-06-04 | Method and system for introducing process fluid through a chamber component |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200952035A TW200952035A (en) | 2009-12-16 |
TWI394200B true TWI394200B (en) | 2013-04-21 |
Family
ID=44871935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97120698A TWI394200B (en) | 2008-06-04 | 2008-06-04 | Method and system for introducing process fluid through a chamber component |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI394200B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI557392B (en) * | 2014-12-30 | 2016-11-11 | High Efficiency Heat Exchanger with Staggered Flow in Nanometer Fluid Cooling |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5024716A (en) * | 1988-01-20 | 1991-06-18 | Canon Kabushiki Kaisha | Plasma processing apparatus for etching, ashing and film-formation |
US5038712A (en) * | 1986-09-09 | 1991-08-13 | Canon Kabushiki Kaisha | Apparatus with layered microwave window used in microwave plasma chemical vapor deposition process |
US6823816B2 (en) * | 1999-11-30 | 2004-11-30 | Tokyo Electron Limited | Plasma processing system |
US20040261712A1 (en) * | 2003-04-25 | 2004-12-30 | Daisuke Hayashi | Plasma processing apparatus |
US20050109279A1 (en) * | 2003-11-07 | 2005-05-26 | Shimadzu Corporation | Surface wave excitation plasma CVD system |
US6942767B1 (en) * | 2001-10-12 | 2005-09-13 | T-Graphic, Llc | Chemical reactor system |
-
2008
- 2008-06-04 TW TW97120698A patent/TWI394200B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5038712A (en) * | 1986-09-09 | 1991-08-13 | Canon Kabushiki Kaisha | Apparatus with layered microwave window used in microwave plasma chemical vapor deposition process |
US5024716A (en) * | 1988-01-20 | 1991-06-18 | Canon Kabushiki Kaisha | Plasma processing apparatus for etching, ashing and film-formation |
US6823816B2 (en) * | 1999-11-30 | 2004-11-30 | Tokyo Electron Limited | Plasma processing system |
US6942767B1 (en) * | 2001-10-12 | 2005-09-13 | T-Graphic, Llc | Chemical reactor system |
US20040261712A1 (en) * | 2003-04-25 | 2004-12-30 | Daisuke Hayashi | Plasma processing apparatus |
US20050109279A1 (en) * | 2003-11-07 | 2005-05-26 | Shimadzu Corporation | Surface wave excitation plasma CVD system |
Also Published As
Publication number | Publication date |
---|---|
TW200952035A (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8276540B2 (en) | Method and system for introducing process fluid through a chamber component | |
US8012305B2 (en) | Exhaust assembly for a plasma processing system | |
KR101315558B1 (en) | Treatment system | |
EP1446825B1 (en) | Apparatus and method for improving etch rate uniformity | |
US7829469B2 (en) | Method and system for uniformity control in ballistic electron beam enhanced plasma processing system | |
JP6442463B2 (en) | Annular baffle | |
TW201807738A (en) | Multi-frequency power modulation for etching high aspect ratio features | |
US20080023440A1 (en) | Method and system for controlling the uniformity of a ballistic electron beam by RF modulation | |
TWI651753B (en) | Method for etching power modulation of high aspect ratio features | |
US6850012B2 (en) | Plasma processing apparatus | |
JP5665265B2 (en) | Method and system for introducing process fluid through chamber components | |
TWI394200B (en) | Method and system for introducing process fluid through a chamber component | |
TW201842532A (en) | Process for performing self-limited etching of organic materials | |
US20170186587A1 (en) | Plasma processor | |
JP7329131B2 (en) | Plasma processing apparatus and plasma processing method |