TWI390367B - Interface and circuit arrangement in particular for holographic encoding units or holographic display devices - Google Patents

Interface and circuit arrangement in particular for holographic encoding units or holographic display devices Download PDF

Info

Publication number
TWI390367B
TWI390367B TW96132789A TW96132789A TWI390367B TW I390367 B TWI390367 B TW I390367B TW 96132789 A TW96132789 A TW 96132789A TW 96132789 A TW96132789 A TW 96132789A TW I390367 B TWI390367 B TW I390367B
Authority
TW
Taiwan
Prior art keywords
hologram
transmission
scene
image data
holographic
Prior art date
Application number
TW96132789A
Other languages
Chinese (zh)
Other versions
TW200836029A (en
Inventor
Alexander Schwerdtner
Armin Schwerdtner
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200836029A publication Critical patent/TW200836029A/en
Application granted granted Critical
Publication of TWI390367B publication Critical patent/TWI390367B/en

Links

Description

特別用於全像編碼單元或全像顯示裝置的介面 與電路配置 Especially for the interface of holographic coding unit or holographic display device And circuit configuration

本發明關於一種介面與電路配置,其中數位影像資料被傳輸到全像編碼單元或含有全像編碼單元的全像顯示裝置中。這些影像資料自視訊序列產生。一個編碼單元接著基於傳輸資料而針對全像顯示裝置產生複數的全像值,和/或編碼畫素值。編碼單元裝置例如是專屬計算單元。 The present invention relates to an interface and circuit arrangement in which digital image data is transmitted to a hologram encoding unit or a hologram display device including a hologram encoding unit. These image data are generated from video sequences. A coding unit then generates a complex holographic value and/or a coded pixel value for the holographic display device based on the transmission data. The coding unit means is, for example, a dedicated calculation unit.

在傳統的二維監視器中,所解析的影像資料可藉由介面傳輸到監視器,而該影像可使用個別畫素值來代表。相對於傳統二維監視器,全像顯示裝置的特徵是能產生干涉的調變光以光波前的形式行進於觀察者眼前的空間,該光波前在振幅和相位值方面是可控制的,該光波前因而重建三維景象。以視訊全像的全像值控制光調變器裝置造成發射波場(其個別畫素已被相應調變),以藉由產生干涉而重建所需的三維景象。 In a conventional two-dimensional monitor, the parsed image data can be transmitted to the monitor through the interface, and the image can be represented by individual pixel values. Compared with the conventional two-dimensional monitor, the holographic display device is characterized in that the modulated modulated light that can generate interference travels in the form of an optical wavefront in front of the observer's eyes, and the optical wavefront is controllable in terms of amplitude and phase values. The light wave front thus reconstructs the three-dimensional scene. Controlling the optical modulator device with the full image value of the video holographic image causes the transmitted wavefield (the individual pixels have been modulated accordingly) to reconstruct the desired three dimensional scene by creating interference.

較佳用於本發明的全像顯示裝置係實質上基於以下之原理:分解成物件點的景象被編碼成在至少一個的光調變器裝置上的完整全像。該景象被看成來自可見區域的重建,該可見區域位於視訊全像重建的一個週期間隔。針對要被重建的景象的各物件點而定義子全像。完整的全像可由子全像的疊加來形成。一般而言,原理是要主要地重建會被物件發射到一個或多個可見區域中的那 個波前。 The holographic display device preferably used in the present invention is substantially based on the principle that the scene resolved into object points is encoded into a complete hologram on at least one of the light modulator devices. The scene is seen as a reconstruction from the visible region, which is located at a periodic interval of video holographic reconstruction. A sub-image is defined for each object point of the scene to be reconstructed. A complete hologram can be formed by the superposition of sub-images. In general, the principle is to primarily reconstruct the one that will be emitted by the object into one or more visible areas. Wave front.

詳細而言,此類裝置所根據的原理是個別物件點的重建只需作為完整全像的子集合之子全像,該完整全像在光調變器裝置上被編碼。該全像顯示裝置含有至少一個螢幕裝置。該螢幕裝置是景象的全像被編碼的光調變器本身或光學元件(例如透鏡或鏡片),而在其上,光調變器上被編碼的景象的全像或波前被投影。 In particular, such devices are based on the principle that reconstruction of individual object points is only required as a sub-image of a subset of complete holograms that are encoded on the optical modulator device. The hologram display device includes at least one screen device. The screen device is a holographic image of the scene that is encoded by itself or an optical component (such as a lens or lens) onto which the hologram or wavefront of the image being encoded on the light modulator is projected.

該螢幕裝置的定義,和可見區域中景象重建的對應原理描述於申請人所申請的其他文件。在文件WO 2004/044659和WO 2006/027228中,螢幕裝置即為光調變器本身。在文件WO 2006/119760“景象的全像重建的投影裝置或方法”中,螢幕裝置即為全像所被投影的光學元件,該全像被投影在光調變器上。在文件DE 10 2006 004 300“景象的全像重建的投影裝置”中,螢幕裝置即為波前所被投影的光學元件,該波前在光調變節器上被編碼。 The definition of the screen device and the corresponding principles of scene reconstruction in the visible region are described in other documents filed by the applicant. In the documents WO 2004/044659 and WO 2006/027228, the screen device is the light modulator itself. In document WO 2006/119760 "Projection apparatus or method for holographic reconstruction of a scene", the screen device is the optical element to which the hologram is projected, which is projected onto the light modulator. In the document DE 10 2006 004 300 "Projection device for holographic reconstruction of a scene", the screen device is the optical element to which the wavefront is projected, the wavefront being encoded on the optical modulator.

「可見區域」即為觀察者所藉以看到整個重建景象的限制區域。在該可見區域中,波場進行干涉而形成波前,以使得觀察者看到重建的景象。可見區域即位於觀察者的眼睛或附近。可見區域可在X、Y、與Z方向移動,且可藉由已知位置的偵測和追蹤系統的輔助而被追蹤到實際觀察者位置。就各個觀察者而言,使用兩個可見範圍是可能的(各眼睛一個)。一般而言,可見區域的其 他實施例也是可能的。更可能對視訊全像進行編碼,以使得個別的物件或整個景象仿如位在用於觀察者的光調變器後方。 The "visible area" is the restricted area by which the observer sees the entire reconstructed scene. In this visible region, the wavefield interferes to form a wavefront so that the observer sees the reconstructed scene. The visible area is located in or near the observer's eyes. The visible area is movable in the X, Y, and Z directions and can be tracked to the actual observer position by the aid of a known location detection and tracking system. For each observer, it is possible to use two visible ranges (one for each eye). In general, the visible area of it His embodiment is also possible. It is more likely that the video hologram will be encoded such that individual objects or the entire scene appear to be behind the light modulator for the viewer.

申請人所申請的文件WO/2006/066906描述視訊全像的計算方法。其一般含有將景象分割成區段平面(其平行於光調變器的平面)、將所有的區段平面轉換到可見區域中、以及將其在那相加。然後,所相加的結果被轉換回到也可配置光調變器的全像平面中,因此決定視訊全像的複數全像值。 Document WO/2006/066906 filed by the applicant describes a method of calculating a video hologram. It typically involves dividing the scene into segment planes (which are parallel to the plane of the light modulator), converting all of the segment planes into the visible region, and adding them there. The resulting result is then converted back to the holographic plane of the configurable optical modulator, thus determining the complex holographic value of the video hologram.

申請人所申請的文件DE 10 2006 042 324描述即時產生視訊全像的方法。本方法所使用的原理是單一物件點的重建只需作為完整全像的子集合的子全像,該完整全像在光調變器上被編碼。其特徵是對於各物件點,子全像的貢獻可自至少一個的搜尋表中提取,而該子全像可被疊加,以形成完整全像而重建整個景象。 The document DE 10 2006 042 324, filed by the applicant, describes a method for the instant generation of a video holographic image. The principle used in this method is that the reconstruction of a single object point is only required as a sub-image of a subset of the complete hologram, which is encoded on the optical modulator. It is characterized in that for each object point, the contribution of the sub-image can be extracted from at least one of the search tables, and the sub-images can be superimposed to form a complete hologram to reconstruct the entire scene.

多種進一步的方法與裝置在全像領域是已知的,然而其不同於以上所述原理。例如,文件US 4 109 996 A描述產生合成全像的方法,而文件US 2005/0286101 A1描述全像投影器。 A variety of further methods and apparatus are known in the holographic field, however they differ from the principles described above. For example, document US Pat. No. 4,109,996 A describes a method of producing a composite holographic image, while document US 2005/0286101 A1 describes a hologram projector.

文件US 6 621 605 B1描述用於三維影像回復的電腦輔助方法和裝置,及提到傳輸資料用的介面。三維影像被分割成多個二維的區段影像。這些二維的區段影像資料連同色彩資訊傳輸到顯示裝置,該顯示裝置依序呈現二維影像,以使得觀察者似乎看到三維景象。本文所謂的「回復」應這樣解讀。缺點是二維資料也包括觀察者看不到的影像部份。比所需更多的資料因此被傳輸。 當進行可見度的最佳化處理,資料量將仍非常大,或比所需更大。 Document US 6 621 605 B1 describes a computer-aided method and apparatus for three-dimensional image recovery, and an interface for transferring data. The 3D image is segmented into a plurality of 2D segment images. The two-dimensional segment image data is transmitted to the display device along with the color information, and the display device sequentially presents the two-dimensional image so that the observer seems to see the three-dimensional scene. The so-called "response" in this article should be interpreted as such. The disadvantage is that the 2D data also includes portions of the image that are not visible to the observer. More data than needed is therefore transmitted. When the visibility is optimized, the amount of data will still be very large, or larger than necessary.

文件US 2006/0187297 A1說明全像的3D電視。三維電視系統擷取3D動作景象,依據3D圖像法而對其進行轉換,對其進行傳輸,及最後使用有效率的計算法將其轉換成全像訊號,以建立全像的呈現。所謂傳輸的資料則包括3D景象對線網模式的轉換。這裡的一個缺點是比所需更多的資料量被傳輸。 Document US 2006/0187297 A1 describes a holographic 3D television. The 3D TV system captures the 3D action scene, converts it according to the 3D image method, transmits it, and finally converts it into a full image signal using an efficient calculation method to establish the omnipresent image. The so-called transmitted data includes the conversion of the 3D scene to the net mode. One disadvantage here is that more data is transferred than needed.

本發明目的是要將傳輸到編碼單元的資料量降到最低,尤其是在顯示視訊序列的時候,傳輸的資料量應是最少的。 The object of the present invention is to minimize the amount of data transmitted to the coding unit, especially when displaying video sequences, the amount of data transmitted should be minimal.

本發明的另一個目的是傳輸為某些觀察者位置而被調適的資料,其中資料量仍應是最少的。這些資料應被結構化,以使得編碼單元能夠產生複數全像值,且/或使用最少的計算負載而進行全像顯示裝置的畫素值編碼。訊號產生和全像呈現之間的延遲時間也應因此被降低。 Another object of the invention is to transmit data that is adapted for certain viewer positions, wherein the amount of data should still be minimal. These data should be structured to enable the coding unit to generate complex holographic values and/or to perform pixel value encoding of the hologram display device with minimal computational load. The delay between signal generation and holographic rendering should also be reduced.

本發明的廣義想法定義全像編碼單元所需的介面和電路配置,以能夠產生複數全像值資料,和/或進行全像顯示裝置的畫素值編碼。 The broad idea of the present invention defines the interface and circuit configuration required for a holographic coding unit to enable generation of complex holographic data, and/or for pixel value encoding of omnidirectional display devices.

依據本發明,該介面的特徵是其藉由傳輸裝置和使用通訊協定而分別轉換代表深度資訊的深度圖譜,及代表畫素化影像資料之色彩資訊的色彩圖譜。本電路配置是依據相同的想法。傳輸在傳輸裝置上之空間上分離的個別傳輸被執行。也可能使用相同的 傳輸裝置,並藉由分時多工而執行個別的傳輸。在任一的情況下,也可能使用不同的通訊協定。 According to the invention, the interface is characterized in that it converts a depth map representing depth information and a color map representing color information of the pixelized image data by means of a transmission device and using a communication protocol. This circuit configuration is based on the same idea. The individual transmissions that are spatially separated on the transmission device are transmitted. May use the same The device is transmitted and individual transmissions are performed by time division multiplexing. In either case, it is also possible to use different communication protocols.

深度圖譜包括畫素化影像的深度資訊。類似地,色彩圖譜包括畫素化影像相關的色彩資訊。本文的影像例如是視訊序列的單一影像。而該資料例如提取自影像卡的記憶體,更詳言之,色採圖譜是來自所謂畫格緩衝器,且深度圖譜是來自影像卡的Z-緩衝器。另一種方式是,這些資料是從專屬的記憶體裝置或匯流排系統,或進一步的系統(其硬體和軟體允許存取這些資料)而被提取。 The depth map includes depth information for the pixelated image. Similarly, the color map includes color information related to the pixelated image. An image herein is, for example, a single image of a video sequence. The data is, for example, extracted from the memory of the image card. More specifically, the color map is from a so-called frame buffer and the depth map is from the Z-buffer of the image card. Alternatively, the data may be extracted from a proprietary memory device or bus system, or a further system whose hardware and software allow access to the data.

在傳輸深度和色彩資訊時,可使用不同的原理。相關內容摘要說明如下:在本發明的第一個具體設計中,標準化的深度圖譜和標準化的色彩圖譜被傳輸。這些圖譜結果例如來自特別定義的視野或特別定義的觀察者位置。此類特定視野是例如被定義而讓觀察者位置位於中央,且在顯示螢幕前的給定距離。觀察者的位置通常由其眼睛瞳孔的位置來定義。 Different principles can be used when transmitting depth and color information. A summary of the related content is as follows: In a first specific design of the invention, a standardized depth map and a standardized color map are transmitted. These spectral results are for example from a specially defined field of view or a specially defined observer position. Such a particular field of view is, for example, defined to give the viewer a central location and a given distance before the display screen. The position of the observer is usually defined by the position of the pupil of his eye.

在較佳的實施例中,對應一個觀察者眼睛瞳孔位置的深度圖譜是為了每個觀察者而被傳輸。這表示兩個深度圖譜是就每個觀察者而被傳輸(每個眼睛一個)。另一種方式是,可能只傳輸一眼睛瞳孔位置所對應的深度圖譜,尤其是假如第二個視野可得自一深度圖譜。 In the preferred embodiment, the depth map corresponding to the pupil position of an observer's eye is transmitted for each viewer. This means that two depth maps are transmitted for each observer (one for each eye). Alternatively, it is possible to transmit only the depth map corresponding to the pupil position of the eye, especially if the second field of view is available from a depth map.

這些實施例類比地應用於色彩圖譜。 These embodiments are analogously applied to color maps.

在關於色彩圖譜的實施例中,對應一個觀察者眼睛瞳孔位置的色彩圖譜針對每個觀察者而被傳輸。兩個色彩圖譜就每個觀察者而被傳輸。也可能只傳輸單一眼睛瞳孔位置所對應的色彩圖譜,且據此就第二個瞳孔使用該色彩圖譜,因為在產生全像值時所典型發生的色差能被忽略。假如結果產生的色差是可忽略或可接受時,更可能就另一個觀察者而使用色彩圖譜。 In an embodiment relating to a color map, a color map corresponding to the pupil position of an observer's eye is transmitted for each viewer. Two color maps are transmitted for each observer. It is also possible to transmit only the color map corresponding to the pupil position of a single eye, and accordingly the color map is used for the second pupil because the chromatic aberration typically occurring when the holographic value is generated can be ignored. If the resulting color difference is negligible or acceptable, it is more likely to use a color map for another observer.

資料來源、資料接收器、傳輸裝置和通訊協定的較佳形式列舉如下。該介面的資料來源包括例如影像卡的記憶體,或電腦、工作站、CD播放器或DVD播放器的一個或多個影像系統連結。該資料特別地較佳由一個或多個資料伺服器提供,且較佳藉由多個平行傳輸裝置傳輸。另一個較佳的資料來源由PCI Express(「周邊元件互連快速裝置」)匯流排提供,該PCI Express允許連結到要被提供的影像系統記憶體裝置,以及要被讀取的深度和色彩圖譜。允許記憶體區段被存取,且深度和色彩圖譜被讀取的進一步發明和未來的匯流排系統形成可能之資料來源。 Preferred forms of data sources, data receivers, transmission devices, and communication protocols are listed below. Sources of the interface include, for example, the memory of an image card, or one or more image system links of a computer, workstation, CD player, or DVD player. The information is particularly preferably provided by one or more data servers and is preferably transmitted by a plurality of parallel transmission devices. Another preferred source of information is provided by a PCI Express ("Peripheral Component Interconnect Express") bus that allows connection to the image system memory device to be provided, as well as the depth and color map to be read. . Further inventions that allow memory segments to be accessed, and depth and color maps to be read, and future busbar systems form a possible source of information.

通訊協定包括例如纜線、衛星、網際網路、無線區域網路、乙太網路、IEEE 802.11、數位視訊介面(DVI)或目前可使用或未來可使用的其他適當協定。這些協定通常符合工業標準或對應建議。例如,數位視訊介面(DVI)是根據數位顯示作業群組DDWG的標準。依據本發明之介面的特別較佳實施例,資料來源包括兩個 DVI輸出點,以使得深度和色彩圖譜如上述內容被分別但同時傳輸。 Protocols include, for example, cable, satellite, internet, wireless local area network, Ethernet, IEEE 802.11, Digital Video Interface (DVI), or other appropriate agreement currently available or available for future use. These agreements usually comply with industry standards or corresponding recommendations. For example, the Digital Video Interface (DVI) is a standard for displaying the Job Group DDWG based on digits. According to a particularly preferred embodiment of the interface of the present invention, the source of the data includes two The DVI outputs points so that the depth and color maps are transmitted separately but simultaneously as described above.

外部的全像編碼單元或包含一個編碼單元的全像顯示裝置特別較佳被提供作為資料接收器。在下列個別的具體設計中,將說明特別較佳編碼單元。編碼單元也含有專屬計算單元,例如CPU、GPU或特別設計的處理器。該編碼單元使用的方法說明由深度圖譜呈現的景象降低編碼單元所需的計算負載。當只涉及最少的資料量,使用深度和色彩圖譜而提供所有必需的資訊給編碼單元。視野、可見度和類似者已經由深度圖譜定義,使得這些作業無需由編碼單元加以決定。 An external hologram encoding unit or a hologram display device including one encoding unit is particularly preferably provided as a data receiver. Particularly preferred coding units will be described in the individual specific designs below. The coding unit also contains a dedicated computing unit, such as a CPU, GPU or specially designed processor. The method used by the coding unit illustrates the computational load required by the scene rendered by the depth map to reduce the coding unit. When only the minimum amount of data is involved, the depth and color maps are used to provide all the necessary information to the coding unit. The field of view, visibility, and the like have been defined by the depth map so that these jobs need not be determined by the coding unit.

本發明介面和電路配置允許來自視訊全像的影像資料被產生,以被簡單地和經濟地傳輸。編碼單元的計算負載因此被降到最低。本發明進一步允許數位視訊全像場中的系統進行區域性和整體性的網路連結。 The interface and circuit configuration of the present invention allows image material from a video holographic image to be generated for simple and economical transmission. The computational load of the coding unit is therefore minimized. The present invention further allows for a regional and holistic network connection of systems in a digital video full field.

針對一個觀察者的第一個較佳實施例說明如下。就該觀察者而言,例如對應其瞳孔位置的深度圖譜自介面傳輸到編碼單元。這表示兩個深度圖譜被傳輸。應用於色彩圖譜的是相同的。對應觀察者眼睛瞳孔位置的色彩圖譜是就觀察者而被傳輸。這表示兩個色彩圖譜被傳輸,上述的資料自資料伺服器提取,且使用DVI協定而被傳輸到編碼單元。深度資訊和色彩資訊每一個是藉由一個DVI纜線而被個別地傳輸。然而,此處使用相同通訊協定。 A first preferred embodiment for an observer is described below. For this observer, for example, a depth map corresponding to its pupil position is transmitted from the interface to the coding unit. This means that two depth maps are transmitted. The same applies to the color map. The color map corresponding to the pupil position of the observer's eye is transmitted as an observer. This means that two color maps are transmitted, the above data is extracted from the data server and transmitted to the coding unit using the DVI protocol. The depth information and color information are each transmitted individually by a DVI cable. However, the same communication protocol is used here.

代表資料接收器的編碼單元是基於如文件DE 10 2006 042 324所述全像顯示裝置之產生視訊全像的方法,其中的顯示裝置含有被分割成物件點之景象被編碼成完整全像之至少一個光調變器裝置,而其中景象可被看成來自視訊全像重建的週期間隔中的可見區域的重建,其中可見區域連同要被重建之景象的各個物件點定義子全像,而其中完整全像由子全像的疊加形成,且其中對於完整全像的子全像貢獻可針對深度圖譜的各個物件點而由編碼單元提取自至少一個搜尋表。如本方法所說明,編碼單元的計算負載被降低,因為物件點的深度的資訊內容是直接讀取自藉由本發明介面所傳輸的深度圖譜。使用本資訊,對應子全像的貢獻可從至少一個的搜尋表提取。完整的全像可被即時產生。 The coding unit representing the data receiver is a method for generating a video holographic image based on a holographic display device as described in the document DE 10 2006 042 324, wherein the display device comprises at least a scene segmented into object points encoded into a complete hologram. a light modulator device, wherein the scene can be viewed as a reconstruction of a visible region from a periodic interval of video holographic reconstruction, wherein the visible region defines a sub-image with the individual object points of the scene to be reconstructed, and wherein the image is complete The hologram is formed by the superposition of sub-images, and wherein the sub-image contribution for the complete hologram can be extracted from the at least one search table by the coding unit for each object point of the depth map. As illustrated by the method, the computational load of the coding unit is reduced because the information content of the depth of the object point is directly read from the depth map transmitted by the interface of the present invention. Using this information, the contribution of the corresponding sub-hologram can be extracted from at least one of the search tables. A complete hologram can be generated instantly.

第二個實施例說明如下(同樣是針對一個觀察者,以使事情簡化。就該觀察者而言,對應其眼睛瞳孔位置的深度圖譜自介面傳輸到編碼單元,其類似上述的範例。這表示兩個深度圖譜被傳輸。但僅傳輸一眼睛瞳孔位置所對應的一個色彩圖譜。而該資料提取自影像卡記憶體,詳言之,色採圖譜是來自畫格緩衝器,且深度圖譜是來自影像卡之Z-緩衝器。深度和色彩圖譜是分別例如藉由乙太網路而被傳輸。在使用編碼單元(其決定來自第一個眼睛瞳孔位置的深度資訊之針對第二個眼睛瞳孔位置的全像值)的時候,第二個深度圖譜的傳輸可省略。基於如文件WO/2006/666966所述產 生視訊全像方法的另一特別較佳編碼單元被提供來作為資料接收器。此編碼單元針對深度圖譜所代表的景象而執行電腦輔助的下列步驟。 The second embodiment illustrates the following (again for an observer to simplify things. For the observer, the depth map corresponding to the pupil position of the eye is transmitted from the interface to the coding unit, which is similar to the above example. Two depth maps are transmitted, but only one color map corresponding to the pupil position of the eye is transmitted. The data is extracted from the image card memory, in detail, the color spectrum is from the frame buffer, and the depth map is from The Z-buffer of the video card. The depth and color maps are transmitted, for example, via Ethernet. The coding unit is used (which determines the depth information from the first eye pupil position for the second eye pupil position). The transmission of the second depth map may be omitted when based on the hologram value. Based on the production as described in document WO/2006/666966 Another particularly preferred coding unit for the video holographic method is provided as a data receiver. This coding unit performs the following steps of computer assistance for the scene represented by the depth map.

- 繞射影像以針對觀察者平面的波場的分別的二維分佈方式而被計算自每一斷層景象區段的各物件資料組,該觀察者平面位於區段平面的有限距離且平行於該區段平面,其中所有區段的波場針對至少一一般可見區域而被計算。 - the diffracted image is calculated from each object data set of each tomographic scene segment in a respective two-dimensional distribution of the wavefields of the observer plane, the observer plane being at a finite distance of the segment plane and parallel to the A segment plane in which the wavefields of all segments are calculated for at least one generally visible region.

- 所有區段的已計算分佈被加入,以定義資料組中針對可見區域的聚集波場,該資料組是對應該觀察者平面; - the calculated distribution of all segments is added to define the aggregated wavefield for the visible region in the dataset, which is the corresponding observer plane;

- 為針對一般的電腦所產生景象全像來產生全像資料,參考資料組被轉換到全像平面,該全像平面位於參考平面的有限距離且平行於參考平面,其中的光調變器裝置位於全像平面中。 - generating holographic data for a holographic image produced by a general computer, the reference set being converted to a holographic plane, the holographic plane being at a finite distance of the reference plane and parallel to the reference plane, wherein the optical modulator device Located in the hologram plane.

所謂的「轉換」應視為包含任何跟轉換相同或類似的數學計算或技術。數學層面的轉換僅為近似物理程序,其由Maxwellian的波動公式提供更精確的說明。例如Fresnel轉換,或稱為Fourier轉換的特別轉換群組的轉換描述二階的近似。影像轉換通常由代數式和非微分式表示,且可因此有效率地被處理,及使用已知的計算法而有高性能。再者,其可使用光學系統而被精確地 模式化。 The so-called "conversion" should be considered to include any mathematical calculation or technique that is the same or similar to the conversion. Mathematical transformations are only approximate physical procedures, which provide a more accurate description by Maxwellian's volatility formula. For example, a Fresnel transformation, or a transformation of a special transformation group called Fourier transformation, describes a second-order approximation. Image conversion is usually represented by algebraic and non-differential, and can therefore be processed efficiently and with high performance using known calculations. Furthermore, it can be accurately used using an optical system Patterned.

上述的實施例當然能選擇性針對多個觀察者而被結合。這尤其適用於深度和色彩圖譜的傳輸,即是否就一觀察者進行而選擇性傳輸一個或兩個深度圖譜及一或兩個色彩圖譜。 The embodiments described above can of course be selectively combined for multiple viewers. This applies in particular to the transmission of depth and color maps, ie whether one or two depth maps and one or two color maps are selectively transmitted for an observer.

圖1顯示影像卡和編碼單元實施所在之專屬計算單元間的電路配置的第三實施例。編碼單元(HEU)例如實施以上所述方法的其中之一。編碼單元(HEU)的計算單元市影像處理器(GPU),該處理器可整合於影像卡的影像系統中,或可空間上被分隔。其在圖式被分別顯示,以使事情簡化。資料來源由3D成像管路(3D-RGP)的畫格緩衝器(FB)和Z-緩衝器(ZB)來代表。色彩圖譜可自畫格緩衝器(FB)讀取,而深度圖譜自Z緩衝器(ZB)讀取。畫格緩衝器和Z緩衝器典型地為個別的記憶體,假如使用共同的記憶體,需藉由規範來區分畫格緩衝器和Z緩衝器。傳輸道(L1,L2,…)(即至少一傳輸道(L1)用於深度圖譜,且至少一傳輸道(L2)用於色彩圖譜)依據本發明而被實施為資料來源和資料接收器間的資料連結,以允許深度和色彩圖譜被分別傳輸。假如只提供有一個資料連結,則深度圖譜和色彩圖譜將藉由分時多工而被傳輸。 Figure 1 shows a third embodiment of the circuit arrangement between the image card and the dedicated computing unit in which the encoding unit is implemented. A coding unit (HEU), for example, implements one of the methods described above. The computing unit of the coding unit (HEU) is a city image processor (GPU) that can be integrated into the image system of the image card or can be spatially separated. It is shown separately in the schema to simplify things. The data source is represented by a 3D imaging pipeline (3D-RGP) frame buffer (FB) and Z-buffer (ZB). The color map can be read from the frame buffer (FB) while the depth map is read from the Z buffer (ZB). The frame buffer and the Z buffer are typically individual memories. If a common memory is used, the frame buffer and the Z buffer are distinguished by specifications. Transmission lanes (L1, L2, ...) (ie at least one transmission lane (L1) for the depth map and at least one transmission lane (L2) for the color map) are implemented as data sources and data receivers in accordance with the present invention The data link is allowed to allow depth and color maps to be transmitted separately. If only one data link is provided, the depth map and color map will be transmitted by time division multiplexing.

本案所揭露之技術,得由熟習本技術人士據以實施,而其前所未有之作法亦具備專利性,爰依法提出專利之申請。惟上述之實施例尚不足以涵蓋本案所欲保護之專利範圍,因此,提出申請專利範圍如附。 The technology disclosed in this case can be implemented by a person familiar with the technology, and its unprecedented practice is also patentable, and the application for patent is filed according to law. However, the above embodiments are not sufficient to cover the scope of patents to be protected in this case. Therefore, the scope of the patent application is attached.

3D-RGP‧‧‧3D成像管路裝置 3D-RGP‧‧‧3D imaging line device

ZB‧‧‧Z緩衝器 ZB‧‧Z buffer

FB‧‧‧畫格緩衝器 FB‧‧‧ frame buffer

HEU‧‧‧編碼單元 HEU‧‧‧ coding unit

圖1為本發明使用編碼單元中,於影像卡和專屬運算單元間的電路配置。 FIG. 1 is a circuit configuration of an image card and a dedicated arithmetic unit in a coding unit according to the present invention.

3D-RGP‧‧‧3D成像管路裝置 3D-RGP‧‧‧3D imaging line device

ZB‧‧‧Z緩衝器 ZB‧‧Z buffer

FB‧‧‧畫格緩衝器 FB‧‧‧ frame buffer

HEU‧‧‧編碼單元 HEU‧‧‧ coding unit

Claims (26)

一種針對至少一全像編碼單元之用於數位影像資料的一傳輸的介面,該全像編碼單元自具有深度資訊的影像資料產生複數值和/或編碼畫素值,以控制一全像顯示裝置之至少一光調變器裝置,其特徵在於:該介面係藉由傳輸裝置和使用通訊協定而分別傳輸該影像資料的一深度圖譜和一色彩圖譜,其中該深度圖譜包含該深度資訊,而該色彩圖譜包含一影像序列之畫素化影像之色彩資訊。 An interface for a transmission of digital image data for at least one hologram encoding unit, the hologram encoding unit generating complex values and/or coded pixel values from image data having depth information to control a hologram display device At least one optical modulator device, wherein the interface transmits a depth map and a color map of the image data by using a transmission device and using a communication protocol, wherein the depth map includes the depth information, and the depth map includes the depth information, and the depth map includes the depth information. The color map contains the color information of the pixelized image of an image sequence. 如申請專利範圍第1項所述之用於數位影像資料的該傳輸的介面,其中一標準化深度圖譜和一標準化色彩圖譜被傳輸。 An interface for the transmission of digital image data as described in claim 1 wherein a normalized depth map and a normalized color map are transmitted. 如申請專利範圍第1項所述之用於數位影像資料的該傳輸的介面,其中可選擇針對至少一觀察者而傳輸對應一眼睛瞳孔的該位置的該深度圖譜,或對應任一眼睛瞳孔的兩深度圖譜,及/或其中可選擇針對至少一觀察者而傳輸對應一眼睛瞳孔之一位置的該色彩圖譜,或對應任一眼睛瞳孔的兩色彩圖譜。 An interface for the transmission of digital image data as described in claim 1, wherein the depth map corresponding to the position of the one eye pupil is transmitted for at least one observer, or corresponds to any eye pupil The two depth maps, and/or wherein the color map corresponding to one of the pupils of one of the eye pupils is selected for at least one observer, or a two color map corresponding to any of the pupils of the eye. 如申請專利範圍第1-3項其中之一項所述之用於數位影像資料的該傳輸的介面,其傳輸來自一Z-緩衝器的該深度圖譜,及來自一影像卡的一畫格緩衝器或來自一影像系統的其他專屬記憶體區段的該色彩圖譜。 An interface for the transmission of digital image data as described in one of claims 1-3, which transmits the depth map from a Z-buffer and a frame buffer from an image card. The color map of the device or other dedicated memory segments from an imaging system. 如申請專利範圍第1-3項其中之一項所述之用於數位影像資料的該傳輸的介面,該傳輸是針對該全像編碼單元,其中使用該深度圖譜所表示的一景象而通過被一電腦輔助的該編碼單元執行下列步驟:- 針對一觀察者平面從每一斷層景象區段的每一物件資料組而以 波場的一個別二維分佈的該形式計算一繞射影像,該觀察者平面位於該區段平面的一有限距離且平行於該區段平面,其中針對至少一一般可見區域計算所有區段的該波場;- 加入所有區段層的該計算分佈,以定義對應該觀察者平面位置的一資料組中該可見區域的一聚集波場;- 為了針對該景象的一一般電腦所產生全像來產生一全像資料組,將該參考資料組轉換到一全像平面,該全像平面位於該參考平面的一有限距離且平行於該參考平面,其中該光調變器裝置位於該全像平面中。 An interface for the transmission of digital image data as described in any one of claims 1-3, wherein the transmission is for the holographic coding unit, wherein a scene represented by the depth map is used A computer-assisted coding unit performs the following steps: - for each observer plane from each object profile of each tomographic scene segment A form of a two-dimensional distribution of the wave field calculates a diffraction image, the observer plane being located at a finite distance of the segment plane and parallel to the segment plane, wherein all segments are calculated for at least one generally visible region The wave field; - the calculated distribution of all segment layers is added to define a concentrated wave field of the visible region in a data set corresponding to the observer plane position; - a hologram generated for a general computer of the scene Generating a holographic data set, converting the reference data set to a holographic plane, the holographic plane being located at a finite distance of the reference plane and parallel to the reference plane, wherein the optical modulator device is located in the hologram In the plane. 如申請專利範圍第1到3項其中之一項所述之用於數位影像資料的該傳輸的介面,該傳輸是針對用於一全像顯示裝置的一全像編碼單元,其中該全像顯示裝置包含至少一光調變器裝置,在該至少一光調變器裝置上,被分解成物件點的一景象被編碼為一完整的全像,且其中該景象可被看成一可見區域的一重建,該可見區域位於該視訊全像的該重建的一週期間隔中,其中該可見區域連同要被重建的該景象的各物件點定義一子全像,且其中該完整的全像由子全像的疊加來形成,且其中針對該深度圖譜的各物件點,該子全像對於該景象的該整個重建的該貢獻可藉由該編碼單元而從至少一個搜尋表提取。 An interface for the transmission of digital image data as described in one of claims 1 to 3, wherein the transmission is for a hologram encoding unit for a hologram display device, wherein the hologram display The device includes at least one light modulator device, on the at least one light modulator device, a scene that is decomposed into object points is encoded as a complete hologram, and wherein the scene can be viewed as a visible region Reconstructing, the visible region is located in the reconstructed one-period interval of the video hologram, wherein the visible region defines a sub-image with the object points of the scene to be reconstructed, and wherein the complete hologram is sub-holographic The superposition is formed, and wherein for each object point of the depth map, the contribution of the sub-hologram to the entire reconstruction of the scene can be extracted from the at least one search table by the coding unit. 如申請專利範圍第6項所述之用於數位影像資料的該傳輸的介面,該傳輸是針對一全像編碼單元,其中由已傳輸的深度圖譜所代表的該景象的一視野由一觀察者的該位置和視點方向所定義,且其中針對該深度圖譜的各物件點而藉由一電腦輔助的該編碼單元執行下列步驟:- 步驟(1):針對各物件點而找到該子全像的該位置;- 步驟(2):從至少一搜尋表提取該對應子全像的該貢獻;- 步驟(3):針對所有物件點重複這兩步驟,其中該子全像被疊 加,以形成該整個景象的該重建的一完整全像。 An interface for the transmission of digital image data as described in claim 6 of the patent application, the transmission being directed to a holographic coding unit, wherein a field of view of the scene represented by the transmitted depth map is by an observer The position and the direction of the viewpoint are defined, and wherein the computer-assisted coding unit performs the following steps for each object point of the depth map: - Step (1): finding the sub-image for each object point The position; - step (2): extracting the contribution of the corresponding sub-hologram from at least one search table; - step (3): repeating the two steps for all object points, wherein the sub-images are stacked Add to form a complete hologram of the reconstruction of the entire scene. 如申請專利範圍第1-3項其中之一項所述之用於數位影像資料的該傳輸的介面,其藉由一影像系統的一或多個連結來傳輸該深度圖譜和色彩圖譜。 The interface for the transmission of digital image data as described in one of claims 1-3, wherein the depth map and the color map are transmitted by one or more links of an image system. 如申請專利範圍第1-3項其中之一項所述之用於數位資料影像的該傳輸的介面,其傳輸來自一個或多個資料伺服器的該深度圖譜和色彩圖譜。 The interface for the transmission of digital data images as described in one of claims 1-3, which transmits the depth map and color map from one or more data servers. 如申請專利範圍第1-3項其中之一項所述之用於數位影像資料的該傳輸的介面,其中一通訊協定包括網際網路、乙太網路、無線範圍網路、IEEE 802.11、DVI或類似者。 An interface for the transmission of digital image data as described in any one of claims 1-3, wherein the communication protocol comprises an internet protocol, an Ethernet network, a wireless range network, an IEEE 802.11, a DVI. Or similar. 如申請專利範圍第1-3項其中一項所述之用於數位影像資料的該傳輸的介面,該傳輸是針對一全像編碼單元,該全像編碼單元從具有深度資訊的影像資料產生複數全像值和/或編碼畫素值,以控制一全像顯示裝置的至少一光調變器裝置,其中該全像顯示裝置含有至少一光調變器裝置,在該光調變器裝置上,被分解成物件點的一景象被編碼成一完整的全像,且其中該景象可被視為一可見區域的一重建,該可見區域位於該視訊全像的該重建的一週期間隔中,其中該可見區域連同要被重建的該景象的各物件點定義一子全像,該景象由該深度圖譜表示,且其中該完整的全像由子全像的一疊加來形成。 An interface for the transmission of digital image data according to any one of claims 1-3, wherein the transmission is for a holographic coding unit that generates a plurality of image data having depth information. Full image value and/or coded pixel value for controlling at least one light modulator device of a hologram display device, wherein the hologram display device includes at least one light modulator device on the light modulator device a scene that is decomposed into object points is encoded into a complete hologram, and wherein the scene can be viewed as a reconstruction of a visible region located in the reconstructed one-cycle interval of the video hologram, wherein The visible region defines a sub-image of the object along with the object points to be reconstructed, the scene being represented by the depth map, and wherein the complete hologram is formed by a superposition of the sub-images. 如申請專利範圍第11項所述之用於數位影像資料的該傳輸的介面,該傳輸是針對具有一螢幕裝置的一全像顯示裝置,其中該螢幕裝置是該景象的該全像被編碼所在的該光調變器裝置的本身,或其中該螢幕裝置是在該光調變器裝置上所編碼的該景象的 一全像或波前所被投影到的一光學元件。 An interface for the transmission of digital image data as described in claim 11 of the patent application, the transmission being directed to a holographic display device having a screen device, wherein the holographic device is encoded by the hologram of the scene The light modulator device itself, or wherein the screen device is encoded on the light modulator device A hologram or an optical component to which the wavefront is projected. 如申請專利範圍第12項所述之用於數位影像資料的該傳輸的介面,其中該全像顯示裝置的該光學元件是一透鏡或鏡面。 An interface for the transmission of digital image data as described in claim 12, wherein the optical component of the holographic display device is a lens or mirror. 一種針對至少一全像編碼單元之用於數位影像資料的一傳輸的電路配置,該至少一全像編碼單元從具有深度資訊的影像資料產生複數值和/或編碼畫素值,以控制至少一全像顯示裝置的至少一光調變器裝置,其特徵在於,該電路配置藉由傳輸裝置和使用通訊協定而分別傳輸該影像資料的一深度圖譜和一色彩圖譜,其中該深度圖譜包括該深度資訊且該色彩圖譜包括一影像序列的畫素化影像的色彩資訊。 A circuit configuration for a transmission of digital image data for at least one hologram encoding unit, the at least one hologram encoding unit generating a complex value and/or a coded pixel value from image data having depth information to control at least one At least one optical modulator device of a holographic display device, wherein the circuit configuration separately transmits a depth map and a color map of the image data by using a transmission device and using a communication protocol, wherein the depth map includes the depth Information and the color map includes color information of a pixelized image of an image sequence. 如申請專利範圍第14項所述之用於數位影像資料的該傳輸的電路配置,其中一標準化深度圖譜和一標準化色彩圖譜被傳輸。 A circuit configuration for the transmission of digital image data as described in claim 14 wherein a normalized depth map and a normalized color map are transmitted. 如申請專利範圍第14項所述之用於數位影像資料的該傳輸的電路配置,其中可選擇針對至少一觀察者而傳輸對應一眼睛瞳孔的一位置的該深度圖譜,或是對應任一眼睛瞳孔的兩深度圖譜,及/或其中可選擇針對至少一觀察者而傳輸對應一眼睛瞳孔之一位置的該色彩圖譜,或對應任一眼睛瞳孔的兩色彩圖譜。 The circuit configuration for the transmission of digital image data as described in claim 14, wherein the depth map corresponding to a position of an eye pupil is transmitted for at least one observer, or corresponds to any eye. The two depth maps of the pupil, and/or wherein the color map corresponding to one of the pupils of one of the eye pupils is selected for at least one observer, or a two color map corresponding to any of the pupils of the eye. 如前述申請專利範圍第14到16項其中之一項所述之用於數位影像資料的該傳輸的電路配置,其傳輸來自一Z-緩衝器的該深度圖譜及來自一影像卡的一畫格緩衝器,或來自一影像系統的其他專屬記憶體區段的該色彩圖譜。 A circuit configuration for the transmission of digital image data according to any one of the preceding claims, wherein the depth map from a Z-buffer and a frame from an image card are transmitted. The color spectrum of the buffer, or other dedicated memory segments from an imaging system. 如前述申請專利範圍第14到16項其中之一項所述之用於數位影像資料的該傳輸的電路配置,該傳輸是針對該全像編碼單 元,其中使用該深度圖譜所表示的一景象而通過藉由一電腦輔助的該編碼單元來執行下列步驟:- 針對一觀察者平面從每一斷層景象區段的每一物件資料組而以波場的一個別二維分佈的該形式計算一繞射影像,該觀察者平面位於該區段平面的一有限距離且平行於該區段平面,其中針對至少一一般可見區域而計算所有區段的該波場;- 加入所有區段層的該計算分佈,以定義對應該觀察者平面位置的一資料組中該可見區域的一聚集波場;- 為了針對該景象的一一般電腦所產生全像來產生一全像資料組,將該參考資料組合轉換成一全像平面,該全像平面位於該參考平面的一有限距離且平行於該參考平面,其中該光調變器裝置位於該全像平面中。 A circuit configuration for the transmission of digital image data according to any one of the preceding claims, wherein the transmission is for the hologram encoding a unit in which the following steps are performed by a computer-assisted coding unit using a scene represented by the depth map: - a wave from each object data group of each tomographic scene segment for an observer plane A form of a two-dimensional distribution of the field calculates a diffracted image, the observer plane being located at a finite distance of the segment plane and parallel to the segment plane, wherein all segments are calculated for at least one generally visible region The wave field; - the calculated distribution of all segment layers is added to define a concentrated wave field of the visible region in a data set corresponding to the observer plane position; - a hologram generated for a general computer of the scene Generating a hologram data set, converting the reference data combination into a holographic plane, the holographic plane being located at a finite distance of the reference plane and parallel to the reference plane, wherein the optical modulator device is located in the hologram plane in. 如申請專利範圍第14到16項其中之一項所述之用於數位影像資料的該傳輸的電路配置,該傳輸是針對用於一全像顯示裝置的一全像編碼單元,其中該全像顯示裝置包含至少一光調變器裝置,在該至少一光調變器裝置上,被分解成物件點的一景象被編碼為一完整的全像,且該景象可被看成一可見區域的一重建,該可見區域位於該視訊全像的該重建的一週期間隔中,其中該可見區域連同要被重建的該景象的各物件點定義一子全像,且其中該完整的全像由子全像的一疊加來形成,且其中針對該深度圖譜的各物件點,該子全像對於該景象的該整個重建的該貢獻可藉由該編碼單元而從至少一搜尋表提取。 A circuit configuration for the transmission of digital image data as described in one of claims 14 to 16, wherein the transmission is for a hologram encoding unit for a hologram display device, wherein the hologram The display device includes at least one light modulator device, on the at least one light modulator device, a scene that is decomposed into object points is encoded as a complete hologram, and the scene can be viewed as a visible region Reconstructing, the visible region is located in the reconstructed one-period interval of the video hologram, wherein the visible region defines a sub-image with the object points of the scene to be reconstructed, and wherein the complete hologram is sub-holographic A superposition is formed, and wherein for each object point of the depth map, the contribution of the sub-hologram to the entire reconstruction of the scene can be extracted from the at least one search table by the coding unit. 如申請專利範圍第19項所述之用於數位影像資料的該傳輸的電路配置,其該傳輸是針對一全像編碼單元,其中由一觀察者的該位置和視野方向來定義已傳輸的深度圖譜所代表的該景象的一視野,且其中針對該深度圖譜的各物件點,以一電腦輔助的該編碼單元執行下列步驟: - 步驟(1):針對各物件點找到該子全像的該位置;- 步驟(2):從至少一搜尋表提取該對應的子全像的該貢獻;- 步驟(3):針對所有的物件點重複這兩步驟,其中該子全像被疊加,以形成該整個景象的該重建的一完整全像。 The circuit configuration for the transmission of digital image data as described in claim 19, wherein the transmission is for a holographic coding unit, wherein the depth of the transmission is defined by the position and the direction of the field of view of an observer. A field of view of the scene represented by the map, and wherein for each object point of the depth map, the computer-assisted coding unit performs the following steps: - step (1): finding the position of the sub-hologram for each object point; - step (2): extracting the contribution of the corresponding sub-hologram from at least one search table; - step (3): for all The object points repeat the two steps, wherein the sub-images are superimposed to form a complete hologram of the reconstruction of the entire scene. 如前述申請專利範圍第14到16項其中之一項所述之用於數位影像資料的該傳輸的電路配置,其藉由一影像系統的一或多個連結傳輸該深度圖譜和色彩圖譜。 A circuit arrangement for the transmission of digital image data as described in one of the preceding claims, wherein the depth map and the color map are transmitted by one or more links of an image system. 如申請專利範圍第14到16項其中之一項所述之用於數位影像資料的該傳輸的電路配置,其從一或多個資料伺服器來傳輸該深度圖譜和色彩圖譜。 A circuit configuration for the transmission of digital image data as described in any one of claims 14 to 16, wherein the depth map and color map are transmitted from one or more data servers. 如前述申請專利範圍第14到16項其中之一項所述之用於數位影像資料的該傳輸的電路配置,其中一通訊協定包括網際網路、乙太網路、WLAN、IEEE 802.11、DVI或類似者。 A circuit configuration for the transmission of digital image data according to any one of the preceding claims, wherein the communication protocol comprises internet, Ethernet, WLAN, IEEE 802.11, DVI or Similar. 如申前述請專利範圍第14到16項其中之一項所述之用於數位影像資料的該傳輸的電路配置,其用於一全像編碼單元,該全像編碼單元從具有深度資訊的該影像資料產生複數全像值,和/或編碼畫素值,以控制一全像顯示裝置的至少一光調變器裝置,其中該全像顯示裝置含有至少一光調變器裝置,在該至少一光調變器裝置上,被分解成物件點的一景象被編碼成一完整的全像,且其中該景象可被視為一可見區域的一重建,該可見區域位於該視訊全像的該重建的週期間隔中,其中該可見區域連同要被重建該之景象的各物件點定義一子全像,該景象由該深度圖譜表示,且其中該完整的全像由子全像的一疊加形成。 The circuit configuration for the transmission of digital image data as described in one of the above-mentioned claims, wherein the holographic coding unit uses the depth information from the omni-directional coding unit. The image data generates a plurality of full image values, and/or a coded pixel value to control at least one light modulator device of a hologram display device, wherein the hologram display device includes at least one light modulator device, at least A scene of a light modulator device that is decomposed into object points is encoded into a complete hologram, and wherein the scene can be viewed as a reconstruction of a visible region located in the reconstruction of the video hologram In a periodic interval, wherein the visible region defines a sub-image with the object points to be reconstructed, the scene is represented by the depth map, and wherein the complete hologram is formed by a superposition of the sub-images. 如申請專利範圍第24項所述之用於數位影像資料的該傳輸 的電路配置,其用於具有一螢幕裝置的一全像顯示裝置,其中該螢幕裝置是該景象的該全像被編碼所在的該光調變器裝置的本身,或其中該螢幕裝置是該光調變器裝置上所編碼的該景象之一全像或波前所被投影到之一光學元件。 The transmission for digital image data as described in claim 24 of the patent application Circuit arrangement for a hologram display device having a screen device, wherein the screen device is itself of the light modulator device in which the hologram of the scene is encoded, or wherein the screen device is the light A full image or wavefront of the scene encoded on the modulator device is projected onto one of the optical elements. 如申請專利範圍第25項所述之用於數位影像資料的該傳輸的電路配置,其中該全像顯示裝置的該光學元件為一透鏡或鏡面。 The circuit arrangement for the transmission of digital image data as described in claim 25, wherein the optical component of the holographic display device is a lens or a mirror.
TW96132789A 2006-09-01 2007-09-01 Interface and circuit arrangement in particular for holographic encoding units or holographic display devices TWI390367B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006042613 2006-09-01

Publications (2)

Publication Number Publication Date
TW200836029A TW200836029A (en) 2008-09-01
TWI390367B true TWI390367B (en) 2013-03-21

Family

ID=44819834

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96132789A TWI390367B (en) 2006-09-01 2007-09-01 Interface and circuit arrangement in particular for holographic encoding units or holographic display devices

Country Status (1)

Country Link
TW (1) TWI390367B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9336028B2 (en) 2009-06-25 2016-05-10 Apple Inc. Virtual graphics device driver

Also Published As

Publication number Publication date
TW200836029A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
Blinder et al. Signal processing challenges for digital holographic video display systems
Maimone et al. Holographic near-eye displays for virtual and augmented reality
Blinder et al. The state-of-the-art in computer generated holography for 3D display
Hirsch et al. A compressive light field projection system
JP2017097370A5 (en)
CN107390379B (en) Near-to-eye holographic three-dimensional display system and display method
KR20140004115A (en) Morphological anti-aliasing (mlaa) of a re-projection of a two-dimensional image
US8368743B2 (en) Interface and circuit arrangement, in particular for holographic encoding units or holographic reproduction devices
CN102073264A (en) Time-sharing multiplexing computational holographic three-dimensional display system and display method thereof
CN108762033A (en) It imaging method and optical system and its storage medium, chip and combines
Deng et al. Towards stereoscopic on-vehicle AR-HUD
Yoo et al. Volumetric head-mounted display with locally adaptive focal blocks
KR102577686B1 (en) Holograms reconstruction method
KR20180069622A (en) Method and apparatus for authoring hologram content
TWI390367B (en) Interface and circuit arrangement in particular for holographic encoding units or holographic display devices
CN116165864B (en) Binary chromatography three-dimensional scene implementation method and system for augmented reality
US9672653B2 (en) Stereo viewpoint graphics processing subsystem and method of sharing geometry data between stereo images in screen-spaced processing
US20210058639A1 (en) Method and apparatus for compensating motion for a holographic video stream
CN103995454A (en) Real-time 3D color holographic display method for single spatial light modulator
KR20120054799A (en) A multi-view interactive holographic device and system for reconstructing holographic images adaptable at the view-point of a user by using multi-view depth images
Dong et al. Gaze-contingent efficient hologram compression for foveated near-eye holographic displays
KR20120054790A (en) A multi-view interactive holographic device and system for reconstructing holographic images adaptable at the view-point of a user by the intermediate image
KR100937768B1 (en) Apparatus and method for reconstructing 3D image
TWI387859B (en) Holographic encoding unit for the generation of video holograms
WO2019062306A1 (en) Holographic display method and device