TWI387974B - Bit line precharge circuit - Google Patents

Bit line precharge circuit Download PDF

Info

Publication number
TWI387974B
TWI387974B TW97141475A TW97141475A TWI387974B TW I387974 B TWI387974 B TW I387974B TW 97141475 A TW97141475 A TW 97141475A TW 97141475 A TW97141475 A TW 97141475A TW I387974 B TWI387974 B TW I387974B
Authority
TW
Taiwan
Prior art keywords
mos transistor
type mos
coupled
terminal
current
Prior art date
Application number
TW97141475A
Other languages
Chinese (zh)
Other versions
TW201017680A (en
Inventor
Chung Shan Kuo
Original Assignee
Elite Semiconductor Esmt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elite Semiconductor Esmt filed Critical Elite Semiconductor Esmt
Priority to TW97141475A priority Critical patent/TWI387974B/en
Publication of TW201017680A publication Critical patent/TW201017680A/en
Application granted granted Critical
Publication of TWI387974B publication Critical patent/TWI387974B/en

Links

Landscapes

  • Read Only Memory (AREA)

Description

位元線預充電電路Bit line precharge circuit

本發明是有關於一種記憶體元件,且特別是有關於一種記憶體元件中的位元線預充電電路。This invention relates to a memory component, and more particularly to a bit line precharge circuit in a memory component.

快閃記憶體的元件逐漸朝向微型化的趨勢,目前其特徵尺寸可達到次微米級(0.25μm,0.18μm,0.13μm)。然而,縮小特徵尺寸不僅與降低電源供應以及降低功率損耗等需求相抗衡,甚至還會提高系統的時脈頻率。由於在維持高讀取速度以及低電流損耗且感應放大器的同時,維持感應放大器之高穩定性也是非常重要的,因此感應放大器便成為非揮發性記憶體中相當重要的記憶體元件。Flash memory components are gradually moving toward miniaturization, and their feature sizes are currently sub-micron (0.25 μm, 0.18 μm, 0.13 μm). However, shrinking the feature size not only counters the need to reduce power supply and reduce power loss, it can even increase the clock frequency of the system. Since maintaining the high stability of the sense amplifier while maintaining high read speed and low current consumption and the sense amplifier is also very important, the sense amplifier becomes a very important memory component in non-volatile memory.

在現今所使用的感應放大器中,電流損耗以及存取時間兩者之間必需取得折衷。也就是說,在短時間內進行存取時通常會導致高電流的損耗,相反地,若降低電流損耗則可能無法在短時間內進行存取。然而,一些應用通常得符合低電流損耗之要求,因此為了達到此要求,讀取動作通常會被分為兩個階段(預充電階段以及感應階段)。In today's sense amplifiers, a compromise must be made between current loss and access time. That is to say, when access is performed in a short time, high current loss is usually caused, and conversely, if current loss is reduced, access may not be possible in a short time. However, some applications often have to meet the requirements of low current consumption, so in order to achieve this, the read action is usually divided into two phases (precharge phase and induction phase).

為了完成快閃記憶體的讀取動作,多個被選擇的位元線必需在進行感應之前先充電至預計達到的電壓準位。因此,若被選擇的位元線能夠又快又準確地穩定至目標準位,則感應能力便得以提升。In order to complete the read operation of the flash memory, a plurality of selected bit lines must be charged to the expected voltage level before sensing. Therefore, if the selected bit line can be quickly and accurately stabilized to the standard level, the sensing capability is improved.

請參照圖1,圖1繪示一種習知位元線預充電電路10的電路圖。如圖1所示,位元線預充電電路10由多個預充電子電路PC[1]~PC[n]所組成。預充電子電路PC[i]包括可控制電流電壓轉換器L[i]、感應放大器Amp[i]、記憶胞Cell[i]以及一汲極偏壓控制器DBC[i],其中i為1至n的整數。其中,可控制電流電壓轉換器L[i]、感應放大器Amp[i]以及汲極偏壓控制器DBC[i]的耦接關係可從圖1得知,在此不加以論述。Please refer to FIG. 1. FIG. 1 is a circuit diagram of a conventional bit line precharge circuit 10. As shown in FIG. 1, the bit line precharge circuit 10 is composed of a plurality of precharge sub-circuits PC[1]~PC[n]. The precharge sub-circuit PC[i] includes a controllable current-to-voltage converter L[i], a sense amplifier Amp[i], a memory cell Cell[i], and a drain bias controller DBC[i], where i is 1 An integer to n. The coupling relationship of the controllable current-to-voltage converter L[i], the sense amplifier Amp[i], and the gate bias controller DBC[i] can be seen from FIG. 1 and will not be discussed here.

承上述,汲極偏壓控制器DBC[i]耦接至記憶胞Cell[i],其中記憶胞Cell[i]具有N型金氧半電晶體N3以及位元線BL[i]上的有效電容CBL 。可控制電流電壓轉換器L[i]包括N型金氧半電晶體N1以及P型金氧半電晶體P1、P2,而N型金氧半電晶體N1以及P型金氧半電晶體P1、P2的耦接關係可從圖1得知,在此不加以論述。In the above, the drain bias controller DBC[i] is coupled to the memory cell Cell[i], wherein the memory cell Cell[i] has an effective effect on the N-type MOS transistor N3 and the bit line BL[i] Capacitor C BL . The controllable current-to-voltage converter L[i] includes an N-type MOS transistor N1 and a P-type MOS transistor P1, P2, and an N-type MOS transistor N1 and a P-type MOS transistor P1. The coupling relationship of P2 can be seen from Figure 1, and will not be discussed here.

值得注意的是,汲極偏壓控制器DBC[i]包括反相器Inv以及箝位N型金氧半電晶體N2,其中反相器Inv與箝位N型金氧半電晶體N2會形成負回饋迴路來控制箝位N型金氧半電晶體N2的汲極偏壓。利用此負回饋迴路,位元線BL[i]上的電壓準位可被快速地預充電至目標準位,且位元線BL[i]的電壓準位不會有太大的變動而趨於穩定。It is worth noting that the drain bias controller DBC[i] includes an inverter Inv and a clamped N-type MOS transistor N2, wherein the inverter Inv and the clamped N-type MOS transistor N2 are formed. A negative feedback loop controls the gate bias of the clamped N-type MOS transistor N2. With this negative feedback loop, the voltage level on the bit line BL[i] can be quickly precharged to the target standard level, and the voltage level of the bit line BL[i] does not change much. Stable.

上述之傳統位元線預充電電路利用反相器以及箝位N型金氧半電晶體所形成的回饋迴路來作為汲極偏壓控制器,且其根據負回饋的概念而使位元線得以在快速又穩定的情形下進行預充電。然而,因快閃記憶體一次會 對大量的位元進行讀取,所以傳統的位元線預充電電路之設計方式會浪費大範圍的佈局空間並造成較大的功率損耗。舉例來說,在進行分頁模式之讀取動作時,由於同一時間內必需讀取128位元,如此,位元線預充電電路便需要128個(如圖1中之n=128)預充電子電路並予以致能。The above conventional bit line precharge circuit uses a feedback loop formed by an inverter and a clamped N-type MOS transistor as a gate bias controller, and the bit line is enabled according to the concept of negative feedback. Precharge in a fast and stable situation. However, due to flash memory once A large number of bits are read, so the design of the conventional bit line pre-charging circuit wastes a large layout space and causes a large power loss. For example, when performing the paging mode read operation, since 128 bits must be read at the same time, the bit line precharge circuit needs 128 (n=128 in FIG. 1) precharger. The circuit is enabled.

請參考Chou等人所提出的美國專利公告號US7082069之專利案,其揭露一種無需使用大量汲極偏壓控制器而可進行快速操作之位元線預充電電路。然而,此位元線預充電電路需要額外的行(column)記憶胞來作為虛設位元線,並需要額外的準位偵測器以預先檢測被選擇的位元線是否預充電完成。但是,一般而言,在參考路徑上或記憶胞的路徑上設計出平衡負載並不容易,甚至可能還會衍生因設置額外的虛設位元線與其井對井的佈局原則(well-to-well layout rule)而導致佈局空間擴大的問題。Reference is made to the U.S. Patent No. 7,082,069 issued to Chou et al., which discloses a bit line pre-charging circuit that can be operated quickly without the use of a large number of gate bias controllers. However, this bit line precharge circuit requires an additional column memory cell as the dummy bit line and requires an additional level detector to detect in advance whether the selected bit line is precharged. However, in general, it is not easy to design a balanced load on the reference path or the path of the memory cell, and may even derive the layout principle of setting up additional dummy bit lines and their well-to-well (well-to-well). Layout rule) causes the layout space to expand.

簡言之,上述之傳統位元線預充電電路中,其中一種的設計會具有較大的佈局空間並且會產生較大的能量損耗,另一種設計則可能需要額外的虛設位元線而使得其佈局空間擴大。In short, in the above conventional bit line precharge circuit, one of the designs will have a large layout space and will generate a large energy loss, and another design may require additional dummy bit lines to make it The layout space has expanded.

有鑑於此,本發明提供一種位元線預充電電路,其應用於記憶體元件中,例如快閃記憶體。In view of this, the present invention provides a bit line precharge circuit for use in a memory device, such as a flash memory.

為具體描述本發明之內容,在此提出一種位元線預 充電電路,其包括參考預充電子電路以及至少一個預充電子電路。參考預充電子電路包括第一電流鏡,第一汲極偏壓控制器以及第一電流電壓轉換器。第一電流鏡接收參考電流並依據此參考電流提供第一電流至第一汲極偏壓控制器。第一汲極偏壓控制器耦接第一電流鏡。第一汲極偏壓控制器包括第一反相器以及第一箝位N型金氧半電晶體。其中,第一箝位N型金氧半電晶體的源極端耦接第一反相器的輸入端,並用以接收第一電流。第一反相器的輸出端耦接第一箝位N型金氧半電晶體的閘極端。第一電流電壓轉換器耦接第一汲極偏壓控制器之第一箝位N型金氧半電晶體的汲極端,並根據預充電信號以作為閘極端接地的預充電P型金氧半電晶體或二極體負載。預充電子電路包括第二電流電壓轉換器、第二箝位N型金氧半電晶體、等化開關以及記憶胞。第二電流電壓轉換器也根據預充電信號以作為閘極端接地的預充電P型金氧半電晶體或二極體負載。第二箝位N型金氧半電晶體的閘極耦接第一反相器的輸出端,而其汲極耦接第二電流電壓轉換器以及感應放大器,且其源極耦接等化開關的一端。等化開關的另一端耦接第一箝位N型金氧半電晶體的源極端,且等化開關受控於預充電信號以等化其兩端。記憶胞受控於字元線信號,並具有位元線,其中位元線耦接第二箝位N型金氧半電晶體的源極端。To specifically describe the content of the present invention, a bit line pre-preparation is proposed herein. A charging circuit includes a reference pre-charge sub-circuit and at least one pre-charge sub-circuit. The reference precharge subcircuit includes a first current mirror, a first drain bias controller, and a first current to voltage converter. The first current mirror receives the reference current and provides a first current to the first drain bias controller in accordance with the reference current. The first drain bias controller is coupled to the first current mirror. The first drain bias controller includes a first inverter and a first clamped N-type oxynitride. The source terminal of the first clamp N-type MOS transistor is coupled to the input end of the first inverter and configured to receive the first current. The output of the first inverter is coupled to the gate terminal of the first clamped N-type MOS transistor. The first current-to-voltage converter is coupled to the 汲 terminal of the first clamp N-type MOS transistor of the first 偏压-bias bias controller, and is pre-charged P-type MOS half grounded as a gate terminal according to the pre-charge signal Transistor or diode load. The pre-charge sub-circuit includes a second current-to-voltage converter, a second clamped N-type MOS transistor, an equalization switch, and a memory cell. The second current-to-voltage converter is also loaded with a pre-charged P-type MOS transistor or diode that is grounded as a gate terminal based on the pre-charge signal. The gate of the second clamp N-type MOS transistor is coupled to the output of the first inverter, and the drain thereof is coupled to the second current-voltage converter and the sense amplifier, and the source is coupled to the equalization switch One end. The other end of the equalization switch is coupled to the source terminal of the first clamped N-type MOS transistor, and the equalization switch is controlled by the pre-charge signal to equalize both ends thereof. The memory cell is controlled by the word line signal and has a bit line, wherein the bit line is coupled to the source terminal of the second clamp N-type MOS transistor.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

請參照圖2,圖2為本發明之實施例所提供的位元線預充電電路20的電路圖。位元線預充電電路20包括參考預充電子電路22、多個預充電子電路23[1]~23[n]以及參考電流產生器21。參考電流產生器21耦接參考預充電子電路22,而參考預充電子電路22耦接多個預充電子電路23[1]~23[n],其中n為自然數。Please refer to FIG. 2. FIG. 2 is a circuit diagram of a bit line precharge circuit 20 according to an embodiment of the present invention. The bit line precharge circuit 20 includes a reference precharge sub circuit 22, a plurality of precharge sub-circuits 23[1] to 23[n], and a reference current generator 21. The reference current generator 21 is coupled to the reference pre-charge sub-circuit 22, and the reference pre-charge sub-circuit 22 is coupled to a plurality of pre-charge sub-circuits 23[1]~23[n], where n is a natural number.

參考電流產生器21包括汲極偏壓控制器DBC2、N型金氧半電晶體N1以及電流鏡CM2。汲極偏壓控制器DBC2耦接電流鏡CM2,且其包括反相器INV2以及箝位N型金氧半電晶體CN3。其中,箝位N型金氧半電晶體CN3的源極端耦接反相器INV2的輸入端以及N型金氧半電晶體N1的汲極端,而反相器INV2的輸出端耦接箝位N型金氧半電晶體CN3的閘極端。N型金氧半電晶體N1的閘極端耦接參考字元線信號RWL,而N型金氧半電晶體N1的源極端耦接至接地端GND。在本實施例中,N型金氧半電晶體N1是作為參考記憶胞的快閃記憶胞,例如快閃N型金氧半電晶體。電流鏡CM2接收流經箝位N型金氧半電晶體CN3的電流I2,並依據電流I2而輸出參考電流IREF。The reference current generator 21 includes a drain bias controller DBC2, an N-type MOS transistor N1, and a current mirror CM2. The drain bias controller DBC2 is coupled to the current mirror CM2, and includes an inverter INV2 and a clamped N-type MOS transistor. Wherein, the source terminal of the clamp N-type MOS transistor CN3 is coupled to the input terminal of the inverter INV2 and the 汲 terminal of the N-type MOS transistor N1, and the output terminal of the inverter INV2 is coupled to the clamp N The gate terminal of the type of gold oxide semi-transistor CN3. The gate terminal of the N-type MOS transistor N1 is coupled to the reference word line signal RWL, and the source terminal of the N-type MOS transistor N1 is coupled to the ground GND. In the present embodiment, the N-type oxynitride semiconductor N1 is a flash memory cell as a reference memory cell, such as a flash N-type MOS transistor. The current mirror CM2 receives the current I2 flowing through the clamped N-type MOS transistor III, and outputs a reference current IREF according to the current I2.

電流鏡CM2包括P型金氧半電晶體P5、P3,其中P型金氧半電晶體P5的源極端耦接電源電壓VDD,而P型金氧半電晶體P5的汲極端耦接其閘極端以及箝位N型金氧半電晶體CN3的汲極端以接收電流I2。P型金氧半電晶體P6的閘極端耦接P型金氧半電晶體P5的閘極端,而其源極端耦 接電源電壓VDD,且其汲極端耦接參考預充電子電路22的電流鏡CM1以輸出參考電流IREF。The current mirror CM2 includes P-type MOS transistors P5 and P3, wherein the source terminal of the P-type MOS transistor P5 is coupled to the power supply voltage VDD, and the 汲 terminal of the P-type MOS transistor P5 is coupled to the gate terminal thereof. And clamping the 汲 terminal of the N-type MOS transistor to the current I2. The gate terminal of P-type MOS transistor P6 is coupled to the gate terminal of P-type MOS transistor 5, and its source is extremely coupled. The power supply voltage VDD is connected, and the 汲 terminal is coupled to the current mirror CM1 of the pre-charge sub-circuit 22 to output a reference current IREF.

此外,參考電流產生器21可以被觸發信號ATD所觸發(未繪示於圖2,請參照圖4),以在正確的時間提供參考電流IREF至位元線預充電電路20。另外,快閃N型金氧半電晶體N1具有一高臨界電壓。然而,在此實施例中,上述之參考電流產生器21、電流鏡CM2以及N型金氧半電晶體N1的實現方式並非用以限定本發明,任何此領域具有通常知識者亦可能採用其它的實現方式。In addition, the reference current generator 21 can be triggered by the trigger signal ATD (not shown in FIG. 2, please refer to FIG. 4) to provide the reference current IREF to the bit line precharge circuit 20 at the correct time. In addition, the flash N-type MOS transistor N1 has a high threshold voltage. However, in this embodiment, the implementations of the reference current generator 21, the current mirror CM2, and the N-type MOS transistor N1 described above are not intended to limit the present invention, and any one of ordinary skill in the art may use other Method to realize.

參考預充電子電路22包括電流鏡CM1、汲極偏壓控制器DBC1以及電流電壓轉換器CVC1。電流鏡CM1接收參考電流IREF,並依據參考電流IREF而提供電流I1至汲極偏壓控制器DBC1。電流鏡CM1包括N型金氧半電晶體N5、N6。N型金氧半電晶體N5的源極端耦接至接地端GND,且其汲極端耦接其閘極端以接收參考電流IREF。N型金氧半電晶體N6的閘極端耦接N型金氧半電晶體N5的閘極端,而其源極端耦接至接地端GND,且其汲極端耦接箝位N型金氧半電晶體CN1的源極端以輸出第一電流I1。The reference precharge subcircuit 22 includes a current mirror CM1, a drain bias controller DBC1, and a current to voltage converter CVC1. The current mirror CM1 receives the reference current IREF and supplies the current I1 to the drain bias controller DBC1 in accordance with the reference current IREF. The current mirror CM1 includes N-type gold oxide semi-transistors N5, N6. The source terminal of the N-type MOS transistor N5 is coupled to the ground GND, and the 汲 terminal is coupled to its gate terminal to receive the reference current IREF. The gate terminal of the N-type MOS transistor N6 is coupled to the gate terminal of the N-type MOS transistor N5, and the source terminal is coupled to the ground GND, and the 汲 terminal is coupled to the clamp N-type MOS The source terminal of the crystal CN1 outputs a first current I1.

值得注意的是,上述之電流鏡CM1的實現方式並非用來限制本發明的範疇,此領域具有通常知識者亦可能利用其它的實現方式來實施電流鏡CM1。It should be noted that the implementation of the current mirror CM1 described above is not intended to limit the scope of the present invention, and those skilled in the art may also implement the current mirror CM1 by other implementations.

汲極偏壓控制器DBC1耦接第一電流鏡CM1,其中汲極偏壓控制器DBC1包括反相器INV1以及箝位N型金氧半電晶體CN1。箝位N型金氧半電晶體CN1的源極耦接反相器INV1的輸入端,且其用以接收電流I1。此外,反 相器INV1的輸出端耦接箝位N型金氧半電晶體CN1的閘極端。The drain bias controller DBC1 is coupled to the first current mirror CM1, wherein the drain bias controller DBC1 includes an inverter INV1 and a clamp N-type MOS transistor CN1. The source of the clamped N-type MOS transistor CN1 is coupled to the input of the inverter INV1 and is used to receive the current I1. In addition, anti The output end of the phase INV1 is coupled to the gate terminal of the clamped N-type MOS transistor.

電流電壓轉換器CVC1耦接汲極偏壓控制器DBC1之箝位N型金氧半電晶體CN1的汲極端,且其可根據預充電信號PRE而作為閘極端接地的預充電P型金氧半電晶體(繪示於圖3A)或作為二極體負載(繪示於圖3B)。The current-to-voltage converter CVC1 is coupled to the 汲 terminal of the clamp N-type MOS transistor CN1 of the 偏压-bias controller DBC1, and can be pre-charged P-type MOS half which is grounded as a gate terminal according to the pre-charge signal PRE The transistor (shown in Figure 3A) or as a diode load (shown in Figure 3B).

電流電壓轉換器CVC1包括N型金氧半電晶體N2、P型金氧半電晶體P1以及P型金氧半電晶體P2。N型金氧半電晶體N2的閘極端耦接預充電信號PRE,且其源極端耦接至接地端GND。P型金氧半電晶體P1的閘極端耦接預充電信號PRE,而其汲極端耦接N型金氧半電晶體N2的汲極端,且其源極端耦接汲極偏壓控制器DBC1之箝位N型金氧半電晶體CN1的汲極端。P型金氧半電晶體P2的閘極端耦接N型金氧半電晶體N2的汲極端,而其源極端耦接電源電壓VDD,且其汲極端耦接P型金氧半電晶體P1的源極端。The current-to-voltage converter CVC1 includes an N-type MOS transistor N2, a P-type MOS transistor P1, and a P-type MOS transistor P2. The gate terminal of the N-type MOS transistor N2 is coupled to the pre-charge signal PRE, and its source terminal is coupled to the ground GND. The gate terminal of the P-type MOS transistor P1 is coupled to the pre-charge signal PRE, and the 汲 terminal is coupled to the 汲 terminal of the N-type MOS transistor N2, and the source terminal is coupled to the drain bias controller DBC1. Clamp the N-type MOS semi-transistor CN1's 汲 extreme. The gate terminal of the P-type MOS transistor P2 is coupled to the 汲 terminal of the N-type MOS transistor N2, and the source terminal is coupled to the power supply voltage VDD, and the 汲 terminal is coupled to the P-type MOS transistor P1. The source is extreme.

基於上述之結構以及配置關係,電流電壓轉換器CVC1可根據預充電信號PRE而作為閘極端接地的預充電P型金氧半電晶體(繪示於圖3A)或作為二極體負載(繪示於圖3B)。在此需要說明的是,上述之電流電壓轉換器CVC1的實現方式並非用來限制本發明,此領域具有通常知識者亦可能修改電流電壓轉換器CVC1的結構或利用其他的實現方式來實施電流電壓轉換器CVC1,以使其達到如同上述之功能。Based on the above structure and configuration relationship, the current-to-voltage converter CVC1 can be used as a pre-charged P-type MOS transistor (shown in FIG. 3A) or as a diode load (grounded as a gate terminal) according to the pre-charge signal PRE. Figure 3B). It should be noted that the implementation of the above-mentioned current-to-voltage converter CVC1 is not intended to limit the present invention. Those skilled in the art may also modify the structure of the current-to-voltage converter CVC1 or implement current and voltage by other implementations. The converter CVC1 is made to achieve the same function as described above.

預充電子電路23[i](i例如是1至n的整數)包括電 流電壓轉換器CVC2、箝位N型金氧半電晶體CN2、等化開關ES、感應放大器SA以及記憶胞MCELL,其中電流電壓轉換器CVC2可根據預充電信號PRE而作為閘極端接地的預充電P型金氧半電晶體(繪示於圖3A)或作為二極體負載(繪示於圖3B)。The precharge sub-circuit 23[i] (i is, for example, an integer from 1 to n) includes electricity The current-to-voltage converter CVC2, the clamp N-type MOS transistor CN2, the equalization switch ES, the sense amplifier SA, and the memory cell MCELL, wherein the current-voltage converter CVC2 can be pre-charged as a gate terminal ground according to the pre-charge signal PRE P-type oxy-halide transistors (shown in Figure 3A) or as diode loads (shown in Figure 3B).

電流電壓轉換器CVC2包括N型金氧半電晶體N3以及P型金氧半電晶體P3、P4。N型金氧半電晶體N3的閘極端耦接預充電信號PRE,而其源極端耦接至接地端GND。P型金氧半電晶體P3的閘極端耦接預充電信號PRE,而其汲極端耦接N型金氧半電晶體N3的汲極端,且其源極端耦接箝位N型金氧半電晶體CN2的汲極端。P型金氧半電晶體P4的閘極端耦接N型金氧半電晶體N3的汲極端,其源極端耦接電源電壓VDD,且其汲極端耦接P型金氧半電晶體P3的源極端。The current-to-voltage converter CVC2 includes an N-type MOS transistor N3 and P-type MOS transistors P3 and P4. The gate terminal of the N-type MOS transistor N3 is coupled to the precharge signal PRE, and the source terminal thereof is coupled to the ground GND. The gate terminal of the P-type MOS transistor P3 is coupled to the pre-charge signal PRE, and the 汲 terminal is coupled to the 汲 terminal of the N-type MOS transistor N3, and the source terminal is coupled to the clamp N-type MOS The 汲 extreme of the crystal CN2. The gate terminal of the P-type MOS transistor P4 is coupled to the 汲 terminal of the N-type MOS transistor N3, the source terminal is coupled to the power supply voltage VDD, and the 汲 terminal is coupled to the source of the P-type MOS transistor P3. extreme.

基於上述之結構以及配置關係,電流電壓轉換器CVC2可根據預充電信號PRE而作為閘極端接地的預充電P型金氧半電晶體(繪示於圖3A)或作為二極體負載(繪示於圖3B)。在此需要說明的是,上述實現電流電壓轉換器CVC2的方式並非用來限制本發明,此領域具有通常知識者亦可能修改電流電壓轉換器CVC2的結構或利用其他的實現方式來實施電流電壓轉換器CVC2以使其達到如同上述之功能。Based on the above structure and configuration relationship, the current-to-voltage converter CVC2 can be used as a pre-charged P-type MOS transistor (shown in FIG. 3A) or as a diode load (grounded as a gate terminal) according to the pre-charge signal PRE. Figure 3B). It should be noted that the above manner of implementing the current-to-voltage converter CVC2 is not intended to limit the present invention. Those skilled in the art may also modify the structure of the current-to-voltage converter CVC2 or implement current-to-voltage conversion using other implementations. CVC2 is made to achieve the same function as described above.

箝位N型金氧半電晶體CN2的閘極端耦接反相器INV1的輸出端,而其汲極端耦接電流電壓轉換器CVC2以及感應放大器SA,且其源極端耦接等化開關ES的一 端。等化開關ES的另一端耦接箝位N型金氧半電晶體CN1的源極端,且等化開關ES受控於預充電信號PRE以等化其兩個端點之電壓準位(繪示於圖3A)。The gate terminal of the clamp N-type MOS transistor CN2 is coupled to the output terminal of the inverter INV1, and the 汲 terminal is coupled to the current-voltage converter CVC2 and the sense amplifier SA, and the source terminal thereof is coupled to the equalization switch ES. One end. The other end of the equalization switch ES is coupled to the source terminal of the clamped N-type MOS transistor, and the equalization switch ES is controlled by the pre-charge signal PRE to equalize the voltage levels of the two terminals thereof (shown Figure 3A).

在本實施例中,等化開關ES可利用N型金氧半電晶體N4來實現。其中,N型金氧半電晶體N4的閘極端耦接預充電信號PRE,而其汲極端耦接箝位N型金氧半電晶體CN2的源極端,且其源極端耦接箝位N型金氧半電晶體CN1的源極端。值得注意的是,上述之等化開關ES的實現方式並非用以限制本發明,任何此領域具有通常知識者亦可能利用其它的實現方式來實施等化開關ES。In the present embodiment, the equalization switch ES can be realized by the N-type MOS transistor N4. Wherein, the gate terminal of the N-type MOS transistor N4 is coupled to the pre-charge signal PRE, and the 汲 terminal is coupled to the source terminal of the clamp N-type MOS transistor CN2, and the source terminal is coupled to the clamp N-type The source terminal of the gold-oxide semi-transistor CN1. It should be noted that the implementation of the above-described equalization switch ES is not intended to limit the present invention, and any one of ordinary skill in the art may use other implementations to implement the equalization switch ES.

在本實施例中,感應放大器SA為差動放大器,其負輸入端耦接參考電壓VREF,而其正輸入端耦接箝位N型金氧半電晶體CN2的汲極端。值得一提的是,感應放大器SA可具有輸出閂鎖器。當閂鎖信號LAT(未繪示於圖2,請參照圖4)觸發輸出閂鎖器時,感應放大器SA會被觸發而輸出放大感應值OUT[i]。In this embodiment, the sense amplifier SA is a differential amplifier having a negative input coupled to the reference voltage VREF and a positive input coupled to the clamp terminal of the clamped N-type MOS transistor CN2. It is worth mentioning that the sense amplifier SA can have an output latch. When the latch signal LAT (not shown in FIG. 2, please refer to FIG. 4) triggers the output latch, the sense amplifier SA is triggered to output the amplified sensing value OUT[i].

記憶胞MCELL受控於字元線信號WL,且其具有位元線BL[i],其中位元線BL[i]耦接箝位N型金氧半電晶體CN2的源極端。記憶胞MCELL包括快閃N型金氧半電晶體N7。快閃N型金氧半電晶體N7的閘極端耦接字元線信號WL,而其源極端耦接至接地端GND,且其汲極端耦接位元線BL[i]。值得注意的是,記憶胞MCELL更具有耦接於位元線BL[i]以及接地端GND之間的有效負載電容CBL 。此外,N型金氧半電晶體N7具有高臨界電 壓。The memory cell MCELL is controlled by the word line signal WL and has a bit line BL[i], wherein the bit line BL[i] is coupled to the source terminal of the clamped N-type MOS transistor. The memory cell MCELL includes a flash N-type gold oxide semi-transistor N7. The gate terminal of the flash N-type MOS transistor N7 is coupled to the word line signal WL, and the source terminal is coupled to the ground GND, and the 汲 terminal is coupled to the bit line BL[i]. It should be noted that the memory cell MCELL has a payload capacitance C BL coupled between the bit line BL[i] and the ground GND. Further, the N-type MOS transistor N7 has a high threshold voltage.

由上述可知,在本實施例所提供位元線預充電電路20中,其包括的預充電子電路23[1]~23[n]會共同分享一個汲極偏壓控制器DBC2。接下來,將詳細地說明位元線預充電電路20的操作方法。As can be seen from the above, in the bit line precharge circuit 20 provided in this embodiment, the precharge sub-circuits 23[1] to 23[n] included therein share a drain bias controller DBC2. Next, the operation method of the bit line precharge circuit 20 will be explained in detail.

請參照圖3A、圖3B以及圖4,其中圖3A為本發明之實施例所提供的位元線預充電電路20在預充電期間進行操作時的等效電路圖,而圖3B為根據本發明之實施例所提供的位元線預充電電路20在感應期間進行操作時的等效電路圖,且圖4為位元線預充電電路20進行讀取時的波形圖。Please refer to FIG. 3A , FIG. 3B and FIG. 4 , wherein FIG. 3A is an equivalent circuit diagram of the bit line pre-charging circuit 20 during operation during pre-charging according to an embodiment of the present invention, and FIG. 3B is an The equivalent circuit diagram of the bit line precharge circuit 20 provided in the embodiment during operation is performed, and FIG. 4 is a waveform diagram when the bit line precharge circuit 20 performs reading.

如圖4所示,讀取動作可被分為預充電期間以及感應期間兩個階段。在預充電期間,預充電信號PRE為高準位。觸發信號ATD由低準位變為高準位並開始觸發參考電流產生器21。參考字元線信號RWL由低準位變為高準位以開啟N型金氧半電晶體N1,並產生電流I2。此外,汲極偏壓產生器DBC2形成負回饋迴路,如此,電流I2為穩定電流。也就是說,利用負回饋原理,箝位N型金氧半電晶體CN3的閘極電壓可快速地達到指定的電壓值以產生穩定電流I2。電流鏡CM2輸出參考電流IREF至電流鏡CM1。因此,參考電流IREF可被產生。As shown in FIG. 4, the reading action can be divided into two stages of a pre-charging period and an inductive period. During pre-charging, the pre-charge signal PRE is at a high level. The trigger signal ATD changes from the low level to the high level and starts to trigger the reference current generator 21. The reference word line signal RWL is changed from a low level to a high level to turn on the N-type MOS transistor N1 and generate a current I2. Further, the drain bias generator DBC2 forms a negative feedback loop, and thus, the current I2 is a steady current. That is to say, by using the negative feedback principle, the gate voltage of the clamped N-type MOS transistor can be quickly reached to a specified voltage value to generate a stable current I2. The current mirror CM2 outputs a reference current IREF to the current mirror CM1. Therefore, the reference current IREF can be generated.

接下來,字元線信號WL自低準位變為高準位,而觸發信號ATD為低準位。位元線BL[i]的電壓會被預充電。在預充電期間,N型金氧半電晶體N2、N3會被開啟,P型金氧半電晶體P2、P4也會被開啟,而P型金氧半電 晶體P1、P3會被關閉。因此,電流電壓轉換器CVC2以及CVC1作為閘極端接地的預充電P型金氧半電晶體(繪示於圖3A)。另外,每一等化開關ES會等化其兩端點的電壓準位(繪示於圖3A),如此,所有的位元線BL[1]~BL[i]會被預充電至相同的電壓準位。也就是說,等化電壓DFLB被輸入至汲極偏壓控制器DBC1的輸入端,且負回饋迴路會調整反相器INV1的輸出電壓而使位元線BL[1]~BL[i]可被快速地預充電。Next, the word line signal WL changes from a low level to a high level, and the trigger signal ATD is at a low level. The voltage of the bit line BL[i] is precharged. During pre-charging, N-type MOS transistors N2 and N3 will be turned on, P-type MOS transistors P2 and P4 will be turned on, and P-type MOS will be turned on. The crystals P1, P3 will be turned off. Therefore, the current-to-voltage converters CVC2 and CVC1 are precharged P-type MOS transistors (shown in FIG. 3A) that are grounded as gate terminals. In addition, each equalization switch ES will equalize the voltage level of its two ends (shown in Figure 3A), so that all bit lines BL[1]~BL[i] will be precharged to the same Voltage level. That is, the equalization voltage DFLB is input to the input terminal of the drain bias controller DBC1, and the negative feedback loop adjusts the output voltage of the inverter INV1 so that the bit lines BL[1]~BL[i] can be It is quickly pre-charged.

在感應期間,預充電信號PRE為低準位。P型金氧半電晶體P1~P4會被開啟,而N型金氧半電晶體N1以及N3會被關閉。因此,電流電壓轉換器CVC1以及CVC2作為二極體負載(繪示於圖3B)。等化開關ES的兩端於感應期間為開路且分離(繪示於圖3B)。接著,閂鎖信號LAT自低準位變為高準位以觸發感應放大器SA的輸出閂鎖器,而後感應放大器SA輸出放大感應值OUT[i]。During sensing, the precharge signal PRE is at a low level. The P-type MOS transistors P1 to P4 are turned on, and the N-type MOS transistors N1 and N3 are turned off. Therefore, the current-to-voltage converters CVC1 and CVC2 act as a diode load (shown in FIG. 3B). Both ends of the equalization switch ES are open and separated during sensing (shown in Figure 3B). Then, the latch signal LAT changes from the low level to the high level to trigger the output latch of the sense amplifier SA, and then the sense amplifier SA outputs the amplified sense value OUT[i].

綜上所述,本實施例提供的位元線預充電電路,其所包含的多個預充電子電路會共同分享一個汲極偏壓控制器。此汲極偏壓控制器具有反相器以及N型金氧半箝位N型金氧半電晶體以形成負回饋迴路,並據以加快預充電字元線的速度。在此位元線預充電電路操作於讀取的模式下時,此位元線預充電電路只需使用一個汲極偏壓控制器。如此,在無需倚賴額外的虛設位元線或擴大佈局的情形下,本發明之實施例所提供的位元線預充電電路將可大幅節省佈局空間以及操作時的功率消耗。In summary, the bit line precharge circuit provided in this embodiment includes a plurality of precharge sub-circuits sharing a gate bias controller. The buckling bias controller has an inverter and an N-type gold-oxygen half-clamp N-type MOS transistor to form a negative feedback loop and thereby speed up the precharge word line. When the bit line precharge circuit operates in the read mode, the bit line precharge circuit only needs to use a gate bias controller. As such, the bit line pre-charging circuit provided by the embodiments of the present invention can greatly save layout space and power consumption during operation without relying on additional dummy bit lines or expanding the layout.

雖然本發明已以實施例揭露如上,然其並非用以限 定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above by way of example, it is not intended to be limiting. The invention may be modified and modified by those skilled in the art without departing from the spirit and scope of the invention, and the scope of the invention is defined by the scope of the appended claims. Prevail.

10、20‧‧‧位元線預充電電路10, 20‧‧‧ bit line precharge circuit

21‧‧‧參考電流產生器21‧‧‧Reference current generator

22‧‧‧參考預充電子電路22‧‧‧Reference precharge subcircuit

Amp[i]、SA‧‧‧感應放大器Amp[i], SA‧‧‧ sense amplifier

ATD‧‧‧觸發信號ATD‧‧‧ trigger signal

BL[i]‧‧‧位元線BL[i]‧‧‧ bit line

CBL ‧‧‧有效負載電容C BL ‧‧‧ payload capacitance

Cell[i]、MCELL‧‧‧記憶胞Cell[i], MCELL‧‧‧ memory cells

CM1、CM2‧‧‧電流鏡CM1, CM2‧‧‧ current mirror

CN1、CN2、CN3‧‧‧箝位N型金氧半電晶體CN1, CN2, CN3‧‧‧Clamp N-type gold oxide semi-transistor

CVC1、CVC2‧‧‧電流電壓轉換器CVC1, CVC2‧‧‧ current and voltage converter

DBC[i]、DBC1、DBC2‧‧‧汲極偏壓控制器DBC[i], DBC1, DBC2‧‧‧汲polar bias controller

DFLB‧‧‧等化電壓DFLB‧‧‧ equalization voltage

ES‧‧‧等化開關ES‧‧‧ Equalization switch

GND‧‧‧接地端GND‧‧‧ ground terminal

I1、I2‧‧‧電流I1, I2‧‧‧ current

Inv、INV1、INV2‧‧‧反相器Inv, INV1, INV2‧‧‧ inverter

IREF‧‧‧參考電流IREF‧‧‧reference current

LAT‧‧‧閂鎖信號LAT‧‧‧Latch signal

L[i]‧‧‧可控制電流電壓轉換器L[i]‧‧‧Controllable current-to-voltage converter

N1~N7‧‧‧N型金氧半電晶體N1~N7‧‧‧N type MOS semi-transistor

OUT[i]‧‧‧放大感應值OUT[i]‧‧‧Amplified inductance

P1~P6‧‧‧P型金氧半電晶體P1~P6‧‧‧P type MOS semi-transistor

PC[1]~PC[n]、23[1]~23[n]‧‧‧預充電子電路PC[1]~PC[n], 23[1]~23[n]‧‧‧ Precharge subcircuit

PRE‧‧‧預充電信號PRE‧‧‧Precharge signal

RWL‧‧‧參考字元線信號RWL‧‧‧ reference word line signal

VDD‧‧‧電源電壓VDD‧‧‧Power supply voltage

VREF‧‧‧參考電壓VREF‧‧‧reference voltage

WL‧‧‧字元線信號WL‧‧‧ character line signal

圖1繪示一種習知位元線預充電電路10的電路圖。FIG. 1 is a circuit diagram of a conventional bit line precharge circuit 10.

圖2為本發明之實施例所提供的位元線預充電電路的電路圖。2 is a circuit diagram of a bit line precharge circuit according to an embodiment of the present invention.

圖3A為本發明之實施例所提供的位元線預充電電路20在預充電期間進行操作時的等效電路圖。FIG. 3A is an equivalent circuit diagram of the bit line precharge circuit 20 provided during the precharge period according to an embodiment of the present invention.

圖3B為本發明之實施例所提供位元線預充電電路20在感應期間進行操作時的等效電路圖。FIG. 3B is an equivalent circuit diagram of the bit line precharge circuit 20 provided during operation during sensing in accordance with an embodiment of the present invention.

圖4為位元線預充電電路20進行讀取時的波形圖。FIG. 4 is a waveform diagram when the bit line precharge circuit 20 performs reading.

20‧‧‧位元線預充電電路20‧‧‧ bit line precharge circuit

21‧‧‧參考電流產生器21‧‧‧Reference current generator

22‧‧‧參考預充電子電路22‧‧‧Reference precharge subcircuit

SA‧‧‧感應放大器SA‧‧‧Sense Amplifier

BL[i]‧‧‧位元線BL[i]‧‧‧ bit line

CBL ‧‧‧有效負載電容C BL ‧‧‧ payload capacitance

MCELL‧‧‧記憶胞MCELL‧‧‧ memory cell

CM1、CM2‧‧‧電流鏡CM1, CM2‧‧‧ current mirror

CN1、CN2、CN3‧‧‧箝位N型金氧半電晶體CN1, CN2, CN3‧‧‧Clamp N-type gold oxide semi-transistor

CVC1、CVC2‧‧‧電流電壓轉換器CVC1, CVC2‧‧‧ current and voltage converter

DBC1、DBC2‧‧‧汲極偏壓控制器DBC1, DBC2‧‧‧汲polar bias controller

DFLB‧‧‧等化電壓DFLB‧‧‧ equalization voltage

ES‧‧‧等化開關ES‧‧‧ Equalization switch

GND‧‧‧接地端GND‧‧‧ ground terminal

I1、I2‧‧‧電流I1, I2‧‧‧ current

INV1、INV2‧‧‧反相器INV1, INV2‧‧‧ inverter

IREF‧‧‧參考電流IREF‧‧‧reference current

N1~N7‧‧‧N型金氧半電晶體N1~N7‧‧‧N type MOS semi-transistor

OUT[i]‧‧‧放大感應值OUT[i]‧‧‧Amplified inductance

P1~P6‧‧‧P型金氧半電晶體P1~P6‧‧‧P type MOS semi-transistor

23[1]~23[n]‧‧‧預充電子電路23[1]~23[n]‧‧‧Precharge subcircuit

PRE‧‧‧預充電信號PRE‧‧‧Precharge signal

RWL‧‧‧參考字元線信號RWL‧‧‧ reference word line signal

VDD‧‧‧電源電壓VDD‧‧‧Power supply voltage

VREF‧‧‧參考電壓VREF‧‧‧reference voltage

WL‧‧‧字元線信號WL‧‧‧ character line signal

Claims (12)

一種位元線預充電電路,包括:一參考預充電子電路,包括:一第一電流鏡,接收一參考電流以及依據該參考電流提供一第一電流至一第一汲極偏壓控制器;該第一汲極偏壓控制器,耦接該第一電流鏡,該第一汲極偏壓控制器包括一第一反相器以及一第一箝位N型金氧半電晶體,其中該第一箝位N型金氧半電晶體的一源極端耦接該第一反相器的一輸入端並用以接收該第一電流,且該第一反相器的一輸出端耦接該第一箝位N型金氧半電晶體的一閘極端;以及一第一電流電壓轉換器,耦接該第一汲極偏壓控制器之該第一箝位N型金氧半電晶體的一汲極端,且該第一電流電壓轉換器依據一預充電信號作為閘極端接地的預充電P型金氧半電晶體或作為二極體負載;以及至少一預充電子電路,包括:一第二電流電壓轉換器,依據該預充電信號作為閘極端接地的預充電P型金氧半電晶體或作為二極體負載;一第二箝位N型金氧半電晶體,其閘極端耦接該第一反相器的該輸出端,其汲極端耦接該第二電流電壓轉換器以及一感應放大器,且其源極端耦接一等化開關的一端;該等化開關,其另一端耦接該第一箝位N型金氧半電晶體的該源極端,並受控於該預充電信號以等化 其兩端;以及一記憶胞,受控於一字元線信號,具有一位元線,其中該位元線耦接該第二箝位N型金氧半電晶體的該源極端。 A bit line precharge circuit includes: a reference precharge sub-circuit, comprising: a first current mirror, receiving a reference current and providing a first current to a first drain bias controller according to the reference current; The first drain bias controller is coupled to the first current mirror, the first drain bias controller includes a first inverter and a first clamp N-type MOS transistor, wherein the first A source terminal of the first clamp N-type MOS transistor is coupled to an input end of the first inverter and configured to receive the first current, and an output end of the first inverter is coupled to the first a gate terminal of a clamped N-type MOS transistor; and a first current-to-voltage converter coupled to the first clamp N-type MOS transistor汲 extreme, and the first current-to-voltage converter is a pre-charged P-type MOS transistor or a diode load that is grounded as a gate terminal according to a pre-charge signal; and at least one pre-charge sub-circuit, including: a second a current-to-voltage converter, based on the pre-charge signal as a pre-charge of the gate terminal ground a P-type MOS transistor or as a diode load; a second clamp N-type MOS transistor, the gate terminal of which is coupled to the output end of the first inverter, and the 汲 terminal is coupled to the first a current-to-voltage converter and a sense amplifier, wherein a source terminal is coupled to one end of the equalization switch; the other end of the switch is coupled to the source terminal of the first clamp N-type MOS transistor, And controlled by the precharge signal to equalize And a memory cell controlled by a word line signal having a bit line, wherein the bit line is coupled to the source terminal of the second clamp N-type MOS transistor. 如申請專利範圍第1項所述之位元線預充電電路,更包括:一參考電流產生器,包括:一第二汲極偏壓控制器,耦接一第二電流鏡,該第二汲極偏壓控制器包括一第二反相器以及一第三箝位N型金氧半電晶體,其中該第三箝位N型金氧半電晶體的一源極端耦接該第二反相器的一輸入端以及一第一N型金氧半電晶體的一汲極端,且該第二反相器的一輸出端耦接該第三箝位N型金氧半電晶體的一閘極端;該第一N型金氧半電晶體,其閘極端耦接一列字元線信號,且其源極端接地;以及該第二電流鏡,接收流經該第三箝位N型金氧半電晶體的一第二電流,且依據該第二電流輸出該參考電流。 The bit line pre-charging circuit of claim 1, further comprising: a reference current generator, comprising: a second drain bias controller coupled to a second current mirror, the second The pole bias controller includes a second inverter and a third clamp N-type MOS transistor, wherein a source terminal of the third clamp N-type MOS transistor is coupled to the second inverter An input terminal of the first N-type MOS transistor and an output terminal of the second inverter are coupled to a gate terminal of the third clamp N-type MOS transistor The first N-type MOS transistor has a gate terminal coupled to a column of word line signals and a source terminal grounded thereto; and the second current mirror receives the third clamp N-type MOS half-electricity a second current of the crystal, and the reference current is output according to the second current. 如申請專利範圍第1項所述之位元線預充電電路,其中該第一電流電壓轉換器包括:一第二N型金氧半電晶體,其閘極端耦接該預充電信號,且其源極端接地;一第一P型金氧半電晶體,其閘極端耦接該預充電信號,其汲極端耦接該第二N型金氧半電晶體的一汲極端,且其源極端耦接該第一汲極偏壓控制器之該第一箝 位N型金氧半電晶體的該汲極端;以及一第二P型金氧半電晶體,其閘極端耦接該第二N型金氧半電晶體的該汲極端,其源極端耦接一電源電壓,且其汲極端耦接該第一P型金氧半電晶體的該源極端。 The bit line precharge circuit of claim 1, wherein the first current voltage converter comprises: a second N-type MOS transistor, the gate terminal of which is coupled to the precharge signal, and The source is extremely grounded; a first P-type MOS transistor, the gate terminal of which is coupled to the precharge signal, and the 汲 terminal is coupled to a terminal of the second N-type MOS transistor, and the source is extremely coupled Connecting the first clamp of the first drain bias controller The 汲 terminal of the N-type MOS transistor; and a second P-type MOS transistor having a gate terminal coupled to the 汲 terminal of the second N-type MOS transistor, the source terminal coupling a supply voltage, and the drain is coupled to the source terminal of the first P-type MOS transistor. 如申請專利範圍第1項所述之位元線預充電電路,其中該預充電子電路更包括:該感應放大器,其負輸入端耦接一參考電壓,且其正輸入端耦接該第二箝位N型金氧半電晶體的該汲極端。 The bit line pre-charging circuit of claim 1, wherein the pre-charging sub-circuit further comprises: the inductive amplifier, wherein the negative input end is coupled to a reference voltage, and the positive input end is coupled to the second The 汲 extreme of the clamped N-type MOS transistor. 如申請專利範圍第1項所述之位元線預充電電路,其中該第二電流電壓轉換器包括:一第三N型金氧半電晶體,其閘極端耦接該預充電信號,且其源極端接地;一第三P型金氧半電晶體,其閘極端耦接該預充電信號,該汲極端耦接該第三N型金氧半電晶體的一汲極端,且其源極端耦接該第二箝位N型金氧半電晶體的該汲極端;以及一第四P型金氧半電晶體,其閘極端耦接該第三N型金氧半電晶體的該汲極端,其源極端耦接一電源電壓,且其汲極端耦接該第三P型金氧半電晶體的該源極端。 The bit line pre-charging circuit of claim 1, wherein the second current-voltage converter comprises: a third N-type MOS transistor, the gate terminal of which is coupled to the pre-charge signal, and The source is extremely grounded; a third P-type MOS transistor has a gate terminal coupled to the precharge signal, the 汲 terminal is coupled to a terminal of the third N-type MOS transistor, and the source is extremely coupled Connected to the 汲 terminal of the second clamp N-type MOS transistor; and a fourth P-type MOS transistor, the gate terminal of which is coupled to the 汲 terminal of the third N-type MOS transistor, The source terminal is coupled to a power supply voltage, and the drain terminal is coupled to the source terminal of the third P-type MOS transistor. 如申請專利範圍第1項所述之位元線預充電電路,其中該等化開關為一第四N型金氧半電晶體,其閘極端耦接該預充電信號,其汲極端耦接該第二箝位N型 金氧半電晶體的該源極端,且其源極端耦接該第一箝位N型金氧半電晶體的該源極端。 The bit line pre-charging circuit according to claim 1, wherein the equalizing switch is a fourth N-type MOS transistor, the gate terminal is coupled to the pre-charging signal, and the 汲 terminal is coupled to the terminal. Second clamp type N The source terminal of the MOS transistor, and the source terminal thereof is coupled to the source terminal of the first clamp N-type MOS transistor. 如申請專利範圍第1項所述之位元線預充電電路,其中該第一電流鏡包括:一第五N型金氧半電晶體,其源極端接地,且其汲極端耦接其閘極端並用以接收該參考電流;以及一第六N型金氧半電晶體,其閘極端耦接該第五N型金氧半電晶體的該閘極端,其源極端接地,且其汲極端耦接該第一箝位N型金氧半電晶體的該源極端以輸出該第一電流。 The bit line precharge circuit according to claim 1, wherein the first current mirror comprises: a fifth N-type MOS transistor, the source terminal is grounded, and the 汲 terminal is coupled to the gate terminal thereof. And receiving a reference current; and a sixth N-type MOS transistor, the gate terminal of which is coupled to the gate terminal of the fifth N-type MOS transistor, the source terminal is grounded, and the 汲 is extremely coupled The source terminal of the first clamped N-type MOS transistor outputs the first current. 如申請專利範圍第2項所述之位元線預充電電路,其中該第二電流鏡包括:一第五P型金氧半電晶體,其源極端耦接一電源電壓,且其汲極端耦接其閘極端以及該第三箝位N型金氧半電晶體的一汲極端以接收該第二電流;以及一第六P型金氧半電晶體,其閘極端耦接該第五P型金氧半電晶體的該閘極端,其源極端耦接該電源電壓,且其汲極端耦接該第一電流鏡以輸出該參考電流。 The bit line pre-charging circuit according to claim 2, wherein the second current mirror comprises: a fifth P-type MOS transistor, the source terminal is coupled to a power supply voltage, and the 汲 extreme coupling a gate terminal and a third terminal of the N-type MOS transistor to receive the second current; and a sixth P-type MOS transistor, the gate terminal of which is coupled to the fifth P-type The gate terminal of the MOS transistor has a source terminal coupled to the power supply voltage and a 汲 terminal coupled to the first current mirror to output the reference current. 如申請專利範圍第1項所述之位元線預充電電路,其中該記憶胞包括:一第七N型金氧半電晶體,其閘極端耦接該字元線信號,其源極端接地,且其汲極端耦接該位元線。 The bit line pre-charging circuit of claim 1, wherein the memory cell comprises: a seventh N-type MOS transistor, the gate terminal of which is coupled to the word line signal, and the source terminal is grounded. And the 汲 is extremely coupled to the bit line. 如申請專利範圍第2項所述之位元線預充電電路,其中該第一N型金氧半電晶體為一快閃N型金氧半電晶體。 The bit line precharge circuit of claim 2, wherein the first N-type MOS transistor is a flash N-type MOS transistor. 如申請專利範圍第9項所述之位元線預充電電路,其中該第七N型金氧半電晶體為一快閃N型金氧半電晶體。 The bit line precharge circuit according to claim 9, wherein the seventh N-type MOS transistor is a flash N-type MOS transistor. 如申請專利範圍第1項所述之位元線預充電電路,其中,在一預充電期間,該預充電信號在一高準位且該字元線信號自低準位變為高準位,該位元線被預充電至一目標準位;以及在一感應期間,該預充電信號在一低準位,且當一閂鎖信號自低準位變為高準位時,該感應放大器會被觸發並輸出一放大感應值。 The bit line precharge circuit of claim 1, wherein the precharge signal is at a high level during a precharge period and the word line signal changes from a low level to a high level. The bit line is precharged to a standard level; and during a sensing period, the precharge signal is at a low level, and when a latch signal changes from a low level to a high level, the sense amplifier is Trigger and output an amplified sense value.
TW97141475A 2008-10-28 2008-10-28 Bit line precharge circuit TWI387974B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97141475A TWI387974B (en) 2008-10-28 2008-10-28 Bit line precharge circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97141475A TWI387974B (en) 2008-10-28 2008-10-28 Bit line precharge circuit

Publications (2)

Publication Number Publication Date
TW201017680A TW201017680A (en) 2010-05-01
TWI387974B true TWI387974B (en) 2013-03-01

Family

ID=44830949

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97141475A TWI387974B (en) 2008-10-28 2008-10-28 Bit line precharge circuit

Country Status (1)

Country Link
TW (1) TWI387974B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483110B (en) * 2012-02-02 2015-05-01 Macronix Int Co Ltd Flash memory with read tracking clock and method thereof

Also Published As

Publication number Publication date
TW201017680A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
CN100395843C (en) High speed low power consumption current sensitive amplifier
US8717811B2 (en) Latching circuit
US7298180B2 (en) Latch type sense amplifier
KR100582852B1 (en) Pulse generator with variable pulse width and sense amplifier circuit using the pulse generator
KR100406548B1 (en) Method and Circuit for Bit Line Precharging in Semiconductor Memory Device
JP2018532218A (en) Single-ended bit line current sense amplifier for SRAM applications
KR20040106341A (en) Single-ended current sense amplifier
JP2008052810A (en) Equalizer circuit and its control method
US7542352B1 (en) Bit line precharge circuit
US9621112B2 (en) Sense amplifier
JP2001332087A (en) Sense amplifier circuit
US7466614B2 (en) Sense amplifier for non-volatile memory
Zhang et al. A low-voltage sense amplifier for embedded flash memories
US8514645B2 (en) Current-mode sense amplifier for high-speed sensing
US6362661B1 (en) Sense amplifier for use in a semiconductor memory device
CN105741871A (en) Sensitive amplifying circuit and memory
Anh-Tuan et al. Hybrid-mode SRAM sense amplifiers: New approach on transistor sizing
US6707703B2 (en) Negative voltage generating circuit
TWI387974B (en) Bit line precharge circuit
US20080074914A1 (en) Memory devices with sense amplifiers
US6522593B2 (en) Sense amplifier circuit for semiconductor device
Bashir et al. High speed self biased current sense amplifier for low power CMOS SRAM's
US11587625B1 (en) Sensitive amplifier and storage device
KR100765439B1 (en) Sram utilizing dual-boosted cell bias technique
US7545695B2 (en) Asynchronous sense amplifier for read only memory