TWI382646B - Maximum power point tracking control method for voltage-detection based dc/ac inverter - Google Patents
Maximum power point tracking control method for voltage-detection based dc/ac inverter Download PDFInfo
- Publication number
- TWI382646B TWI382646B TW97144746A TW97144746A TWI382646B TW I382646 B TWI382646 B TW I382646B TW 97144746 A TW97144746 A TW 97144746A TW 97144746 A TW97144746 A TW 97144746A TW I382646 B TWI382646 B TW I382646B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- signal
- output
- power
- previous
- Prior art date
Links
Landscapes
- Control Of Electrical Variables (AREA)
- Dc-Dc Converters (AREA)
Description
本發明係關於一種電壓控制式直流/交流電力轉換器之控制方法,特別是關於一種具太陽能電池最大功率追蹤之電力轉換裝置之直流/交流電力轉換器之控制方法。The present invention relates to a method of controlling a voltage controlled DC/AC power converter, and more particularly to a method of controlling a DC/AC power converter having a power conversion device for solar cell maximum power tracking.
由於世界各國之溫室氣體的排放量受到京都議訂書的限制,且石化能源成本漸趨昂貴,而再生能源成本則日益降低,致使具有低污染、低溫室氣體排放等特性之再生能源發電技術逐漸受到全世界重視。其中,又以技術較為成熟且較具有發展性及前瞻性的太陽能發電最受矚目。As the greenhouse gas emissions of countries around the world are limited by the Kyoto Protocol, and the cost of petrochemical energy is becoming more and more expensive, the cost of renewable energy is decreasing, resulting in the regenerative power generation technology with low pollution and low greenhouse gas emissions. Received worldwide attention. Among them, solar power generation with more mature technology and more developmental and forward-looking technology has attracted the most attention.
在太陽能發電領域中,為提升太陽光能量的有效應用,除了太陽能電池效率的改善或新技術的開發之外,最大功率追蹤技術亦為另一關鍵核心技術,而「擾動觀察法」則為所述之最大功率追蹤技術中最受青睞的技術。使用擾動觀察法之習用電力轉換裝置,如美國專利第5327071號所揭示,其係利用控制一DC/DC〔直流/直流〕電力轉換器,以追蹤一太陽能電池組之最大功率。該DC/DC電力轉換器係持續於該太陽能電池組之輸出電壓中加入一擾動電壓,並偵測該DC/DC電力轉換器之輸出電壓及輸出電流,以計算得該DC/DC電力轉換器之輸出功率,進而獲得一偵測資料。在偵測獲得第二筆之偵測資料後,一控制器係將該DC/DC電力轉換器之輸出功率的當次偵測資料與前次偵測資料進行比較,進而決定加入於該太陽能電池組之輸 出電壓中的擾動電壓為正值或負值〔即決定該太陽能電池組之輸出電壓的擾動方向〕,並根據該控制器的比較結果調整該擾動電壓,再次擾動該太陽能電池組之輸出電壓。藉此,一旦該太陽能電池組之輸出電壓為該太陽能電池組具有最大輸出功率之電壓操作點時,即可利用該持續調整之擾動電壓使該太陽能電池組之輸出電壓在該電壓操作點附近進行來回擾動,以獲取該太陽能電池組之最大功率。In the field of solar power generation, in order to improve the effective application of solar energy, in addition to the improvement of solar cell efficiency or the development of new technologies, the maximum power tracking technology is another key core technology, and the "perturbation observation method" is The most popular technology in the largest power tracking technology. A conventional power conversion device using a perturbation observation method, as disclosed in U.S. Patent No. 5,327,071, utilizes a DC/DC (DC/DC) power converter to track the maximum power of a solar battery. The DC/DC power converter continuously adds a disturbance voltage to the output voltage of the solar battery group, and detects an output voltage and an output current of the DC/DC power converter to calculate the DC/DC power converter. The output power, in turn, obtains a detection data. After detecting the second detection data, a controller compares the current detection data of the output power of the DC/DC power converter with the previous detection data, and then determines to join the solar battery. Group loss The disturbance voltage in the output voltage is positive or negative (ie, the disturbance direction of the output voltage of the solar cell group is determined), and the disturbance voltage is adjusted according to the comparison result of the controller, and the output voltage of the solar battery group is disturbed again. Thereby, once the output voltage of the solar battery group is a voltage operating point of the solar battery pack having the maximum output power, the continuously adjusted disturbance voltage can be used to make the output voltage of the solar battery group be near the voltage operating point. Perturbs back and forth to obtain the maximum power of the solar array.
另一使用擾動觀察法之習用電力轉換裝置,如美國專利第5932994號所揭示,其亦利用一DC/DC電力轉換器持續控制一太陽能電池組之輸出電壓,以便追蹤該太陽能電池組具有最大輸出功率之電壓操作點。首先,於該DC/DC電力轉換器之功率開關元件之責任週期中加入一擾動量,並偵測該太陽能電池組之輸出電壓及輸出電流,以計算得該太陽能電池組之輸出功率,進而獲得一偵測資料。在偵測獲得第二筆之偵測資料後,一控制器將該太陽能電池組之輸出功率的當次偵測資料與前次偵測資料進行比較,以決定加入於該DC/DC電力轉換器之功率開關元件之責任週期中的擾動量為正值或負值〔即決定需增加或減少該功率開關元件之責任週期比〕,並根據該控制器的比較結果調整該擾動量,再次擾動該DC/DC電力轉換器之功率開關元件之責任週期。藉此,一旦該太陽能電池組之輸出電壓為該太陽能電池組具有最大輸出功率之電壓操作點時,即可利用該持續調整之擾動量使該太陽能電池組之輸出電壓在該電壓操作點附近進行來回擾動,以獲取該太陽能電池組之最大功率。Another conventional power conversion device using a disturbance observation method, as disclosed in U.S. Patent No. 5,932,994, which also utilizes a DC/DC power converter to continuously control the output voltage of a solar battery pack to track the maximum output of the solar battery pack. The voltage operating point of power. First, a disturbance amount is added to the duty cycle of the power switching element of the DC/DC power converter, and the output voltage and the output current of the solar battery group are detected to calculate the output power of the solar battery group, thereby obtaining A detection data. After detecting the second detection data, a controller compares the current detection data of the output power of the solar battery with the previous detection data to determine to join the DC/DC power converter. The disturbance amount in the duty cycle of the power switching element is positive or negative (ie, it is determined that the duty cycle ratio of the power switching element needs to be increased or decreased), and the disturbance amount is adjusted according to the comparison result of the controller, and the disturbance is again disturbed. The duty cycle of the power switching components of the DC/DC power converter. Thereby, once the output voltage of the solar battery group is a voltage operating point of the solar battery group having the maximum output power, the continuous adjustment of the disturbance amount can be used to make the output voltage of the solar battery group be near the voltage operating point. Perturbs back and forth to obtain the maximum power of the solar array.
然而,上述二種使用擾動觀察法之習用電力轉換裝置均需要偵測二個以上的電壓或電流信號,造成其控制電路存在有高複雜度及高製造成本等缺點。However, the above two conventional power conversion devices using the disturbance observation method need to detect more than two voltage or current signals, resulting in disadvantages such as high complexity and high manufacturing cost of the control circuit.
另,如中華民國專利I232361所揭示,其係加入一調整量至一DC/AC電力轉換器之輸出電流,並檢測一太陽能電池組之直流輸出電壓所對應產生之一直流輸出電壓變化量;或是加入一調整量至該太陽能電池組之直流輸出電壓,並檢測該DC/AC電力轉換器之輸出電流所對應產生之一輸出電流變化量。最後,再修正該調整量之調整方向,使其與該直流輸出電壓變化量或該輸出電流變化量為同一方向,並持續重複上述步驟,以達成追蹤該太陽能電池組具有最大功率之操作點的目的。In addition, as disclosed in the Republic of China Patent No. I232361, it adds an adjustment amount to the output current of a DC/AC power converter, and detects a DC output voltage variation corresponding to a DC output voltage of a solar battery; or An adjustment amount is added to the DC output voltage of the solar battery, and an output current variation corresponding to the output current of the DC/AC power converter is detected. Finally, the adjustment direction of the adjustment amount is corrected to be in the same direction as the DC output voltage change amount or the output current change amount, and the above steps are continuously repeated to achieve an operation point for tracking the solar battery pack having the maximum power. purpose.
上述第三種習用電力轉換裝置雖比先前所述之二種習用電力轉換裝置具有更為簡單的電路架構,但必需藉由一電流檢出器以檢測或調整該DC/AC電力轉換器之交流輸出端之電流的振幅,且亦只適用於電流控制式之電力轉換器。雖然,目前之再生能源電力轉換器技術多採用電流控制式,但若欲藉由習用之電流控制式電力轉換器運轉成為混合型發電系統,即必須再多一電壓迴路以控制該電力轉換器輸出電壓。反之,習用之電壓控制式電力轉換器則必需針對該電力轉換器之輸出電壓採用振幅及相位雙迴路控制,其控制電路明顯較為複雜,且亦存在由該雙迴路控制所導致之暫態響應特性不佳等缺點。基於上述原因,有必要進一步改良上述用於太陽能發電系統之具最大功率追蹤之習用電力轉換裝置及其控制方法。Although the third conventional power conversion device has a simpler circuit architecture than the two conventional power conversion devices described above, it is necessary to detect or adjust the communication of the DC/AC power converter by a current detector. The amplitude of the current at the output is also only applicable to current-controlled power converters. Although the current renewable energy power converter technology mostly uses current control, if it is to be operated as a hybrid power generation system by the conventional current-controlled power converter, one more voltage loop must be used to control the power converter output. Voltage. On the contrary, the conventional voltage-controlled power converter must use amplitude and phase dual-loop control for the output voltage of the power converter. The control circuit is obviously complicated, and there are transient response characteristics caused by the dual-loop control. Poor and other shortcomings. For the above reasons, it is necessary to further improve the above-described conventional power conversion device for maximum power tracking for a solar power generation system and a control method therefor.
本發明之主要目的係提供一種具最大功率追蹤之電力轉換裝置之直流/交流電力轉換器之控制方法,以便利用控制一連結電感上之電壓振幅及觀測一太陽能電池組所輸出之直流電壓之變化而追蹤該太陽能電池組之最大功率操作點。The main object of the present invention is to provide a DC/AC power converter control method for a power conversion device with maximum power tracking, so as to control the voltage amplitude on a connected inductor and observe the change of the DC voltage outputted by a solar battery pack. And track the maximum power operating point of the solar array.
為達到前述發明目的,本發明所運用之技術手段包含:一種具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法,其係為:以一第一交流電壓檢出器檢出一交流電源系統之電壓後送至一帶通濾波器,且該帶通濾波器之中心頻率為該交流電源系統之基本波頻率,以便該帶通濾波器獲得該交流電源系統之基本波成份,其中該基本波成份係為一弦波信號;以一相移電路將該帶通濾波器所產生之弦波信號進行超前90度相移;以一乘法器將經過90度相移之後的該弦波信號及一最大功率追蹤控制電路之輸出信號相乘得到一垂直向量信號;以一加法器將該垂直向量信號與該第一交流電壓檢出器所檢出之電壓信號相加,進而獲得一輸出電壓參考信號;以一第二交流電壓檢出器檢出該直流/交流電力轉換器之輸出電壓並送至一減法器之一輸入端,該減法器之另一輸入端係連接該加法器,且該減法器係將該輸出電壓參考信號與該直流/交流電力轉換器之輸出電壓進行相減;以一波形控制電路接收該減法器之輸出信號並形成一調變信號;以一脈寬調變電路接收該波形控制電路所輸出之調變信號並送至一驅動電路,該驅動電路係產生一組驅動信號控制一直流/交流電力轉換器之電力電子開關組。藉此,該控制方法經由控制一連結電感上之一電壓而控制該直流/交流電力轉換器之一輸出濾波器之輸出電壓;該一連結電感上之電壓係垂直於該交流電源系統之基頻電壓,如此即可使得該直流/交流電力轉換器輸出與該交流電源系統之基頻電壓同相位之一弦波輸出電流,以送出一實功注入到該交流電源系統,因此該直流/交流電力轉換器之最大功率追蹤控制電路可控制其輸出電流之振幅,進而控制該直流/交流電力轉換器所輸出之實功。In order to achieve the foregoing object, the technical means applied by the present invention comprises: a control method of a voltage controlled DC/AC power converter with maximum power tracking, which is: detecting a first AC voltage detector The voltage of the AC power system is sent to a bandpass filter, and the center frequency of the bandpass filter is the fundamental wave frequency of the AC power system, so that the bandpass filter obtains the fundamental wave component of the AC power system, wherein The fundamental wave component is a sine wave signal; the sine wave signal generated by the band pass filter is phase-shifted by 90 degrees by a phase shift circuit; the sine wave signal after a phase shift of 90 degrees by a multiplier And multiplying an output signal of a maximum power tracking control circuit to obtain a vertical vector signal; adding an vertical vector signal to the voltage signal detected by the first AC voltage detector by an adder to obtain an output voltage a reference signal; detecting, by a second AC voltage detector, an output voltage of the DC/AC power converter and sending it to an input of one of the subtractors, the other of the subtractors The input terminal is connected to the adder, and the subtractor subtracts the output voltage reference signal from the output voltage of the DC/AC power converter; receiving, by a waveform control circuit, the output signal of the subtractor and forming a tone Changing the signal; receiving the modulated signal outputted by the waveform control circuit by a pulse width modulation circuit and sending the signal to a driving circuit, the driving circuit generating a set of driving signals to control the power electronic switch of the DC/AC power converter group. Thereby, the control method controls an output voltage of an output filter of the DC/AC power converter by controlling a voltage on a connected inductor; the voltage on the connected inductor is perpendicular to a fundamental frequency of the AC power system. Voltage, so that the DC/AC power converter outputs a sine wave output current in phase with the fundamental frequency voltage of the AC power system to send a real power injection into the AC power system, so the DC/AC power The converter's maximum power tracking control circuit controls the amplitude of its output current to control the actual output of the DC/AC power converter.
此外,針對所述之控制方法,其中該最大功率控制電路所產生之輸出信號係以下列步驟計算獲得:一首次信號輸入步驟,其係預先設定該最大功率追蹤控制電路之輸出信號之初始值及一變化量,其中該變化量為一當次之輸出信號與一前次之輸出信號之間的差值,將該輸出信號之初始值送至該直流/交流控制器之一乘法器,該輸出信號控制該連結電感上之電壓振幅,並經過一延遲時間之後檢出該太陽能電池組所輸出之直流電壓的初始值;一首次疊代運算步驟,其係界定該前次之輸出信號等於該輸出信號之初始值,並界定一前次之直流電壓等於該直流電壓的初始值;一信號輸入步驟,其係計算該當次之輸出信號,並以該變化量之值取代一前次之變化量,並將該當次之輸出信號送至該乘法器,且在該延遲時間之後檢出該太陽能電池組所輸出之直流電壓,再將所獲得之直流電壓界定為一當次之直流電壓,其中該當次之輸出信號之值係為該變化量及該前次之輸出信號之和;一調整方向決定步驟,其係比較該前次之直流電壓及當次之直流電壓,若該當次之直流電壓大於或等於該前次之直流電壓時,將該變化量設定等於該前次之變化量的正值,而若該當次之直流電壓小於該前次之直流電壓時,將該變化量設定等於前次之變化量的負值;及一疊代運算步驟,其係界定前次之輸出信號等於該當次之輸出信號,且界定該前次之直流電壓等於該當次之直流電壓,並運算得到該當次之輸出信號之後,再重新執行該信號輸入步驟,其中該當次之輸出信號之值係為該變化量及該前次之輸出信號之和。In addition, for the control method, the output signal generated by the maximum power control circuit is obtained by the following steps: a first signal input step, which presets an initial value of an output signal of the maximum power tracking control circuit and a variation, wherein the variation is a difference between a current output signal and a previous output signal, and the initial value of the output signal is sent to a multiplier of the DC/AC controller, the output The signal controls the voltage amplitude on the connected inductor, and detects the initial value of the DC voltage outputted by the solar battery after a delay time; a first iterative operation step defines that the previous output signal is equal to the output An initial value of the signal, and defining a previous DC voltage equal to an initial value of the DC voltage; a signal input step of calculating the current output signal, and replacing the previous change amount by the value of the change amount, And sending the current output signal to the multiplier, and detecting the DC voltage output by the solar battery group after the delay time, and then Defining the obtained DC voltage as a current DC voltage, wherein the value of the next output signal is the sum of the change amount and the previous output signal; and an adjustment direction determining step, which compares the previous time The DC voltage and the current DC voltage, if the current DC voltage is greater than or equal to the previous DC voltage, the change amount is set to be equal to the positive value of the previous change amount, and if the DC voltage is the next time When the DC voltage is less than the previous DC voltage, the amount of change is set to be equal to the negative value of the previous change amount; and an iterative operation step is defined to define that the previous output signal is equal to the current output signal, and defines the former After the DC voltage is equal to the current DC voltage, and the current output signal is obtained, the signal input step is re-executed, wherein the value of the next output signal is the change amount and the previous output signal. with.
藉此,本發明之具最大功率追蹤之電壓控制是直流/交流電力轉換器之控制方法可不須使用任何電流檢出器檢出電流,具有簡化電路及降低成本之功效,且仍可追蹤該太陽能電池組之最大功率操作點,使該太陽能電池組所產生並注入該交流電源系統之電流趨近於單位功因。Thereby, the voltage control with maximum power tracking of the present invention is a control method of the DC/AC power converter, which can detect the current without using any current detector, has the advantages of simplifying the circuit and reducing the cost, and can still track the solar energy. The maximum power operating point of the battery pack causes the current generated by the solar battery pack and injected into the AC power system to approach the unit power factor.
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:請參照第1圖所示,其係為應用本發明之具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法的電力轉換裝置使用於一太陽能發電系統的架構示意圖。請參照第1圖所示,其包含一太陽能電池組1、該電力轉換裝置2及一交流電源系統3,其中該電力轉換裝置2包含一DC/DC[直流/直流]電力轉換器4及一DC/AC[直流/交流]電力轉換器5。該太陽能電池組1係連接至該DC/DC電力轉換器4之一輸入側,而該DC/DC電力轉換器4之一輸出側則與該DC/AC[直流/交流]電力轉換器5之一輸入側連接,再由該DC/AC電力轉換器5之一輸出側連接至該交流電源系統3。如此,該太陽能電池組1所輸出之一直流電能即可經由該電力轉換裝置2轉換後輸送至該交流電源系統3;更詳言之,該電力轉換裝置2之DC/DC電力轉換器4係供針對該太陽能電池組1所輸出之直流電能的直流電壓進行電壓準位調整,而該電力轉換裝置2之DC/AC電力轉換器5則將該DC/DC電力轉換器4所輸出之直流電能轉換成一交流電能,以便注入該交流電源系統3。其中,該DC/DC電力轉換器4之輸出直流電壓亦可隨該交流電源系統3之交流電壓的變化而產生變動。The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the appended claims. It is a schematic diagram of a power conversion device used in a solar power generation system using the power conversion device of the present invention for controlling the voltage-controlled DC/AC power converter with maximum power tracking. Please refer to FIG. 1 , which includes a solar battery unit 1 , the power conversion device 2 and an AC power supply system 3 , wherein the power conversion device 2 includes a DC/DC [DC/DC] power converter 4 and a DC/AC [DC/AC] power converter 5. The solar battery unit 1 is connected to one input side of the DC/DC power converter 4, and an output side of the DC/DC power converter 4 is connected to the DC/AC [DC/AC] power converter 5 An input side is connected to the AC power supply system 3 by an output side of the DC/AC power converter 5. In this way, one of the DC power outputted by the solar battery unit 1 can be converted to the AC power supply system 3 via the power conversion device 2; more specifically, the DC/DC power converter 4 of the power conversion device 2 is The voltage level adjustment is performed for the DC voltage of the DC power outputted by the solar battery unit 1, and the DC/AC power converter 5 of the power conversion device 2 outputs the DC power output by the DC/DC power converter 4. It is converted into an alternating current electric energy to be injected into the alternating current power supply system 3. The output DC voltage of the DC/DC power converter 4 may also vary according to the change of the AC voltage of the AC power system 3.
請參照第2圖所示,其係揭示該電力轉換裝置2之DC/DC電力轉換器4之電路架構示意圖,其中該DC/DC電力轉換器4係為一升壓式轉換器[boost converter],其包含一輸入電容器41、一電感器42、一電力電子開關43、一二極體44、一輸出電容器45及一DC/DC控制單元46。請參考第1及2圖所示,該輸入電容器41之二端係形成該DC/DC電力轉換器4之二輸入端,且該輸入電容器41並聯連接於該太陽能電池組1之二直流輸出端,以便穩定該太陽能電池組1所輸出之直流電壓;該電感器42之一端與輸入電容器41之正端連接,而該電感器42之另一端則與該電力電子開關43及該二極體44之陽極端[Anode端]連接;該二極體44之陰極端[cathode端]則與該輸出電容器45之正端連接;該輸入電容器41之負端、該輸出電容器45之負端與該電力電子開關43之另一端係連接在一起;且該輸出電容器45之二端係形成該DC/DC電力轉換器4之二輸出端;而該DC/DC控制單元46則與該電力電子開關43連接,以便該DC/DC控制單元46產生一控制信號控制該電力電子開關43呈現導通或截止狀態。藉此,當該DC/DC控制單元46致動該電力電子開關43呈導通狀態時,由該太陽能電池組1所產生之直流電能係對該電感器42進行充電儲能動作;而當該DC/DC控制單元46致動該電力電子開關43呈截止狀態時,該電感器42所預先儲存之電能即經由該二極體44釋放至該輸出電容器45。藉此,即可將該太陽能電池組1之電能進行升壓,將其所產生會變動的直流電能進行穩壓並轉換至具有較高電壓準位之直流電能。Please refer to FIG. 2 , which is a schematic diagram showing the circuit structure of the DC/DC power converter 4 of the power conversion device 2 , wherein the DC/DC power converter 4 is a boost converter. It includes an input capacitor 41, an inductor 42, a power electronic switch 43, a diode 44, an output capacitor 45, and a DC/DC control unit 46. Referring to FIGS. 1 and 2, the two ends of the input capacitor 41 form two input terminals of the DC/DC power converter 4, and the input capacitor 41 is connected in parallel to the two DC output terminals of the solar battery unit 1. In order to stabilize the DC voltage outputted by the solar battery unit 1; one end of the inductor 42 is connected to the positive terminal of the input capacitor 41, and the other end of the inductor 42 is connected to the power electronic switch 43 and the diode 44. The anode end [Anode end] is connected; the cathode end [cathode end] of the diode 44 is connected to the positive terminal of the output capacitor 45; the negative terminal of the input capacitor 41, the negative terminal of the output capacitor 45 and the power The other ends of the electronic switch 43 are connected together; and the two ends of the output capacitor 45 form two outputs of the DC/DC power converter 4; and the DC/DC control unit 46 is connected to the power electronic switch 43. In order for the DC/DC control unit 46 to generate a control signal to control the power electronic switch 43 to assume an on or off state. Thereby, when the DC/DC control unit 46 activates the power electronic switch 43 to be in an on state, the DC power generated by the solar battery unit 1 charges and stores the inductor 42; and when the DC When the /DC control unit 46 activates the power electronic switch 43 to be in an off state, the electrical energy pre-stored by the inductor 42 is released to the output capacitor 45 via the diode 44. Thereby, the electric energy of the solar battery unit 1 can be boosted, and the DC power generated by the fluctuation can be regulated and converted to DC power having a higher voltage level.
請參照第3圖所示,其係揭示該DC/DC電力轉換器4之DC/DC控制單元46的控制方塊圖。該DC/DC控制單元46包含一直流電壓檢出器461、一第一減法器462、一PI[比例積分]控制器463、一第一PWM[脈寬調變]電路464及一第一驅動電路465。其中,該DC/DC控制單元46係利用閉迴路控制方式控制該DC/DC電力轉換器4之輸出直流電壓,使該輸出直流電壓呈現為一固定值而不隨該太陽能電池組1所輸出之直流電壓之變化而改變。該直流電壓檢出器461與該第一減法器462之一輸入端連接,該直流電壓檢出器461係供檢出該DC/DC電力轉換器4之輸出直流電壓並送至該第一減法器462;該第一減法器462之另一輸入端係供輸入一預設電壓,以便該第一減法器462將該預設電壓與該輸出直流電壓進行相減;該PI控制器463之輸入端連接該第一減法器462之輸出端,以便該PI控制器463利用該第一減法器462之運算結果計算獲得一直流控制信號;該第一PWM電路464係連接於該PI控制器463及該第一驅動電路465之間,以便該PI控制器463將所產生之直流控制信號送至該第一PWM電路464以產生一脈波信號,該脈波信號之責任週期正比於該直流控制信號,再將該脈波信號輸入至該第一驅動電路465以產生一驅動信號,進而控制該DC/DC電力轉換器4之電力電子開關43。Referring to FIG. 3, it is a control block diagram showing the DC/DC control unit 46 of the DC/DC power converter 4. The DC/DC control unit 46 includes a DC voltage detector 461, a first subtractor 462, a PI [proportional integral] controller 463, a first PWM [Pulse Width Modulation] circuit 464, and a first driver. Circuit 465. The DC/DC control unit 46 controls the output DC voltage of the DC/DC power converter 4 by using a closed loop control method, so that the output DC voltage is presented as a fixed value without being output by the solar battery unit 1. The change in DC voltage changes. The DC voltage detector 461 is connected to an input end of the first subtractor 462, and the DC voltage detector 461 is configured to detect an output DC voltage of the DC/DC power converter 4 and send the first DC subtraction The other input end of the first subtractor 462 is configured to input a predetermined voltage, so that the first subtractor 462 subtracts the preset voltage from the output DC voltage; the input of the PI controller 463 The end is connected to the output end of the first subtractor 462, so that the PI controller 463 calculates the DC current control signal by using the operation result of the first subtractor 462; the first PWM circuit 464 is connected to the PI controller 463 and Between the first driving circuit 465, the PI controller 463 sends the generated DC control signal to the first PWM circuit 464 to generate a pulse wave signal, and the duty cycle of the pulse wave signal is proportional to the DC control signal. Then, the pulse signal is input to the first driving circuit 465 to generate a driving signal, thereby controlling the power electronic switch 43 of the DC/DC power converter 4.
請參照第4圖所示,其係揭示該電力轉換裝置2之DC/AC電力轉換器5之電路架構示意圖。該DC/AC電力轉換器5包含一電力電子開關組51、一輸出濾波器52、一連結電感53及一DC/AC[直流/交流]控制單元54,其中該DC/AC控制單元54即使用本發明之控制方法進行運作。該電力電子開關組51係可選擇為一全橋式電力電子開關組或一半橋式電力電子開關組,且該電力電子開關組51具有二直流輸入端及二交流輸出端,該二直流輸入端係連接於該DC/DC電力轉換器4之輸出電容器45之二端,而該二交流輸出端則連接於該輸出濾波器52;該輸出濾波器52亦具有二輸入端及二輸出端,其中該二輸入端係連接於該電力電子開關組51,且該輸出濾波器52較佳係選擇由一電容521及一電感522所組成,其中該電容521係跨接於該輸出濾波器52之二輸出端之間,而該電感522的一端連接於該輸出濾波器52之二輸入端之一,且其另一端連接於該二輸出端之一;該連結電感53之一端係連接於該輸出濾波器52之二輸出端之一,且該連結電感53之另一端則形成該DC/AC電力轉換器5之輸出側之一端,而該輸出濾波器52之二輸出端的另一輸出端則形成該DC/AC電力轉換器5之輸出側之另一端;該DC/AC控制單元54則與該電力電子開關組51之各電力電子開關連接,以便該DC/AC控制單元54產生一組控制信號控制該電力電子開關組51之各電力電子開關分別呈現導通或截止狀態。藉此,藉由本發明之DC/AC控制單元54所產生之控制信號即可使該DC/AC電力轉換器5針對該太陽能電池組1之輸出電能進行最大功率追蹤,以便取得較高之電能轉換成交流電能並注入該交流電源系統3。Referring to FIG. 4, it is a schematic diagram showing the circuit architecture of the DC/AC power converter 5 of the power conversion device 2. The DC/AC power converter 5 includes a power electronic switch group 51, an output filter 52, a coupled inductor 53 and a DC/AC [DC/AC] control unit 54, wherein the DC/AC control unit 54 is used. The control method of the present invention operates. The power electronic switch group 51 can be selected as a full-bridge power electronic switch group or a half-bridge power electronic switch group, and the power electronic switch group 51 has two DC input terminals and two AC output terminals, and the two DC input terminals Connected to the two ends of the output capacitor 45 of the DC/DC power converter 4, and the two AC outputs are connected to the output filter 52; the output filter 52 also has two inputs and two outputs, wherein The two input terminals are connected to the power electronic switch group 51, and the output filter 52 is preferably composed of a capacitor 521 and an inductor 522. The capacitor 521 is connected to the output filter 52. Between the output terminals, one end of the inductor 522 is connected to one of the two input ends of the output filter 52, and the other end thereof is connected to one of the two output ends; one end of the connection inductor 53 is connected to the output filter One of the outputs of the two of the switches 52, and the other end of the connecting inductor 53 forms one end of the output side of the DC/AC power converter 5, and the other output of the output of the output filter 52 forms the other end DC/AC power converter 5 The other end of the output side; the DC/AC control unit 54 is connected to each power electronic switch of the power electronic switch group 51, so that the DC/AC control unit 54 generates a set of control signals to control each of the power electronic switch groups 51. The power electronic switches are respectively turned on or off. Thereby, the DC/AC power converter 5 can perform maximum power tracking on the output power of the solar battery group 1 by using the control signal generated by the DC/AC control unit 54 of the present invention, so as to obtain higher power conversion. The AC power is injected into the AC power system 3.
請參照第5圖所示,其係揭示本發明較佳實施例之具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法以該DC/AC控制單元54實施的控制方塊圖,其中該DC/AC控制單元54係採用電壓控制式。該DC/AC控制單元54包含一第一交流電壓檢出器540、一帶通濾波器541、一相移電路542、一乘法器543、一加法器544、一第二交流電壓檢出器545、一第二減法器546、一波形控制電路547、一第二PWM〔脈寬調變〕電路548及一第二驅動電路549。該第一交流電壓檢出器540係連接該帶通濾波器541,以便該第一交流電壓檢出器540檢出該交流電源系統3之電壓後送至該帶通濾波器541之一輸入端;該帶通濾波器541之輸出端係連接至該相移電路542,且該帶通濾波器541之中心頻率係選擇為該交流電源系統3之基本波頻率,以便該帶通濾波器541獲得該交流電源系統3之基頻成份,亦即該帶通濾波器541係輸出一弦波信號,且該弦波信號與該交流電源系統3之電壓同頻率且同相位;該相移電路542將該帶通濾波器541所輸出之弦波信號進行超前90度相移之後送至該乘法器543之一輸入端;該乘法器543之另一輸入端係供一最大功率追蹤控制電路55之一輸出信號輸入,且藉由該乘法器543將經過90度相移之後的該弦波信號及該最大功率追蹤控制電路55之輸出信號相乘以得到一垂直向量信號,其中該垂直向量信號係為超前該交流電源系統3之電壓90度之一弦波,而該垂直向量信號的振幅由該最大功率追蹤控制電路55之輸出信號決定,且該DC/AC電力轉換器5之輸出電流的振幅將正比於該垂直向量信號的振幅;該加法器544將該垂直向量信號與該第一交流電壓檢出器540所檢出之電壓信號相加,以獲得一輸出電壓參考信號;而該第二交流電壓檢出器545則供檢出該輸出濾波器52之輸出端電壓;該第二減法器546之二輸入端係分別連接該加法器544及第二交流電壓檢出器545之輸出端,且該第二減法器546之輸出端連接至該波形控制電路547,以便該第二減法器546將該輸出電壓參考信號與該輸出濾波器52之輸出端電壓進行相減後送至該波形控制電路547形成一調變信號,藉此完成該輸出濾波器52之輸出端電壓的閉迴路控制;最後,該波形控制電路547所輸出之調變信號係經過該第二PWM電路548而送至該第二驅動電路549,以產生一組驅動信號控制該DC/AC電力轉換器5之電力電子開關組51。其中,該波形控制電路547具有較快之響應速度,且係控制該輸出濾波器52之輸出端電壓趨於該輸出電壓參考信號,則該連結電感53之電壓等於該交流電源系統3電壓與該DC/AC電力轉換器5之該輸出濾波器52之輸出端電壓之差,該連結電感53之電壓可趨於該垂直向量信號,其係一超前該交流電源系統3電壓90度之弦波電壓,因此可在該連結電感53上產生一與該交流電源系統3電壓同相位之基頻弦波輸出電流,即該DC/AC電力轉換器5之輸出電流。藉此,針對本發明之具最大功率追蹤之電力轉換裝置,僅需檢測該太陽能電池組1在該輸入電容器41所形成之直流電壓的變化情形,並透過該電力電子開關組51之切換作動以控制該連結電感53上之垂直電壓振幅,即可使本發明之電力轉換裝置2達到最大功率追蹤之目的。Referring to FIG. 5, a control block diagram of a control method of a voltage-controlled DC/AC power converter with maximum power tracking according to a preferred embodiment of the present invention is implemented by the DC/AC control unit 54, wherein The DC/AC control unit 54 is voltage controlled. The DC/AC control unit 54 includes a first AC voltage detector 540, a band pass filter 541, a phase shift circuit 542, a multiplier 543, an adder 544, and a second AC voltage detector 545. A second subtractor 546, a waveform control circuit 547, a second PWM [pulse width modulation] circuit 548 and a second driving circuit 549. The first AC voltage detector 540 is connected to the band pass filter 541, so that the first AC voltage detector 540 detects the voltage of the AC power system 3 and sends it to one of the input terminals of the band pass filter 541. The output of the band pass filter 541 is connected to the phase shift circuit 542, and the center frequency of the band pass filter 541 is selected as the fundamental wave frequency of the AC power system 3, so that the band pass filter 541 is obtained. The fundamental frequency component of the AC power system 3, that is, the bandpass filter 541 outputs a sine wave signal, and the sine wave signal is at the same frequency and in phase with the voltage of the AC power system 3; the phase shift circuit 542 will The sine wave signal outputted by the band pass filter 541 is sent to one input of the multiplier 543 after being advanced by 90 degrees, and the other input end of the multiplier 543 is supplied to one of the maximum power tracking control circuits 55. Outputting a signal input, and multiplying the sine wave signal after the 90 degree phase shift and the output signal of the maximum power tracking control circuit 55 by the multiplier 543 to obtain a vertical vector signal, wherein the vertical vector signal is Leading the AC The voltage of system 3 is one sine wave of 90 degrees, and the amplitude of the vertical vector signal is determined by the output signal of the maximum power tracking control circuit 55, and the amplitude of the output current of the DC/AC power converter 5 will be proportional to the vertical The amplitude of the vector signal; the adder 544 adds the vertical vector signal to the voltage signal detected by the first AC voltage detector 540 to obtain an output voltage reference signal; and the second AC voltage detector 545 is configured to detect the output voltage of the output filter 52; the second input of the second subtractor 546 is respectively connected to the output of the adder 544 and the second AC voltage detector 545, and the second subtraction The output of the 546 is connected to the waveform control circuit 547, so that the second subtractor 546 subtracts the output voltage reference signal from the output voltage of the output filter 52 and sends it to the waveform control circuit 547 to form a tone. Changing the signal, thereby completing the closed loop control of the output voltage of the output filter 52; finally, the modulated signal output by the waveform control circuit 547 is sent to the second drive via the second PWM circuit 548 Circuit 549 controls the power electronic switch bank 51 of the DC/AC power converter 5 to generate a set of drive signals. Wherein, the waveform control circuit 547 has a faster response speed, and the output voltage of the output filter 52 is controlled to the output voltage reference signal, and the voltage of the connection inductor 53 is equal to the voltage of the AC power system 3 and the The difference between the output voltages of the output filter 52 of the DC/AC power converter 5, the voltage of the connected inductor 53 may be toward the vertical vector signal, which is a sine wave voltage that is 90 degrees ahead of the AC power system 3 Therefore, a fundamental frequency sine wave output current that is in phase with the voltage of the AC power system 3, that is, an output current of the DC/AC power converter 5 can be generated on the connection inductor 53. Therefore, for the power conversion device with maximum power tracking of the present invention, it is only necessary to detect the change of the DC voltage formed by the solar battery 1 in the input capacitor 41, and to switch through the power electronic switch group 51. By controlling the vertical voltage amplitude on the connection inductor 53, the power conversion device 2 of the present invention can achieve the purpose of maximum power tracking.
請參照第6圖所示,其係揭示本發明之DC/AC控制單元54之最大功率追蹤控制電路55所採用的最大功率追蹤方法之流程圖。首先,定義該最大功率追蹤控制電路55之輸出信號之初始值為K(0),當次之輸出信號為K(n),前次之輸出信號為K(n-1),而當次與前次之輸出信號之間的變化量則為△K(n),且當次與前次之輸出信號之間的時間間隔為一延遲時間T。承上所述,可歸納得當次之輸出信號為:K(n)=K(n-1)+△K(n)。其中,如第5圖所示,該輸出信號係送至該DC/AC控制單元54之乘法器543,以便決定該垂直向量信號之振幅的大小,進而決定該連結電感53之電壓振幅及該DC/AC電力轉換器5之輸出電流之振幅,而該DC/AC電力轉換器5之輸出功率正比於其輸出電流之振幅。此外,該最大功率追蹤控制電路55係檢出該太陽能電池組1所輸出之直流電壓,並定義其所檢出之直流電壓的初始值為Vpv(0),當次之直流電壓為Vpv(n),而前次之直流電壓則為Vpv(n-1)。Please refer to FIG. 6, which is a flowchart showing the maximum power tracking method adopted by the maximum power tracking control circuit 55 of the DC/AC control unit 54 of the present invention. First, the initial value of the output signal of the maximum power tracking control circuit 55 is defined as K(0), and the output signal of the second time is K(n), and the previous output signal is K(n-1), and the current output is The amount of change between the previous output signals is ΔK(n), and the time interval between the current and previous output signals is a delay time T. According to the above, the output signal that can be summarized is: K(n)=K(n-1)+ΔK(n). As shown in FIG. 5, the output signal is sent to the multiplier 543 of the DC/AC control unit 54 to determine the magnitude of the amplitude of the vertical vector signal, thereby determining the voltage amplitude of the coupled inductor 53 and the DC. The amplitude of the output current of the /AC power converter 5, and the output power of the DC/AC power converter 5 is proportional to the amplitude of its output current. In addition, the maximum power tracking control circuit 55 detects the DC voltage output by the solar battery unit 1 and defines an initial value of the detected DC voltage as Vpv(0), and the next DC voltage is Vpv(n). ), and the previous DC voltage is Vpv(n-1).
承上所述,每次由該最大功率追蹤控制電路55所輸出之輸出信號係利用下列步驟計算獲得。該最大功率追蹤控制電路55首先係進行一首次信號輸入步驟S1,此一步驟係預先設定該K(0)及△K(n)之值,將該輸出信號之初始值K(0)送至該乘法器543,並自送出該初始值K(0)之後經過該延遲時間T才檢出該太陽能電池組1所輸出之直流電壓的初始值Vpv(0)。隨後,該最大功率追蹤控制電路55進行一首次疊代運算步驟S2,此一步驟係界定該前次之輸出信號K(n-1)等於該輸出信號之初始值K(0),並界定該前次之直流電壓Vpv(n-1)等於該直流電壓的初始值Vpv(0)。在完成該首次疊代運算步驟S2之後,該最大功率追蹤控制電路55執行一信號輸入步驟S3,以K(n)=K(n-1)+△K(n)的方式運算得到當次之輸出信號K(n),以該變化量△K(n)之值取代一前次之變化量△K(n-1),並將該當次之輸出信號K(n)送至該乘法器543,且在該延遲時間T之後再次檢出該太陽能電池組1所輸出之直流電壓,再將所獲得之直流電壓界定為當次之直流電壓Vpv(n)。繼之,進行一調整方向決定步驟S4,在此一步驟S4中,比較該前次之直流電壓Vpv(n-1)及當次之直流電壓Vpv(n)以決定增加或減少該垂直向量信號之振幅。更詳言之,當Vpv(n)≧Vpv(n-1)時,則將該變化量△K(n)設定等於前次之變化量△K(n-1)的正值,以維持該垂直向量信號之振幅的變化方向不變;而當Vpv(n)<Vpv(n-1)時,則將該變化量△K(n)設定等於前次之變化量△K(n-1)的負值,以使該垂直向量信號之振幅的變化方向相反。最後,執行一疊代運算步驟S5,界定該前次之輸出信號K(n-1)等於該當次之輸出信號K(n),且界定該前次之直流電壓Vpv(n-1)等於該當次之直流電壓Vpv(n),並以K(n)=K(n-1)+△K(n)的方式運算得到當次之輸出信號K(n)之後,再繼續循環執行前述之步驟S3至步驟S5。藉此,當利用調整該垂直向量信號之振幅而使該太陽能電池組1所輸出之直流電壓接近於最大功率操作點時,該太陽能電池組1所輸出之直流電壓即持續來回擾動。As described above, each time the output signal output by the maximum power tracking control circuit 55 is obtained by the following steps. The maximum power tracking control circuit 55 first performs a first signal input step S1. This step pre-sets the values of K(0) and ΔK(n), and sends the initial value K(0) of the output signal to The multiplier 543 detects the initial value Vpv(0) of the DC voltage output from the solar battery unit 1 after the delay time T elapses after the initial value K(0) is sent. Subsequently, the maximum power tracking control circuit 55 performs a first iterative operation step S2, which defines that the previous output signal K(n-1) is equal to the initial value K(0) of the output signal, and defines the The previous DC voltage Vpv(n-1) is equal to the initial value Vpv(0) of the DC voltage. After the first iterative operation step S2 is completed, the maximum power tracking control circuit 55 performs a signal input step S3, which is calculated by K(n)=K(n-1)+ΔK(n). The output signal K(n) is substituted for the previous change amount ΔK(n-1) by the value of the change amount ΔK(n), and the next output signal K(n) is sent to the multiplier 543. And after the delay time T, the DC voltage outputted by the solar battery unit 1 is detected again, and the obtained DC voltage is defined as the current DC voltage Vpv(n). Then, an adjustment direction determining step S4 is performed. In this step S4, the previous DC voltage Vpv(n-1) and the next DC voltage Vpv(n) are compared to determine whether to increase or decrease the vertical vector signal. The amplitude. More specifically, when Vpv(n) ≧ Vpv(n-1), the change amount ΔK(n) is set to be equal to the positive value of the previous change amount ΔK(n-1) to maintain the The direction of the change of the amplitude of the vertical vector signal is unchanged; and when Vpv(n) < Vpv(n-1), the change amount ΔK(n) is set equal to the previous change amount ΔK(n-1) The negative value is such that the amplitude of the vertical vector signal changes in the opposite direction. Finally, performing an iterative operation step S5, defining that the previous output signal K(n-1) is equal to the current output signal K(n), and defining the previous DC voltage Vpv(n-1) is equal to the The second DC voltage Vpv(n) is calculated by K(n)=K(n-1)+ΔK(n) to obtain the current output signal K(n), and then continue to perform the above steps. S3 to step S5. Thereby, when the DC voltage outputted by the solar battery unit 1 is adjusted to be close to the maximum power operating point by adjusting the amplitude of the vertical vector signal, the DC voltage outputted by the solar battery unit 1 continues to be disturbed back and forth.
綜上所述,相較於習用以擾動觀察法進行最大功率追蹤之電力轉換裝置,本發明應用於該電力轉換裝置2之的DC/AC控制單元54的控制方法只需採用單一迴路控制該連結電感53上之電壓之振幅,並觀測該太陽能電池組1所輸出之直流電壓的變化情形,且在不需要使用任何電流檢出器的情況下,便可控制該太陽能電池組1操作於最大功率操作點,並將該太陽能電池組1產生之最大功率轉換成一趨於單位功因之交流功率注入該交流電源系統3。因此,此用本發明之控制方法的電力轉換裝置2具有較簡化電路及降低成本之功效。In summary, the control method of the DC/AC control unit 54 applied to the power conversion device 2 of the present invention only needs to control the connection by a single loop, compared to the power conversion device that is used for maximum power tracking by the disturbance observation method. The amplitude of the voltage on the inductor 53 and observing the change of the DC voltage outputted by the solar battery unit 1, and controlling the solar battery unit 1 to operate at the maximum power without using any current detector The operating point is converted into the AC power supply system 3 by converting the maximum power generated by the solar battery unit 1 into an AC power that tends to be a unit of power. Therefore, the power conversion device 2 using the control method of the present invention has a simplified circuit and a cost reduction effect.
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of the invention is defined by the scope of the appended claims.
1...太陽能電池組1. . . Solar battery pack
2...電力轉換裝置2. . . Power conversion device
3...交流電源系統3. . . AC power system
4...DC/DC電力轉換器4. . . DC/DC power converter
41...輸入電容器41. . . Input capacitor
42...電感器42. . . Inductor
43...電力電子開關43. . . Power electronic switch
44...二極體44. . . Dipole
45...輸出電容器45. . . Output capacitor
46...DC/DC控制單元46. . . DC/DC control unit
461...直流電壓檢出器461. . . DC voltage detector
462...第一減法器462. . . First subtractor
463...PI控制器463. . . PI controller
464...第一PWM電路464. . . First PWM circuit
465...第一驅動電路465. . . First drive circuit
5...DC/AC電力轉換器5. . . DC/AC power converter
51...電力電子開關組51. . . Power electronic switch group
52...輸出濾波器52. . . Output filter
521...電容521. . . capacitance
522...電感522. . . inductance
53...連結電感53. . . Connecting inductance
54...DC/AC控制單元54. . . DC/AC control unit
540...第一交流電壓檢出器540. . . First AC voltage detector
541...帶通濾液器541. . . Band pass filter
542...相移電路542. . . Phase shift circuit
543...乘法器543. . . Multiplier
544...加法器544. . . Adder
545...第二交流電壓檢出器545. . . Second AC voltage detector
546...第二減法器546. . . Second subtractor
547...波形控制電路547. . . Waveform control circuit
548...第二PWM電路548. . . Second PWM circuit
549...第二驅動電路549. . . Second drive circuit
55...最大功率追蹤控制電路55. . . Maximum power tracking control circuit
S1...首次信號輸入步驟S1. . . First signal input step
S2...首次疊代運算步驟S2. . . First iteration step
S3...信號輸入步驟S3. . . Signal input step
S4...調整方向決定步驟S4. . . Adjustment direction decision step
S5...疊代運算步驟S5. . . Iterative operation step
第1圖:應用本發明之具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法之電力轉換裝置使用於一太陽能發電系統的架構示意圖。Fig. 1 is a schematic view showing the construction of a power conversion device using a control method of a voltage-controlled DC/AC power converter with maximum power tracking according to the present invention.
第2圖:應用本發明之具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法的電力轉換裝置之DC/DC電力轉換器之電路架構示意圖。Fig. 2 is a circuit diagram showing the circuit structure of a DC/DC power converter of a power conversion device to which a control method of a voltage-controlled DC/AC power converter having maximum power tracking is applied.
第3圖:應用本發明之具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法的電力轉換裝置之DC/DC控制單元之控制方塊圖。Figure 3 is a control block diagram of a DC/DC control unit of a power conversion apparatus to which the control method of the voltage-controlled DC/AC power converter of the present invention is applied.
第4圖:應用本發明之具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法的電力轉換裝置之DC/AC電力轉換器之電路架構示意圖。Fig. 4 is a circuit diagram showing the circuit configuration of a DC/AC power converter of a power conversion device to which a control method of a voltage-controlled DC/AC power converter having maximum power tracking is applied.
第5圖:本發明較佳實施例之具最大功率追蹤之電壓控制式直流/交流電力轉換器之控制方法的控制方塊圖。Figure 5 is a control block diagram of a method of controlling a voltage controlled DC/AC power converter with maximum power tracking in accordance with a preferred embodiment of the present invention.
第6圖:本發明較佳實施例之具最大功率追蹤之電壓控制式直流/交流電力轉換器的最大功率追蹤控制電路所採用之最大功率追蹤方法之流程圖。Figure 6 is a flow chart showing the maximum power tracking method employed by the maximum power tracking control circuit of the voltage controlled DC/AC power converter with maximum power tracking in accordance with a preferred embodiment of the present invention.
54...DC/AC控制單元54. . . DC/AC control unit
540...第一交流電壓檢出器540. . . First AC voltage detector
541...帶通濾波器541. . . Bandpass filter
542...相移電路542. . . Phase shift circuit
543...乘法器543. . . Multiplier
544...加法器544. . . Adder
545...第二交流電壓檢出器545. . . Second AC voltage detector
546...第二減法器546. . . Second subtractor
547...波形控制電路547. . . Waveform control circuit
548...第二PWM電路548. . . Second PWM circuit
549...第二驅動電路549. . . Second drive circuit
55...最大功率追蹤控制電路55. . . Maximum power tracking control circuit
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97144746A TWI382646B (en) | 2008-11-19 | 2008-11-19 | Maximum power point tracking control method for voltage-detection based dc/ac inverter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97144746A TWI382646B (en) | 2008-11-19 | 2008-11-19 | Maximum power point tracking control method for voltage-detection based dc/ac inverter |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201021394A TW201021394A (en) | 2010-06-01 |
TWI382646B true TWI382646B (en) | 2013-01-11 |
Family
ID=44832619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97144746A TWI382646B (en) | 2008-11-19 | 2008-11-19 | Maximum power point tracking control method for voltage-detection based dc/ac inverter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI382646B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9065336B2 (en) | 2013-06-26 | 2015-06-23 | Industrial Technology Research Institute | Maximum power point tracking method and apparatus |
US9467066B1 (en) | 2015-10-07 | 2016-10-11 | Industrial Technology Research Institute | Control method for DC to AC converter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112987839B (en) * | 2021-03-01 | 2022-07-15 | 哈尔滨工程大学 | Photovoltaic cell maximum power point tracking control circuit and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6678174B2 (en) * | 2000-11-27 | 2004-01-13 | Canon Kabushiki Kaisha | Power converting apparatus, control method therefor, and power generation system |
TW200517803A (en) * | 2003-11-25 | 2005-06-01 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
TW200519557A (en) * | 2003-12-02 | 2005-06-16 | Ind Tech Res Inst | Control device of solar cell array |
-
2008
- 2008-11-19 TW TW97144746A patent/TWI382646B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6678174B2 (en) * | 2000-11-27 | 2004-01-13 | Canon Kabushiki Kaisha | Power converting apparatus, control method therefor, and power generation system |
TW200517803A (en) * | 2003-11-25 | 2005-06-01 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
TW200519557A (en) * | 2003-12-02 | 2005-06-16 | Ind Tech Res Inst | Control device of solar cell array |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9065336B2 (en) | 2013-06-26 | 2015-06-23 | Industrial Technology Research Institute | Maximum power point tracking method and apparatus |
US9467066B1 (en) | 2015-10-07 | 2016-10-11 | Industrial Technology Research Institute | Control method for DC to AC converter |
TWI559668B (en) * | 2015-10-07 | 2016-11-21 | 財團法人工業技術研究院 | Controlling method for dc/ac converter |
Also Published As
Publication number | Publication date |
---|---|
TW201021394A (en) | 2010-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108023352B (en) | Power grid high-frequency impedance remodeling device and method for inhibiting distributed generation resonance | |
TWI356566B (en) | Ripple voltage suppression method for dc/dc conver | |
CN108512452B (en) | Control system and control method for current of direct-current micro-grid-connected converter | |
TWI524648B (en) | Cascade bridge-type dc/ac power converting method and converter device thereof | |
CN103078522B (en) | A kind of control method of capacitor charging AC-DC series resonance matrix converter control device | |
CN102916572A (en) | Control method and system for inhibiting secondary ripple current and improving dynamic characteristic | |
CN103312165B (en) | High-frequency multiphase interleaved conversion device and control method | |
CN101728942A (en) | Method and device for controlling direct current/direct current power converter with ripple rejection | |
CN109638887B (en) | Dead-beat fuzzy control system and control method of photovoltaic grid-connected inverter | |
CN109120169B (en) | Voltage-sharing control method for cascade two-stage inverter | |
Banaei et al. | DVR based cascaded multilevel Z-source inverter | |
CN112117924B (en) | Control method of DCM single-bridge-arm integrated split-source boost inverter | |
Wu et al. | Novel power electronic interface for grid-connected fuel cell power generation system | |
CN110601253A (en) | DCM flyback photovoltaic micro-inverter grid-connected current harmonic suppression method | |
CN115051565A (en) | Bidirectional half-bridge direct-current converter grid-connected inverter and ripple wave control method | |
TWI382646B (en) | Maximum power point tracking control method for voltage-detection based dc/ac inverter | |
TWI413332B (en) | Power conversion circuit | |
CN112350590A (en) | Uncontrolled rectifier harmonic compensation circuit and control method | |
TWI414144B (en) | Fifth order power converter | |
Kim et al. | Design and control methods of bidirectional DC-DC converter for the optimal DC-link voltage of PMSM drive | |
CN103607104A (en) | Sine wave modulation circuit and sine wave modulation method | |
Sher et al. | Performance enhancement of a flyback photovoltaic inverter using hybrid maximum power point tracking | |
Jeong et al. | A controller design for a stability improvement of an on-board battery charger | |
Zarate et al. | Isolated and Bidirectional two-stage DC/AC converter with grid-forming virtual inertia and high ripple on the DC bus for Single-Phase Grid applications | |
Li et al. | Modeling and hybrid controller design of CLLLC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |