201021394 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種電壓控制式直流/交流電力轉換器 之控制方法,特別是關於一種具太陽能電池最大功率追縱 之電力轉換裝置之直流/交流電力轉換器之控制方法。 【先前技術】 由於世界各國之溫室氣體的排放量受到京都議訂書 ❺ 的限制,且石化能源成本漸趨昂責,而再生能源成本則日 益降低,致使具有低污染、低溫室氣體排放等特性之再生 能源發電技術逐漸受到全世界重視。其中,又以技術較為 成熟且較具有發展性及前瞻性的太陽能發電最受矚目。 在太陽能發電領域中,為提升太陽光能量的有效應 用,除了太陽能電池效率的改善或新技術的開發之外,最 大功率追縱技術亦為另一關鍵核心技術,而Γ擾動觀察法」 則為所述之最大功率追蹤技術中最受青睞的技術。使用擾 β 動觀察法之習用電力轉換裝置,如美國專利第5327071號 所揭示,其係利用控制一 DC/DC〔直流/直流〕電力轉換器 以追蹤太陽能電池組之最大功率。該DC/DC電力轉換器係 • 持續於一太陽能電池組之輸出電壓中加入一擾動電壓,並 偵測該DC/DC電力轉換器之輸出電壓及輸出電流,以計算 得該DC/DC電力轉換器之輸出功率,進而獲得一偵測資 料。在偵測獲得第二筆之偵測資料後,一控制器係將該 DC/DC電力轉換器之輸出功率的當次偵測資料與前次偵 測資料進行比較,進而決定加入於該太陽能電池組之輸出 201021394 電壓中的擾動電壓為正值或負值〔印決定該太陽能電池組 之輸出電壓的擾動方向〕’並根據該控制器的比較結果調 整該擾動電壓,再·人擾動該太陽能電池組之輸出電壓。藉 此’-旦該太陽能電池組之輸iti電壓為該太陽能電池組具 有最大輸出功率之電壓操作點時,即可利用該接績 擾動電壓使就陽能電池組之輸_壓在該電壓操作點附 近進行來回擾動,以獲取該太陽能電池組之最大功率。 另一使用擾動觀察法之習用電力轉換裝置,如美國專 利第5932994號所揭示,其亦利用一 DC/〇c電力轉換器持 續控制-太陽能電池組之輸出電壓,以便追蹤該太陽能電 池組具有最大輸出轉之電壓點,於該dc/dc201021394 VI. Description of the Invention: [Technical Field] The present invention relates to a control method of a voltage controlled DC/AC power converter, and more particularly to a DC/AC of a power conversion device with maximum power tracking of a solar cell Control method of power converter. [Prior Art] As the emissions of greenhouse gases from all over the world are limited by the Kyoto Protocol, and the cost of petrochemical energy is becoming more and more blame, the cost of renewable energy is decreasing, resulting in low pollution and low greenhouse gas emissions. The renewable energy power generation technology has gradually received worldwide attention. Among them, solar power generation, which is more mature and more developmental and forward-looking, is attracting the most attention. In the field of solar power generation, in order to improve the effective application of solar energy, in addition to the improvement of solar cell efficiency or the development of new technologies, the maximum power tracking technology is another key core technology, and the Γ disturbance observation method is The most popular technology among the maximum power tracking techniques described. A conventional power conversion device using a disturbing beta motion observation method, as disclosed in U.S. Patent No. 5,327,071, utilizes a DC/DC (DC/DC) power converter to track the maximum power of a solar battery pack. The DC/DC power converter system continuously adds a disturbance voltage to an output voltage of a solar battery pack, and detects an output voltage and an output current of the DC/DC power converter to calculate the DC/DC power conversion. The output power of the device, in turn, obtains a detection data. After detecting the second detection data, a controller compares the current detection data of the output power of the DC/DC power converter with the previous detection data, and then determines to join the solar battery. The disturbance voltage in the output of the group 201021394 is positive or negative [printing determines the disturbance direction of the output voltage of the solar cell group]' and adjusts the disturbance voltage according to the comparison result of the controller, and then disturbs the solar cell. The output voltage of the group. Therefore, when the voltage of the solar battery pack is the voltage operating point of the solar battery pack having the maximum output power, the output disturbance voltage can be utilized to operate the voltage of the solar battery pack at the voltage operation. The back and forth disturbances are made near the points to obtain the maximum power of the solar battery pack. Another conventional power conversion device using the disturbance observation method, as disclosed in U.S. Patent No. 5,932,994, which also utilizes a DC/〇c power converter to continuously control the output voltage of the solar battery pack in order to track the solar battery pack to have the largest Output turn voltage point at the dc/dc
電力轉換ϋ之功相關元件之#_射加人-擾動量, 並偵測該太陽能電驗之輸出及輸出電流,以計算得 ,進而獲得一偵測資料。在偵 測獲得第二筆之侧資料後,—控㈣將該太陽能電池组 之輸出功率的當次侧資料與前次偵職料進行比較,以 決定加人賊DC/DC電力轉_之辨_元件之責任 週期中的擾動量為正值或負值〔即決定需增加或減少該功 率開關it件之責倾賊〕,錄_㈣㈣比較姓果 調整該擾動量’再錢_DC耽電力轉換^之功率開關 任週期。藉此,—旦該太陽能電池組之輸出電壓 為該太陽能電她具有最墙㈣率之電難作點時,即 該持相整之擾料使該⑽料池组之輪出電麼 =:Γ附近進行來回摄動’以獲取該太陽能電池 201021394 然而’上述二種使用擾動觀察法之習用電力轉換裝置 均需要偵測二個以上的電壓或電流信號,造成其控制電路 存在有高複雜度及高製造成本等缺點。 另’如中華民國專利1232361所揭示,其係加入一調 整量至一 DC/AC電力轉換器之輸出電流,並檢測一太陽能 電池組之直流輸出電壓所對應產生之一直流輪出電壓變化 量,或是加入一調整量至該太陽能電池組之直流輸出電 壓,並檢測該DC/AC電力轉換器之輸出電流所對應產生之 一輸出電流變化量。最後,再修正該調整量之調整方向, 使其與該直流輸出電壓變化量或該輸出電流變化量為同一 方向,並持續重複上述步驟,以達成追蹤該太陽能電池組 具有最大功率之操作點的目的。The #_射加人-disturbance amount of the power conversion related component is detected, and the output and output current of the solar energy detector are detected to be calculated, thereby obtaining a detection data. After detecting the side data of the second pen, the control (4) compares the current side data of the output power of the solar battery group with the previous detective material to determine the DC/DC power conversion of the thief. The disturbance amount in the _ component's responsibility cycle is positive or negative (that is, the thief who decides to increase or decrease the power switch), record _ (four) (four) compare the surname to adjust the disturbance amount 're- _DC 耽 power Convert the power switch to ^ cycle. Thereby, if the output voltage of the solar battery pack is that the solar power has the highest wall (four) rate of electrical difficulty, that is, the phase-to-phase disturbing material causes the (10) pool group to be powered out:来回Reciprocal perturbation near Γ to obtain the solar cell 201021394 However, the above two conventional power conversion devices using the disturbance observation method need to detect more than two voltage or current signals, resulting in high complexity of the control circuit and High manufacturing costs and other shortcomings. In addition, as disclosed in the Republic of China Patent No. 1232361, it adds an adjustment amount to the output current of a DC/AC power converter, and detects a DC output voltage variation corresponding to a DC output voltage of a solar battery. Or adding an adjustment amount to the DC output voltage of the solar battery, and detecting an output current variation corresponding to the output current of the DC/AC power converter. Finally, the adjustment direction of the adjustment amount is corrected to be in the same direction as the DC output voltage change amount or the output current change amount, and the above steps are continuously repeated to achieve an operation point for tracking the solar battery pack having the maximum power. purpose.
上述第三種習用電力轉換裝置雖比先前所述之二寿 =用電力轉換裝置具有更為簡單的電路架構,但必需藉^ 一電流檢心以檢戰該Dc/Ac電力職器之% =出端之電流的振幅,且亦只翻於電流控制式之電力4 =器^軸’目前之再生能_力轉換器技術多採用電,; 習用之電流控制式電力轉換器運轉, 即必須再多一電壓迴路以控制該電; 命器輸出電壓。反之’習用之電壓控制式電力轉換器】 :針=電力轉換器之輸出電麗採用振幅及相位雙迴3 =致生不佳等缺點。基於上述原因路 201021394 【發明内容】 本發明之主要目的係提供一種具最大功率追蹤之電 力轉換裝置之直流/交流電力轉換器之控制方法,以便利用 控制一連結電感上之電壓振幅及觀測一太陽能電池組所輸 出之直流電壓之變化而追蹤該太陽能電池組之最大功率操 作點。 為達到前述發明目的,本發明所運用之技術手段包 含:一種具最大功率追蹤之電壓控制式直流/交流電办轉換 ❹ 器之控制方法,其係為:以一第一交流電壓檢出器檢出一 交流電源系統之電壓後送至一帶通濾波器,且該帶通濾波 器之中心頻率為該交流電源系統之基本波頻率,以便該帶 通濾波器獲得該交流電源系統之基本波成份,其中該基本 波成份係為一弦波信號;以一相移電路將該帶通濾波器所 產生之弦波信號進行超前9〇度相移;以一乘法器將經過 90度相移之後的該弦波信號及一最大功率追蹤控制電路 之輸出信號相乘得到一垂直向量信號;以一加法器將該垂 © Α向量信號與該第-交流電壓檢出㈣檢出之電壓信號相 加,進而獲得一輸出電壓參考信號;以一第二交流電壓檢 出器檢出該直流/交流電力轉換器之輸出電壓並送至一減 ,器之一輸入端,該減法器之另一輸入端係連接該加法 器,域齡H健該輸出電齡考健與該直流/交流電 力轉換器之輸出電愿進行相減;以一波形控制電路接收該 減法器之輸出信號並形成一調變信號, ·以一脈寬調變電路 接收該波形控制電路所輸出之機信號並送至-驅動電 路’該驅動電路係產生—組驅練號控制-直流/交流電力 201021394 轉換器之電力電子開關組。藉此,該控制方法經由控制一 連結電感上之一電壓而控制該直流/交流電力轉換器之一 輸出濾波器之輪出電壓;該一連結電感上之電壓係垂直於 該交流電源系統之基頻電壓,如此即可使得該直流/交流電 力轉換器輸出與該交流電源系統之基頻電壓同相位之一弦 波輸出電流’以送出一實功注入到該交流電源系統,因此 該直流/交流電力轉換器之最大功率追蹤控制電路可控制 其輸出電流之振幅,進而控制該直流/交流電力轉換器所輸 ❹ 出之實功。 此外,針對所述之控制方法,其中該最大功率控制電 路所產生之輸出信號係以下列步驟計算獲得:一首次信號 輸入步驟,其係預先設定該最大功率追蹤控制電路之輸出 信號之初始值及一變化量,其中該變化量為一當次之輸出 信號與一前次之輸出信號之間的差值,將該輸出信號之初 始值送至該直流/交流控制器之一乘法器,該輸出信號控制 該連結電感上之電壓振幅,並經過一延遲時間之後檢出該 © 太陽能電池組所輸出之直流電壓的初始值;一首次疊代運 算步驟’其係界定該前次之輪出信號等於該輪出信號之初 始值,並界定一前次之直流電壓等於該直流電壓的初始 . 值;一信號輸入步驟,其係計算該當次之輸出信號,並以 該變化量之值取代一前次之變化量,並將該當次之輸出信 號送至該乘法器,且在該延遲時間之後檢出該太陽能電^ 組所輸出之直流電壓,再將所獲得之直流電壓界定為一當 次之直流電壓,其中該當次之輸出信號之值係為該變化量 及該則次之輸出信號之和;一調整方向決定步驟,其係比 201021394 較該前次之直流電壓及當次之直流電壓,若該當次之直流 電壓大於或等於該前次之直流電壓時,將該變化量設定^ , =該前奴變化量的正值,㈣該當奴錢電壓小於該 刖次之直流電壓時,將該變化量設定等於前次之變化量的 貞值;及-4代運算步驟,其係界定前次之輸出信號等於 該當次之輸出4§號,且界定該前次之直流電壓等於該當次 之直流電壓’並運算得到該當次之輸出信號之後,再重新 執行該信雜人步驟’其巾該當次之輸出信號之值係為該 © 變化量及該前次之輸出信號之和。 < 藉此,本發明之具最大功率追蹤之電壓控制是直流/ 交流電力轉換器之控制方法可不須使用任何電流檢出器檢 出電流,具有簡化電路及降低成本之功效,且仍可追蹤該 太陽能電池組之最大功率操作點,使該太陽能電池組所產 生並注入該交流電源系統之電流趨近於單位功因。 【實施方式】 ❿ 為讓本發明之上述及其他目的、特徵及優點能更明顯 易懂,下文特舉本發明之較佳實施例,並配合所附圖式, 作詳細說明如下: , 請參照第1圖所示,其係為應用本發明之具最大功率 追蹤之電壓控制式直流/交流電力轉換器之控制方法的電 力轉換裝置使用於一太陽能發電系統的架構示意圖。請參 照第1圖所示,其包含一太陽能電池組1、該電力轉換裝 置2及一交流電源系統3,其中該電力轉換裝置2包含一 DC/DC〔直流/直流〕電力轉換器4及一 DC/AC〔直流/交 201021394 流〕電力轉換器5。該太陽能電池組1係連接至該DC/DC 電力轉換器4之一輸入側,而該DC/DC電力轉換器4之一 , 輸出侧則與該DC/AC〔直流/交流〕電力轉換器5之一輸 入側連接’再由該DC/AC電力轉換器5之一輸出侧連接^ 該父流電源系統3。如此’該太陽能電池組1所輪出之一 直流電能即可經由該電力轉換裝置2轉換後輸送至該交流 電源系統3 ;更詳言之,該電力轉換裝置2 2DC/Dc電力 轉換器4係供針對該太陽能電池組1所輸出之直流電能的 β 直流電壓進行電壓準位調整,而該電力轉換裝置2之 DC/AC電力轉換器5則將該DC/DC電力轉換器4所輸出 之直流電能轉換成-交流電能,以便注入該交流電源系統 3。其中,該DC/DC電力轉換器4之輸出直流電壓亦可隨 該交流電源系統3.之交流電壓的變化而產生變動。 清參照第2圖所示,其係揭示該電力轉換裝置2之 DC/DC電力轉換器4之電路架構示意圖,其中該dc/dc 電力轉換器4係為—升壓式轉換器〔b〇GSt_erter〕,其 包含一輸入電容器41、一電感器42、一電力電子 43 、一二極體44、一輸出電容器45及一 DC/DC控制單元46Although the above-mentioned third conventional power conversion device has a simpler circuit structure than the previously described two-life=power conversion device, it is necessary to use a current check to check the % of the Dc/Ac power device. The amplitude of the current at the output, and only the current controlled type of power 4 = the axis ^ current regenerative energy _ force converter technology is more electricity; the conventional current-controlled power converter operation, that is, must More than one voltage loop to control the power; the output voltage of the device. On the contrary, the conventional voltage-controlled power converter: pin = power converter output output uses the amplitude and phase double return 3 = poor pros and so on. Based on the above reasons, the road 201021394 is a main object of the present invention to provide a DC/AC power converter control method for a power conversion device with maximum power tracking, in order to control the voltage amplitude on a connected inductor and observe a solar energy The maximum power operating point of the solar array is tracked by changes in the DC voltage output by the battery pack. In order to achieve the foregoing object, the technical means applied by the present invention comprises: a control method for a voltage-controlled DC/AC converter with maximum power tracking, which is detected by a first AC voltage detector. The voltage of an AC power system is sent to a bandpass filter, and the center frequency of the bandpass filter is the fundamental wave frequency of the AC power system, so that the bandpass filter obtains the fundamental wave component of the AC power system, wherein The fundamental wave component is a sine wave signal; the sine wave signal generated by the band pass filter is phase-shifted by a phase shift by a phase shift circuit; the string after a phase shift of 90 degrees by a multiplier The wave signal and the output signal of a maximum power tracking control circuit are multiplied to obtain a vertical vector signal; the adder Α vector signal is added to the voltage signal detected by the first alternating current voltage detection (4) by an adder, thereby obtaining An output voltage reference signal; detecting, by a second AC voltage detector, an output voltage of the DC/AC power converter and sending it to an input of one of the subtractors The other input end of the subtracter is connected to the adder, and the output age of the subtractor is subtracted from the output of the DC/AC power converter; the output of the subtractor is received by a waveform control circuit. The signal forms a modulation signal, and receives a signal outputted by the waveform control circuit by a pulse width modulation circuit and sends it to the -drive circuit. The drive circuit generates a group drive number control-DC/AC power. Power electronic switch set for the 201021394 converter. Thereby, the control method controls the output voltage of one of the DC/AC power converters by controlling a voltage on the connected inductor; the voltage on the connected inductor is perpendicular to the base of the AC power system. The frequency voltage, so that the DC/AC power converter outputs a sine wave output current in phase with the fundamental frequency voltage of the AC power system to send a real power injection into the AC power system, so the DC/AC The maximum power tracking control circuit of the power converter controls the amplitude of its output current to control the actual power output by the DC/AC power converter. In addition, for the control method, the output signal generated by the maximum power control circuit is obtained by the following steps: a first signal input step, which presets an initial value of an output signal of the maximum power tracking control circuit and a variation, wherein the variation is a difference between a current output signal and a previous output signal, and the initial value of the output signal is sent to a multiplier of the DC/AC controller, the output The signal controls the voltage amplitude of the connected inductor, and after a delay time, detects an initial value of the DC voltage output by the © solar battery; a first iterative operation step 'defines the previous round-out signal equal to The initial value of the rounded signal, and defines a previous DC voltage equal to the initial value of the DC voltage; a signal input step, which calculates the current output signal and replaces the previous one with the value of the change The amount of change, and the current output signal is sent to the multiplier, and after the delay time, the output of the solar panel is detected. Flow voltage, and then the obtained DC voltage is defined as a current DC voltage, wherein the value of the current output signal is the sum of the change amount and the output signal of the second time; an adjustment direction determining step is Compared with the previous DC voltage and the current DC voltage of 201021394, if the current DC voltage is greater than or equal to the previous DC voltage, the change amount is set to ^, = the positive value of the change of the former slave, (4) When the slave money voltage is less than the DC voltage of the order, the change amount is set equal to the threshold value of the previous change amount; and the -4 generation operation step defines that the previous output signal is equal to the current output 4 §, and define the previous DC voltage equal to the current DC voltage 'and calculate the current output signal, and then re-execute the messenger step's value of the current output signal is the © The amount of change and the sum of the previous output signals. < Thereby, the voltage control with maximum power tracking of the present invention is a control method of the DC/AC power converter, which can detect current without using any current detector, has the advantages of simplifying circuit and reducing cost, and can still be traced The maximum power operating point of the solar battery pack causes the current generated by the solar battery pack and injected into the alternating current power system to approach the unit power factor. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more < FIG. 1 is a schematic diagram showing the structure of a power conversion device used in a solar power generation system using the control method of the voltage-controlled DC/AC power converter with maximum power tracking of the present invention. Please refer to FIG. 1 , which includes a solar battery unit 1 , the power conversion device 2 and an AC power supply system 3 , wherein the power conversion device 2 includes a DC/DC DC/DC power converter 4 and a DC/AC [DC/AC 201021394 Stream] Power Converter 5. The solar battery unit 1 is connected to one input side of the DC/DC power converter 4, and one of the DC/DC power converters 4, the output side is connected to the DC/AC [DC/AC] power converter 5 One of the input side connections 'is further connected to the parent side power supply system 3 by one of the output sides of the DC/AC power converter 5. Thus, one of the DC powers that the solar battery unit 1 is rotated can be converted to the AC power supply system 3 via the power conversion device 2; more specifically, the power conversion device 2 2 DC/Dc power converter 4 The voltage level adjustment is performed for the β DC voltage of the DC power outputted by the solar battery unit 1 , and the DC/AC power converter 5 of the power conversion device 2 outputs the DC power output by the DC/DC power converter 4 . It can be converted into AC power for injection into the AC power system 3. The output DC voltage of the DC/DC power converter 4 may also vary with the change of the AC voltage of the AC power system 3. Referring to FIG. 2, it is a schematic diagram showing the circuit structure of the DC/DC power converter 4 of the power conversion device 2, wherein the dc/dc power converter 4 is a boost converter (b〇GSt_erter). It includes an input capacitor 41, an inductor 42, a power electronics 43, a diode 44, an output capacitor 45, and a DC/DC control unit 46.
〕連接;該二極體44 久场一独體44之陽極端〔Anode端 之陰極端〔cathode端]則與該輸出 201021394 電容器45之正端連接;該輸入電容器41之負端、該輸出 電容器45之負端與該電力電子開關43之另一端係連接在 一起,且該輸出電容器45之二端係形成該瓜c電力轉 換器4之二輸出端,·而該DC/DC控制單元46則與該電力 電子開關43連接,以便該DC/DC控制單元46產生一控制 信號控制該電力電子開關43呈現導通或截止狀態。籍二, 當該DC/DC控制單元46致動該電力電子開關43呈導通狀 態時,由該太陽能電池組1所產生之直流電能係對該電感 器42進行充電儲能動作;而當該dc/DC控制單元46致動 該電力電子開關43呈截止狀態時,該電感器42所預先儲 存之電能即經由該二極體44釋放至該輸出電容器。藉 此,即可將該太陽能電池組1之電能進行升壓,將其所產 生會變動的直流電能進行穩壓並轉換至具有較高電壓準位 之直流電能。 請參照第3圖所示,其係揭示該DC/DC電力轉換器4 之DC/DC控制單元46的控制方塊圖。該dc/DC控制單元 46包含一直流電壓檢出器461、一第一減法器462、一朽 〔比例積分〕控制器463、一第一 PWM〔脈寬調變〕電路 464及一第一驅動電路465。其中’該dC/dc控制單元% 係利用閉迴路控制方式控制該DC/DC電力轉換器4之輸出 直流電壓’魏輸自錄電^現^蚊㈣不隨該太 陽能電池組1所輸出之直流電壓之變化而改變。該直流電 壓檢出器461與該第一減法器462之一輸入端連接,該直 流電壓檢出器461係供檢出該dc/DC電力轉換器4之輪出 直机電壓並送至該第一減法器462 ;該第一減法器462之 201021394 另一輸入端係供輸入一預設電壓,以便該第一減法器 將該預設電壓與該輸出直流電壓進行相減;該PI控制器 • 463之輸入端連接該第一減法器462之輸出端,以便該pl 控制器463利用該第一減法器462之運算結果計算獲得一 直流控制信號;該第一 PWM電路464係連接於該ρι控制 器463及該第一驅動電路465之間,以便該?1控制器463 將所產生之直流控制信號送至該第一 PWM電路464以產 生一脈波信號,該脈波信號之責任週期正比於該直流控制 ❿ 信號,再將該脈波信號輸入至該第一驅動電路465以產生 一驅動信號’進而控制該DC/DC電力轉換器4之電力電子 開關43。 請參照第4圖所示’其係揭示該電力轉換裝置2之 DC/AC電力轉換器5之電路架構示意圖。該DC/AC電力 轉換器5包含一電力電子開關組51、一輸出濾波器52、一 連結電感53及一 DC/AC〔直流/交流〕控制單元54,其中 該DC(AC控制單元54即使用本發明之控制方法進行運作 ® 。該電力電子開關組51係可選擇為一全橋式電力電子開關 組或一半橋式電力電子開關組,且該電力電子開關組51 具有二直k輸入端及二交流輸出端,該二直流輸入端係連 , 接於該DC/DC電力轉換器4之輸出電容器45之二端,而 該二交流輸出端則連接於該輸出濾波器52 ;該輸出濾波器 52亦具有二輸入端及二輸出端,其中該二輸入端係連接於 該電力電子開關組51,且該輸出濾波器52較佳係選擇由 一電容521及一電感522所組成,其中該電容521係跨接 於該輸出濾波器52之二輸出端之間,而該電感522的一端 —12 — 201021394 連接於該輸出濾波器52之二輸入端之一,且其另一端連接 於該二輸出端之-;該連結電感53之—端係連接於該輸出 濾、波器52之二輸出端之一,且該連、结電感%之另一端則 形成該DC/AC電力轉換器5之輸出側之一端’而該輸出據 波器52之二輸出端的另一輸出端則形成該Dc/ac電力轉 換器5之輸出侧之另一端;該DC/AC控制單元%則與該 電力電子開關組51之各電力電子開關連接,以便該⑽从 控制早7C 54產生-組控制信號控制該電力電子開關组51 β 《各電力電子關分別呈現導通或截止狀態。藉此,藉由 本發明之DC/AC控鮮元54所產生之控繼料可使該 DC/AC電力轉換H 5針對該太陽能電池組丨之輸出電能進 行最大功率追縱,以便取得較高之電_換成交流電能並 注入該交流電能系統3。 請參照第5圖所示,其係揭示本發明較佳實施例之具 最大功率追蹤之電壓控制式直流/交流電力轉換器之控制 方法以該1控制單元54實施馳制方㈣,其中該 DC/AC控制單元54係採用電壓控制式。該DC/AC控制單 元54包含—第―交流電_出器54G —帶通舰器54卜 一相移電路542、一乘法器543、一加法器544、一第二交 ’ '流電壓檢出器545、一第二減法器546、-波形控制電路 547、-第二PWM〔脈寬調變〕電路548及一第二驅動電 路549。該第"交流電壓檢出$ 540係連接該帶通渡波器 541 ’以便該第-交流電壓檢出器54()檢出該交流電源系統 ‘ 3之電壓後送至該帶賴波器%之—輸人端·,該帶通渡 波器541之輸出端係連接至該相移電路542,且該帶通濾 —13 — 201021394 波器54!之中心頻率係選擇输交流電源系統3之基本波 頻率,以便該帶通遽波器541獲得該交流電源系統3之基 頻雜,亦即該帶通纽^ 541賴H錄號,且該 紐信號與該交流電源系統3之·_率且_位;該 相移電路542將該帶通遽波器⑷所輸出之弦波信號進行 超# 90$相移之後送至該乘法器543之一輸入端;該乘法 器543之另一輸入端係供一最大功率追蹤控制電路%之一 輸出信號輸入,且藉由該乘法器543將經過9〇度相移之後 ❹ 的該弦波信號及該最大功率追蹤控制電路55之輸出信號 相乘以得到-垂直向量信號,其中該垂直向量信號係^超 前該交流電源系統3之縣%度之—弦波,而該垂直向量 信號的振幅由該最大功率追蹤控制電路55之輸出信號決 定,且該DC/AC電力轉換n 5之輸出電流的_將正比於 該垂直向量信號的振幅;該加法器544將該垂直向量信號 與,第一交流電壓檢出器540所檢出之電壓信號相加,以 ❾ 獲得一輸出電壓參考信號;而該第二交流電壓檢出器545 則供檢出該輸出濾波器52之輸出端電壓;該第二減法器 546之二輸入端係分別連接該加法器544及第二交流電壓 , 檢出器545之輪出端,且該第二減法器546之輸出端連接 至該波形控制電路547,以便該第二減法器546將該輸出 電愿參考信號與該輪出滤波器52之輸出端電壓進行相減 後送至該波形控制電路547形成-調變信號,藉此完成該 輸出澹波器52之輪出端電壓的閉迴路控制;最後,該波形 控制電路547所輪ib之調變信號係經過該第二PWM電路 而送至該第二驅動電路549,以產生一組驅動信號控制 一 14 201021394 該DC/AC電力轉換器5之電力電子開關組$ ^控制電路547具有較快之響應逮度,且係控制該輪^ 52之輸出端電壓趨於該輸出電壓參考信號,則該連 ,電感53之電壓等於該交流電源系統3電㈣該Dc/Ac ❹Connected; the anode end of the diode 44 is the anode end of the single-body 44 (the cathode end of the Anode end is connected to the positive terminal of the output 201021394 capacitor 45; the negative terminal of the input capacitor 41, the output capacitor The negative terminal of 45 is connected to the other end of the power electronic switch 43, and the two ends of the output capacitor 45 form the output end of the power converter 4, and the DC/DC control unit 46 The power electronic switch 43 is coupled to the DC/DC control unit 46 to generate a control signal to control the power electronic switch 43 to assume an on or off state. Second, when the DC/DC control unit 46 activates the power electronic switch 43 to be in an on state, the DC power generated by the solar battery unit 1 charges and stores the inductor 42; and when the dc When the /DC control unit 46 activates the power electronic switch 43 to be in an off state, the electrical energy pre-stored by the inductor 42 is released to the output capacitor via the diode 44. Thereby, the electric energy of the solar battery unit 1 can be boosted, and the DC power generated by the change can be regulated and converted to DC power having a higher voltage level. Referring to FIG. 3, it is a control block diagram showing the DC/DC control unit 46 of the DC/DC power converter 4. The dc/DC control unit 46 includes a DC voltage detector 461, a first subtractor 462, a [proportional integral] controller 463, a first PWM (pulse width modulation) circuit 464, and a first driver. Circuit 465. Wherein the dC/dc control unit % controls the output DC voltage of the DC/DC power converter 4 by closed loop control mode, and the DC output from the solar battery pack 1 is not included. The voltage changes and changes. The DC voltage detector 461 is connected to one input end of the first subtractor 462, and the DC voltage detector 461 is configured to detect the round-trip voltage of the dc/DC power converter 4 and send it to the first a subtractor 462; the other input end of the 201021394 of the first subtractor 462 is configured to input a predetermined voltage, so that the first subtractor subtracts the preset voltage from the output DC voltage; the PI controller The input end of the 463 is connected to the output end of the first subtractor 462, so that the pl controller 463 calculates the direct current control signal by using the operation result of the first subtractor 462; the first PWM circuit 464 is connected to the ρι control Between the device 463 and the first driving circuit 465, so that? 1 controller 463 sends the generated DC control signal to the first PWM circuit 464 to generate a pulse wave signal, the duty cycle of the pulse wave signal is proportional to the DC control signal, and then input the pulse wave signal to the pulse signal The first driving circuit 465 generates a driving signal 'and thereby controls the power electronic switch 43 of the DC/DC power converter 4. Referring to Fig. 4, a schematic diagram showing the circuit configuration of the DC/AC power converter 5 of the power conversion device 2 will be described. The DC/AC power converter 5 includes a power electronic switch group 51, an output filter 52, a connecting inductor 53 and a DC/AC [DC/AC] control unit 54, wherein the DC (AC control unit 54 is used) The control method of the present invention operates. The power electronic switch group 51 can be selected as a full bridge power electronic switch group or a half bridge power electronic switch group, and the power electronic switch group 51 has two straight k inputs and Two AC input terminals, the two DC input terminals are connected to two ends of the output capacitor 45 of the DC/DC power converter 4, and the two AC output terminals are connected to the output filter 52; the output filter The switch 52 is also connected to the power electronic switch group 51, and the output filter 52 is preferably composed of a capacitor 521 and an inductor 522, wherein the capacitor The 521 is connected between the two outputs of the output filter 52, and one end of the inductor 522 is connected to one of the two inputs of the output filter 52, and the other end is connected to the two outputs. End of the The end of the junction inductor 53 is connected to one of the output ends of the output filter and the wave device 52, and the other end of the junction and the inductor inductance forms one end of the output side of the DC/AC power converter 5 The other output end of the output of the second wave of the output device 52 forms the other end of the output side of the Dc/ac power converter 5; the DC/AC control unit % and the power electronic of the power electronic switch group 51 The switch is connected so that the (10) generates a group control signal from the control early 7C 54 to control the power electronic switch group 51 β “each power electronic switch respectively exhibits an on or off state. Thereby, the DC/AC control element 54 of the present invention is utilized. The generated control material enables the DC/AC power conversion H5 to perform maximum power tracking for the output power of the solar battery pack to obtain higher power and to be converted into AC power and injected into the AC power system 3. Referring to FIG. 5, a method for controlling a voltage-controlled DC/AC power converter with maximum power tracking according to a preferred embodiment of the present invention is implemented by the control unit 54 (4), wherein the DC /AC control unit 54 Voltage control type. The DC/AC control unit 54 includes an -" alternating current_output 54G" bandpass 54 54a phase shift circuit 542, a multiplier 543, an adder 544, and a second cross stream. The voltage detector 545, a second subtractor 546, a waveform control circuit 547, a second PWM (pulse width modulation) circuit 548, and a second driving circuit 549. The "AC voltage detection $ 540 system" Connecting the bandpass ferrite 541' so that the first AC voltage detector 54() detects the voltage of the AC power system '3 and sends it to the inverter with the % of the inverter. The bandpass wave The output of the device 541 is connected to the phase shift circuit 542, and the center frequency of the band pass filter 13-201021394 wave device 54! selects the fundamental wave frequency of the AC power supply system 3 so that the band pass chopper 541 Obtaining the fundamental frequency of the AC power system 3, that is, the band pass is recorded, and the signal is connected to the AC power system 3 and the _ bit; the phase shift circuit 542 takes the band The sine wave signal outputted by the chopper (4) is subjected to a phase shift of #90$ and then sent to one input of the multiplier 543; The other input terminal of the device 543 is for outputting a signal input of one of the maximum power tracking control circuits, and the sine wave signal after the phase shift of 9 degrees by the multiplier 543 and the maximum power tracking control circuit The output signal of 55 is multiplied to obtain a -vertical vector signal, wherein the vertical vector signal is advanced by the sine wave of the county of the AC power system 3, and the amplitude of the vertical vector signal is controlled by the maximum power tracking control circuit 55. The output signal is determined, and the _ of the output current of the DC/AC power conversion n 5 is proportional to the amplitude of the vertical vector signal; the adder 544 checks the vertical vector signal with the first AC voltage detector 540 The voltage signals are added to obtain an output voltage reference signal; and the second AC voltage detector 545 is configured to detect the output voltage of the output filter 52; the second input of the second subtractor 546 The adder 544 and the second AC voltage are respectively connected to the round output end of the detector 545, and the output end of the second subtractor 546 is connected to the waveform control circuit 547, so that the second subtractor 546 is connected. The output electrical reference signal is subtracted from the output voltage of the output filter 52 and sent to the waveform control circuit 547 to form a modulated signal, thereby completing the closing of the output voltage of the output chopper 52. Loop control; finally, the modulated signal of the wheel ib of the waveform control circuit 547 is sent to the second drive circuit 549 through the second PWM circuit to generate a set of drive signals to control a 14 201021394 DC/AC power conversion The power electronic switch group $^ control circuit 547 of the device 5 has a faster response catch, and controls the output voltage of the wheel 52 to tend to the output voltage reference signal, and the voltage of the inductor 53 is equal to the alternating current. Power system 3 electricity (four) the Dc / Ac ❹
電力轉換器5之該輪出舰器力之輸出端電壓之差,該 結電感53之電壓可騎縣直⑽錢,祕—超前該交 流電源系統3電壓9G度之弦波電壓,因此可在該連結電感 53上產生-與較流電源祕3電翻相狀基頻弦波 出電流’即該DC/AC電力轉換器5之輸出電流。藉此,針 對本發明之具最大功率追蹤之電力轉縣置,僅需檢測該 太陽能電池組1在該輸人電容純所形成之直流電壓的變 化情形,並透職電力電子開_ 5i之切換作動以控制該 連結電感53上之垂直電驗幅,即可使本發明之電力轉換 裝置2達到最大功率追蹤之目的。 請參照第6圖所示,其係揭示本發明之DC/AC控制 單元54之最大功率追蹤控制電路55所採用的最大功率追 蹤方法之流程圖。首先,定義該最大功率追蹤控制電路% 之輸出信號之初始值為κ(ο),當次之輸出信號為κ(η),前 -人之輸出信號為K(n-l),而當次與前次之輸出信號之間的 變化量則為△&(!!),且當次與前次之輸出信號之間的時間 間隔為一延遲時間T。承上所述,可歸納得當次之輸出信 號為:K(n) = K(n-l)+ △K(n)。其中,如第5圖所示,該 輪出信號係送至該DC/AC控制單元54之乘法器543,以 便決定該垂直向量信號之振幅的大小’進而決定該連結電 感53之電壓振幅及該DC/AC電力轉換器5之輸出電流之 —15 — 201021394 振幅,而該DC/AC電力轉換^之輸㈣率正比於其輸出 電流之振幅。此外,該最大功率追蹤控制電路^係檢出該 太陽能電池組1所輪^之直流電壓,並定義其所檢出之直 流電壓的初始值為Vpv(0),#次之直流電壓為Μ⑻,而 前次之直流電壓則為VpV(n_ip 承上所述,每次由該最大功率追蹤控制電路55所輸 出之輸出信號係利用下列步驟計算獲得。該最大功率追蹤 控制電路55首先係進行一首次信號輸入步驟S1,此一步 ❹ 驟係預先設定該K(0)及⑻之值,將該輸出信號之初始 值κ(ο)送至該乘法器543,並自送出該初始值κ(〇)之後經 過該延遲時間Τ才檢出該太陽能電池組丨所輸出之直流電 麼的初始值Vpv(O)。隨後,該最大功率追縱控制電路55 進行一首次疊代運算步驟S2,此一步驟係界定該前次之輸 出信號K(n-l)等於該輪出信號之初始值κ(〇),並界定該前 次之直流電壓Vpv(n-l)等於該直流電壓的初始值Vpv(〇)。 在完成該首次疊代運算步驟S2之後,該最大功率追蹤控制 ❹ 電路55執行一信號輸入步驟S3,以K⑻= Κ(η-1)+ ΛΚ⑻ 的方式運算得到當次之輸出信號Κ(η),以該變化量ΛΚΟι) 之值取代一前次之變化量△Kb-U,並將該當次之輸出信. • 號κ(η)送至該乘法器543,且在該延遲時間T之後再次檢 出該太陽能電池組1所輸出之直流電壓,再將所獲得之直 流電壓界定為當次之直流電壓Vpv⑻。繼之,進行一調整 方向決定步驟S4,在此一步驟S4中,比較該前次之直流 電壓Vpv(n-l)及當次之直流電壓vpv(n)以決定增加或減少 該垂直向量信號之振幅。更詳言之,當Vpv(n)2Vpv(n-l) 一 16 — 201021394 時’則將該變化量△_)設定等於前次之變化量从㈣) 的=值’以維持該垂直向量信號之振幅的變化方向不變; :當Vpvbxvpvw)時’則將該變化量献⑻設定等於 ^之變化量㈣的負值,以使該垂直向量信號之振 幅的變化方向相反。最後,執行一疊代運算步驟%,界定 該前次之輸出錢K㈣)等於該當次之輸出信號〖⑻,且 界定該前次之直流電壓等於該當次之 vpv(n),独κ⑻喝η·1)+简_方式運算得到當次 罾 之輸出信號Κ⑻之後,再繼續猶環執行前述之步驟S3至 步驟S5。藉此,當利用調整該垂直向量信號之振幅而使該 太陽能電池組1所輸出之直流電壓接近於最大功率操作點 時,該太陽能電池組1所輸出之直流電壓即持續來回擾動 〇 . ) 综上所述,相較於習用以擾動觀察法進行最大功率追 蹤之電力轉換裝置,本發明應用於該電力轉換裝置2之的 DC/AC控制單元54的控制方法只需採用單一迴路控制該 連結電感53上之電壓之振幅,並觀測該太陽能電池組i 所輪出之直流電壓的變化情形,且在不需要使用任何電流 檢出器的情況下,便可控制該太陽能電池組丨操作於最大 功率操作點,並將該太陽能電池組1產生之最大功率轉換 成一趨於單位功因之交流功率注入該交流電源系統3。因 此,此用本發明之控制方法的電力轉換裝置2具有較簡化 電路及降低成本之功效。 雖然本發明已利用上述較佳實施例揭示,然其並非用 以限定本發明,任何熟習此技藝者在不脫離本發明之精神 —17 — 201021394 和知圍之内’相對上述實關進行各較動與修改仍屬本 發明所保護之技術_,因財料之紐範圍當視後附 之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖:顧本發明之具最大辨追蹤之電壓控制式直 流/交流電力轉換器之控制方法之電力轉換裝置使用於一 太陽能發電系統的架構示意圖。 Ο 第2圖··應用本發明之具最大功率追蹤之電壓控制式直 流/交流電力轉換器之控制方法的電力轉換裝置之Dc/〇c 電力轉換器之電路架構示意圖。 士第3圖制本發明之具最切率追蹤之電壓控制式直 w交流電力轉㈣之㈣方法的電力轉換裝置之dc/dc 控制單元之控制方塊圖。 第4圖:應林發明之具最大功率追蹤之電壓控制式直 流/交流電力轉換器之㈣方法的電力轉換裝置之DC/AC 電力轉換器之電路架構示意圖。 第5圖:本㈣難實_之綠切率追蹤 制^直流/技電力轉鮮之控財法_财塊圖。壓控 第6圖:本發明較佳實施例之具最大功率追蹤之電· 制式直流/交流電力轉換器的最大功率追蹤㈣= 用之最大功率追蹤方法之流程圖。 所採 【主要元件符號說明】 1 太陽能電池組 3 交流電源系統 電力轉換裝置 DC/DC電力轉換器 2 201021394The difference between the output voltage of the power output of the power converter 5, the voltage of the junction inductor 53 can ride the county straight (10) money, secret - ahead of the AC power system 3 voltage 9G degree sine wave voltage, so can be The connection inductor 53 generates an output current of the DC/AC power converter 5, which is generated by the phase-frequency sine wave. Therefore, for the power conversion county with maximum power tracking of the present invention, it is only necessary to detect the change of the DC voltage formed by the solar battery unit 1 in the input capacitance pure, and switch the service power electronic switch _ 5i Actuation to control the vertical electrical amplitude of the connected inductor 53 allows the power conversion device 2 of the present invention to achieve maximum power tracking. Referring to Figure 6, there is shown a flow chart of the maximum power tracking method employed by the maximum power tracking control circuit 55 of the DC/AC control unit 54 of the present invention. First, the initial value of the output signal defining the maximum power tracking control circuit % is κ(ο), and the output signal of the second is κ(η), and the output signal of the pre-human is K(nl), and the current and the previous The amount of change between the next output signals is Δ& (!!), and the time interval between the current and previous output signals is a delay time T. According to the above, the output signal that can be summarized is: K(n) = K(n-l) + ΔK(n). Wherein, as shown in FIG. 5, the round-trip signal is sent to the multiplier 543 of the DC/AC control unit 54 to determine the magnitude of the amplitude of the vertical vector signal, thereby determining the voltage amplitude of the coupled inductor 53 and the The output current of the DC/AC power converter 5 is -15 - 201021394 amplitude, and the DC/AC power conversion (four) rate is proportional to the amplitude of its output current. In addition, the maximum power tracking control circuit detects the DC voltage of the solar cell 1 and defines an initial value of the detected DC voltage as Vpv(0), and the #DC DC voltage is Μ(8). The previous DC voltage is VpV (n_ip is described above, and the output signal output by the maximum power tracking control circuit 55 is calculated by the following steps. The maximum power tracking control circuit 55 is first performed for the first time. The signal is input to step S1. In this step, the values of K(0) and (8) are preset, the initial value κ(o) of the output signal is sent to the multiplier 543, and the initial value κ(〇) is sent. Then, after the delay time elapses, the initial value Vpv(0) of the direct current output from the solar battery pack is detected. Then, the maximum power tracking control circuit 55 performs a first iterative operation step S2, which is a step. Defining the previous output signal K(nl) is equal to the initial value κ(〇) of the round-off signal, and defining that the previous DC voltage Vpv(nl) is equal to the initial value of the DC voltage Vpv(〇). After the first iteration operation step S2 The maximum power tracking control ❹ circuit 55 performs a signal input step S3 to calculate the current output signal Κ(η) by K(8) = Κ(η-1) + ΛΚ(8), and replaces the value of the change ΛΚΟι) with one. The previous change amount ΔKb-U, and the next output signal. • κ(η) is sent to the multiplier 543, and the DC output from the solar battery unit 1 is detected again after the delay time T. The voltage is then defined as the current DC voltage Vpv (8). Then, an adjustment direction determining step S4 is performed. In this step S4, the previous DC voltage Vpv(nl) and the next DC voltage vpv(n) are compared to determine whether to increase or decrease the amplitude of the vertical vector signal. . More specifically, when Vpv(n)2Vpv(nl)-16 - 201021394, then the change amount Δ_) is set equal to the previous value of change from (4)) to maintain the amplitude of the vertical vector signal. The direction of change is unchanged; when Vpvbxvpvw), then the variation (8) is set to a negative value equal to the variation (4) of ^, so that the amplitude of the vertical vector signal changes in the opposite direction. Finally, performing a iterative operation step %, defining the previous output money K(4)) is equal to the current output signal 〖(8), and defining the previous DC voltage equal to the current vpv(n), κ(8) drinking η· 1) The +Simplified mode operation obtains the output signal Κ(8) of the next time, and then continues to perform the aforementioned steps S3 to S5. Thereby, when the DC voltage outputted by the solar battery unit 1 is close to the maximum power operating point by adjusting the amplitude of the vertical vector signal, the DC voltage outputted by the solar battery unit 1 continues to oscillate back and forth. As described above, the control method of the DC/AC control unit 54 applied to the power conversion device 2 of the present invention only needs to control the connected inductor by a single loop, compared to the power conversion device that is used for maximum power tracking by the disturbance observation method. The amplitude of the voltage on the 53 and observe the change of the DC voltage that the solar battery unit i rotates, and can control the solar battery pack to operate at the maximum power without using any current detector. The operating point is converted into the AC power supply system 3 by converting the maximum power generated by the solar battery unit 1 into an AC power that tends to be a unit of power. Therefore, the power conversion device 2 using the control method of the present invention has the advantages of simplifying the circuit and reducing the cost. Although the present invention has been disclosed by the above-described preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can make various comparisons with respect to the above-mentioned realities without departing from the spirit of the present invention. The movements and modifications are still the technology protected by the present invention, and the scope of the materials is subject to the definition of the patent application scope attached. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a solar power generation system using a power conversion device for controlling a voltage-controlled DC/AC power converter with maximum discrimination. Ο Fig. 2 is a circuit diagram of a Dc/〇c power converter of a power conversion device to which the control method of the voltage-controlled DC/AC power converter of the present invention is applied. Figure 3 is a control block diagram of the dc/dc control unit of the power conversion device of the present invention having the most erratic rate tracking voltage control type of direct current alternating current (4). Figure 4: Schematic diagram of the circuit structure of the DC/AC power converter of the power conversion device of the (IV) method of the voltage-controlled DC/AC power converter with the maximum power tracking invented by Yinglin. Figure 5: This (four) difficult to _ the green cut rate tracking system ^ DC / technology power conversion control method _ block diagram. Voltage Control Fig. 6 is a flow chart showing the maximum power tracking of the electric/standard DC/AC power converter with maximum power tracking according to a preferred embodiment of the present invention (4) = the maximum power tracking method used. [Main component symbol description] 1 Solar battery pack 3 AC power system Power conversion device DC/DC power converter 2 201021394
41 輸入電容器 42 43 電力電子開關 44 45 輸出電容器 46 461 直流電壓檢出器 462 463 Π控制器 464 465 第一驅動電路 5 51 電力電子開關組 52 521 電容 522 53 連結電感 54 540 第一交流電壓檢出器 541 542相移電路 543 544 加法器 545 546 第二減法器 547 548 第二PWM電路 549 55 最大功率追蹤控制電路 S1 S2 首次疊代運算步驟 S3 S4 調整方向決定步驟 S5 電感器 二極體 DC/DC控制單元 第一減法器 第一 PWM電路 DC/AC電力轉換器 輸出滤波器 電感 DC/AC控制單元 帶通濾波器 身 乘法器 第二交流電壓檢出器 波形控制電路 第二驅動電路 首次信號輸入步驟 信號輸入步驟 疊代運算步驟41 Input capacitor 42 43 Power electronic switch 44 45 Output capacitor 46 461 DC voltage detector 462 463 Π Controller 464 465 First drive circuit 5 51 Power electronic switch group 52 521 Capacitor 522 53 Connecting inductor 54 540 First AC voltage test 541 542 phase shift circuit 543 544 adder 545 546 second subtractor 547 548 second PWM circuit 549 55 maximum power tracking control circuit S1 S2 first iteration operation step S3 S4 adjustment direction decision step S5 inductor diode DC /DC control unit first subtractor first PWM circuit DC/AC power converter output filter inductor DC/AC control unit band pass filter body multiplier second AC voltage detector waveform control circuit second drive circuit first signal Input step signal input step iteration step