TWI382557B - Method for manufacturing see-through holes of thin-film solar cells - Google Patents

Method for manufacturing see-through holes of thin-film solar cells Download PDF

Info

Publication number
TWI382557B
TWI382557B TW97143994A TW97143994A TWI382557B TW I382557 B TWI382557 B TW I382557B TW 97143994 A TW97143994 A TW 97143994A TW 97143994 A TW97143994 A TW 97143994A TW I382557 B TWI382557 B TW I382557B
Authority
TW
Taiwan
Prior art keywords
hole
film solar
thin film
solar cell
manufacturing
Prior art date
Application number
TW97143994A
Other languages
Chinese (zh)
Other versions
TW201019492A (en
Inventor
Yung Yuan Chang
Original Assignee
Nexpower Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexpower Technology Corp filed Critical Nexpower Technology Corp
Priority to TW97143994A priority Critical patent/TWI382557B/en
Publication of TW201019492A publication Critical patent/TW201019492A/en
Application granted granted Critical
Publication of TWI382557B publication Critical patent/TWI382557B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

薄膜太陽能電池之穿透孔製作方法 Method for manufacturing through hole of thin film solar cell

本發明係有關一種薄膜太陽能電池之穿透孔製作方法,特別是有關於一種形成在薄膜太陽能電池之非直線排列之穿透孔之製作方法。 The present invention relates to a method for fabricating a through hole of a thin film solar cell, and more particularly to a method for fabricating a through hole formed in a non-linear arrangement of a thin film solar cell.

在習知技藝中,一般薄膜太陽能電池至少由透明基板、前電極層、光吸收層與背電極層依序堆疊形成,通常為了使薄膜太陽能電池達到較佳之光電轉換效益以及在其應用上需要較佳之透光設計,通常會以雷射或蝕刻方式移除至少薄膜太陽能電池之背電極層而形成穿透孔,如先前技術之美國專利第4,795,500號已揭露一種具有穿透孔之薄膜太陽能電池,請參考第1A圖,包含有自入射光面依序堆疊形成之透明基板1、前電極層3、光吸收層4與背電極層5,並在背電極層5上方形成一光阻層8,藉由光阻層8作為光蝕刻圖案化製程之光阻以進一步移除背電極層5與光吸收層4而形成穿透孔6,而穿透孔6具有圓形直徑介於0.1釐米與3.0釐米之間。 In the prior art, a thin film solar cell is generally formed by at least a transparent substrate, a front electrode layer, a light absorbing layer and a back electrode layer, which are generally formed in order to achieve better photoelectric conversion efficiency of the thin film solar cell and need to be applied in the application. The light-transmissive design generally removes at least the back electrode layer of the thin film solar cell by laser or etching to form a through-hole, and a thin film solar cell having a through hole has been disclosed in the prior art, which is disclosed in US Pat. No. 4,795,500. Please refer to FIG. 1A , which includes a transparent substrate 1 , a front electrode layer 3 , a light absorbing layer 4 and a back electrode layer 5 which are sequentially stacked from the incident light surface, and a photoresist layer 8 is formed on the back electrode layer 5 . The through hole 6 is formed by the photoresist layer 8 as a photoresist of the photo-etching patterning process to further remove the back electrode layer 5 and the light absorbing layer 4, and the through hole 6 has a circular diameter of 0.1 cm and 3.0. Between cm.

此外,先前技術之美國公開案第2006/0112987號更揭露一種具有穿透孔之薄膜太陽能電池10,請參考第1B圖,係將多個單一區塊沿著整合方向14而串接組成,在此薄膜太陽能電池10上形成有多個光穿透區13及連結區11,其中連結區11係位於第一切割槽(未圖示)與第二切割槽(未圖示)之間用以連結彼此串接之單一區塊,而每一光穿透區13係由多個穿透孔12構成並藉由雷射方式而形成各穿透孔12,而且各穿透孔12之間具有一大於穿透孔12之直徑(介於8微米與170微米之間)之特定間距200微米。 In addition, the prior art US Publication No. 2006/0112987 discloses a thin film solar cell 10 having a through hole. Referring to FIG. 1B, a plurality of single blocks are serially connected along the integration direction 14 in The thin film solar cell 10 is formed with a plurality of light penetrating regions 13 and a connecting region 11, wherein the connecting region 11 is located between the first cutting groove (not shown) and the second cutting groove (not shown) for connecting a single block connected in series with each other, and each of the light penetrating regions 13 is formed by a plurality of penetrating holes 12 and each of the penetrating holes 12 is formed by a laser method, and each of the penetrating holes 12 has a larger than The specific spacing of the diameter of the penetration holes 12 (between 8 microns and 170 microns) is 200 microns.

此外,先前技術之美國專利第4,795,500號亦揭露一種具有穿透孔之薄膜太陽能電池15,請參考第1C圖,係由多個單一區塊16所組成, 各單一區塊16包含有自入射光側17堆疊形成之透明基板180、前電極層181、光吸收層183與背電極層185,以及對應之第一切割槽182、第二切割槽184與第三切割槽186,其中更進一步藉由雷射切割以移除背電極層185而形成一透明切割線槽19,而此透明切割線槽19亦可由多個穿透孔串連而形成者,而穿透孔具有較佳之直徑係介於0.1釐米與0.2釐米之間。 In addition, a thin film solar cell 15 having a through hole is also disclosed in the prior art, which is composed of a plurality of single blocks 16. Each of the single blocks 16 includes a transparent substrate 180 formed by stacking from the incident light side 17, a front electrode layer 181, a light absorbing layer 183 and a back electrode layer 185, and corresponding first cutting grooves 182, second cutting grooves 184 and The three cutting grooves 186 are further formed by laser cutting to remove the back electrode layer 185 to form a transparent cutting line groove 19, and the transparent cutting line groove 19 can also be formed by a plurality of through holes. The through holes have a preferred diameter between 0.1 cm and 0.2 cm.

但是上述先前技術對於薄膜太陽能電池之光電轉換效益及應用上需要較大之透光面積比(see-through area ratio)而言,仍存在有改善的空間。換言之,上述先前技術基本上係使用直線排列之型態以設計穿透孔之配置,據此提升薄膜太陽能電池在單位面積所能提供的透光面積比。然而這種直線排列之穿透孔配置對於達到薄膜太陽能電池較佳的透光面積方面仍然有其極限,因此,如何在薄膜太陽能電池上形成一種比直線排列穿透孔數更有效產能之製作方法,實是產業急需解決的課題。 However, the above prior art still has room for improvement in terms of the photoelectric conversion efficiency of the thin film solar cell and the need for a larger see-through area ratio. In other words, the above prior art basically uses a linear arrangement to design a through hole arrangement, thereby increasing the light transmission area ratio that the thin film solar cell can provide per unit area. However, such a linear arrangement of the penetration hole arrangement still has its limit for achieving a better light transmission area of the thin film solar cell, and therefore, how to form a more efficient production capacity on the thin film solar cell than the number of linearly arranged penetration holes It is an urgent problem for the industry to solve.

為解決先前技術之缺失,本發明提供一種薄膜太陽能電池之穿透孔製作方法,其中此薄膜太陽能電池至少包含有基板、前電極層、光吸收層與背電極層等膜層,此薄膜太陽能電池之穿透孔製作方法包含有:提供一承載平台,用以承載此薄膜太陽能電池以第一速率沿第一方向移動;提供一製孔裝置,此製孔裝置具有至少一個頭部機構,用以在此薄膜太陽能電池的背電極層上形成具有預設縱深的穿透孔;令此製孔裝置的頭部機構在第二方向以一非等速的預設模式而運動,其中第二方向正交於第一方向;藉此由此承載平台與製孔裝置的頭部機構的相對運動,在此薄膜太陽能電池的背電極層上形成複數群穿透區,而各群穿透區包含有複數個彼此不相連接的穿透孔,且各群穿透區係呈現一非直線之排列,進而使得排列之起點至終點的總長與其起點至 終點的直線長度之長度比值大於1。 In order to solve the problem of the prior art, the present invention provides a method for manufacturing a through hole of a thin film solar cell, wherein the thin film solar cell comprises at least a film layer of a substrate, a front electrode layer, a light absorbing layer and a back electrode layer, and the thin film solar cell The method for manufacturing the through hole includes: providing a carrying platform for carrying the thin film solar cell to move in a first direction at a first rate; providing a hole making device having at least one head mechanism for Forming a through hole having a predetermined depth on the back electrode layer of the thin film solar cell; and causing the head mechanism of the hole making device to move in a non-equal speed preset mode in the second direction, wherein the second direction is positive Transmitting in a first direction; thereby forming a plurality of group penetration regions on the back electrode layer of the thin film solar cell by the relative movement of the bearing platform and the head mechanism of the hole making device, and each group penetrating region includes a plurality of Penetrating holes that are not connected to each other, and each group of penetrating zones exhibits a non-linear arrangement, thereby making the total length of the starting point to the end point of the arrangement and its starting point The length of the straight line length of the end point is greater than 1.

因此,本發明之主要目的在於提供一種薄膜太陽能電池之穿透孔製作方法,藉由非直線排列之穿透孔製程,可使得製作薄膜太陽能電池在單位面積穿透孔數量之產能提升。 Therefore, the main object of the present invention is to provide a method for manufacturing a through hole of a thin film solar cell, which can increase the throughput of the thin film solar cell in the number of through holes per unit area by the non-linear arrangement of the through hole process.

本發明之次要目的在於提供一種薄膜太陽能電池之穿透孔製作方法,藉由非直線排列之穿透孔製程可有效提升薄膜太陽能電池之光電轉換效率。 A secondary object of the present invention is to provide a method for manufacturing a through hole of a thin film solar cell, which can effectively improve the photoelectric conversion efficiency of the thin film solar cell by a non-linearly arranged through hole process.

本發明之再一目的在於提供一種薄膜太陽能電池之穿透孔製作方法,藉由非直線排列之穿透孔製程,可使得薄膜太陽能電池在單位面積之透光面積比可進一步提升。 A further object of the present invention is to provide a method for fabricating a through hole of a thin film solar cell, which can further increase the light transmissive area ratio per unit area of the thin film solar cell by a non-linearly arranged through hole process.

由於本發明係揭露一種薄膜太陽能電池之穿透孔製作方法,其中所利用的太陽能光電轉換原理,已為相關技術領域具有通常知識者所能明瞭,故以下文中之說明,不再作完整描述。同時,以下文中所對照之圖式,係表達與本發明特徵有關之結構示意,並未亦不需要依據實際尺寸完整繪製,盍先敘明。 Since the present invention discloses a method for fabricating a through hole of a thin film solar cell, the principle of solar photoelectric conversion utilized therein is well known to those skilled in the relevant art, and therefore, the description below will not be completely described. At the same time, the drawings referred to in the following texts express the structural schematics related to the features of the present invention, and need not be completely drawn according to the actual size, which is first described.

請參考第2至3圖,係根據本發明提出之較佳實施例,為一種薄膜太陽能電池之穿透孔製作方法,此薄膜太陽能電池21通常包含有基板212、前電極層214、光吸收層216與背電極層218,而此薄膜太陽能電池之穿透孔製作方法包含有以下步驟:(1)提供一承載平台24以承載此薄膜太陽能電池21,同時此承載平台24可沿第一方向x移動;(2)提供一製孔裝置22以進行此薄膜太陽能電池21之雷射穿透程序(laser see-through procedure),其中此製孔裝置22包含一頭部機構220,藉由設定一預設模式而使頭部機構220在此薄膜太陽能電池21之背電極層218上形成一群沿著第一方向x縱向排列之穿透孔250,其中每一 穿透孔250具有一預設縱深且彼此間不相連接,在本實施例中此縱向排列之穿透孔250即構成一穿透區25,此外預設模式亦可控制頭部機構220以一預設速率v進行左右之搖擺振幅a以實施雷射穿透,因此使得由每一群穿透孔250所形成之穿透區25以一非直線方式排列,其中穿透區25在此薄膜太陽能電池21之排列軌跡如第3圖所示,藉由頭部機構220之左右搖擺速率v與振幅a以及承載平台24沿著第一方向x之移動而使得此排列軌跡之起點至終點的總長與其起點至終點的直線長度之長度比值大於1;(3)當完成上一群穿透孔250之雷射穿透製程後,則頭部機構220根據預設模式往第二方向y移動,此時頭部機構220再重複步驟(2)進行此薄膜太陽能電池21之雷射穿透以形成下一穿透區25,其中第二方向y係設定正交於上述第一方向x。 Referring to FIGS. 2 to 3, a preferred embodiment of the present invention is a method for fabricating a through hole of a thin film solar cell. The thin film solar cell 21 generally includes a substrate 212, a front electrode layer 214, and a light absorbing layer. 216 and the back electrode layer 218, and the method for manufacturing the through hole of the thin film solar cell comprises the following steps: (1) providing a carrying platform 24 for carrying the thin film solar cell 21, and the carrying platform 24 can be along the first direction x (2) providing a hole making device 22 for performing a laser see-through procedure of the thin film solar cell 21, wherein the hole making device 22 includes a head mechanism 220 by setting a pre- The mode is such that the head mechanism 220 forms a plurality of penetration holes 250 arranged longitudinally along the first direction x on the back electrode layer 218 of the thin film solar cell 21, each of which The through holes 250 have a predetermined depth and are not connected to each other. In the embodiment, the longitudinally arranged through holes 250 constitute a penetrating region 25, and the preset mode can also control the head mechanism 220 to The preset velocity v performs a left and right swing amplitude a to perform laser penetration, so that the penetration regions 25 formed by each group of penetration holes 250 are arranged in a non-linear manner, wherein the penetration region 25 is in the thin film solar cell. The alignment trajectory of 21 is as shown in FIG. 3, and the total length of the starting point to the end point of the trajectory is the starting point to the end point of the trajectory by the yaw rate v and the amplitude a of the head mechanism 220 and the movement of the carrying platform 24 along the first direction x. The length ratio of the length of the straight line to the end point is greater than 1; (3) after the laser penetration process of the upper group of penetration holes 250 is completed, the head mechanism 220 moves to the second direction y according to the preset mode, and the head is The mechanism 220 repeats the step (2) to perform laser penetration of the thin film solar cell 21 to form the next penetrating region 25, wherein the second direction y is set to be orthogonal to the first direction x.

在上述實施例中,上述之頭部機構220之預設模式可設定以將穿透孔250的預設縱深進一步延伸至此薄膜太陽能電池21之光吸收層216,或者將穿透孔250的預設縱深更進一步延伸至此薄膜太陽能電池21之前電極層214。此外,穿透孔250的構型可藉由提供一遮罩23以形成各種形狀,例如:圓形、橢圓形、半圓形、三角形、矩形或多邊形等,如第4圖所示。此外,藉由預設模式以控制頭部機構220之左右搖擺速率v與振幅a,進而使得此薄膜太陽能電池21在單位面積穿透孔250數量之提升,以有效提升薄膜太陽能電池在單位面積之透光面積比。 In the above embodiment, the preset mode of the head mechanism 220 may be set to further extend the predetermined depth of the penetration hole 250 to the light absorbing layer 216 of the thin film solar cell 21, or to preset the through hole 250. The depth further extends to the electrode layer 214 before the thin film solar cell 21. In addition, the configuration of the penetration holes 250 can be formed into various shapes by providing a mask 23, such as a circle, an ellipse, a semicircle, a triangle, a rectangle, or a polygon, as shown in FIG. In addition, by controlling the left and right sway rate v and the amplitude a of the head mechanism 220, the number of the thin film solar cells 21 in the unit area penetration hole 250 is increased by the preset mode to effectively increase the unit area of the thin film solar cell. Transparency area ratio.

此外以雷射方式形成之穿透孔250具有直徑介於10微米~800微米之間。除了以雷射方式形成穿透孔250之外,製孔裝置22係亦可藉由濕蝕刻方式來製作穿透孔250,此時穿透孔250具有直徑介於10微米~50厘米之間。此外,無論係以雷射方式或者濕蝕刻方式在薄膜太陽能電池21之表面製作穿透孔250,各群穿透區25之間的區間距wz必須 大於穿透孔250之間的孔間距wh,換言之區間距wz大致上應介於20微米~4000微米之間,而穿透孔之間的孔間距wh則應介於2倍孔徑至5倍孔徑之間,使得孔間距wh介於20微米~4000微米之間。 Further, the penetration hole 250 formed by laser has a diameter of between 10 micrometers and 800 micrometers. In addition to forming the through hole 250 in a laser manner, the hole making device 22 can also form the through hole 250 by wet etching, and the through hole 250 has a diameter of between 10 micrometers and 50 centimeters. Further, whether the penetration holes 250 are formed on the surface of the thin film solar cell 21 by laser or wet etching, the interval w z between the respective group penetration regions 25 must be larger than the hole pitch w between the penetration holes 250. h , in other words, the spacing w z should be between 20 μm and 4000 μm, and the hole spacing w h between the penetration holes should be between 2 and 5 times the aperture, so that the hole spacing w h Between 20 microns and 4000 microns.

以上所述僅為本發明之較佳實施例,並非用以限定本發明之權利範圍;同時以上的描述,對於相關技術領域之專門人士應可明瞭及實施,因此其他未脫離本發明所揭示之精神下所完成的等效改變或修飾,均應包含在申請專利範圍中。 The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. The above description should be understood and implemented by those skilled in the relevant art, so that the other embodiments are not disclosed. Equivalent changes or modifications made under the spirit shall be included in the scope of the patent application.

10(先前技術)、15(先前技術)、21‧‧‧薄膜太陽能電池 10 (prior art), 15 (prior art), 21‧‧ ‧ thin film solar cells

1(先前技術)、180(先前技術)、212‧‧‧基板 1 (prior art), 180 (prior art), 212‧‧‧ substrate

3(先前技術)、181(先前技術)、214‧‧‧前電極層 3 (prior art), 181 (prior art), 214‧‧ front electrode layer

182(先前技術)‧‧‧第一切割槽 182 (prior art) ‧‧ first cutting groove

4(先前技術)、183(先前技術)、216‧‧‧光吸收層 4 (prior art), 183 (prior art), 216‧‧ ‧ light absorbing layer

184(先前技術)‧‧‧第二切割槽 184 (prior art) ‧‧‧second cutting slot

5(先前技術)、185(先前技術)、218‧‧‧背電極層 5 (prior art), 185 (prior art), 218‧‧ ‧ back electrode layer

186(先前技術)‧‧‧第三切割槽 186 (prior art) ‧‧ third cutting groove

6(先前技術)、12(先前技術)、250‧‧‧穿透孔 6 (prior art), 12 (prior art), 250‧‧ penetration holes

8(先前技術)‧‧‧光阻層 8 (previous technique) ‧ ‧ photoresist layer

11(先前技術)‧‧‧連結區 11 (prior art) ‧ ‧ link area

13(先前技術)‧‧‧光穿透區 13 (prior art) ‧ ‧ light penetration zone

14(先前技術)‧‧‧整合方向 14 (prior art) ‧ ‧ integration direction

16(先前技術)‧‧‧單一區塊 16 (prior art) ‧ ‧ single block

17(先前技術)‧‧‧入射光側 17 (prior art) ‧ ‧ incident light side

19(先前技術)‧‧‧透明切割線槽 19 (prior art) ‧ ‧ transparent cutting trunking

22‧‧‧製孔裝置 22‧‧‧ hole making device

220‧‧‧頭部結構 220‧‧‧ head structure

23‧‧‧遮罩 23‧‧‧ mask

24‧‧‧承載平台 24‧‧‧Loading platform

25‧‧‧穿透區 25‧‧‧ penetration zone

250‧‧‧穿透孔 250‧‧‧through hole

wz‧‧‧區間距 w z ‧‧‧ spacing

wh‧‧‧孔間距 w h ‧‧‧ hole spacing

x‧‧‧第一方向 x‧‧‧First direction

y‧‧‧第二方向 Y‧‧‧second direction

v‧‧‧搖擺速率 v‧‧‧Swing rate

a‧‧‧搖擺振幅 A‧‧‧swing amplitude

第1A圖~第1C圖為一示意圖,為先前技術之薄膜太陽能電池之穿透孔排列構型。 1A to 1C are schematic views showing the arrangement of the through holes of the prior art thin film solar cell.

第2圖為一示意圖,係根據本發明提出之較佳實施例,為一種製作薄膜太陽能電池之穿透孔之製作平台。 2 is a schematic view showing a manufacturing platform for forming a through hole of a thin film solar cell according to a preferred embodiment of the present invention.

第3圖為一示意圖,係根據本發明提出之較佳實施例,為薄膜太陽能電池之穿透區之排列軌跡。 Figure 3 is a schematic view showing the alignment of the penetration regions of a thin film solar cell in accordance with a preferred embodiment of the present invention.

第4圖為一示意圖,係根據本發明提出之較佳實施例,為具有不同構型之穿透孔之排列軌跡。 Fig. 4 is a schematic view showing an arrangement trajectory of penetration holes having different configurations according to a preferred embodiment of the present invention.

21‧‧‧薄膜太陽能電池 21‧‧‧Thin solar cells

212‧‧‧基板 212‧‧‧Substrate

214‧‧‧前電極層 214‧‧‧ front electrode layer

216‧‧‧光吸收層 216‧‧‧Light absorbing layer

218‧‧‧背電極層 218‧‧‧ back electrode layer

22‧‧‧製孔裝置 22‧‧‧ hole making device

220‧‧‧頭部結構 220‧‧‧ head structure

23‧‧‧遮罩 23‧‧‧ mask

24‧‧‧承載平台 24‧‧‧Loading platform

25‧‧‧穿透區 25‧‧‧ penetration zone

250‧‧‧穿透孔 250‧‧‧through hole

wz‧‧‧區間距 w z ‧‧‧ spacing

wh‧‧‧孔間距 w h ‧‧‧ hole spacing

x‧‧‧第一方向 x‧‧‧First direction

y‧‧‧第二方向 Y‧‧‧second direction

Claims (13)

一種薄膜太陽能電池之穿透孔製作方法,其中該薄膜太陽能電池至少包含有基板、前電極層、光吸收層與背電極層等膜層,該薄膜太陽能電池之穿透孔製作方法包含有:提供一承載平台,用以承載該薄膜太陽能電池沿第一方向移動;提供一製孔裝置,該製孔裝置具有至少一個頭部機構,用以至少在該薄膜太陽能電池的背電極層上形成有複數群穿透區,且各群穿透區包含複數個彼此不相連接的穿透孔;令該製孔裝置的頭部機構沿第二方向以預設模式左右移動,其中該第二方向正交於該第一方向;藉由該承載平台與該製孔裝置的頭部機構的相對移動,使得在該各群穿透區之穿透孔具有一預設縱深且具有以一非直線之排列,進而使得該排列之起點至終點的總長與其起點至終點的直線長度之長度比值大於1。 A method for manufacturing a through hole of a thin film solar cell, wherein the thin film solar cell comprises at least a film layer of a substrate, a front electrode layer, a light absorbing layer and a back electrode layer, and the method for manufacturing the through hole of the thin film solar cell comprises: providing a carrying platform for carrying the thin film solar cell to move in a first direction; providing a hole making device having at least one head mechanism for forming a plurality of at least a back electrode layer of the thin film solar cell a group penetration zone, and each group penetration zone comprises a plurality of penetration holes that are not connected to each other; the head mechanism of the hole making device is moved left and right in a second direction in a preset mode, wherein the second direction is orthogonal In the first direction; the relative movement of the carrying platform and the head mechanism of the hole making device, the penetration holes in the group penetration regions have a predetermined depth and have a non-linear arrangement, Further, the ratio of the total length of the starting point to the end point of the array to the length of the straight line from the start point to the end point is greater than one. 依據申請專利範圍第1項所述之薄膜太陽能電池之穿透孔製作方法,其中該穿透孔的預設縱深可進一步延伸至該光吸收層。 The method for manufacturing a through hole of a thin film solar cell according to claim 1, wherein the predetermined depth of the through hole further extends to the light absorbing layer. 依據申請專利範圍第1項所述之薄膜太陽能電池之穿透孔製作方法,其中該穿透孔的預設縱深可進一步延伸至該前電極層。 The method for manufacturing a through hole of a thin film solar cell according to claim 1, wherein the predetermined depth of the through hole further extends to the front electrode layer. 依據申請專利範圍第1項所述之薄膜太陽能電池之穿透孔製作方法,其中該製孔裝置係以雷射方式形成該等穿透孔。 The method for manufacturing a through hole of a thin film solar cell according to claim 1, wherein the hole making device forms the through holes in a laser manner. 依據申請專利範圍第4項所述之薄膜太陽能電池之穿透孔製作方法,其中該每一穿透孔具有一直徑介於10微米~800微米之間。 The method for manufacturing a through hole of a thin film solar cell according to claim 4, wherein each of the through holes has a diameter of between 10 micrometers and 800 micrometers. 依據申請專利範圍第1項所述之薄膜太陽能電池之穿透孔製作方法,其中該製孔裝置係以濕蝕刻方式製作穿透孔。 The method for manufacturing a through hole of a thin film solar cell according to claim 1, wherein the hole making device forms a through hole by wet etching. 依據申請專利範圍第6項所述之薄膜太陽能電池之穿透孔製作方法,其中該每一穿透孔具有一直徑介於10微米~50厘米之間。 The method for manufacturing a through hole of a thin film solar cell according to claim 6, wherein each of the through holes has a diameter of between 10 micrometers and 50 centimeters. 依據申請專利範圍第1項所述之薄膜太陽能電池之穿透孔製作方法, 其中該各群穿透區之間的區間距大於穿透孔之間的孔間距。 According to the method for manufacturing a through hole of a thin film solar cell according to claim 1, The spacing between the penetrating zones of the groups is greater than the spacing of the holes between the penetrating holes. 依據申請專利範圍第8項所述之薄膜太陽能電池之穿透孔製作方法,其中該區間距介於20微米~4000微米之間。 The method for manufacturing a through hole of a thin film solar cell according to claim 8, wherein the interval between the regions is between 20 micrometers and 4000 micrometers. 依據申請專利範圍第1項所述之薄膜太陽能電池之穿透孔製作方法,其中該穿透孔之間的孔間距介於2倍孔徑至5倍孔徑之間。 The method for manufacturing a through hole of a thin film solar cell according to claim 1, wherein a hole pitch between the through holes is between 2 times and 5 times the hole diameter. 依據申請專利範圍第10項所述之薄膜太陽能電池之穿透孔製作方法,其中該孔間距介於20微米~4000微米之間。 The method for manufacturing a through hole of a thin film solar cell according to claim 10, wherein the hole pitch is between 20 micrometers and 4000 micrometers. 依據申請專利範圍第1項所述之薄膜太陽能電池之穿透孔製作方法,更進一步提供一遮罩,以形成各種形狀之穿透孔。 According to the method for manufacturing a through hole of a thin film solar cell according to the first aspect of the invention, a mask is further provided to form through holes of various shapes. 依據申請專利範圍第12項所述之薄膜太陽能電池之穿透孔製作方法,其中該穿透孔之形狀選自於由圓形、橢圓形、半圓形、三角形及矩形所構成之群組。 The method for manufacturing a through hole of a thin film solar cell according to claim 12, wherein the shape of the through hole is selected from the group consisting of a circle, an ellipse, a semicircle, a triangle, and a rectangle.
TW97143994A 2008-11-14 2008-11-14 Method for manufacturing see-through holes of thin-film solar cells TWI382557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97143994A TWI382557B (en) 2008-11-14 2008-11-14 Method for manufacturing see-through holes of thin-film solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97143994A TWI382557B (en) 2008-11-14 2008-11-14 Method for manufacturing see-through holes of thin-film solar cells

Publications (2)

Publication Number Publication Date
TW201019492A TW201019492A (en) 2010-05-16
TWI382557B true TWI382557B (en) 2013-01-11

Family

ID=44831755

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97143994A TWI382557B (en) 2008-11-14 2008-11-14 Method for manufacturing see-through holes of thin-film solar cells

Country Status (1)

Country Link
TW (1) TWI382557B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459574B (en) * 2013-11-25 2014-11-01 Nexpower Technology Corp High transmittance thin film solar panels
US11715805B2 (en) 2017-09-29 2023-08-01 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Semitransparent thin-film solar module
WO2019062788A1 (en) * 2017-09-29 2019-04-04 (Cnbm) Bengbu Design & Research Institute For Glass Industry Co., Ltd Semitransparent thin-film solar module
US11515440B2 (en) 2017-09-29 2022-11-29 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Semitransparent thin-film solar module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013280A1 (en) * 2000-12-08 2003-01-16 Hideo Yamanaka Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device
EP1583155A1 (en) * 2003-01-10 2005-10-05 Kaneka Corporation Transparent thin-film solar cell module and its manufacturing method
US20060261733A1 (en) * 2005-03-28 2006-11-23 Hiroyuki Suzuki Organic thin-film solar cell element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013280A1 (en) * 2000-12-08 2003-01-16 Hideo Yamanaka Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device
US7183229B2 (en) * 2000-12-08 2007-02-27 Sony Corporation Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device
US20070087492A1 (en) * 2000-12-08 2007-04-19 Hideo Yamanaka Method for forming semiconductor film, method for manufacturing semiconductor device and electrooptic device, apparatus for performing the same, and semiconductor device and electrooptic device
EP1583155A1 (en) * 2003-01-10 2005-10-05 Kaneka Corporation Transparent thin-film solar cell module and its manufacturing method
US20060261733A1 (en) * 2005-03-28 2006-11-23 Hiroyuki Suzuki Organic thin-film solar cell element

Also Published As

Publication number Publication date
TW201019492A (en) 2010-05-16

Similar Documents

Publication Publication Date Title
CN102640300B (en) Solar cell contact formation using laser ablation
TWI382557B (en) Method for manufacturing see-through holes of thin-film solar cells
WO2012029847A1 (en) Photovoltaic cell production method and photovoltaic module production method
CN102097518A (en) Solar cell and preparation method thereof
JP2019004135A (en) Solar cell, solar cell module, and manufacturing method thereof
WO2019218639A1 (en) Rear-face passivated conductive structure with matrix-dot-type laser grooving
CN102576745B (en) Method for forming electrodes of solar cell, method for manufacturing solar cell, and solar cell
KR20200040798A (en) Manufacturing method for effectively transparent contacts
WO2015059278A1 (en) Optoelectronic component and method for producing an optoelectronic component
JP2013537364A5 (en)
WO2011043609A3 (en) Photovoltaic power-generating apparatus and method for manufacturing same
TWI529954B (en) Solar cell, module comprising the same and method of manufacturing the same
ES2377938T3 (en) Manufacturing procedure of polycrystalline sicily plates
US8772071B2 (en) Method of manufacturing thin film solar cells
WO2013161373A1 (en) Solar cell and method for manufacturing same
CN109283619B (en) Mode spot-size converter based on double-layer polymer waveguide and preparation method thereof
CN103579408A (en) Manufacturing method of BIPV film photovoltaic assembly
CN113539811B (en) Conductive pattern structure, preparation method thereof and patterned substrate
JP6298486B2 (en) Solar cell and method of manufacturing back electrode thereof
CN105308487B (en) A kind of optical waveguide and printed circuit board
JPWO2008114685A1 (en) Method for manufacturing solar cell and solar cell
JP4909287B2 (en) Light diffusion module
JP2008010419A5 (en)
KR101033286B1 (en) Thin film type Solar Cell and Method for manufacturing the same
US20120247528A1 (en) Thin film photoelectric conversion module and fabrication method of the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees