TWI380801B - Dual photons emission computed tomography system - Google Patents
Dual photons emission computed tomography system Download PDFInfo
- Publication number
- TWI380801B TWI380801B TW098117122A TW98117122A TWI380801B TW I380801 B TWI380801 B TW I380801B TW 098117122 A TW098117122 A TW 098117122A TW 98117122 A TW98117122 A TW 98117122A TW I380801 B TWI380801 B TW I380801B
- Authority
- TW
- Taiwan
- Prior art keywords
- collimator
- detector
- module
- tomography system
- emission tomography
- Prior art date
Links
- 238000002591 computed tomography Methods 0.000 title description 2
- 230000009977 dual effect Effects 0.000 title description 2
- 238000003325 tomography Methods 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 18
- 238000002600 positron emission tomography Methods 0.000 description 8
- 210000000481 breast Anatomy 0.000 description 5
- 210000001685 thyroid gland Anatomy 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000009420 retrofitting Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005264 electron capture Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009206 nuclear medicine Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/508—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for non-human patients
Landscapes
- Nuclear Medicine (AREA)
Description
本發明係關於一種雙光子發射性斷層掃描(dual photons emission computed tomography,DuPECT)系統,應用某些同位素在衰變過程中可放射出至少兩個光子,以作射源定位。The present invention relates to a dual photon emission computed tomography (DuPECT) system, in which certain isotopes can emit at least two photons during decay to serve as a source localization.
正子發射斷層掃描(positron emission tomography,PET)以及單光子斷層掃描(single photon emission computed tomography,SPECT),是兩種最常用的核子醫學影像系統(Nuclear Medicine Imaging)技術。SPECT的優點在於可使用的放射性藥劑(radiopharmaceutical)較多較廣,且在價格上相對於PET也較低。Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are the two most commonly used Nuclear Medicine Imaging technologies. The advantage of SPECT is that the radiopharmaceuticals that can be used are more extensive and are also lower in price relative to PET.
SPECT系統藉由準直儀(collimator)來限制光子(photons)入射方向,並利用不同方向的加馬射線(gamma ray)投影成像來建立三度空間的斷層掃描影像(3-dimensional tomographic image)。準直儀最大的問題在於空間解析度會隨著射源與準直儀的距離而變化,導致系統空間解析度的不一致。The SPECT system uses a collimator to limit the photons incident direction and uses gamma ray projection imaging in different directions to create a three-dimensional tomographic image. The biggest problem with the collimator is that the spatial resolution varies with the distance between the source and the collimator, resulting in inconsistent system spatial resolution.
傳統的SPECT系統需要將笨重的準直儀(heavy collimator)與偵測器(dectector)繞著待測物掃描,其需要複雜的機械建構台(gantry)用來固定偵測器以達到所需的精確度。甚者,衰減校正(attenuation correction)是SPECT系統定量化分析的一個重要議題,由於無法從投影資料中得到明確的射源位置,所以衰減校正一直是一個仍未獲得解答的問題。Traditional SPECT systems require a heavy collimator and a dectector to scan around the object under test, which requires a complex mechanical gantry to hold the detector to achieve the desired Accuracy. In addition, attenuation correction is an important issue in the quantitative analysis of SPECT systems. Since the explicit source position cannot be obtained from the projection data, attenuation correction has always been an unanswered problem.
SPECT系統用來測定注入物體(body)中放射性同位素(radioisotope)的濃度來評估生理機能(physiological function)。將平行閃爍照相機(scintillation camera)旋轉於待測物周邊,來偵測放射性藥劑所放射的加馬射線。在一個角度偵測到的光子空間分布影像構成稱為閃爍曲線圖(scintigram)的一張平面圖像(planar image),再由多個角度所取得閃爍曲線圖來形成一個全圓圖。然後,將這些閃爍曲線圖執行影像重組,來計算放射性同位素的三度空間分佈情況。由於組織衰減(tissue attenuation)的影響,此SPECT系統所重組出的加馬射線影像與病患身上放射同位素的活度分佈不是呈線性相關,其結果是的斷層掃描切面(tomographic slice)無法精確反映出真實的內部分佈情況。The SPECT system is used to determine the concentration of radioisotope in the injected body to assess the physiological function. A scintillation camera is rotated around the periphery of the object to be detected to detect the addition of the radioactive agent. The photon spatially distributed image detected at an angle constitutes a planar image called a scintigram, and the scintillation graph obtained from a plurality of angles forms a full circle. Then, these scintillation curves are subjected to image recombination to calculate the three-dimensional spatial distribution of the radioisotope. Due to the influence of tissue attenuation, the gamma-ray image reconstructed by this SPECT system is not linearly related to the activity distribution of radioisotopes in patients. As a result, the tomographic slice cannot be accurately reflected. A true internal distribution.
本發明提供一種雙光子發射性斷層掃描系統。其使用某些放射性同位素(111 In、125 I)在衰變(decay)過程當中,可放射出兩個以上的光子,以協助射源定位。The present invention provides a two-photon emission tomography system. It uses certain radioisotopes ( 111 In, 125 I) to emit more than two photons during the decay process to aid in the localization of the source.
本發明之雙光子發射性斷層掃描系統包含複數個模組式偵測器(modular detectors)藉由一同符電路(coincidence circuit)連接。每一個模組式偵測器包含一準直儀,用來定義入射光子的訊號軌跡。狹縫式直準儀與孔式直準儀為兩種可應用的形式,此孔式直準儀包含平行準直儀、針孔式準直儀、或是聚焦型準直儀。簡單來說,配有孔式準直儀的偵測器為孔式偵測器,而配有狹縫式準直器的偵測器為狹縫式偵測器。The two-photon emission tomography system of the present invention comprises a plurality of modular detectors connected by a coincidence circuit. Each modular detector includes a collimator that defines the signal path of the incident photons. Slit-type collimators and hole-type collimators are available in two applications. The bore-type collimator includes a parallel collimator, a pinhole collimator, or a focusing collimator. In simple terms, the detector with a hole collimator is a hole detector, and the detector with a slit collimator is a slit detector.
本發明之雙光子發射性斷層掃描系統具有下述之優點:The two-photon emission tomography system of the present invention has the following advantages:
1.靜置性:傳統的SPECT系統中,掃描器繞著待測物作360°旋轉以得到投影資訊,一般來說,準直儀是相當重的,因此SPECT系統在旋轉時不可避免的會造成中心點的位移,而造成誤差。而本發明之DuPECT系統計算幾何交點來定位出射源位置,不需要所有角度的投影資訊來做影像重建。所以,此DuPECT系統是一固定系統,且無須機械建構台以作旋轉之用。1. Resting: In the traditional SPECT system, the scanner rotates 360° around the object to be measured to obtain projection information. Generally, the collimator is quite heavy, so the SPECT system will inevitably rotate when rotating. Causes the displacement of the center point, causing errors. The DuPECT system of the present invention calculates the geometric intersection to locate the source location, and does not require projection information of all angles for image reconstruction. Therefore, the DuPECT system is a fixed system and does not require a mechanical construction station for rotation.
2.可適應性:DuPECT系統以模組偵測器為一偵測單位,而且每一偵測單位可獨立運作,並可放置在待測物周圍的任何位置。所以,此DuPECT系統能夠被擺設在非常靠近待測物,以增強感應度。2. Adaptability: The DuPECT system uses the module detector as a detection unit, and each detection unit can operate independently and can be placed anywhere around the object to be tested. Therefore, the DuPECT system can be placed very close to the object to be tested to enhance the sensitivity.
3.可擴充性:每一個偵測單元獨立運作,並且每一偵測單位可依使用的需求從此DuPECT系統中增加或移除。3. Scalability: Each detection unit operates independently, and each detection unit can be added or removed from the DuPECT system according to the needs of use.
4.無需影像重建。4. No image reconstruction is required.
5.可做定量分析。5. Can do quantitative analysis.
由於射源位置是位在線與面的焦點,因此當每一個事件被偵測到時,圖像能夠同時被更新。當一個事件的射源位置為已知時,能夠計算衰減係數與幾何效率,並直接在影像上進行更新。Since the source position is the focus of the line and the face, when each event is detected, the image can be updated at the same time. When the source location of an event is known, the attenuation coefficient and geometric efficiency can be calculated and updated directly on the image.
茲配合下列圖示、實施例之詳細說明及申請專利範圍,將上述及本發明之其他目的與優點詳述於後。The above and other objects and advantages of the present invention will be described in detail with reference to the accompanying drawings.
參考第一圖,第一圖係本發明之雙光子發射性斷層掃描系統實施範例的一個示意圖。本發明之雙光子發射性斷層掃描系統10包含複數個模組偵測器11藉由一同符電路20連接。模組偵測器11包含一準直儀,其用來定義入射光子的訊號軌跡。模組偵測器11可依照待測物21的外部形狀作組合設置,以進行掃描待測物21。模組偵測器11偵測到待測物21中的同位素22之光子訊號P,並回饋至同符電路20。模組偵測器的數量不限定於任何數量。模組偵測器在不同應用情況,增加或移除於此系統。本發明之實施範例中使用5個模組偵測器。Referring to the first figure, the first figure is a schematic diagram of an embodiment of the two-photon emission tomography system of the present invention. The two-photon emission tomography system 10 of the present invention includes a plurality of module detectors 11 connected by a homomorphic circuit 20. The module detector 11 includes a collimator that defines the signal path of the incident photons. The module detector 11 can be combined in accordance with the external shape of the object 21 to be scanned for scanning the object to be tested 21. The module detector 11 detects the photon signal P of the isotope 22 in the object 21 and feeds it back to the homolog circuit 20. The number of module detectors is not limited to any number. The module detector adds or removes this system in different applications. Five module detectors are used in the embodiment of the present invention.
模組偵測器11可以是一孔式偵測器或是一狹縫式偵測器。本實施範例中,第一、三、五模組偵測器是孔式偵測器,而第二、四模組偵測器是狹縫式偵測器。第二圖說明以孔式偵測器或狹縫式偵測器為模組偵測器的實施範例之示意圖。如第二圖所示,孔式偵測器11a與狹縫式偵測器11b以交錯方式排列,例如孔式偵測器11a緊接在狹縫式偵測器11b。孔式偵測器11a包含一孔式準直儀110。狹縫式偵測器11b包含一狹縫式準直儀120。孔式準直儀110可以是平行準直儀、針孔式準直儀、或是聚焦型準直儀。The module detector 11 can be a hole detector or a slot detector. In this embodiment, the first, third, and fifth module detectors are aperture detectors, and the second and fourth module detectors are slot detectors. The second figure illustrates a schematic diagram of an implementation example in which a hole detector or a slot detector is used as a module detector. As shown in the second figure, the hole type detector 11a and the slit type detector 11b are arranged in an interlaced manner, for example, the hole type detector 11a is next to the slit type detector 11b. The aperture detector 11a includes a hole collimator 110. The slit detector 11b includes a slit collimator 120. The hole collimator 110 can be a parallel collimator, a pinhole collimator, or a focused collimator.
第三圖係根據本發明雙光子發射性斷層掃描系統的一個實施例。此系統應用某些同位素(111 In、125 I)在衰變過程中可放射出至少兩個光子,例如,同位素111 In在電子捕獲(electron capture,EC)衰變過程中放射出兩個加馬射線Eγ1 、Eγ2 ,其能量分別為171keV與245keV,如第二圖所示。而同位素125 I具有一35.5ke V的加馬射線,並伴隨著一些特性x-射線(x-ray)光子,其能量範圍從27keV到32keV,雖然125 I所發射的光子能量太低,在病人檢查上並非最理想的同位素,但是卻非常適合作為小動物或人類局部器官的研究,且125 I之半衰期有59.4天,所以也非常適合作為長時間的研究。The third figure is an embodiment of a two-photon emission tomography system in accordance with the present invention. This system uses certain isotopes ( 111 In, 125 I) to emit at least two photons during decay. For example, the isotope 111 In emits two additions of E-rays during electron capture (EC) decay. 1 , Eγ 2 , the energy is 171keV and 245keV, respectively, as shown in the second figure. The isotope 125 I has a 35.5 k e V addition ray, accompanied by some characteristic x-ray (x-ray) photons, whose energy ranges from 27 keV to 32 keV, although the photon energy emitted by 125 I is too low. The patient is not the most ideal isotope, but it is very suitable for small animal or human local organs research, and the half life of 125 I is 59.4 days, so it is also very suitable for long-term research.
第四圖為一範例,說明入射光子位置位於狹縫式模組偵測器偵測上的一個示意圖。孔式偵測器11b偵測入射光子P的軌跡訊號點是落在晶體41的交互作用點與狹縫式準直儀120孔徑的中心點43。The fourth figure is an example showing a schematic view of the incident photon position on the detection of the slit module detector. The trajectory signal point of the aperture detector 11b detecting the incident photon P is at the interaction point of the crystal 41 and the center point 43 of the aperture of the slit collimator 120.
請參考第五圖,為一範例,說明狹縫式模組偵測器與孔式模組偵測器界定射源位置的一個示意圖。狹縫式偵測器11b所偵測到光子的射源位置是落在狹縫式準直儀120定義的面與光子被偵測到的位置。如果孔式偵測器11a與狹縫式偵測器11b同時偵測雙光子的射源位置,射源S位置剛好位於孔式偵測器11a定義的線與狹縫式偵測器11b定義的平面。Please refer to the fifth figure. For an example, a schematic diagram of the position of the source of the slot module detector and the hole module detector is described. The position of the photon detected by the slit detector 11b falls on the surface defined by the slit collimator 120 and the photon is detected. If the aperture detector 11a and the slot detector 11b simultaneously detect the source position of the two-photon, the source S is located just above the line defined by the aperture detector 11a and defined by the slot detector 11b. flat.
第六圖為一工作範例,說明將傳統的PET系統改裝成DuPECT系統的一個示意圖。參考第六圖,藉由利用一種準直儀系統結合複數各狹縫式準直儀120與複數個針孔式準直儀110,能夠將一個標準的PET系統轉變為DuPET。在一個傳統的PET系統中,將複數個針孔準直儀110和複數狹縫式準直儀120設置與待測物63與偵測環64之間,所以光子訊號P能夠透過針孔準直儀110和狹縫式準直儀120回饋到偵測環64。The sixth figure is a working example illustrating a schematic diagram of retrofitting a conventional PET system into a DuPECT system. Referring to the sixth diagram, a standard PET system can be converted to DuPET by using a collimator system in combination with a plurality of slit collimators 120 and a plurality of pinhole collimators 110. In a conventional PET system, a plurality of pinhole collimators 110 and a plurality of slit collimators 120 are disposed between the object to be tested 63 and the detecting ring 64, so that the photon signal P can be aligned through the pinholes. Instrument 110 and slit collimator 120 are fed back to detection ring 64.
第七圖為說明針孔式準直儀在傳統PET系統改裝的DuPECT系統的偵測方式。參考第七圖,孔式準直儀110經由設計與設置,待測物63透過位於孔式準直儀110針孔的投射至偵測環64並不會相互重疊。將此孔準直儀110儘可能的擺設靠近待測物63,可以提高光子的逃離機率。本實施方式適用於人體與動物的研究。The seventh figure shows the detection method of the DuPECT system modified by the pinhole collimator in the conventional PET system. Referring to the seventh figure, the hole collimator 110 is designed and arranged, and the object 63 is projected to the detection ring 64 through the pinholes of the hole collimator 110 and does not overlap each other. By placing the hole collimator 110 as close as possible to the object to be tested 63, the probability of escape of the photon can be improved. This embodiment is suitable for the study of humans and animals.
第八圖,第八圖是工作範例,說明合併狹縫式模組偵測器將現成SPECT轉換為雙光子發射性斷層掃描系統的一個示意圖。將狹縫式模組偵測器合併在SPECT上,使其轉變為雙光子發射性斷層掃描系統。狹縫式模組偵測器11b與SPECT 81由一同符電路20連結。狹縫式模組偵測器11b擺設在偵測投的旁邊(非共面的,non-coplanar),並不會干擾SPECT建構台82的轉動。獲取資料的兩種模式:一為靜止模式,SPECT與狹縫模組偵測器兩者保持靜止不動,圖像的產生是直接計算SPECT與狹縫式模組偵測器同時所偵測到雙光子之間路徑的交點。The eighth and eighth figures are working examples illustrating a schematic diagram of a merged slit module detector that converts an off-the-shelf SPECT into a two-photon emission tomography system. The slot module detector is combined on the SPECT to transform it into a two-photon emission tomography system. The slit module detector 11b and the SPECT 81 are connected by a homogenous circuit 20. The slot module detector 11b is placed next to the detection projection (non-coplanar) and does not interfere with the rotation of the SPECT construction station 82. Two modes of obtaining data: one is the still mode, the SPECT and the slit module detector are both stationary, and the image is generated by directly calculating the SPECT and the slit module detector simultaneously detecting the double The intersection of the paths between photons.
二為動態模式,只有SPECT做轉動,而狹縫式準直儀模組保持靜止。此種模式有兩組可用的資料:(1)SPECT單獨蒐集的資料;(2)SPECT與狹縫式模組偵測器蒐集的同步資料。此SPECT資料即是傳統的正旋圖(sinogram),可用來重建,並產生SPECT圖像。由於需要兩個光子同時到達的關係,所以同步資料的光子數量會少於SPECT資料,此同步資料也能夠用來產生圖像。此SPECT影像具有衰減假影,而同步圖像具有較準確的射源定位,但是參雜較多的雜訊。使用同步圖像來進行初步推測SPECT資料的圖像重建,以產生較高品質的圖像。SPECT與狹縫式模組偵測器之間的同步偵測能夠在沒有同符電路情況下達到。SPECT與狹縫式模組偵測器分別紀錄光子到達的時間、能量、及位置,並比較兩個的光子抵達時間,如果抵達時間是在事先界定時間區間(例如:12ns),則兩個光子為同步偵測。The second is the dynamic mode, only the SPECT is rotated, and the slit collimator module remains stationary. There are two sets of available data for this model: (1) data collected by SPECT alone; and (2) synchronized data collected by SPECT and slot module detectors. This SPECT data is a traditional sinogram that can be used to reconstruct and produce SPECT images. Since the relationship of two photons is required to arrive at the same time, the number of photons of the synchronized data will be less than that of the SPECT data, and the synchronization data can also be used to generate images. The SPECT image has attenuated artifacts, while the sync image has a more accurate source location, but more noise is mixed. The synchronized image is used to perform image reconstruction of the preliminary speculative SPECT data to produce a higher quality image. Synchronous detection between the SPECT and the slot module detector can be achieved without the same circuit. The SPECT and slot module detectors record the time, energy, and position of the photon arrival, respectively, and compare the two photon arrival times. If the arrival time is within a predefined time interval (eg, 12 ns), then two photons. For simultaneous detection.
請同時參考第九圖與第十圖,第九圖是應用於甲狀腺斷層掃描的一個示意圖,第十圖是應用於乳房斷層掃描的一個示意圖。此兩個範例是將模組偵測器11皆由一同符電路20連接,並依照甲狀腺91與乳房101的形狀,分別排列組合且儘可能的設置在最靠近甲狀腺91與乳房101的周圍,以獲得最大的靈敏度。Please refer to the ninth and tenth drawings at the same time. The ninth figure is a schematic diagram applied to the thyroid tomography, and the tenth is a schematic diagram applied to the breast tomography. The two examples are that the module detectors 11 are all connected by the same circuit 20, and are arranged and combined according to the shape of the thyroid 91 and the breast 101, and are disposed as close as possible to the thyroid 91 and the breast 101 as much as possible. Get the most sensitivity.
惟,以上所述者,僅為發明之最佳實施例而已,當不能依此限定本發明實施之範圍。即大凡一本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。However, the above description is only the preferred embodiment of the invention, and the scope of the invention is not limited thereto. That is, the equivalent changes and modifications made by the scope of the patent application of the invention should remain within the scope of the invention.
10...DuPECT系統10. . . DuPECT system
11...模組偵測器11. . . Module detector
11a...孔式偵測器11a. . . Hole detector
11b...狹縫式偵測器11b. . . Slit detector
110...孔式準直儀110. . . Hole collimator
120...狹縫式準直儀120. . . Slit collimator
20...同符電路20. . . Same circuit
21...待測物twenty one. . . Analyte
22...同位素twenty two. . . isotope
41...晶體41. . . Crystal
43...中心點43. . . Center point
63...待測物63. . . Analyte
64...偵測環64. . . Detection loop
81...SPECT81. . . SPECT
82...SPECT建構台82. . . SPECT construction platform
91...甲狀腺91. . . thyroid
101...乳房101. . . breast
P...光子訊號P. . . Photon signal
第一圖係本發明之雙光子發射性斷層掃描(DuPECT)系統實施範例的一個示意圖。The first figure is a schematic diagram of an embodiment of a two-photon emission tomography (DuPECT) system of the present invention.
第二圖說明以孔式偵測器或狹縫式偵測器為模組偵測器的實施範例之示意圖。The second figure illustrates a schematic diagram of an implementation example in which a hole detector or a slot detector is used as a module detector.
第三圖係同位素111 In在衰變過程中放射出兩個加馬射線的一個示意圖。The third figure is a schematic diagram of the isotope 111 In emitting two gamma rays during the decay process.
第四圖為一範例,說明孔式偵測器偵測光子起始點的一個示意圖。The fourth figure is an example of a schematic diagram of a hole detector detecting the starting point of a photon.
第五圖為一範例,說明狹縫式模組偵測器與孔式模組偵測器界定射源位置的一個示意圖。The fifth figure is an example of a schematic diagram of the slot module detector and the hole module detector defining the position of the source.
第六圖為一工作範例,說明將傳統的PET系統改裝成DuPECT系統的一個示意圖。The sixth figure is a working example illustrating a schematic diagram of retrofitting a conventional PET system into a DuPECT system.
第七圖為說明針孔式準直儀在傳統PET系統改裝的DuPECT系統的偵測方式。The seventh figure shows the detection method of the DuPECT system modified by the pinhole collimator in the conventional PET system.
第八圖是工作範例,說明合併一狹縫式模組偵測器將SPECT轉換為DuPECT系統的一個示意圖。The eighth diagram is a working example illustrating a schematic diagram of incorporating a slot module detector to convert SPECT to a DuPECT system.
第九圖是應用於甲狀腺斷層掃描的一個示意圖。The ninth figure is a schematic diagram applied to thyroid tomography.
第十圖是應用於乳房斷層掃描的一個示意圖。The tenth figure is a schematic diagram applied to a breast tomography.
10...DuPECT系統10. . . DuPECT system
11...模組偵測器11. . . Module detector
20...同符電路20. . . Same circuit
21...待測物twenty one. . . Analyte
22...同位素twenty two. . . isotope
P...光子訊號P. . . Photon signal
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098117122A TWI380801B (en) | 2009-05-22 | 2009-05-22 | Dual photons emission computed tomography system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098117122A TWI380801B (en) | 2009-05-22 | 2009-05-22 | Dual photons emission computed tomography system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201041559A TW201041559A (en) | 2010-12-01 |
TWI380801B true TWI380801B (en) | 2013-01-01 |
Family
ID=45000225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098117122A TWI380801B (en) | 2009-05-22 | 2009-05-22 | Dual photons emission computed tomography system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI380801B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI465757B (en) | 2011-07-15 | 2014-12-21 | Ind Tech Res Inst | Single photon emission computed tomography instrument and the operating method thereof |
TWI552728B (en) * | 2015-09-25 | 2016-10-11 | 國立清華大學 | The method, apparatas, and system of the correction of energy crosstalk in dual-isotope simultaneous acquisition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200831939A (en) * | 2007-01-22 | 2008-08-01 | Nat Univ Tsing Hua | Imaging system and method for the non-pure positron emission tomography |
-
2009
- 2009-05-22 TW TW098117122A patent/TWI380801B/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200831939A (en) * | 2007-01-22 | 2008-08-01 | Nat Univ Tsing Hua | Imaging system and method for the non-pure positron emission tomography |
Also Published As
Publication number | Publication date |
---|---|
TW201041559A (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7381960B1 (en) | Imaging system and method for the non-pure positron emission tomography | |
EP3508885A1 (en) | Multi-gamma ray photon simultaneous medicine emission time-coincidence nuclear medicine imaging system and method | |
US7297958B2 (en) | Radiological imaging apparatus | |
Knoll | Single-photon emission computed tomography | |
US8008625B2 (en) | Method and apparatus for high-sensitivity single-photon emission computed tomography | |
US9804274B2 (en) | Hybrid TOF-PET/CT tomograph comprising polymer strips made of scintillator material | |
US20060214110A1 (en) | Radiological imaging apparatus | |
US7723674B2 (en) | Attenuation correction for SPECT imaging using non-classical orbits of many small gamma cameras | |
US20040227091A1 (en) | Methods and apparatus for radiation detecting and imaging using monolithic detectors | |
US20130009066A1 (en) | Block Detector With Variable Microcell Size For Optimal Light Collection | |
JP3820972B2 (en) | PET equipment | |
US11304667B2 (en) | Spatial resolution in molecular and radiological imaging | |
US20100294941A1 (en) | Dual Photons Emission Computed Tomography System | |
US20150065869A1 (en) | Low noise transmission scan simultaneous with positron emission tomography | |
US6281504B1 (en) | Diagnostic apparatus for nuclear medicine | |
TWI380801B (en) | Dual photons emission computed tomography system | |
US8785869B2 (en) | System and method for providing emission mammography | |
Krishnamoorthy et al. | PET physics and instrumentation | |
JP3851575B2 (en) | PET inspection equipment | |
JP4604974B2 (en) | PET equipment | |
US20090032716A1 (en) | Nuclear medicine imaging system with high efficiency transmission measurement | |
JP2011154031A (en) | Radiation inspection device | |
TW200831939A (en) | Imaging system and method for the non-pure positron emission tomography | |
Takeuchi et al. | Semiconductor detector-based scanners for nuclear medicine | |
JP2009058528A (en) | Radiation inspecting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |