TWI380464B - Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus - Google Patents

Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus Download PDF

Info

Publication number
TWI380464B
TWI380464B TW097144225A TW97144225A TWI380464B TW I380464 B TWI380464 B TW I380464B TW 097144225 A TW097144225 A TW 097144225A TW 97144225 A TW97144225 A TW 97144225A TW I380464 B TWI380464 B TW I380464B
Authority
TW
Taiwan
Prior art keywords
substrate
diffusion
phosphorus
solar cell
diffusion layer
Prior art date
Application number
TW097144225A
Other languages
Chinese (zh)
Other versions
TW201019493A (en
Inventor
Valentin Dan Mihailetchi
Yuji Komatsu
Original Assignee
Stichting Energie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stichting Energie filed Critical Stichting Energie
Priority to TW097144225A priority Critical patent/TWI380464B/en
Publication of TW201019493A publication Critical patent/TW201019493A/en
Application granted granted Critical
Publication of TWI380464B publication Critical patent/TWI380464B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

1380464 30132pifl 爲第97144225號中文說明書無劃線修正本 修正曰期101年7月31曰 六、發明說明: 【發明所屬之技術領域】 本發明是有關於使用結晶矽(Si)基板來製造太陽能 電池。此太陽能電池之實例為具有由磷擴散引起之後侧場 的棚發射極η基極(boron-emitter n-base)太陽能電池。 【先前技術】 當需要兩種擴散製程(硼及磷)時,通常在較低溫度 之磷擴散步驟之前處理較高溫度之硼擴散步驟,參見(例 如)T·巴克(T.Buck)等人的 Proceedings of 21st European1380464 30132pifl is the Chinese manual of No. 97142225. There is no slash correction. This revision is issued on July 31, 2011. The invention is related to the invention. The present invention relates to the manufacture of solar cells using a crystalline germanium (Si) substrate. . An example of such a solar cell is a boron-emitter n-base solar cell having a back side field caused by phosphorus diffusion. [Prior Art] When two diffusion processes (boron and phosphorus) are required, a higher temperature boron diffusion step is usually processed before the lower temperature phosphorus diffusion step, see, for example, T. Buck et al. Proceedings of 21st European

Photovoltaic Solar Energy Conference (第 21 屆歐洲光電太 陽能會議紀錄,2006年9月4曰至8日,德累斯頓,德國), 第1264至1267頁。此製程序列需要特殊的保護層來防止 磷在磷擴散步驟的時間期間擴散至硼擴散側中。有時,硼 自硼擴散層出來並向此保護層擴散,且在界面附近耗盡。 此情形致使發射極之薄層電阻增加,所述增加導致藉由此 製程製造之太陽能電池的串聯電阻增加。此外, 製程步驟來移除所魏,侧,絲制 作為純化及抗反射塗層),則保護層之最“ 驟’則 另一方面,若在硼擴散步驟之前處理磷擴 另外, 因為其無 在Si::期間’必須保護磷擴散侧不受删影響 $擴政躺,必須充分地防止_散至蝴側, 法谷易地由硼補償。另外,在硼 散層逸散,且因此,物-起擴㈣Γ散層之m擴 30132pifl 修正日期1〇1年7月31日 爲第97144225號中文說明書無劃線修正本 此情形妨礙獲得删摻雜之發射極的良好特性。由於此等困 難’在製造太陽能電池時,在硼擴散之前難以實現填擴散, 或者即便實現了,亦不甚成功。 儘管有可能藉由一些方法同時形成硼擴散及磷擴 散,諸如藉由在擴散製程之前將每一擴散源印刷於一侧 上,但此方法導致至少在硼側之邊緣處,硼由磷補償,因 為鱗擴散得較快’且在矽中之可溶性更大,因此容易補償 侧。 亦已知其他方式,其中針對硼及磷使用單獨的擴散, 曰曰圓以成對的形式置放於一起。兩個基板之兩侧彼此接 觸,以使其部分地不受擴散影響。此情形將磷由硼補償之 問題以及硼由磷補償之問題限制於晶圓之邊緣處。然而, ^後必須切除晶圓之邊緣,此切除顯著增加了所生產之每 個Wp的成本。 【發明内容】 本發明之目標為提供一種使用硼擴散及鱗擴散自矽 基板製造太陽能電池的方法,其令至少一上文所提及之問 題得到解決。 ⑧藉由製造結晶矽太陽能電池的方法來達成所述目 標’所述方法依次包括: 提供結晶矽基板,其具有第一側及與所述第一側相對 的第二側; 使磷預擴散至所述基板之所述第一侧中,以形成 初始深度的磷擴散層; /、 30132pifl 修正曰期101年7月31日 爲第97144225號中文說明書無劃線修正本 阻擋所述基板之所述第一侧; 使所述基板之所述第二側暴露於硼擴散源; 加熱所述基板並持續某一段時間,且加熱至某一溫 度,以便使硼擴散至所述基板之所述第二側中,且同時使 所述磷進一步擴散至所述基板中。 本發明涉及藉由在硼擴散之前已某種程度上將磷擴 散至表面中,而在硼擴散製程期間,穩定並減少逸散在氣 氛中的磷。此做法允許在硼擴散之前移除磷擴散源。與來 自碟已在其中擴散的矽表面的磷相比,自擴散源逸散之磷 的量較大且波動較大。因此,此製程改良了硼擴散p型發 射極之品質及再生性。此製程亦避免在硼擴散側上形成η 型邊緣,且因此避免使太陽能電池分流。 在一態樣中’本發明亦有關於由上文所述之方法製造 的太陽能電池。 【實施方式】 圖1繪不由根據本發明實施例之方法生產的太陽能電 池的結構的實例。太陽能電池10包括η型矽基板11,其 一側具有硼擴散層12,另一側具有磷擴散層13。應注意, ,際太陽能電池結構亦具有金屬觸點及抗反射塗層 ,但彼 專組件在圖中未繪示^圖2繪示另_實例,在太陽能電池 20中,其中ρ型矽之基板21經處理以在一側產生磷擴散 層22’且在另一側產生硼擴散層23。圖丨之太陽能電池為 較佳,施例’ ϋ為其裝置錢優於目2之太陽能電池的裝 置效能。在以下贿中,論述圖1 (意即,η型基板)中所 30132ρίΠ 修正日期101年7月31曰 爲第97144225號中織明書無劃線修正本 繪示之太陽能電池之製造方法的實施例。 此方式之第-步驟為在基板之__側製作ρ擴散層。根 據,她例在包含〇2及卩2〇5蒸氣之氣氛中,在獅。C至 900 C下加熱基板3〇並持續5分鐘至5〇分鐘。接著,用包 括卩2〇5之SA膜31 (下文中稱為聊:⑽)覆蓋基板 3〇之所有表面。此Si〇2由基板3〇之石夕與氧氣生成且p2〇5 併入^81〇2膜31中。在矽33與別〇2:1>2〇5膜31之界面處, P2〇5還原為P ’且p擴散至基板3〇之核心中(參見圖3B 中之核心33) ’直至o.oi微米至1〇微米之深度為止。至 此’ Si〇2:P2〇5膜31及p擴散層32形成於矽基板3〇之整 個表面上。接下來,藉由將基板3〇浸潰於1%至5〇% HF 洛液中持續約0.5分鐘至1〇分鐘,或使基板3〇暴露於HF 蒸氣,或使用反應性離子敍刻來儀刻基板3〇,來移除 Si〇2:P2〇5膜31 (參見圖3C)。接下來,使用ι〇/0至3〇%HF 及0.1%至50% HNO3之混合溶液將p擴散層32蝕刻掉(一 侧除外)’或使用反應性離子蝕刻來對p擴散層32進行蝕 刻。藉由用蝕刻阻擋塗層密封基板3〇之另一側或僅僅藉由 使基板30浮在溶液上可實現一側蝕刻。因此,基板3〇之 一侧現包括P擴散層32·,參見圖3D。 參看圖4A至圖4F闡釋用於在基板之一侧製造p擴散 層的替代方法。首先,藉由旋塗、喷塗或印刷,用包含p2〇5 及Si〇2精細微粒之液體、膏或凝膠41來塗覆基板40之表 面的一側,參見圖4B。可同樣塗覆基板之另一侧,但此 塗覆不會影響此製造方法之最終結果。接下來,在250¾ 1380464 30132pifl 修正日期101年7月31日 爲第97144225號中文說明書無劃線修正本 至50(TC下加熱塗層4卜當溶劑包含有機物時,溶劑會塞 發或燒盡。P205及Si(M呆留於塗層中,參見繪示塗層4j、, 之圖4〇接著在進一步加熱步驟中,在8〇〇。〇至9贼下 加熱基板40,持續2分鐘至5G分鐘。因此,所有表面均 覆蓋有叫桃,參見圖4D。氧氣來自大氣,且执來 自第-塗層膜41,’ P2〇5出來進入大氣中。正如圖3b中, P擴散至㈣心t ’且Si〇2:P2〇5膜42及p擴散層43形成 ,石夕基板40之所有表面。現在,使用1%至5〇% hf溶液 或某-其他已知方法來移除如2:?2〇5膜I使用以至 至HN〇3或反應性離子㈣,將P擴 ,層餘刻掉,首先塗覆之側除外。藉由祕刻阻擋塗層密 或僅僅使基板浮在溶液上可實現一側侧。圖祁 中1 會不結果’圖4F财―側具有P擴散層44之基板40。 參看圖5A至圖5D闡釋用於在基板之一侧製造p擴 J層=三種可能的方法。首先在一侧上使用擴散阻擋層 來阻擋基板5G的-側,參見阻擋層51。可使用下文 之不同製程來形成阻擋層51 : λ •藉由旋塗或噴塗或印刷,用包含Si〇2或Tic>2或不會 擴散至料的任何物質的液體、膏或凝膠來塗覆表面。在 200 C至700 C下加熱塗層,接著溶劑蒸發。 •在〇2或〇2+H2〇氣氛中,在850°C至1100。(:下加熱 基板50’持續〇·5小時至若干小時。接著’在所有表面上 形成厚於0.1微米的Si02膜。藉由將基板50浸潰於1%至 10% HF溶液中,來移除僅一侧上之膜。 3〇132pifl 修正日期1〇丨年7月31日 爲第97144225號中文說明書無劃線修正本 •使用化學氣相沈積來沈積大於0.1微米厚之幻〇2或 SlN或Ή〇2或任何類似物質。 、在下一步驟中,使用如參看圖3Β或圖4D所述之方 法,使P擴散至矽核心54中。形成Si02:P2〇5層52 ,且P 擴散進去,但阻擋層51防止P在一側擴散至矽核心54中, 广見圖5C。接著,藉由將基板50浸潰於至5〇% HF溶 液中’來移除Si〇2:P2〇5層52及阻擋層51。 根據另一實施例,使用背對背擴散方法來達成基板之 僅側上的P擴散,在戶斤述方法中,兩個基板在其表面處 彼此接觸。 在如上所述磷預擴散至基板之第一側中之後,在將基 板置於爐中以進行進-步處理之前,阻擋基板之該第一 侧。在實施例中,基板60之第一侧61自另一基板幻之第 -侧62吨。所述另-基板可為經過_處理之基板,參 見圖此阻擋方式被稱為背對背(back-t〇 back)。背對 背組態之優勢之-在於與個別地阻擋每個基板相比,在爐 中需要的空間較少。此外’最有效地防止碟自第一側61 逃逸’因為面向之基板亦具有較高磷濃度,此情形使磷濃 度保持於較佳條件。圖6B $會示基板6〇由尚未處理之基板 65 (意即,新鮮基板)阻擋的替代方案。 ,,中’基板之第二側暴露於爛擴散源。此刪廣散源 可為蒸氣源或塗層源。在爐中,加熱基板持續某段時間, 且加熱至某-溫度’以使散至基板之第二側中,且同 時使Θ進步紐朗述基板巾(意即,深於所述初始深 1380464 3〇l32pifl 修正曰期101年7月31日 爲第97144225號中文說明書無劃線修正本 虞)。已用硼蒸氣源進行擴散來達成成功結果。在下文中, 參看圖7描述對實施例之具體描述内容。將兩個基板7〇、 71背對背置於射’且在包含〇2及B2〇3蒸氣之氣氛中, 在至looot:下進行加熱,持續3〇分鐘至12〇分鐘, 所述瘵氣可藉由引導N2穿過ΒΒι*3液體來產生。亦可使用 如BC1S或硼酸三甲酯(tremethyl)之其他硼液體源來代替 。接著,用包含ho3之Si〇2膜72 (下文中稱為 Si〇2:B2〇3)來覆蓋暴露之表面(意即,未受阻擋之表面)。 在矽核心70、71與Si〇2:B2〇3膜72之界面處,B擴散至 矽中,直至0.01微米至L0微米之深度為止,以形成3擴 散層73、74。一部分ίο;可能潛行至基板7〇、71之間的 微小間隙中,但影響非常小,因為在彼等區域處存在重度 擴散之同時,存在於P擴散層76、77中之p亦由所使 用之熱3:驅動而進一步擴散至相應的石夕核心7〇、71中。此 情形將導致深於其原始深度的Ρ擴散層。 圖7之實例之硼擴散使用蒸氣源擴散,熟習此項技術 者將清楚’此方法在如圖4Α至圖4F之碟擴散步驟中所描 述之塗層源擴散的情況下亦有效。 硼及磷之同時擴散期間的磷之預擴散與進一步擴散 的組合導致太陽能電池具有非常良好之特性,如自圖8可 見。圖8繪示η型多結晶基板上使用新方法(如本文所介 紹)及目前技術之方法(參看(例如)Τ.巴克等人之 Proceedings of 21st European Photovoltaic Solar Energy Conference ( 2006年9月4日至8日,德累斯頓,德國) 10 1380464 30132pifl 爲第97144225號中文說明書無劃線修正本 修正曰期101年7月31日 第1264頁至1267頁)製造之太陽能電池效率值的曲線圖。 由於上述製造方法’當磷個別地擴散進去(而非與爛 同時擴散)時,構擴散進去地較深。當使用本發明時,在Photovoltaic Solar Energy Conference (The 21st European Photovoltaic Solar Conference, September 4-8, 2006, Dresden, Germany), pp. 1264-1267. This sequence requires a special protective layer to prevent phosphorus from diffusing into the boron diffusion side during the time of the phosphorus diffusion step. Sometimes boron emerges from the boron diffusion layer and diffuses toward the protective layer and is depleted near the interface. This situation causes an increase in the sheet resistance of the emitter, which increases the series resistance of the solar cell fabricated by this process. In addition, the process steps to remove the Wei, the side, the silk is made into a purified and anti-reflective coating), then the most "protective layer" of the protective layer, on the other hand, if the phosphorus is expanded before the boron diffusion step, because it is not During the Si:: period, it is necessary to protect the phosphorus diffusion side from the effect of the de-emphasis, and it must be sufficiently prevented to scatter to the side of the butterfly, and the valley is easily compensated by boron. In addition, the boron layer is dispersed, and therefore, The object-extension (4) Γ 之 之 扩 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 132 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 'When manufacturing solar cells, it is difficult to achieve diffusion diffusion before boron diffusion, or even if it is achieved, it is not very successful. Although it is possible to simultaneously form boron diffusion and phosphorus diffusion by some methods, such as by diffusion process before each A diffusion source is printed on one side, but this method results in boron being compensated by phosphorus at least at the edge of the boron side, because the scale spreads faster 'and is more soluble in the crucible, so it is easier to compensate the side. Also known its In other ways, a separate diffusion is used for boron and phosphorus, and the rounds are placed in pairs. The two sides of the two substrates are in contact with each other so that they are partially unaffected by diffusion. The problem of boron compensation and the problem of boron compensation by phosphorus are limited to the edge of the wafer. However, the edge of the wafer must be cut after ^, which significantly increases the cost of each Wp produced. It is an object to provide a method of fabricating a solar cell using a boron diffusion and scale diffusion self-depositing substrate, which solves at least one of the problems mentioned above. 8 Achieving the target by a method of fabricating a crystalline germanium solar cell. The method in turn includes: providing a crystalline germanium substrate having a first side and a second side opposite the first side; pre-diffusing phosphorus into the first side of the substrate to form an initial depth Phosphorus diffusion layer; /, 30132pifl 曰 7 7 7 7 7 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 The two sides are exposed to a boron diffusion source; the substrate is heated for a certain period of time and heated to a temperature to diffuse boron into the second side of the substrate while simultaneously diffusing the phosphorus to In the substrate. The present invention relates to stabilizing and reducing phosphorus escaping in an atmosphere during a boron diffusion process by diffusing phosphorus to the surface to some extent prior to boron diffusion. This practice allows for diffusion prior to boron diffusion. The phosphorus diffusion source is removed. The amount of phosphorus that escapes from the diffusion source is larger and fluctuates more than the phosphorus from the surface of the crucible in which the dish has diffused. Therefore, the process improves the boron diffusion p-type emitter. Quality and regenerability. This process also avoids the formation of n-type edges on the boron diffusion side, and thus avoids shunting the solar cells. In one aspect, the invention also relates to solar cells fabricated by the methods described above. [Embodiment] Fig. 1 depicts an example of a structure of a solar battery which is not produced by the method according to an embodiment of the present invention. The solar cell 10 includes an n-type germanium substrate 11 having a boron diffusion layer 12 on one side and a phosphorus diffusion layer 13 on the other side. It should be noted that the solar cell structure also has a metal contact and an anti-reflection coating, but the special component is not shown in the figure. FIG. 2 illustrates another example, in the solar cell 20, wherein the p-type substrate is 21 is treated to produce a phosphorus diffusion layer 22' on one side and a boron diffusion layer 23 on the other side. It is better to use the solar cell of Fig. 2, which is a device that is superior to the solar cell of the device. In the following bribes, the implementation of the solar cell manufacturing method shown in Figure 1 (that is, the n-type substrate) is discussed. example. The first step of this method is to fabricate a p diffusion layer on the side of the substrate. According to her, she is in the atmosphere of 蒸气2 and 卩2〇5 vapour, in the lion. The substrate was heated at C to 900 C for 5 minutes to 5 minutes. Next, all the surfaces of the substrate 3 are covered with an SA film 31 (hereinafter referred to as ":10") including 卩2〇5. This Si〇2 is formed by the substrate 3 and oxygen and p2〇5 is incorporated into the ^81〇2 film 31. At the interface between 矽33 and 〇2:1>2〇5 film 31, P2〇5 is reduced to P' and p is diffused into the core of the substrate 3〇 (see core 33 in Fig. 3B) until o.oi Micron to a depth of 1 〇 micron. Thus, the 'Si 2 2 : P 2 〇 5 film 31 and the p diffusion layer 32 are formed on the entire surface of the ruthenium substrate 3 . Next, by dipping the substrate 3〇 in 1% to 5〇% HF solution for about 0.5 minutes to 1 minute, or exposing the substrate 3〇 to HF vapor, or using a reactive ion scriber The substrate 3 is engraved to remove the Si〇2:P2〇5 film 31 (see Fig. 3C). Next, the p-diffusion layer 32 is etched away (except one side) using a mixed solution of ι〇/0 to 3〇%HF and 0.1% to 50% HNO3' or the p-diffusion layer 32 is etched using reactive ion etching. . One side etching can be achieved by sealing the other side of the substrate 3 with an etch barrier coating or simply by floating the substrate 30 on the solution. Therefore, the side of the substrate 3 现 now includes the P diffusion layer 32·, see Fig. 3D. An alternative method for fabricating a p-diffusion layer on one side of a substrate is illustrated with reference to Figures 4A-4F. First, one side of the surface of the substrate 40 is coated with a liquid, paste or gel 41 containing fine particles of p2〇5 and Si〇2 by spin coating, spraying or printing, see Fig. 4B. The other side of the substrate can be coated as such, but this coating does not affect the end result of this manufacturing process. Next, at 2503⁄4 1380464 30132pifl Revised date July 31, 101 is No. 97142225 Chinese manual No scribe correction to 50 (TC heating coating 4) When the solvent contains organic matter, the solvent will be smothered or burned out. P205 and Si (M stay in the coating, see coating 4j, Figure 4) then in a further heating step, heating the substrate 40 under 8 〇〇 to 9 thieves for 2 minutes to 5G Minutes. Therefore, all surfaces are covered with peaches, see Figure 4D. Oxygen comes from the atmosphere and is carried out from the first coating film 41, 'P2〇5 comes out into the atmosphere. As shown in Figure 3b, P diffuses to (four) heart t 'And Si〇2: P2〇5 film 42 and p diffusion layer 43 are formed, all surfaces of the stone substrate 40. Now, use 1% to 5〇% hf solution or some other known method to remove such as 2: 2〇5 Membrane I is used up to HN〇3 or reactive ions (4), P is expanded, and the layer is left out, except for the side coated first. The barrier coating is dense or only the substrate is floated on the solution. One side can be realized. In the figure, 1 will not result. The substrate 40 having the P diffusion layer 44 on the side of Fig. 4F. Fig. 5A to Fig. 5D Release for making a p-J layer on one side of the substrate = three possible methods. First use a diffusion barrier on one side to block the - side of the substrate 5G, see barrier layer 51. Different processes can be used to form the barrier Layer 51: λ • Coating the surface with a liquid, paste or gel containing Si〇2 or Tic>2 or any substance that does not diffuse into the material by spin coating or spraying or printing. At 200 C to 700 C The coating is heated down, followed by solvent evaporation. • In a 〇2 or 〇2+H2〇 atmosphere, at 850 ° C to 1100. (: The substrate 50' is heated for 5 hrs to several hours. Then 'on all surfaces An SiO 2 film thicker than 0.1 μm was formed thereon. The film on only one side was removed by dipping the substrate 50 in a 1% to 10% HF solution. 3〇132pifl Corrected date 1 July 31 For the Chinese manual No. 97142225, there is no slash correction. • Use chemical vapor deposition to deposit illusion 2 or SlN or Ή〇2 or any similar substance larger than 0.1 μm. In the next step, use Figure 3 or The method described in FIG. 4D diffuses P into the crucible core 54. Forms a SiO 2 :P 2 〇 5 layer 52 , and P Diffused in, but the barrier layer 51 prevents P from diffusing into the crucible core 54 on one side, as shown in Figure 5C. Next, Si〇2:P2 is removed by dipping the substrate 50 into a 5 〇% HF solution. 〇5 layer 52 and barrier layer 51. According to another embodiment, a back-to-back diffusion method is used to achieve P-diffusion on only the side of the substrate, in which the two substrates are in contact with each other at their surfaces. After the phosphorus is pre-diffused into the first side of the substrate, the first side of the substrate is blocked before the substrate is placed in the furnace for further processing. In an embodiment, the first side 61 of the substrate 60 is 62 tons from the first side of the other substrate. The other substrate may be a processed substrate, and the blocking method is referred to as a back-t〇 back. The advantage of back-to-back configuration is that less space is required in the furnace than if each substrate is individually blocked. In addition, the dish is most effectively prevented from escaping from the first side 61 because the substrate facing it also has a higher phosphorus concentration, which keeps the phosphorus concentration under better conditions. Figure 6B$ shows an alternative to substrate 6 阻挡 blocked by unprocessed substrate 65 (i.e., fresh substrate). The second side of the medium substrate is exposed to a source of decay. This source can be a source of vapor or a source of coating. In the furnace, the substrate is heated for a certain period of time and heated to a certain temperature to disperse into the second side of the substrate, and at the same time, the substrate is advanced (ie, deeper than the initial depth of 1380464). 3〇l32pifl Corrected the July 31, 101, the Chinese manual No. 97142225 without a slash correction.) A boron vapor source has been used for diffusion to achieve a successful result. In the following, a detailed description of the embodiments will be described with reference to FIG. The two substrates 7〇, 71 are placed back to back and in an atmosphere containing 〇2 and B2〇3 vapors, and heated under looot: for 3 〇 to 12 〇 minutes, the helium can be borrowed Produced by guiding N2 through the ΒΒι*3 liquid. Other sources of boron liquid such as BC1S or tremethyl borate may also be used instead. Next, the exposed surface (i.e., the unobstructed surface) is covered with a Si〇2 film 72 (hereinafter referred to as Si〇2: B2〇3) containing ho3. At the interface between the crucible cores 70, 71 and the Si〇2:B2〇3 film 72, B diffuses into the crucible until a depth of 0.01 μm to L0 μm to form 3 diffusion layers 73, 74. A part of ίο; may sneak into the small gap between the substrates 7〇, 71, but the effect is very small, because there are heavy diffusions in these areas, and the p existing in the P diffusion layers 76, 77 is also used. Heat 3: Drive and further spread to the corresponding Shixi cores 7〇, 71. This situation will result in a Ρ diffusion layer deeper than its original depth. The boron diffusion of the example of Figure 7 is diffused using a vapor source, as will be apparent to those skilled in the art. This method is also effective in the case of diffusion of the coating source as described in the dish diffusion step of Figures 4A through 4F. The combination of pre-diffusion and further diffusion of phosphorus during the simultaneous diffusion of boron and phosphorus results in very good characteristics of the solar cell, as can be seen from Figure 8. Figure 8 illustrates the use of a new method (as described herein) on the n-type polycrystalline substrate and methods of the prior art (see, for example, Proceedings of 21st European Photovoltaic Solar Energy Conference (September 4, 2006) To the 8th, Dresden, Germany) 10 1380464 30132pifl is the curve of the solar cell efficiency value manufactured by the Chinese manual No. 97142225 without the slash correction of this revision dated July 31, 101, pages 1264 to 1267) . Due to the above-described manufacturing method, when phosphorus is diffused individibly (rather than being diffused simultaneously with the rot), the structure diffuses deeper into it. When using the invention,

〇.5微米之深度處’基板中之磷濃度可比5微米之深度處 的濃度高100倍以上。 X 在根據本發明之方法中,磷亦可在硼側擴散至矽中, 因為較少量之磷將自磷侧逸散至相對側(意即,硼擴散 侧)。然而,在硼侧,擴散進去之磷的量小於擴散進去2硼 的里,且擴散層可容易滿足P型發射極之適當條件。 ”擴散進去之磷的量仍大於基板之背景摻雜。0 2微米 深處之磷濃度可比5微米深處之磷濃度高1〇〇倍以上。 本發明允許製造滿足發射極之所需條件的硼摻雜分 :,而不允許量大於硼之磷擴散至硼擴散側中,且不允許 量大於磷之硼擴散至磷擴散侧中。 σ 雖然本發明已以實施例揭露如上,然其並非用以限定 所屬技術領域中具有通常知識者,在不_ 和範圍内,當可作些許之更動與潤飾,故本 ί圖式簡視後附之申請專利範圍所界定者為準。 池:以根據本發明實施例之方法生產的太陽能電 圖2繪示基板為ρ型矽的另一實例。 擴散㈣解法繪示料在基板之—側製作ρ 11 丄: 30132pifl 修正日期101年7月31日 爲第97144225號中文說明書無 圖4A至圖4F以圖紐The concentration of phosphorus in the substrate at a depth of 5 μm can be more than 100 times higher than the concentration at a depth of 5 μm. X In the process according to the invention, phosphorus can also diffuse into the crucible on the boron side, since a smaller amount of phosphorus will escape from the phosphorous side to the opposite side (i.e., the boron diffusion side). However, on the boron side, the amount of phosphorus diffused into is smaller than that diffused into the 2 boron, and the diffusion layer can easily satisfy the appropriate conditions of the P-type emitter. The amount of phosphorus diffused into is still greater than the background doping of the substrate. The concentration of phosphorus at a depth of 0 μm can be more than 1〇〇 higher than the concentration of phosphorus at a depth of 5 μm. The present invention allows the fabrication of conditions that meet the requirements of the emitter. The boron doping component: does not allow the phosphorus of the boron to diffuse into the boron diffusion side, and does not allow the boron of the phosphorus to diffuse into the phosphorus diffusion side. σ Although the present invention has been disclosed by the above examples, it is not To limit the general knowledge in the art, no change or refinement can be made in the _ and scope, so the scope of the patent application is subject to the scope of the patent application. The solar electric diagram 2 produced according to the method of the embodiment of the present invention shows another example of the substrate being p-type 。. The diffusion (four) solution shows that the material is produced on the side of the substrate ρ 11 丄: 30132pifl Revision date July 31, 101 For the Chinese manual No. 97142225, there is no Figure 4A to Figure 4F.

擴散層的替代方糾處理步^用於結板之—側製造p 圖5A至圖5D以圓紐vu ,A 擴散層的+解法·祕減板之—側製造P 擴政料㈣二方法的處理步驟。 圖6A、圖6BI會示用於在蝴擴散步驟期間阻擋基板之 一側的兩種可能組態。 圖7以圖解法繪示硼擴散步驟期間的背對背組態。 圖8是繪示由根攄本發明之方法生產之太陽能電池與 目前技術之太陽能電池相比而量測到之效率的曲線圖。 【主要元件符號說明】 10、 2〇 :太陽能電池 11 : π型碎基板 12 : 爛擴散層 13 : 鱗擴散層 21 : 基板 22 : 磷擴散層 23 : 硼擴散層 30 : 基板 31 : Si〇2:P205 膜 32 : p擴散層 32': p擴散層 33 : 核心 40 : 基板 41 : 塗層 12 1380464 修正曰期101年7月31曰 30132pifl 爲第97144225號中文說明書無劃線修正本 4Γ :塗層 42 : Si02:P205 膜 43 : P擴散層 44 : P擴散層 50 :基板 51 :阻擋層 52 : Si02:P205 層 54 :石夕核心 60 :基板 61 :基板第一側 62 :基板第一側 63 :基板 65 :尚未處理之基板 70 :基板 71 :基板 72 : Si02:B2O3 膜 73 : B擴散層 74 : B擴散層 76 : P擴散層 77 : P擴散層 13The alternative method of the diffusion layer is used for the side-by-side fabrication of the junction plate. Figure 5A to Figure 5D are used to make the P-expansion material (four) method of the circle-vu, A-diffusion layer Processing steps. Figures 6A, 6BI illustrate two possible configurations for blocking one side of the substrate during the butterfly diffusion step. Figure 7 graphically illustrates the back-to-back configuration during the boron diffusion step. Figure 8 is a graph showing the efficiency measured by a solar cell produced by the method of the present invention compared to a solar cell of the prior art. [Description of main component symbols] 10, 2〇: Solar cell 11: π-type broken substrate 12: rot diffusion layer 13: scale diffusion layer 21: substrate 22: phosphorus diffusion layer 23: boron diffusion layer 30: substrate 31: Si〇2 :P205 film 32: p-diffusion layer 32': p-diffusion layer 33: core 40: substrate 41: coating 12 1380464 revised period 101, July 31, 30,132,pifl, the number 97,114,425, Chinese manual, no scribe correction, 4 Γ: painted Layer 42: Si02: P205 Film 43: P diffusion layer 44: P diffusion layer 50: Substrate 51: Barrier layer 52: Si02: P205 Layer 54: Shi Xi core 60: Substrate 61: Substrate first side 62: First side of substrate 63 : Substrate 65 : Unprocessed substrate 70 : Substrate 71 : Substrate 72 : SiO 2 : B 2 O 3 Film 73 : B diffusion layer 74 : B diffusion layer 76 : P diffusion layer 77 : P diffusion layer 13

Claims (1)

1380464 3〇132pifl 爲第97144225號中文說明書無劃線修正本 修正日期101年7月31曰 七、申請專利範園: 1. 一種結晶矽太陽能電池的製造方法,依次包括. 的第S結晶石夕基板,其具有第一側及與所述第一側相對 使磷職散至·基板之所述第—财,以形 Si〇2及Ρζ〇5之膜以及具有初始深度的鱗擴散層; 自所述基板之所有側移除所述包括Si〇2及p2〇5之 阻撞所述基板之所述第一側; 、 使所述基板之所述第二側暴露於硼擴散源; 加熱所述基板,持續某段時間,且加熱至某一溫戶, 以使爛擴散至所述基板之所述第二側中,且同時使所^ 進一步擴散至所述基板中。 2.如ΐ請專利範®第1項所述之結晶♦太陽能電池 的製造方法,其中所述使磷預擴散至所述基板之第一侧包 括: 、在包含〇2及ρζ〇5之氣氛中加熱所述基板以產生所 述包括Si〇2及1>2〇5之膜及中間磷擴散層在所述基板之所 有側上;以及 蝕刻掉所述中間磷擴散層,所述第一側除外。 ^如申請專利範圍第1項所述之結晶矽太陽能電池 的製造方法,其中所述使磷預擴散至所述基板之第一側包 括: 、使用絲網印刷方法、單侧旋塗式方法或單側喷塗式方 法在所述第一側上形成塗層,所述塗層包括P2〇5及Si02 ; 加熱所述基板’以產生所述包括Si02及P205之膜及 14 1380464 30132pifl 修正日期101年7月31日 爲第97144225號中文說明書無劃線修正本 中間麟擴散層在所述基板之所有側上;以及 韻刻掉所述中間磷擴散層,所述第一側除外。 4.如申凊專利範圍第1項所述之結晶石夕太陽能電池 的製造方法,其中所述使磷預擴散至所述基板之第一側包 括: 阻擋所述基板之所述第二側;以及 在包含〇2及P2〇5之氣氛中加熱所述基板,以產生所 述包括Si〇2及P2〇5之膜以及中間磷擴散層在所述基板之 所有側上。 5.如申請專利範圍第1項所述之結晶矽太陽能電池 的製造方法,其中所述使磷預擴散至所述基板之第一側包 括: 阻擋所述基板之所述第二側; 使用絲網印刷方法、單側旋塗式方法或單侧喷塗式方 法在所述第一侧上形成塗層,所述塗層包括別〇2 ; 以及 加熱所述基板,以產生所述包括Si02及p2〇5之膜以 及中間磷擴散層在所述基板之所有側上。 曰6.如申請專利範圍第2項至第5項之任一項所述之結 晶矽太陽能電池的製造方法,其中在80(TC至900¾的溫度 下加熱所述基板。 7. 如申請專利範圍第4項或第5項所述之結晶矽太陽 二的製造方法’其中藉由在所述第二側上形成擴散阻 擋層來阻擋所述基板之所述第二側。 8. 如申請專利範圍第4項或第5項所述之結晶矽太陽 15 1380464 30132ρΐΠ 修正日期101年7月31日 爲第97144225號中文說明書無劃線修正本 月&電池的製造方法’其中藉由另一基板來阻擋所述基板之 所述第二側。 9. 如申請專利範圍第1項所述之結晶矽太陽能電池 的製造方法,其中藉由另一基板之第一侧來阻擋所述基板 之所述第一侧。 10. 如申請專利範圍第9項所述之結晶矽太陽能電池 的製造方法’其中所述另一基板包括在所述阻擔時以與所 述基板類似方式而處理之經處理的基板。 11· ^申請專利範圍第丨項至第5項之任一項所述之 結晶石夕太陽能電池的製造方法,其中藉由用塗覆層覆蓋所 述基板之所述第一側來阻擋所述基板之所述第一側。 二2申ΐ專利範圍第1項所述之結晶矽太陽能電池 二中所述使所述基板之所述第二側暴露於硼 擴政源包括使所述基板暴露於包含〇2及β2〇3之氣氛。 池的利範圍第12項所述之結晶石夕太陽能電 =的k方法,其中所述某段時間在30分鐘至120分鐘之 間。 14·如申請專利範圍第12或第13 陽能範K二第導t所述之結晶梦太 產生所述B203。 /、日 導2穿過ΒΒγ3液體來 16. -種由如前述中請專利範 項所述之結晶♦太陽能電 =15項中任- 池。 耵裊w方去製造的太陽能電 16 1380464 30132pifl 爲第97144225號中文說明書無劃線修正本 修正日期101年7月31日 四、 指定代表圖: (一) 本案之指定代表圖:圖1 (二) 本代表圖之元件符號簡單說明: 10 :太陽能電池 11 : η型矽基板 12 :硼擴散層 13 :磷擴散層 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 益1380464 3〇132pifl is the Chinese manual of No. 97142225. There is no slash correction. The date of this amendment is July 31, 2007. Patent application: 1. A method for manufacturing a crystalline germanium solar cell, which in turn includes the a substrate having a first side and a surface opposite to the first side to cause phosphorus to diffuse to the substrate, to form a film of Si〇2 and Ρζ〇5, and a scale diffusion layer having an initial depth; The first side of the substrate removes the first side of the substrate including Si〇2 and p2〇5; and exposes the second side of the substrate to a boron diffusion source; The substrate is held for a period of time and heated to a temperature to diffuse the rot into the second side of the substrate while simultaneously diffusing further into the substrate. 2. The method according to claim 1, wherein the pre-diffusion of phosphorus to the first side of the substrate comprises: in an atmosphere comprising 〇2 and ρζ〇5 Heating the substrate to produce the film comprising Si〇2 and 1>2〇5 and an intermediate phosphorus diffusion layer on all sides of the substrate; and etching away the intermediate phosphorus diffusion layer, the first side except. The method of manufacturing a crystalline germanium solar cell according to claim 1, wherein the pre-diffusion of phosphorus to the first side of the substrate comprises: using a screen printing method, a one-side spin coating method, or A one-side spray method forms a coating on the first side, the coating comprising P2〇5 and SiO2; heating the substrate ' to produce the film comprising SiO2 and P205 and 14 1380464 30132pifl Revision Date 101 On July 31st, the Chinese specification No. 97142225 is not scribed to correct the intermediate lining diffusion layer on all sides of the substrate; and the intermediate phosphorus diffusion layer is engraved, except for the first side. 4. The method of manufacturing a crystalline solar cell according to claim 1, wherein the pre-diffusion of phosphorus to the first side of the substrate comprises: blocking the second side of the substrate; And heating the substrate in an atmosphere comprising 〇2 and P2〇5 to produce the film comprising Si〇2 and P2〇5 and the intermediate phosphorus diffusion layer on all sides of the substrate. 5. The method of manufacturing a crystalline germanium solar cell according to claim 1, wherein the pre-diffusion of phosphorus to the first side of the substrate comprises: blocking the second side of the substrate; using silk a screen printing method, a one-side spin coating method, or a one-side spray method to form a coating on the first side, the coating comprising a second layer; and heating the substrate to produce the SiO 2 and The film of p2〇5 and the intermediate phosphorus diffusion layer are on all sides of the substrate. The method for producing a crystalline germanium solar cell according to any one of claims 2 to 5, wherein the substrate is heated at a temperature of 80 (TC to 9003⁄4). The method of manufacturing a crystalline germanium according to item 4 or 5, wherein the second side of the substrate is blocked by forming a diffusion barrier layer on the second side. The crystallization of the fourth or fifth 矽 矽 15 1 1 1 1 1 15 15 15 15 15 15 15 15 15 15 15 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 971 The method of manufacturing a crystalline germanium solar cell according to claim 1, wherein the first substrate is blocked by the first side of the substrate 10. The method of manufacturing a crystalline germanium solar cell according to claim 9 wherein said another substrate comprises a treated substrate treated in a manner similar to said substrate during said resisting 11· ^申The method for manufacturing a crystalline solar cell according to any one of the preceding claims, wherein the substrate is blocked by covering the first side of the substrate with a coating layer. The first side of the invention, wherein the exposing the second side of the substrate to a boron diffusion source comprises exposing the substrate to a germanium source as described in the crystallization solar cell of claim 1 2 and the atmosphere of β2〇3. The k-method of the crystallized solar energy=12 described in the range of the pool, wherein the certain period of time is between 30 minutes and 120 minutes. The crystallized dream described in 12 or 13th yang can be produced as B203. /, the day 2 is passed through the ΒΒγ3 liquid. 16. The crystal is as described in the aforementioned patent specification. Solar power = 15 items in the middle - pool. 耵袅w side to manufacture solar power 16 1380464 30132pifl for the 97114425 Chinese manual no line correction This amendment date July 31, 101 Fourth, the designated representative map: (a) The designated representative figure of this case: Figure 1 (2) The components of this representative figure Brief Description Number: 10: solar cell 11: η-type silicon substrate 12: the boron diffusion layer 13: phosphorus diffusion layer Fifth, if the case of formula, please disclosed invention features most indicative of the formula: Yi
TW097144225A 2008-11-14 2008-11-14 Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus TWI380464B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097144225A TWI380464B (en) 2008-11-14 2008-11-14 Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097144225A TWI380464B (en) 2008-11-14 2008-11-14 Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus

Publications (2)

Publication Number Publication Date
TW201019493A TW201019493A (en) 2010-05-16
TWI380464B true TWI380464B (en) 2012-12-21

Family

ID=44831756

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097144225A TWI380464B (en) 2008-11-14 2008-11-14 Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus

Country Status (1)

Country Link
TW (1) TWI380464B (en)

Also Published As

Publication number Publication date
TW201019493A (en) 2010-05-16

Similar Documents

Publication Publication Date Title
KR101515255B1 (en) Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus
US9178086B2 (en) Method for fabricating back-contact type solar cell
JP5818972B2 (en) Semiconductor laminated body and method for manufacturing the same, method for manufacturing semiconductor device, semiconductor device, dopant composition, dopant injection layer, and method for forming doped layer
KR20130129818A (en) Method for preparing an n+pp+ or p+nn+ structure on silicon wafers
JP2011503904A (en) Method for forming back point contact structure of silicon solar cell
KR20140071478A (en) Method for forming diffusion regions in a silicon substrate
TWI386982B (en) Method for the selective doping of silicon as well as silicon substrate treated therewith
CN105609571A (en) IBC solar cell and manufacturing method thereof
TW201349547A (en) Method for forming a solar cell with a selective emitter
US20110244626A1 (en) Method of forming solar cell
JP2010232530A (en) Method of manufacturing photoelectric conversion element, and photoelectric conversion element
TWI380464B (en) Method of manufacturing crystalline silicon solar cells using co diffusion of boron and phosphorus
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
KR20110020062A (en) Method of manufacturing back junction solar cell by using plasma doping and diffusion and the solar cell
JP2010114345A (en) Method of manufacturing solar battery
JP6838399B2 (en) Manufacturing method of semiconductor element and manufacturing method of solar cell
TW201637232A (en) Method for producing solar cell
WO2018043523A1 (en) Method for forming boron diffusion layer and phosphorus diffusion layer
TW201624753A (en) Method for producing photovoltaic power device
JP2017045930A (en) COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, MANUFACTURING METHOD FOR SEMICONDUCTOR SUBSTRATE HAVING n-TYPE DIFFUSION LAYER, AND MANUFACTURING METHOD FOR SOLAR CELL
TW201349296A (en) Method for producing a semiconductor wafer doped differently on both sides
IL288136B2 (en) Bifacial photovoltaic cell manufacturing process
JP2016149507A (en) Semiconductor device manufacturing method, soar cell manufacturing method and solar cell
JPS5961076A (en) Manufacture of solar battery
CN107346795A (en) The doping method of double-side cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees