TWI378668B - Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas - Google Patents

Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas Download PDF

Info

Publication number
TWI378668B
TWI378668B TW96105912A TW96105912A TWI378668B TW I378668 B TWI378668 B TW I378668B TW 96105912 A TW96105912 A TW 96105912A TW 96105912 A TW96105912 A TW 96105912A TW I378668 B TWI378668 B TW I378668B
Authority
TW
Taiwan
Prior art keywords
receiver
channel
antenna
phase
transmitter
Prior art date
Application number
TW96105912A
Other languages
Chinese (zh)
Other versions
TW200746678A (en
Inventor
Karim Nassiri-Toussi
Jeffrey M Gilbert
Chuen-Shen Shung
Dmitry M Cherniavsky
Original Assignee
Sibeam Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sibeam Inc filed Critical Sibeam Inc
Publication of TW200746678A publication Critical patent/TW200746678A/en
Application granted granted Critical
Publication of TWI378668B publication Critical patent/TWI378668B/en

Links

Landscapes

  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

1378668 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用以利用多發射及接收天線最大化無 線鏈路預算及縮短延遲擴展之適應性波束操控方法之適應 性波束操控方法。 【先前技術】 在大多數無線通信系統中,空中鏈路係由一發射天線與 一接收天線之間的傳播頻道組成。然而,已確信,在發射 ® 器及接收器上使用多個天線會顯著地增加鏈路預算,且因 此增加鏈路容量。此方法之缺點為亦可能極大地增加系統 之複雜性。具有多個發射及接收天線之系統稱為無線 ΜΙΜΟ(多輸入多輸出)系統。 對於ΜΙΜΟ系統,經由以下方法之一獲得鏈路預算或鏈 路容量之增加:增加多樣性、多工傳輸及波束成形。當使 用增加多樣性之方法時’藉由多個天線發射及接收信號之 φ 類似複本。此等多個傳輸可藉由使用明顯的延遲來在時間 上分離(使無關聯),或藉由使用明顯的頻率偏移來在頻率 上分離,或藉由使用特定的排列及/或編碼來在程式碼空 間中分離。使用最佳最大比率結合(MRC)接收器來組合多 個接收。此方法無需知曉發射器側之頻道轉移函數。然 而在二方法中,其需要為各天線複製發射及接收資料 路径(類比及數位前端)之有效部分。 當前的大多數ΜIΜ Ο系統遵循上述之第一(多樣性)方 法藉由此方法產生之鏈路預算大約小於藉由波束成形所 118829.doc 1378668 產生之鏈路預算的]^倍,其中N為天線之數目。此外在 多數情況下,現有實施例需要複雜的系統其中為每一天 線複製資料路徑之整個類比及數位前端部分。在多工傳輸 方案中,使用頻道轉移函數之準確知識來使總體發送至接 收轉移函數形成為獨立(正交)的傳輸鏈路,在該傳輸鏈路 上,藉由基於估值填入(water filling)原理之使用正確的編 碼及功率分配來多工傳輸資料(較強鏈路上的更多的功率 及資料如所提及,此方法需要對發射器侧之頻道轉移 函數有某些知曉。其亦需要為各天線複製發射及接收資料 路徑(類比及數位)之有效部分。然而,在經最佳設計之情 況下,其可提供最大的容量。 存在基於多工傳輸方法之實施例’但其複雜性頗對消費 者及行動無線應用造成抑制,除非ΜΙΜΟ系統之維度(亦即 天線之數目)有限’但此進而限制最大可獲得之鏈路預算 增長。在波束成形方法中,使用對於頻道轉移函數之準確 瞭解來聚焦在總體發射至接收頻道之最強子空間(稱為特 徵向量)上之.、傳輸。該信號然後在彼子空間上傳輸。此藉 由為各發射及接收天線單獨地正確調節信號相位及可能情 況下之增益來完成。此方案明顯需要對發射器侧之頻道轉 移函數有某些知曉。然而’可僅複製類比資料路徑之子集 來完美地實施該方案,且因此可能需要更簡單的實施例, 及/或允許使用更多數目之天線。其亦提供較之上述增加 多樣性方法更好的鏈路預算.,且對於高度關聯之頻道,可 118829.doc 1378668 接近上述多工傳輸方法之容量。此方法要求傳輸頻寬為載 波頻率之一小部分。請注意,多工傳輸可經由沿發射至接 收頻道之各種特徵向量的平行波束成形來完成。 波束成形實施例大多數可見於雷達應用中,其中首先, 發射器單元與接收器單元相^且纟二欠,波束成形之目標 完全不同於鏈路預算或鏈路容量最大化。其他波束成形提 議使用直接的奇異值分解技術,其導致不適合消費者及行 動無線應用之非常複雜的實施例,且因此限制了 MIM〇系 統之維度(亦即’天線之數目),且因此限制了最大可獲得 的鏈路預算增長。 【發明内容】 本發明揭示了一種用於適應性波束操控之方法及設備。 在一項實施例中’該方法包含使用多個發射及接收天線執 行適應性波束操控,其包括反覆執行一對訓練序列,其中 該對訓練序列包括估計一發射器天線陣列權重向量及一接 收器天線陣列權重向量。 【實施方式】 一種以降低的(且潛在地最低)複雜性及、增加的(且潛在地 最大)增益為時變傳播頻道執行波束成形的有效且適應性 的技術》與現有解決方案相反,波束成形係在不直接執行 奇異值分解(SVD)(其在實施時,非常複雜)之情況下執 行。作為替代,經由適應性反覆作業方案獲得最佳頻道特 徵向量或子空間。 波束成形之二階效應(secondary effect)為所得波束成形 118829.doc 办、’將通*具有較短的延遲擴展,此意謂符號間干擾(⑻) 由亦將較短。 在以下描述中’闡明許多細節以提供本發明之更詳盡的 解釋然而’熟習此項技術者將顯而易見:本發明可在無 此等具體細節之情況下進行實踐。在其他情況下,以方塊 圖之形式而料盡地展示習知結構及裝置以便避免使本 發明變得不清晰。 在下文中的詳細描述之某些部分是根據對電腦記憶體或 等效電子計算裝置巾之諸彳m作的演算法及符號表 丁來呈現。此等演算法描述及表示為彼等熟習資料處理技 術者用於最有效地傳達其工作之本質給其他熟習此項技術 者的方法。演算法在此處且通常構思為導致所要結果之步 驟之自連貫的序列。該等步驟為彼等需要物理量之實際操 縱之步驟。通常(儘管不為必須),此等量採取能夠被儲 存、傳送、組合、比較及其他方式操縱之電信號或磁信號 的形式。主要因為普通用法,已證明將此等信號稱為位 元值、元件、符號、字元、術語、數目或其類似者有時 係方便的。 然而,應記住,所有此等及類似術語將與適當的物理量 相關聯’且僅為施加於此等物理量之便利標籤。除非另有 如在以下討論中顯而易見之明確聲明,否則應瞭解,在整 篇描述中,利用諸如"處理"或"運算"或"計算"或"判定,•或 顯示或其類似術語之術語的討論係指電腦系統或類似電 子運算裝置之動作及過程,該電腦系統或類似電子運算梦 118829.doc 1378668 置操縱表示為電腦系統之暫存器及記憶體中之物理(電子) 里且將其轉換為類似地表示為電腦系統記憶體或暫存器或 其他此種資訊儲存、傳輪或顯示裝置中之物理量的立他資 料。 本發明亦係關於用於執行本文中之操作之設備。此設備 可藉由使用敫位組件而特別地建構用於所需目的,或其可 包含一藉由鍺存於電腦中之電腦程式而選擇性地啟用或重 新配置之通用電腦。此種電腦程式可错存於電腦可讀儲存 媒體中,該等媒體諸如(但不限於):任何類型之碟片(包括 軟性磁碟、光碟、CD_R0M及磁光碟)、唯讀記憶體 (ROM)、隨機存取記憶體(RAM)、EpR〇M、EEpR〇M、磁 卡或光學卡或適合儲存電子指令且各耦接至電腦系統匯流 排之任何類型的媒體。 本文中提出之演算法及顯示器並不固有地與任何特定的 电腦或兴他没備相關。各種通用系統可與根據本文中之教 示之程式一起使用,或其可證明建構更專用的設備以執行 所需方法步驟係便利的。用於各種此等系統之所需結構將 在下文之描述中出現。此外,本發明並不參照任何特定的 程式化語言來進行描述。應瞭解,各種程式化或數位設計 語言可用於實施如本文令所描述之本發明之教示。 機器可讀媒體包括用於以可藉由機器(例如,電腦)讀取 之形式儲存或傳輸資訊之機構。舉例而言,機器可讀媒體 包括:唯讀記憶體("ROM");隨機儲存記憶體("RAM"); 磁碟儲存媒體;光學儲存媒體;快閃記憶體裝置;電學、 118829.doc -10- 1378668 光學、聲學或其他形式之傳播信號(例如,載波、紅外信 號、數位信號等);等等。 通信系统之一實例 圖1為一通信系統之一項實施例之方塊圖。參看圖丨,該 系統包含媒體接收器100、一媒體接收器介面1〇2、一發射 裝置140、一接收裝置141、一媒體播放機介面113、一媒 體播放機114及一顯示器115。 媒體接收器100自一源(未圖示)接收内容。在一項實施 例中’媒體接收器100包含一視訊轉接器。該内容可包含 基頻數位視訊,例如(但不限於)遵守HDMI或DVI標準之内 谷。在此種狀況下’媒體接收器1〇〇可包括一發射器(例 如,HDMI發射器)以轉發所接收之内容。 媒體接收器100經由媒體接收器介面102發送内容1〇1至 發射器裝置140。在一項實施例中,媒體接收器介面1〇2包 括將内容101轉換為HDMI内容之邏輯。在此種狀況下,媒 體接收器介面102可包含一 HDMI插頭,且經由有線連結發 送内容101 ;然而,傳送可經由無線連結而發生。在另一 實施例中,内容1 〇 1包含D VI内容。 在一項實施例在有線連結上發生媒體接收器介面 102與發射器裝置140之間的内容1〇1之傳送;然而,該傳 送可經由無線連結而發生。 發射器裝置140使用兩個無線連結以無線方式傳送資訊 至接收器裝置141。該等無線連結之一為經由具有適應性 118829.doc 1378668 波束成形之相位陣列天線《其他無線連結係經由無線通信 頻道107 ’在本文中稱為回返頻道(back channel)。在一項 實施例中’無線通信頻道1〇7為單向的。在一替代實施例 中’無線通信頻道107為雙向的。在一項實施例中,回返 頻道可使用某些或所有相同的天線作為前向波束成形頻道 (105之部分)<»在另一實施例中,兩組天線係不相交的。 接收器裝置141經由一介面(例如媒體播放機介面113)傳 送自接收器裝置140接收之内容至媒體播放機114。在一項 實施例中,接收器裝置141與媒體播放機介面113之間的内 容傳送係經由有線連結而發生’然而該傳送可經由無線連 結而發生。在一項實施例中,媒體播放機介面U3包含一 HDMI插頭。類似地,媒體播放機介面n3與媒體播放機 114之間的内容傳送係經由有線連結而發生,然而該傳送 可經由無線連結而發生。該傳送亦可經由不為媒體播放機 介面之有線或無線資料介面而發生。 媒體播放機114導致在顯示器π5上播放内容。在一項實 施例中’該内.容為HDMI内容,且媒體播放機114經由有線 連結將媒體内容傳送至顯示器;然而,該傳送可經由無線 連結而發生。顯示器115可包含一電漿顯示器、一 LCD、 一 CRT# 〇 請注意’可將圖1中之系統改變為包括一 DVD播放機/記 錄器’來替代DVE)播放機/記錄器,以接收及播放及/或記 錄内容。同樣,相同技術亦可用於非媒體資料應用中。 在一項實施例中,發射器140及媒體接收器介面1〇2為媒 118829.doc •12- 1378668 體接收器100之一部分。類似地,在一項實施例中,接收 器140、媒體播放機介面113與媒體播放機114皆為同一裝 置之。P刀。在-替代實施例中,接收器14〇、媒體播放機 介面113、媒體播放機114及顯示器115皆為顯示器之部 :。此種裝置之一實例展示於圖2中。 在-項實施例中,發射器裝置14〇包含一處理器1〇3、一 可選的基頻處理組件104、_相位陣列天線1〇5,及一無線 通信頻道介面106。相位陣列天線1〇5包含一射頻(RF)發射 器,該射頻(RF)發射器具有一耦接至處理器1〇3且藉由該 處理器控制使用適應性波束成形傳輸内容至接收器裝 置141之以數位方式控制的相位陣列天線。 在一項實施例中,接收器裝置141包含一處理器η〗、一 可選的基頻處理器組件111、一相位陣列天線丨1〇,及一無 線通佗頻道介面109。相位陣列天線丨丨〇包含一射頻(RF)發 射器,其具有一耦接至處理器112且藉由該處理器控制之 以數位方式控制的相位陣列天線,以使用適應性波束成形 自發射器裝置140接收内容。 在一項實施例中,處理器1〇3產生在藉由相位陣列天線 105以無線方式發射之前,藉由基頻信號處理1〇4處理之基 頻#號。在此狀況下,接收器裝置141包括基頻信號處 理,以將相位陣列天線110接收之類比信號轉換為藉由處 理器112處理之基頻信號。在一項實施例中’基頻信號為 正交頻分多工傳輸(OFDM)信號。 118829.doc •13· 1378668 在一項實施例中,發射器裝置140及/或接收器裝置141 為獨立的收發器之一部分。 發射器裝置140及接收器裝置141使用具有允許波束操控 之適應性波束成形的相位陣列天線來執行無線通信。波束 成形係此項技術所熟知。在—項實施例中,處理器⑻發 送數位控制資訊至相位陣列天線1()5,以指示相位陣列天 線1〇5中-或多個移相器之偏移^ ’來以此項技術中所熟 知之方式操控藉此形成之波束。處理器112亦使用數位控 制資訊,以控制相位陣列天線11〇。使用發射器裝置14〇中 之控制頻道121及接收器裝置141中之控制頻道122來發送 數位控制資訊。在一項實施例中,數位控制資訊包含一組 係數。在一項實施例中,各處理器1〇3及112包含一數位信 號處理器》 無線通信鏈路介面1〇6耦接至處理器1〇3,且在無線通信 鏈路107與處理器1 〇3之間提供一介面,以傳輸與相位陣列 天線之使用相關之天線資訊,且傳輸有助於在另一位置播 放内容之資訊。在一項實施例中,在發射器裝置14〇與接 收器裝置141之間傳送之有助於内容的播放之資訊包括自 處理器103發送至接收器裝置141之處理器112的加密密 鑰’及自接收器裝置141之處理器112至發射器裝置14〇之 處理器103的一或多個確認。 無線通信鏈路107亦在發射器裝置140與接收器裝置141 之間傳送天線資訊。在相位陣列天線1〇5及11〇之初始化或 調諧期間,無線通信鏈路1〇7傳送資訊以允許處理器1〇3為 118829.doc 1378668 位陣列天線1〇5選擇方向。在一項實施例中該資訊包 括(但不限於)··對應於天線位置之天線位置資訊及效能資 訊,例如包括相位陣列天線110之位置及關於彼天線位置 =頻道的信號強度的一或多對資料。在另—實施例中該 貧訊包括(但不限於):由處理器112發❹處理㈣3,以 使處理11103能_;^相料列天線1()5的料部分用於 傳送内容之資訊。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adaptive beam steering method for adaptive beam steering methods for maximizing a wireless link budget and shortening delay spread using multiple transmit and receive antennas. [Prior Art] In most wireless communication systems, the air link consists of a propagation channel between a transmitting antenna and a receiving antenna. However, it is believed that the use of multiple antennas on the Transmitter ® and Receiver significantly increases the link budget and therefore increases link capacity. The disadvantage of this method is that it can also greatly increase the complexity of the system. A system with multiple transmit and receive antennas is called a wireless MIMO (multiple input multiple output) system. For the ΜΙΜΟ system, increase the link budget or link capacity by one of the following methods: increase diversity, multiplex transmission, and beamforming. When using the method of increasing diversity, the φ of the signal transmitted and received by multiple antennas is similar to the replica. These multiple transmissions may be separated in time (without association) by using significant delays, or separated by frequency using significant frequency offsets, or by using a particular permutation and/or encoding. Separated in the code space. Combine multiple receptions using the best maximum ratio combining (MRC) receiver. This method does not need to know the channel transfer function on the transmitter side. However, in the second method, it is necessary to copy the effective part of the transmit and receive data paths (analog and digital front end) for each antenna. Most of the current ΜIΜ 遵循 systems follow the first (diversity) method described above, and the link budget generated by this method is approximately less than the link budget of the link budget generated by beamforming 118829.doc 1378668, where N is The number of antennas. Moreover, in most cases, existing embodiments require a complex system in which the entire analog and digital front end portions of the data path are replicated for each antenna. In the multiplex transmission scheme, the accurate knowledge of the channel transfer function is used to make the overall transmission to the reception transfer function form an independent (orthogonal) transmission link on which the water filling is based on the valuation (water filling) The principle of using the correct coding and power allocation to multiplex data transmission (more power and data on the stronger link) As mentioned, this method requires some knowledge of the channel transfer function on the transmitter side. The effective portion of the transmit and receive data paths (analog and digits) needs to be replicated for each antenna. However, it is optimally designed to provide maximum capacity. There are embodiments based on multiplex transmission methods 'but complex Sexuality inhibits consumer and mobile wireless applications unless the dimensions of the system (ie, the number of antennas) are limited 'but this in turn limits the maximum available link budget growth. In the beamforming method, the channel transfer function is used. Accurate understanding to focus on the transmission and transmission of the strongest subspace (called the feature vector) of the overall transmission to the receiving channel. The signal is then transmitted in the space of the other. This is done by separately adjusting the phase of the signal and possibly the gain for each of the transmitting and receiving antennas. This solution obviously requires some knowledge of the channel transfer function on the transmitter side. However, 'only a subset of the analog data paths can be duplicated to implement the solution perfectly, and thus a simpler embodiment may be needed, and/or a larger number of antennas may be allowed. It also provides better methods than the increased diversity described above. Link budget. For highly correlated channels, 118829.doc 1378668 is close to the capacity of the above multiplex transmission method. This method requires the transmission bandwidth to be a small part of the carrier frequency. Please note that the multiplex transmission can be carried along The beamforming is performed by parallel beamforming of various feature vectors transmitted to the receiving channel. Most of the beamforming embodiments can be found in radar applications, where first, the transmitter unit is inconsistent with the receiver unit, and the beamforming target is completely different. Maximize link budget or link capacity. Other beamforming proposals use direct singular value decomposition techniques It results in very complex embodiments that are unsuitable for consumer and mobile wireless applications, and thus limits the dimensions of the MIM(R) system (ie, the number of 'antennas), and thus limits the maximum available link budget growth. A method and apparatus for adaptive beam steering is disclosed. In one embodiment, the method includes performing adaptive beam steering using a plurality of transmit and receive antennas, including repeatedly performing a pair of training sequences, wherein The pair of training sequences includes estimating a transmitter antenna array weight vector and a receiver antenna array weight vector. [Embodiment] A reduced (and potentially lowest) complexity and an increased (and potentially maximum) gain is An Effective and Adaptive Technique for Performing Beamforming with Time-Varying Propagation Channels In contrast to existing solutions, beamforming is performed without directly performing singular value decomposition (SVD), which is very complex when implemented. Instead, the best channel feature vector or subspace is obtained via an adaptive repetitive work plan. The second effect of beamforming is the resulting beamforming, which has a shorter delay spread, which means that the intersymbol interference ((8)) will also be shorter. In the following description, numerous details are set forth to provide a more detailed explanation of the invention, and it will be apparent to those skilled in the art that the invention can be practiced without the specific details. In other instances, well-known structures and devices are shown in the form of a block diagram in order to avoid obscuring the invention. Some portions of the detailed description that follows are presented in terms of algorithms and symbolic representations of computer memory or equivalent electronic computing device. These algorithms describe and represent methods that are familiar to the data processing technology to best convey the nature of their work to others skilled in the art. The algorithm is here and is generally conceived as a self-consistent sequence of steps leading to the desired result. These steps are the steps in which they require actual manipulation of physical quantities. Usually (though not necessarily), such quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bit values, elements, symbols, characters, terms, numbers, or the like. It should be borne in mind, however, that all such and such claims Unless otherwise expressly stated as apparent in the following discussion, it should be understood that throughout the description, such as "processing" or "operation" or "calculation" or "determination,• or display or The discussion of terminology similar to the term refers to the action and process of a computer system or similar electronic computing device. The computer system or similar electronic computing dream 118829.doc 1378668 is manipulated as a temporary storage of the computer system and the physics in the memory ( The electronic data is converted into a similar data that is similarly represented as a physical quantity in a computer system memory or scratchpad or other such information storage, transfer or display device. The invention also relates to apparatus for performing the operations herein. The device may be specially constructed for the required purpose by using a clamp component, or it may comprise a general purpose computer selectively enabled or reconfigured by a computer program stored in the computer. Such computer programs may be stored in a computer readable storage medium such as, but not limited to, any type of disc (including a flexible disk, a compact disc, a CD_ROM and a magneto-optical disc), and a read-only memory (ROM). ), random access memory (RAM), EpR〇M, EEpR〇M, magnetic or optical card or any type of media suitable for storing electronic instructions and each coupled to a computer system bus. The algorithms and displays presented herein are not inherently related to any particular computer or device. Various general purpose systems may be used with programs in accordance with the teachings herein, or they may prove convenient to construct a more specialized apparatus to perform the required method steps. The required structure for a variety of such systems will appear in the description below. Moreover, the invention is not described in reference to any particular stylized language. It will be appreciated that a variety of stylized or digital design languages may be used to implement the teachings of the invention as described herein. Machine-readable media includes mechanisms for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes: read-only memory ("ROM"); random storage memory ("RAM"); disk storage medium; optical storage medium; flash memory device; electrical, 118829 .doc -10- 1378668 Optical, acoustic or other forms of propagating signals (eg, carrier waves, infrared signals, digital signals, etc.); One example of a communication system Figure 1 is a block diagram of an embodiment of a communication system. Referring to the figure, the system includes a media receiver 100, a media receiver interface 1, a transmitting device 140, a receiving device 141, a media player interface 113, a media player 114, and a display 115. Media receiver 100 receives content from a source (not shown). In one embodiment, the media receiver 100 includes a video adapter. The content may include baseband digital video, such as, but not limited to, compliance with HDMI or DVI standards. In this case the 'media receiver 1' may include a transmitter (e.g., an HDMI transmitter) to forward the received content. The media receiver 100 transmits the content 1〇1 to the transmitter device 140 via the media receiver interface 102. In one embodiment, the media sink interface 1 〇 2 includes logic to convert content 101 to HDMI content. In such a situation, the media receiver interface 102 can include an HDMI plug and transmit the content 101 via a wired connection; however, the transmission can occur via a wireless connection. In another embodiment, content 1 〇 1 contains D VI content. The transmission of content 1.1 between the media receiver interface 102 and the transmitter device 140 occurs on a wired connection in one embodiment; however, the transmission can occur via a wireless connection. Transmitter device 140 wirelessly transmits information to receiver device 141 using two wireless connections. One of the wireless links is a phased array antenna (other wireless link via wireless communication channel 107' via a wireless communication channel 107' via a suitably shaped 118829.doc 1378668, referred to herein as a back channel. In one embodiment 'the wireless communication channel 1 〇 7 is unidirectional. In an alternate embodiment, the wireless communication channel 107 is bidirectional. In one embodiment, the return channel may use some or all of the same antennas as the forward beamforming channel (part of 105) <» In another embodiment, the two sets of antennas are disjoint. Receiver device 141 transmits the content received from receiver device 140 to media player 114 via an interface (e.g., media player interface 113). In one embodiment, the content transfer between the receiver device 141 and the media player interface 113 occurs via a wired connection. However, the transfer may occur via a wireless connection. In one embodiment, the media player interface U3 includes an HDMI plug. Similarly, content transfer between the media player interface n3 and the media player 114 occurs via a wired connection, however the transfer can occur via a wireless connection. The transmission can also occur via a wired or wireless data interface that is not a media player interface. The media player 114 causes the content to be played on the display π5. In one embodiment, the content is HDMI content, and the media player 114 transmits the media content to the display via a wired connection; however, the transmission can occur via a wireless connection. The display 115 can include a plasma display, an LCD, and a CRT#. Please note that 'the system in FIG. 1 can be changed to include a DVD player/recorder' instead of the DVE) player/recorder to receive and Play and/or record content. Again, the same technology can be used in non-media data applications. In one embodiment, transmitter 140 and media receiver interface 1〇2 are part of media 118829.doc • 12-1378668 body receiver 100. Similarly, in one embodiment, the receiver 140, the media player interface 113, and the media player 114 are all the same. P knife. In an alternate embodiment, the receiver 14A, the media player interface 113, the media player 114, and the display 115 are all part of the display: An example of such a device is shown in Figure 2. In the embodiment, the transmitter device 14A includes a processor 101, an optional baseband processing component 104, a phase array antenna 1〇5, and a wireless communication channel interface 106. The phase array antenna 1〇5 includes a radio frequency (RF) transmitter having a coupling to the processor 1〇3 and controlling the use of adaptive beamforming to transmit content to the receiver device 141 by the processor control. A phase array antenna that is digitally controlled. In one embodiment, the receiver device 141 includes a processor η, an optional baseband processor component 111, a phased array antenna 〇1〇, and a wireless communication channel interface 109. The phase array antenna 丨丨〇 includes a radio frequency (RF) transmitter having a phase array antenna coupled to the processor 112 and controlled by the processor in a digital manner to use an adaptive beamforming self-emitter Device 140 receives the content. In one embodiment, processor 101 generates a base frequency # number processed by the baseband signal processing prior to being wirelessly transmitted by phase array antenna 105. In this case, the receiver device 141 includes baseband signal processing to convert the analog signal received by the phase array antenna 110 into a baseband signal processed by the processor 112. In one embodiment, the baseband signal is an Orthogonal Frequency Division Multiplexing (OFDM) signal. 118829.doc • 13· 1378668 In one embodiment, transmitter device 140 and/or receiver device 141 is part of a separate transceiver. Transmitter device 140 and receiver device 141 perform wireless communication using a phased array antenna with adaptive beamforming that allows beam steering. Beamforming is well known in the art. In the embodiment, the processor (8) sends digital control information to the phase array antenna 1() 5 to indicate the offset of the phase array antenna 1〇5 or the plurality of phase shifters. The beam formed thereby is manipulated in a well known manner. Processor 112 also uses digital control information to control phase array antenna 11A. The digital control information is transmitted using the control channel 121 in the transmitter device 14 and the control channel 122 in the receiver device 141. In one embodiment, the digital control information includes a set of coefficients. In one embodiment, each of processors 1〇3 and 112 includes a digital signal processor. Wireless communication link interface 1〇6 is coupled to processor 1〇3, and is in wireless communication link 107 and processor 1. An interface is provided between 〇3 to transmit antenna information related to the use of the phase array antenna and to transmit information that facilitates playback of the content at another location. In one embodiment, the information conveyed between the transmitter device 14 and the receiver device 141 that facilitates playback of the content includes an encryption key transmitted from the processor 103 to the processor 112 of the receiver device 141. And one or more acknowledgments from the processor 112 of the receiver device 141 to the processor 103 of the transmitter device 14. The wireless communication link 107 also transmits antenna information between the transmitter device 140 and the receiver device 141. During initialization or tuning of phase array antennas 1〇5 and 11〇, wireless communication link 1〇7 transmits information to allow processor 1〇3 to select a direction for 118829.doc 1378668 bit array antennas 1〇5. In one embodiment, the information includes, but is not limited to, antenna position information and performance information corresponding to the antenna position, such as including the position of the phase array antenna 110 and one or more of the signal strength of the antenna position = channel. For the information. In another embodiment, the poor message includes, but is not limited to, processing by the processor 112 (4) 3, so that the processing 11103 can be used to transmit information of the content of the antenna 1 () 5 .

• f相位陣列天線105及110於其可傳送内容(例如,HDMI 内容)之模式中操作時,無線通信鏈路1〇7傳送來自接收器 裝置141之處理器112之通信路徑的狀態指示。通信之狀態 指示包含-來自處理器112之指示,其提示處理器1〇3在另 一方向上操控波束(例如至另一頻道^此提示可回應於與 内容部分之傳輸的干擾而發生。該資訊可指定處理器ι〇3 可使用之一或多個替代頻道。 在一項實施例中,該天線資訊包含由處理器112發送之 以私定接收器裝置141將相位陣列天線11〇導向至之位置的 資訊。此在初始化期間當發射器裝置14〇告知接收器裝置 141將其天線定位於哪里以使得可進行信號品質量測以識 別最佳頻道時係有用的。所指定之位置可為一確切位置或 可為一相對位置,例如藉由發射器裝置14〇及接收器裝置 141遵循的一預定位置次序中的下一位置。 在一項實施例中,無線通信鏈路1〇7傳送來自接收器裝 置141之指定相位陣列天線11〇之天線特徵的資訊至發射器 118829,doc •15 1378668 裝置140,或反之亦然。在一項實施例中,通信鏈路1〇7傳 送來自接收器裝置141之可用於控制相位陣列天線ι〇5之資 訊至發射器裝置140。 收發器架構之一實例 以下描述故發器之一項實施例。該收發器包括分別針對 發射器及接故器之發射及接收路徑。在一項實施例中,用 於與接收器通信之發射器包含一處理器及一相位陣列波束 成形天線。該處理器控制天線藉由反覆執行一組訓練操作 來結合接收器之接收天線使用多個發射天線執行適應性波 束操控。訓練操作之一包含:處理器在設定接收器之接收 天線陣列權重向量且發射器天線陣列權重向量在權重向量 之間與一組權重向量交換時,致使相位陣列波束成形天線 發射一第一訓練序列。另一訓練操作包含:處理器在將發 射器天線陣列權重向量設定為計算接收天線陣列權重向量 之過程的一部分時,致使相位陣列波束成形天線發射一第 二訓練序列》 在一項實施例中,用於與發射器通信之接收器包含一處 理器及一相位陣列波束成形天線。該處理器控制天線藉由 反覆執行一紅訓練操作而結合發射器之發射天線使用多個 接收天線來执行適應性波束操控。訓練操作之一包含:處 理器在藉由使發射器在接收天線陣列權重向量設定時發射 一第一訓練序列來估計發射天線陣列權重向量的過程期 間’叹疋接故天線陣列權重向量。另一訓練操作包含處理 器在發射器天線陣列權重向量設定時當發射器發射一第二 118829.doc •16· 1378668 訓練序列時’計算接收天線陣列權重向量β 圖3Α及圖3Β分別為一發射器裝置及一接收器袭置之一 項實施例的方塊圖,該發射器裝置及該接收器裝置為圖丄 中所含有之適應性波束成形多個天線無線電系統之一部 分。收發器300包括多個獨立的發射與接收鏈,且使用一 相位陣列來执行相位陣列波束成形,該相位陣列接受同一 RF信號,且使該陣列中之一或多個天線元件移相,以實現 波束操控》 參看圖3 A,數位基頻處理模組(例如,數位信號處理器 (DSP))301格式化内容且產生即時基頻信號。數位基頻處 理模組301可提供調變、FEC編碼、封包組裝、交錯及自 動增益控制。 數位基頻處理模組301然後轉發待調變且在發射器2RF 分上發送出之基頻信號。在一項實施例中,以此項技術 中已知之方式將内容調變為OFDM信號。 數位/類比轉換器(DAC)302接收自數位基頻處理模組3〇1 輸出之數位信號,且將其轉換為類比信號。在一項實施例 中’自DAC 302輸出之信號在〇至i 7 GHz之間。類比前端 3〇3接收類比信號,且使用適當的低通鏡頻拒斥濾波器 (l〇w-pass image_rejecti〇n fiher)對其進行濾波且相應地將 其放大。IF模組304接收類比前端303之輸出且將其向上轉 換為IF頻率。在一項實施例中,該11?頻率係在2至15 gHz 之間》 RF混頻器305接收自IF放大器304輸出之信號,且以此項 U8829.doc 17 1378668 技術中所習知之方式將其與來自本機振盪器(L〇)(未圖示) 之化號組合。自混頻器305輸出之信號處於中間頻率。在 一項實施例_,該中間頻率係在2至15 GHz之間。 多工器306係經耦合以接收來自混頻器3〇5之輸出,來控 制那些移相器3071.1>}接收信號。在一項實施例中,移相器 307LN為量化移相器。在一替代實施例中,移相器3〇7ι ^可 由具有可控增益及相位之IF或RF放大器替代。在一項實施 例中’數位基頻處理模組301亦經由控制頻道36〇控制相位 陣列天線中之該等天線元件中之每一天線元件中的電流的 相位及量值,以便以此項技術中所習知之方式產生所要的 波束場型。換言之,數位基頻處理模組3 〇丨控制相位陣列 天線之移相器307丨·Ν以產生所要的場型。 各移相器產生發送至放大信號之功率放大器3〇8ι ν 之一的輸出。經放大的信號發送至具有多個天線元件3〇9ι_ν 之天線陣列。在一項實施例中,自天線3〇9】ν發射之信號 為在56至64 GHz之間的射頻信號。因此,自相位陣列天線 輸出多個波東。 至於接收器,天線SIO^N自天線309ι Νκ接收無線發射, 且分別經由低雜訊放大器3111.Ν將其提供至移相器3121Νβ ^上所述’在一項實施例巾,移相器3121Ν包含量化移相 器。或者,移相器312ι_ν可由複數乘法器替代。移相器 312hN自天線31〇1·Ν接收信號,該等信號由rf組合器^^组 合以形成-單個線路饋給輸出。在—項實施例中使用多 工器組合來自不同元件之信號㈣出單個饋給線路心组 118829.doc 1378668 合器313之輸出輸入至RF混頻器314。 混頻器314接收RF組合器313之輸出,且以此項技術中所 I知之方式將其與來自L〇(未圖示)之信號組合。在一項實 施例中,混頻器314之輸出為具有2至15 (31^之11?載波頻率 的信號。接著,IF模組將if信號向下轉換為基帶頻率。在 一項實施例中,存在0至1.7 GHz之間的信號。 類比/數位轉換器(ADC)316接收IF 315之輸出,且將其 轉換為數位形式《數位基頻處理模組(例如DSp)318接收來 自ADC 3 16之數位輸出。數位基頻處理模組318復原信號 之振幅及相位。數位基頻處理模組3〗8可提供解調變、封 包分解、去交錯及自動增益》 在一項實施例中’該等收發器中之每一收發器包括一控 制微處理器’其為數位基頻處理模組(例如,DSP)設置控 制資訊。控制微處理器可在與數位基頻處理模組(例如, uSP)相同的晶粒上。 控制的適應性波束成形 在一項實施例中’ DSP以包含於硬體中之波束成形權重 實施適應性演算法》亦即,發射器及接收器一起工作,以 使用數位控制的類比移相器在RF頻率中執行波束成形;然 而在一替代實施例中,波束成形係在IF中執行。移相器 3 07i_n及312丨-N以此項技術中所習知之方式經由其各自DSP 而分別經由控制頻道360及控制頻道370來控制。舉例而 言,數位基頻處理模組(例如,DSP)301控制移相器307uN, 以使發射器執行適應性波束成形來操控波束,而數位 118829.doc •19- 1378668 基頻處理模組(例如,DSP)318控制移相器312^以導引天 線元件自天線元件接收無線發射,且組合來自不同元件之 k號以形成一單個線路饋給輸出。在一項實施例中使用 一多工器組合來自不同元件之信號且輸出單個饋給線路。 請注意,控制諸如圖1之發射器及接收器中展示之數位基 頻處理模組之處理器(例如,DSP)可分別耦接至控制頻道 3 60及3 70,可用於控制移相器307^及312^。 數位基頻處理模組(例如,DSP)301藉由脈衝或激勵連接 至各天線元件之適當的移相器執行波束操控。數位基頻處 理模組(例如,DSP)301下之脈衝演算法控制各元件之相位 及增益。執行DSP控制的相位陣列波束成形係此項技術中 所習知。 適應性波束成形天線用於避免干擾障礙物。藉由調適波 束成形及操控波束,可進行避免可防止或干擾發射器與接 收器之間的無線傳輸之障礙物的通信β 在一項實施例中,至於適應性波束成形天線,其具有三 個操作階段。該三個操作階段為訓練階段、搜尋階段及追 蹤階段。訓練階段及搜尋階段發生於初始化期間。訓練階 段以空間場型及㈤}之預定序列來判定頻道輪廓。搜尋 階段s十算候選空間場型μ『丨、你丨清單,且選擇用於一收發 器之發射器與另一收發器之接收器之間的資料傳輸的第一 候選者“石,肪卜追蹤階段追蹤候選清單之強度。當第一候 選者被阻隔時,選擇使用下一對空間場型。 在一項實施例中,在訓練階段期間,發射器發送出一空 118829.doc -20· 1378668 間場型序列。對於各空間場型,接收器將接收之信 號投影至另一場型序列㈤卜投影之結果為在丨㈣丨务丨對上 獲得頻道輪廓。 在一項實施例中,在發射器與接收器之間執行窮舉式訓 練(exhaustive training),其中接收器之天線定位於所有位 置上,且發射器發送多個空間場型。窮舉式訓練係為此項 技術中所習知。在此狀況下,發射器發射M個發射空間場 型,且接收器接收N個接收空間場型,以形成NxM頻道矩 陣。因此,發射器仔細檢查發射扇區之場型且接收器搜尋 以找到彼發射之最強的信號。然後,發射器移動至下一扇 區。在窮舉式搜尋過程之末尾,已獲得發射器與接收器之 所有位置的分級,及在彼等位置處之頻道的信號強度。將 該資訊作為天線所指向的位置與頻道之信號強度之配對來 保持。該清單可用於在干擾之狀況下,操控天線波束。 在一替代實施例中,使用子空間訓練,其中將空間劃分 為連續狹窄部分’且發送正交天線場型以獲得頻道輪摩。 假設數位基頻處理模組301(DSP)處於穩定狀態,且已判 定天線應指的方向。在標稱狀態下,DSP將具有一組其發 送至移相器之係數。該等係數指示移相器使針對其對應天 線的信號偏移的相位量。舉例而言,數位基頻處理模組 301(DSP)發送一組數位控制資訊至移相器,該組資訊指示 不同移相器應偏移不同的量,例如,偏移30度、偏移45 度、偏移90度、偏移180度等。因此,去向彼天線元件之 信號將被偏移一特定相位度數。使陣列中之(例如)16、 118829.doc -21- 1378668 32、36、64個元件偏移不同量之最终結果使得能夠在為接 收天線提供最敏感接收位置的方向上操控天線。亦即,在 整個天線陣列上之複合偏移組提供在整個半球上攪動天線 之最敏感點所指處的能力。 請注意’在一項實施例t ’發射器與接收器之間的適當 連結可能不為自發射器至接收器之直接路徑。舉例而言, 最適當的路徑可自最高限度(ceiling)彈回。 回返頻道 在一項實施例中,無線通信系統包括一回返頻道32〇或 鏈路,其用於在無線通信裝置(例如,發射器與接收器、 一對收發器等)之間傳輸資訊。該資訊係與波束成形天線 相關’且使無線通信裝置中之一者或兩者能夠調適天線元 件陣列’以更好地將發射器之天線元件與接收裝置之天線 元件導引在一起。該資訊亦包括促進在發射器之天線元件 與接收器之天線元件之間無線傳輸之内容的使用的資訊。 在圖3A及圖3B中,回返頻道320係耗合於數位基頻處理 模組(DSP)318與數位基頻處理模組(DSP)301之間,以使數 位基頻處理模組(DSP)3 18能夠發送追蹤及控制資訊至數位 基頻處理模組(DSP)301。在一項實施例中,回返頻道32〇 充當高速下行鏈路及確認頻道。 在一項實施例中,回返頻道亦用於傳送對應於正在發生 無線通信之應用的資訊(例如,無線視訊)。此資訊包括内 容保護資訊。舉例而言,在一項實施例中,回返頻道用於 在收發器傳送HDMI資料時,傳送加密資訊(例如,加密密 H8829.doc •22· 1378668 錄及加密密繪之確認)。在此種狀況下,回返頻道用於内 容保護通信。 更具體而言,在HDMI中,使用加密驗證資料儲集器為 經允許的裝置(例如,經允許的顯示器當傳輸HDMI資 料流時’存在所傳送之連續的新加密密鑰流,以驗證經允 許的裝置未改變。以不同密鑰加密HD TV資料之訊框的區 塊’且然後必須在回返頻道320上向回確認彼等密錄,以 便驗證參加者(player)。回返頻道22〇在向前方向上傳送加 密密錄至接收器且在返回方向上傳送來自接收器之收到密 錄的確認。因此,在兩個方向上皆發送加密資訊。 使用回返頻道用於内容保護通信係有益的,因為其避免 在此等通信與内容一起發送時,必須完成漫長的再訓練過 程。舉例而言’若來自發射器之密鑰與在主要鏈路上流動 之内容一起發送,且彼主要鏈路斷開,則其將對典型 HDMi/HDCP系統強制進行2-3秒之漫長的再訓練。在_項 實施例中,在給出其全方向定向之狀況下’此獨立的雙向 鏈路具有比主要方向鏈路更高之可靠性。藉由使用此用於 HDCP密鑰之通信的回返頻道,及自接收裝置返回之適當 確認,甚至在最有力障礙之情況下,仍可避免耗時的再訓 練0 在活動模式下,當波束成形天線傳送内容時,使用回返 頻道以允許接收器通知發射器有關頻道之狀態。舉例而 言,當波束成形天線之間的頻道品質足夠好時,接收器在 回返頻道上發送資訊以指示頻道係可接受的。回返頻道亦 118829.doc •23- 1378668 可由接收器用於發送指示所使用之頻道的品質之發射器可 1化的資訊。若發生使頻道品質降級至低於一可接受水準 或70全阻止波束成形天線之間的傳輸之某形式的干擾(例 如’障礙)’則接收器可指示頻道不再為可接受的及/或可 在回返頻道上請求頻道之改變。接收器可請求改變至預定 頻道組中之下一頻道或可指定發射器將使用之特定頻道。 在一項實施例中’回返頻道為雙向。在此種狀況下,在• When the f-phase array antennas 105 and 110 operate in a mode in which they can deliver content (e.g., HDMI content), the wireless communication link 107 transmits a status indication of the communication path from the processor 112 of the receiver device 141. The status indication of the communication includes an indication from the processor 112 that prompts the processor 1 to manipulate the beam in the other direction (e.g., to another channel) the prompt may occur in response to interference with the transmission of the content portion. One or more alternate channels may be designated by processor ι 〇 3. In one embodiment, the antenna information includes a private receiver device 141 that is transmitted by processor 112 to direct phase array antenna 11 至Information about the location. This is useful during initialization when the transmitter device 14 informs the receiver device 141 where to locate its antenna so that signal quality can be made to identify the best channel. The specified location can be one. The exact location may be a relative location, such as the next location in a predetermined sequence of locations followed by the transmitter device 14 and the receiver device 141. In one embodiment, the wireless communication link 110 transmits from Information of the antenna characteristics of the specified phase array antenna 11 of the receiver device 141 to the transmitter 118829, doc • 15 1378668 device 140, or vice versa. In an embodiment The communication link 101 transmits the information from the receiver device 141 that can be used to control the phase array antenna ι5 to the transmitter device 140. One Example of Transceiver Architecture An embodiment of the transmitter is described below. The transmitter includes transmit and receive paths for the transmitter and the patch respectively. In one embodiment, the transmitter for communicating with the receiver includes a processor and a phased array beamforming antenna. Performing adaptive beam steering by repeatedly performing a set of training operations in conjunction with the receiver's receiving antenna using multiple transmit antennas. One of the training operations includes: the processor is setting the receiver's receive antenna array weight vector and the transmitter antenna array weight vector When the weight vectors are exchanged with a set of weight vectors, the phase array beamforming antenna is caused to transmit a first training sequence. Another training operation includes: the processor sets the transmitter antenna array weight vector to calculate the receiving antenna array weight vector Part of the process, causing the phased array beamforming antenna to emit a second training In one embodiment, a receiver for communicating with a transmitter includes a processor and a phased array beamforming antenna. The processor controls the antenna to combine the transmitter's transmit antenna by repeatedly performing a red training operation Adaptive beam steering is performed using a plurality of receive antennas. One of the training operations includes a process during which the processor estimates a transmit antenna array weight vector by causing the transmitter to transmit a first training sequence when the receive antenna array weight vector is set. 'Sighing the antenna array weight vector. Another training operation involves the processor calculating the receive antenna array weight vector when the transmitter transmits a second 118829.doc •16·1378668 training sequence when the transmitter antenna array weight vector is set. FIG. 3A and FIG. 3B are block diagrams respectively showing an embodiment of a transmitter device and a receiver device. The transmitter device and the receiver device are adapted to beamform multiple antennas included in the figure. Part of the radio system. The transceiver 300 includes a plurality of independent transmit and receive chains and uses a phase array to perform phase array beamforming, the phase array accepting the same RF signal and phase shifting one or more antenna elements in the array to achieve Beam Manipulation Referring to Figure 3A, a digital baseband processing module (e.g., a digital signal processor (DSP)) 301 formats the content and produces an instantaneous baseband signal. The digital baseband processing module 301 provides modulation, FEC coding, packet assembly, interleaving, and automatic gain control. The digital baseband processing module 301 then forwards the baseband signal to be modulated and transmitted on the transmitter 2RF. In one embodiment, the content is modulated into an OFDM signal in a manner known in the art. A digital/analog converter (DAC) 302 receives the digital signal output from the digital baseband processing module 3.1 and converts it to an analog signal. In one embodiment, the signal output from DAC 302 is between 〇 and i 7 GHz. The analog front end 3〇3 receives the analog signal and filters it with an appropriate low-pass image rejection filter (l〇w-pass image_rejecti〇n fiher) and amplifies it accordingly. The IF module 304 receives the output of the analog front end 303 and converts it up to the IF frequency. In one embodiment, the 11? frequency is between 2 and 15 gHz. The RF mixer 305 receives the signal output from the IF amplifier 304 and will be in a manner known in the art of U8829.doc 17 1378668. It is combined with a chemical from a local oscillator (L〇) (not shown). The signal output from the mixer 305 is at an intermediate frequency. In one embodiment, the intermediate frequency is between 2 and 15 GHz. Multiplexer 306 is coupled to receive the output from mixer 3〇5 to control those phase shifters 3071.1>. In one embodiment, phase shifter 307LN is a quantized phase shifter. In an alternate embodiment, the phase shifter 3 can be replaced by an IF or RF amplifier with controllable gain and phase. In one embodiment, the 'digital baseband processing module 301 also controls the phase and magnitude of the current in each of the antenna elements in the phased array antenna via the control channel 36〇 to use the technique. The manner known in the art produces the desired beam pattern. In other words, the digital baseband processing module 3 〇丨 controls the phase shifter 307丨 of the phase array antenna to produce the desired field pattern. Each phase shifter produces an output that is sent to one of the power amplifiers 3 〇 8 ι ν of the amplified signal. The amplified signal is sent to an antenna array having a plurality of antenna elements 3〇9ι_ν. In one embodiment, the signal transmitted from the antenna 3〇9] ν is a radio frequency signal between 56 and 64 GHz. Therefore, the self-phase array antenna outputs a plurality of waves. As for the receiver, the antenna SIO^N receives the wireless transmission from the antenna 309ι κ, and supplies it to the phase shifter 3121 Νβ ^ via the low noise amplifier 3111. ' respectively. In an embodiment, the phase shifter 3121Ν Contains a quantized phase shifter. Alternatively, the phase shifter 312ι_ν may be replaced by a complex multiplier. The phase shifter 312hN receives signals from the antenna 31〇1·Ν, which are combined by the rf combiner to form a single line feed output. In the embodiment, the multiplexer is used to combine signals from different components (4) out of a single feed line group 118829.doc 1378668 The output of the combiner 313 is input to the RF mixer 314. Mixer 314 receives the output of RF combiner 313 and combines it with signals from L〇 (not shown) in a manner known in the art. In one embodiment, the output of mixer 314 is a signal having a carrier frequency of 2 to 15 (11^11?). The IF module then down converts the if signal to a baseband frequency. In one embodiment There is a signal between 0 and 1.7 GHz. The analog/digital converter (ADC) 316 receives the output of the IF 315 and converts it to digital form. The digital baseband processing module (eg DSp) 318 receives from the ADC 3 16 Digital output. The digital baseband processing module 318 restores the amplitude and phase of the signal. The digital baseband processing module 3 can provide demodulation, packet decomposition, deinterleaving, and automatic gain. In one embodiment, Each of the transceivers includes a control microprocessor that sets control information for a digital baseband processing module (eg, a DSP). The control microprocessor can be in a digital baseband processing module (eg, uSP) On the same die. Controlled Adaptive Beamforming In one embodiment 'DSP implements an adaptive algorithm with beamforming weights included in the hardware', ie the transmitter and receiver work together to use Analogical phase shift of digital control The beamforming is performed in the RF frequency; however, in an alternate embodiment, beamforming is performed in the IF. The phase shifters 3 07i_n and 312丨-N are respectively via their respective DSPs in a manner known in the art. Control is controlled via control channel 360 and control channel 370. For example, a digital baseband processing module (e.g., DSP) 301 controls phase shifter 307uN to cause the transmitter to perform adaptive beamforming to manipulate the beam, and the digit 118829. Doc • 19-1378668 The baseband processing module (eg, DSP) 318 controls the phase shifter 312 to direct the antenna elements to receive wireless transmissions from the antenna elements and combine the k numbers from the different components to form a single line feed output. In one embodiment, a multiplexer is used to combine signals from different components and output a single feed line. Note that a processor such as the digital baseband processing module shown in the transmitter and receiver of Figure 1 is controlled. (For example, DSP) can be coupled to control channels 3 60 and 3 70, respectively, for controlling phase shifters 307 and 312. Digital baseband processing modules (eg, DSP) 301 are connected to each by pulse or excitation. day The appropriate phase shifter of the component performs beam steering. The pulse algorithm under the digital baseband processing module (eg, DSP) 301 controls the phase and gain of each component. The phase array beamforming system that performs DSP control is in this technology. Conventional beamforming antennas are used to avoid interference with obstacles. By adapting beamforming and steering beams, communication can be avoided to avoid obstacles that prevent or interfere with wireless transmission between the transmitter and the receiver. In an embodiment, as for an adaptive beamforming antenna, it has three operational phases, which are a training phase, a search phase, and a tracking phase. The training phase and the search phase occur during the initialization phase. The training stage determines the channel profile by a spatial field type and a predetermined sequence of (5)}. The first candidate for the data transmission between the transmitter of one transceiver and the receiver of another transceiver is selected in the search phase s ten candidate space type μ "丨, 丨 list, " The tracking phase tracks the strength of the candidate list. When the first candidate is blocked, the next pair of spatial patterns is selected for use. In one embodiment, during the training phase, the transmitter sends out an empty 118829.doc -20· 1378668 Inter-field sequence. For each spatial field type, the receiver projects the received signal to another field-type sequence. (5) The result of the projection is to obtain the channel profile on the 四 (4) 丨 丨 pair. In one embodiment, the transmission is performed. Exhaustive training is performed between the receiver and the receiver, wherein the antenna of the receiver is positioned at all locations and the transmitter transmits a plurality of spatial patterns. Exhaustive training is known in the art. In this case, the transmitter transmits M transmit spatial field patterns, and the receiver receives N receive spatial field patterns to form an NxM channel matrix. Therefore, the transmitter carefully checks the field type of the transmit sector and receives Search to find the strongest signal transmitted by the receiver. The transmitter then moves to the next sector. At the end of the exhaustive search process, the ranks of all positions of the transmitter and receiver are obtained, and at their locations The signal strength of the channel. This information is maintained as a match between the location pointed by the antenna and the signal strength of the channel. This list can be used to manipulate the antenna beam under interference conditions. In an alternate embodiment, subspace training is used. , wherein the space is divided into a continuous narrow portion 'and the orthogonal antenna field type is transmitted to obtain a channel wheel. It is assumed that the digital baseband processing module 301 (DSP) is in a stable state, and the direction in which the antenna should be pointed is determined. In the state, the DSP will have a set of coefficients that it sends to the phase shifter. These coefficients indicate the amount of phase at which the phase shifter shifts the signal for its corresponding antenna. For example, the digital baseband processing module 301 (DSP) Sending a set of digital control information to the phase shifter, the set of information indicating that different phase shifters should be offset by different amounts, for example, offset by 30 degrees, offset by 45 degrees, offset by 90 degrees, offset by 180 Therefore, the signal going to the antenna element will be offset by a certain phase degree. The result of shifting, for example, 16, 118829.doc -21 - 1378668 32, 36, 64 elements in the array is different. The antenna can be steered in the direction that provides the most sensitive receive position for the receive antenna. That is, the composite offset set over the entire antenna array provides the ability to agitate the most sensitive point of the antenna over the entire hemisphere. An embodiment t 'the proper connection between the transmitter and the receiver may not be a direct path from the transmitter to the receiver. For example, the most appropriate path can be bounced back from the ceiling. In one embodiment, the wireless communication system includes a return channel 32A or link for transmitting information between wireless communication devices (e.g., transmitters and receivers, a pair of transceivers, etc.). The information is associated with the beamforming antenna and enables one or both of the wireless communication devices to adapt the antenna element array to better direct the antenna elements of the transmitter to the antenna elements of the receiving device. The information also includes information that facilitates the use of content that is wirelessly transmitted between the antenna elements of the transmitter and the antenna elements of the receiver. In FIG. 3A and FIG. 3B, the return channel 320 is consumed between the digital baseband processing module (DSP) 318 and the digital baseband processing module (DSP) 301 to enable the digital baseband processing module (DSP). 3 18 can send tracking and control information to a digital baseband processing module (DSP) 301. In one embodiment, the return channel 32A acts as a high speed downlink and acknowledge channel. In one embodiment, the return channel is also used to communicate information (e.g., wireless video) corresponding to the application in which wireless communication is occurring. This information includes content protection information. For example, in one embodiment, the return channel is used to transmit encrypted information (e.g., an encryption key) and an encrypted fingerprint confirmation when the transceiver transmits HDMI data. In this case, the return channel is used for content protection communication. More specifically, in HDMI, an encrypted authentication data collector is used as an allowed device (for example, an enabled display when transmitting an HDMI stream) has a continuous new encrypted key stream transmitted to verify the The allowed devices are unchanged. The blocks of the HD TV data frame are encrypted with different keys' and then the secrets must be confirmed back on the return channel 320 in order to verify the player. The return channel 22 is now Transmitting the encrypted secret to the receiver in the forward direction and transmitting the confirmation of the received confidential record from the receiver in the return direction. Therefore, the encrypted information is transmitted in both directions. The use of the return channel for content protection communication is beneficial. Because it avoids the need to complete a lengthy retraining process when such communications are sent with the content. For example, 'If the key from the transmitter is sent with the content flowing on the primary link, and the primary link is broken On, it will force a typical HDMi/HDCP system to undergo a 2-3 second long retraining. In the _item embodiment, given the omnidirectional orientation, this The two-way link has higher reliability than the primary direction link. By using this return channel for HDCP key communication and proper confirmation from the receiving device, even in the most powerful obstacles, Time-consuming retraining can be avoided. 0 In active mode, when the beamforming antenna transmits content, the return channel is used to allow the receiver to inform the transmitter about the state of the channel. For example, when the channel quality between the beamforming antennas is sufficient When it is good, the receiver sends a message on the return channel to indicate that the channel is acceptable. The return channel is also 118829.doc • 23-1378668 can be used by the receiver to send information indicating the quality of the channel used by the transmitter. The receiver may indicate that the channel is no longer acceptable and/or if some form of interference (eg, 'barrier') occurs that degrades the channel quality below an acceptable level or 70 blocks the beamforming antenna. The channel change can be requested on the return channel. The receiver can request a change to the next channel in the predetermined channel group or can specify that the transmitter will use Particular channel. In one embodiment, 'two-way return channel. In such a situation, in

—項實施例發射器使用回返頻道發送資訊至接收器。 此資訊可包括指示接收器將其天線元件定位在發射器將在 初始化期間掃描之不同固定位置上的資訊。發射器可藉由 明確指定該位置或藉由指示接收器應前進至一預定次序或 β單(發射器及接收器皆按該次序或清單前進)中之下一位 置來指定此。 在一項實施例中,回返頻道由發射器及接收器中之任一 者或两者使用以通知另一者關於特定天線特徵資訊。舉例- Item Embodiment The transmitter uses the return channel to send information to the receiver. This information may include information indicating that the receiver is positioning its antenna elements at different fixed locations that the transmitter will scan during initialization. The transmitter may specify this by explicitly specifying the location or by indicating that the receiver should proceed to a predetermined order or a lower one of the β-single (the transmitter and receiver are advanced in that order or list). In one embodiment, the return channel is used by either or both of the transmitter and receiver to inform the other about specific antenna characteristic information. Example

而。,天線特徵資訊可指定天線能夠具有低至6度半徑的 解析度,且天線具有特定數目之元件(例如,⑽元件、 64個元件等)。 在-項實施例中,藉由使用介面單元以無線方式執行回 返頻道上之通信。可使用任何形式之無線通信。在一項實 施例中,使用〇FDM在回返頻道上傳送資訊。在另一實施 例中,使用CPM在回返頻道上傳送資訊。 波束成形概觀 在一項實施例中 通“系統以如下要素實施波束成形: 118829.doc •24- 1378668 波束搜尋過程;波束追蹤過程;及波束操控狀態機。波束 搜尋及波束追蹤用於補償無線頻道之時變,及狹窄波束之 可能障礙。當調用時,波束搜尋過程尋找最大化鏈路預算 之波束方向。然後將獲得之波束方向用於波束成形。在波 束搜尋過程已導致最佳波束成形之後,波束追縱過程相對 頻道轉移函數中之小的時變追蹤波束。波束操控狀態機使 用任思的壞缝路積測機制(bad link detection mechanism)(其可 基於有效負載或波束成形結果)來偵測當前鏈路之信雜比 是否低於所要臨限值。為本文之目的,壞鏈路意謂當前波 束方向受阻’且隨後排程新的波束搜尋以尋找下一最佳波 束方向^ 圖4說明波束操控狀態機之一項實施例。參看圖4,狀態 機400包括一獲取(初始/閒置)狀態4〇ι、一波束搜尋狀態 402及一穩定狀態(steady-state)或資料傳送狀態4〇3。波束 操控過程開始於獲取狀態4〇 1。在一項實施例中,在键路 設置期間,僅進入獲取狀態401 —次》在初始獲取後,狀 態機400轉變為波束搜尋狀態4〇2以執行波束搜尋。一旦源 (例如’發射器)或目標(例如,接收器)判定一頻道被視為 壞頻道(例如’波束受阻)(基於一或多個度量),則亦進入 波束搜尋狀態402。請注意,在一項實施例中,在資料傳 送狀態403期間,有規律地(例如,每隔0.5-2 sec)排程波束 搜尋。此在基於受阻波束中可能係有用的。 在波束搜索成功後’狀態機4〇〇轉變為穩定狀態4〇3,在 該狀態中執行資料傳送操作。在_項實施例中,此包括以 118829.doc -25- 1378668 預定間隔(例如,每隔1-2毫秒)之波束追蹤。在一項實施例 中’波束追蹤為波束搜尋過程之縮短的型式。此等可經排 程或基於請求。 若當波束操控狀態機400處於波束搜尋狀態402或資料傳 送狀態403時’發生鏈路故障,則波束操控狀態機4〇〇轉變 為獲取狀態401。 在一項實施例中,藉由為各RF功率放大器及發射天線組 個別地旋轉RF調變信號之相位來執行發射器上之波束成 形’其中波東旋轉由下式描述: Α(ί)ο〇8(2πί(:1 + φ(ί)) -^· A(t)cos(2Kfct + cp(t) + Θ) 旋轉角度θ 其中旋轉角度0量化為2-4個位元。此可使用量化移相器來 達成。 類似地,在一項實施例中’藉由在各接收天線及低雜訊 放大器(LNA)設定後,旋轉接收的RF調變信號之相位且然 後組合相位經旋轉的信號來執行接收器上之波束成形。 應注意,在一項實施例中,接收天線耦接至一或多個數 位化路徑’且數位化路徑之數目小於接收天線之數目。此 外,在一項實施例中,發射天線耦接至一或多個發射信號 產生路徑,且發射信號產生路徑之數目小於發射天線之數 目° 波束搜尋過程之一實例 在一項實施例中,波束搜尋過程由兩個階段組成:時序 復原(timing recovery)及反覆作業波束搜尋。在時序復原 118829.doc -26- 1378668 階段,估計具有最大增益之波束/射線的到達時間(延遲)。 在一項實施例中,藉由在空中發射一已知符號序列且經由 匹配濾波器在接收器上匹配彼序列來執行延遲估計。為了 最大化信雜比,將發射天線相位設定為等於哈碼 矩陣丑之行,一次一行,其中Η具有以下屬性: 吻and. The antenna characteristic information may specify that the antenna can have a resolution as low as 6 degrees in radius, and the antenna has a certain number of elements (e.g., (10) elements, 64 elements, etc.). In an embodiment, the communication on the return channel is performed wirelessly by using an interface unit. Any form of wireless communication can be used. In one embodiment, 〇FDM is used to transmit information on the return channel. In another embodiment, the CPM is used to transmit information on the return channel. Beamforming Overview In one embodiment, "the system performs beamforming with the following elements: 118829.doc • 24- 1378668 beam search process; beam tracking process; and beam steering state machine. Beam search and beam tracking are used to compensate for wireless channels Time-varying, and possible obstacles to narrow beams. When invoked, the beam-searching process looks for the beam direction that maximizes the link budget. The resulting beam direction is then used for beamforming. After the beam-searching process has led to optimal beamforming The beam tracking process is a small time-varying tracking beam relative to the channel transfer function. The beam steering state machine uses the dead link detection mechanism (which can be based on payload or beamforming results). Detect whether the current link's signal-to-noise ratio is lower than the desired threshold. For the purposes of this paper, the bad link means that the current beam direction is blocked' and then schedule a new beam search to find the next best beam direction. 4 illustrates an embodiment of a beam steering state machine. Referring to Figure 4, state machine 400 includes an acquisition (initial/idle) shape 4〇ι, a beam search state 402 and a steady state (state-state) or data transfer state 4〇3. The beam steering process begins with the acquisition state 4〇1. In one embodiment, during the keyway setup, Entering the acquisition state only 401 - After the initial acquisition, the state machine 400 transitions to the beam search state 4 〇 2 to perform beam search. Once the source (eg, 'transmitter') or target (eg, receiver) determines that a channel is viewed A bad channel (e.g., 'beam blocked') (based on one or more metrics) also enters beam search state 402. Note that in one embodiment, during data transfer state 403, regularly (e.g., per Scheduling beam search every 0.5-2 sec. This may be useful in a blocked beam. After the beam search is successful, the 'state machine 4' transitions to a steady state 4〇3, in which the data transfer operation is performed. In the embodiment, this includes beam tracking at a predetermined interval of 118829.doc -25 - 1378668 (eg, every 1-2 milliseconds). In one embodiment, 'beam tracking is a shortening of the beam search process The pattern can be scheduled or based on the request. If the link failure occurs when the beam steering state machine 400 is in the beam seek state 402 or the data transfer state 403, the beam steering state machine 4 turns into the acquisition state 401. In one embodiment, beamforming on the transmitter is performed by individually rotating the phase of the RF modulated signal for each RF power amplifier and transmit antenna group. The wave east rotation is described by: Α(ί)ο 〇8(2πί(:1 + φ(ί)) -^· A(t)cos(2Kfct + cp(t) + Θ) The rotation angle θ where the rotation angle 0 is quantized to 2-4 bits. This can be done using a quantized phase shifter. Similarly, in one embodiment, the phase of the received RF modulated signal is rotated by the receiving antenna and the low noise amplifier (LNA), and then the phase rotated signal is combined to perform the receiver. Beamforming. It should be noted that in one embodiment, the receive antenna is coupled to one or more digitized paths' and the number of digitized paths is less than the number of receive antennas. Moreover, in one embodiment, the transmit antenna is coupled to one or more transmit signal generation paths, and the number of transmit signal generation paths is less than the number of transmit antennas. One example of a beam search process. In one embodiment, the beam The search process consists of two phases: timing recovery and repeated job beam search. In the phase recovery 118829.doc -26- 1378668 phase, the arrival time (delay) of the beam/ray with the greatest gain is estimated. In one embodiment, the delay estimation is performed by transmitting a sequence of known symbols over the air and matching the sequence on the receiver via a matched filter. In order to maximize the signal-to-noise ratio, the transmit antenna phase is set equal to the ugly line of the Hacode matrix, one line at a time, where Η has the following attributes:

邱,/) e {- l,l}, HTH = NI 其中為H之轉置,且W為#xiy單位矩陣。發射天線相 位掃過Η之#行(一次設定為1)户(例如,3)次,其中每次使 用不同的接故天線相位場型。接收天線相位場型係經選擇 使得相應的波束覆蓋整個空間。接收器匹配濾波器使接收 的信號,與發射的序列關聯,如下式所描述其中 模式為Z/符號長: /=0 〇 在於所有發射及接收天線相位場型上求和後,將導致最 大匹配濾波器輸出能量之時間延遲選擇為最大增益波束/ • 射線之時間延遲。此外,亦選擇使匹配濾波器輸出在於所 有發射天線相位場型上求和後,在選定時間延遲上之匹配 濾波器輸出具有最大能量的接收天線相位場型。 在下一階段,在一項實施例中,波束搜尋反覆作業過程 用於交替地使發射相位場型與接收相位場型改變總數為 (偶數)(例如,4、0、8或10)個階段。在幾乎所有狀況 下’發射相位場型與接收相位場型向對應於最大增益波束 方向之最佳值收斂。在某些孤立狀況下,發射相位場型與 接收相位場型可在對應於類似波束成形增益之不同相位場 118829.doc •27· 1378668 型之間波動。 對於第-反覆作業,將接收相位場型設定為p個相 财之在最後時序復原階段之末尾選擇的—相位場型。換 呂之,將接收器相移設定為第i個初始值(i=: 1、2、3等)。 在一項實施例中’藉由歧天線陣列權重向量(AWV)之值 來設定接收相移。在另一方面,將發射模式設定為等於哈 德碼得矩陣丑之行,一次一行。在圖8中給出了 3“ % 之哈德碼得㈣之―實例。請注意,對於特定天線數目, 可使用另-單式矩陣(unitary matHx)注意,在一 項實施例中,接收器與發射器之天線陣列權重向量(awv) 為可具有量值及/或相位資訊之複數權重向量。在一項實 施例中’將權重向量量化為相移向量。 發射器在空中發射已知符號序列,其用於估計在#個發 射天線相位在#個接收天線相位旋轉之後,旋轉為組合信 號前,自RF調變信號所得之單輸入單輸出(SiS〇)頻道轉移 函數。在此階段期間,發射器相位陣列天線在自矩陣H(其 跨越整個空間)的行導出之相位向量之間切換。在一項實 施例中,發射器天線陣列權重向量(AWV)包括36個權重向 置。對於各發射相位場型,接收的信號與在選定的最佳時 間延遲上之發射的信號序列關聯β然後將複數值相關器輸 出石=d一用作相應頻道轉移函數之估計值。因此,循序量 測對應於接收器相移之各延遲之Ν_Τχ χ卜Rx頻道增益, 且將最大能量延遲(例如,叢集)選擇為最佳初始值。 其次,#個複數值頻道估計值之向量為複數共軛的,且 118829.doc •28· 1378668 與矩陣丑相乘。然後將此向量之複數值元素之角度量化為 2-4個位元’從而形成經量化之相位的向量。此向量在本 文中稱為基於MRC之發射器量化相移(qPS)向量(亦即,發 射器AWV),且經由反向無線頻道(例如上述回返頻道)被發 送回至發射器,在發射器上,其用作第一次反覆作業之下 部分的固定發射相位場型。在一項實施例中,亦經由反 向頻道將在接收器上產生最強信號之發射器AWV的索引發 送回發射器。 對於第一次反覆作業之下一部分,將發射相位場型設定 為等於在最後反覆作業之末尾計算之經量化的相位向量。 亦即’將發射器相移設定為在用於發射器AWV之調諧之反 覆作業的第一部分中計算的值。在另一方面,將接收相位 場型設定為等於丑之ΛΜ于,一次一行❶發射相同的符號序 列’且使用相同的關聯程序’為各接收相位場型估計Sis〇 頻道轉移函數》換言之*在接收器上為最大能量延遲及等 效1 X Μ頻道之估計值循序量測ι_Τχ X N-Rx頻道增益。 類似地’iV個複數值頻道估計值之向量為複數共輕的, 且與/ί相乘。然後將此向量之複數值元素量化為2_4個位 元’從而形成經量化之相位的向量。將此向量稱為基於 MRC之接收器量化相移(qps)向量(亦即,接收器AWV)。 此AWV向量在接收器中用作下一反覆作業之固定接收相位 場型。亦即,將接收器相移(權重)設定為此等經計算的 值。 因此’將相同步驟重複若干次(例如,3次、4次等),其 118829.doc •29- 1378668 中交替將發射相位場型或接收相位場型設定為等於來自前 -反覆作業之經計算的量化的相位向量,同時將相反操作 之模式(亦即,接收或發射模式)設定為等於丑之#行—次 —行0 在反覆作業之末尾,使用經計算的發射及接收相位向量 以形成最佳方向上之波束。 在一項實施例中,波束搜尋(及波束追蹤)信號為取樣頻 率為Fs/2之OQPSK信號,其中F^〇FDM取樣率。 在一項實施例中,將高達三個不同初始接收器qPs向量 用於改良最佳取樣時間估計之效能。此外,在一項實施例 中,藉由將發射器(及接收器)權重向量設定為矩陣Hi n行 (次一行)’及藉由循序量測N個相應的純量頻道估計值 來執行依序頻道估計。各頻道估計階段係個估計時間 間隔組成,使得若V為所得i χΝ(Νχ υ估計向量,則頻道 估計值為。 在各時序復原或反覆作業步驟期間,接收的信號應為非 飽和或非過於衰弱的,其中發射或接收相位場型掃過丑之 行。因此’在各個此步驟前執行自動增益控制(AGc)程 序。在項實施例中,在此AGC程序中’在空中發射覆蓋 相同頻寬之任意符號序列,同時以與隨後步驟相同之方式 改變發射及接收相位場型。量測接收的信號能量,且因此 將接收器增益設定為一值,使得接收的信號對於所有發射 及接收相位場型既不飽和亦不過於衰弱。必要時,將此程 序重複若干次(高逹3)直至發現合適的增益。 118829.doc •30· 1378668 圖5說明上述波束搜尋過程之一項實施例的階段。參看 圖5,階段501-503表示時序復原階段。在此等階段期間’ 選擇初始接故器相移向量及最佳延遲。在_項實施例中, 在階段501及5 02期間,發射能量為固定的。 在階段503之後,執行一連串的反覆作業。各反覆作業 由三個區塊組成,其中階段504·506表示一次反覆作業之 一實例。階段504為使用固定接收相位場型之發射頻道估 計階段,其令,選擇給出最大能量之接收器向量且將其用 於估計頻道。如圖所示,階段504連同接收器使用接收的 向量產生Nxl頻道估計值之區塊一起包括自動增益控制 504丨,且在子階段5042中計算發射相移向量。子階段5〇42 之操作以展示為子階段52〇2之擴展型式的區塊形式繪示(因 為所有區塊相同)。初始時,將發射相移向量改變為H1(子 階段55〇ι) ’且插入保護區間(gUard intervai)(子階段55〇2) 以補償相移延時。對於發射權重向量上之改變,保護區間 大於總體延遲擴展減去發射濾波延遲擴展。接著,量測第 一頻道(Chi)(區塊55〇3)。在量測該頻道後,將發射相移向 量改變為H2(子階段55〇4),且具有一保護區間(子階段 55〇5)»接著,量測第二頻道(Ch2)(子階段55〇6)。此繼續直 至量測了最後頻道ChN。在已發射所有發射相移向量且估 計頻道後’計算且改變發射相移向量(準備估計接收器頻 道)。在一項實施例中’在此階段期間,不止一次地重複 在接收器上產生最強接收信號之發射器天線權重向量,以 便允許接收器補償發射器及接收器類比電路所固有的各種 118829.doc 31 1378668 相位不精確性。 在已S十算發射相移向量後,在階段5〇5中,接收器將其 發送回發射器。在一項實施例中,接收器額外地發送回產 生待在下一反覆作業期間使用之最強接收信號之發射器權 重向量的索引。此可使用回返頻道來執行。 其次,使用固定發射相移向量來執行接收頻道估計階段 506。接收頻道估計階段(階段5〇6)以及其他接收頻道估計 階段中之每一階段,包含一自動增益控制子階段(子階段 506J及一 1 x N頻道估計及接收相移向量計算階段(子階段 5〇62)。AGC區塊506丨經繪示為三個AGC區塊531(數字1-3)’其皆相同。詳細展示此等中之一者且其為其他區塊之 例示。首先,將接收相移向量改變為Hl(子階段531ι),且 對彼相移向量執行AGC(區塊53 IQ。接著,將接收相移向 量改變為H2(子階段5313),且對彼相移向量執行AGC(子階 段53 14)。此繼續為所有n個接收相移向量進行。 在AGC子階段506,之後,在子階段5062上進行頻道估計 及接收相移向量計算。子階段5〇62之操作係以區塊形式來 緣示’且對於圖5中之所有此等區塊係相同的。初始時, 接收相移向量改變為Hl(子階段56〇1),且插入保護區間(子 階段56〇2)以補償相移延時。對於接收權重向量上之改變, 保護區間大於總體延遲擴展減去接收濾波延遲擴展。接 著,量測第一頻道(Chl)(子階段56〇3)。在量測該頻道後, 將接收相移向量改變為H2(子階段56〇4),且具有一保護區 間(子階段56〇5)。接著,量測第二頻道(Ch2)(子階段 118829.doc •32- 1378668 56〇6)。此繼續直至量測了最後頻道ChN。在已發射所有接 收相移向量且估計頻道後,計算且改變接收相移向量。在 一項實施例令,在四次反覆作業之情況下,存在十四個階 段。 自動増益控制 在AGC調諸時間間隔期間發送之信號使用相同的調變但 不載運資訊。 AGC增益在各頻道估計階段應恆定。在各階段期間改 變發射或接故權重向量(掃過N個行),將導致rSSI波動β 在此狀況下’為所有>^個可能的權重向量執行agc,將 AGC位準固定為最小的獲得值,且然後執行^^個頻道估 計。 圖6展示自圖5之波束搜尋過程產生之特殊波束成形。 圖7說明在源/發射器上之波束搜尋及追蹤圖之一項實施 例。參看圖7 ’使用超取樣脈衝整形濾波器7〇2對頻率為 Fs/2之BPSK波束搜尋模式701進行濾波,或產生頻率為^之 波束搜尋模式。接著,將此模式發送至〇QpSK映射7〇3, 其分別映射BPSK符號-1及1至複數qPSK符號1+j ,且 使Q么量相對於I分量延遲半個樣本。使用Dac 704將 OQPSK映射703之輸出轉換為類比,且然後在發射前使用 類比濾波器705來濾波。 波束追蹤演算法之一實例 在一項實施例中,波束追蹤演算法係由上述反覆作業波 束搜尋過程之兩次反覆作業(例如,第2反覆作業及第3反 118829.doc • 33 - 1378668 覆作業)組成。圖9為波束追蹤過程之一項實施例的流程 圖。參看圖9,在第一反覆作業(展示為區塊901)中,將發 射相位%型没定為等於對應於當前波束之發射相位向量 (亦即,將發射相移設定為當前估計值),同時接收相位場 型為當前延遲掃過丑的#個行。根據此操作,計算基於 MRC之接收量化相移向量。然後,將經計算的量化相位向 量用作第二反覆作業(如區塊9〇2展示)之固定的接收相位場 型,同時發射相位場型掃過丑之#個行,且計算基於MRc 之發射量化相移向量。在一項實施例中,在此階段期間, 不止一次地重複在接收器上產生最強接收信號之發射器相 位場型,以便允許接收器補償發射器及接收器類比電路所 固有的各種相位不精確性。在各反覆作業中,估計在波束 搜尋過程之時序復原階段中導出之相同時間延遲的頻道轉 移函數。然後反饋在此等反覆作業中計算之發射器量化相 位向量(903) ’以用作發射相位場型。在一項實施例中,額 外地回饋產生最強接收信號之權重向量之索引,以在下一 波束追蹤實例中使用。請注意,以與上述圖5相同之方式 來更詳細地描述區塊901及902。 在波束搜尋過程中之上述相同AGC程序在係各反覆作業 前執行,以便確保在隨後操作期間,所接收之信號既不飽 和亦不過於衰弱。此等在圖9中詳細展示對於一個與其他 頻道相同的頻道進行的例示性AGC調諧。 波束搜尋演算法之替代實施例 在圖10中展示波束搜尋過程之一第二替代實施例。參看 118829.doc -34- 1378668 圖ίο,首先,在空中發射一用於估計頻道之已知符號序 列。其次,將發射相位場型設定為等於丑之#個行,一次 一行。針對各個此發射相位場型,隨後將接收相位場型設 定為等於丑之#個行(一次一行),從而產生//x#個不同發射 及接收相位場型組合。Qiu, /) e {- l,l}, HTH = NI where is the transpose of H, and W is the #xiy unit matrix. The transmit antenna phase sweeps through the #row (set to 1) household (for example, 3) times, each time using a different pick-up antenna phase pattern. The receive antenna phase field type is selected such that the corresponding beam covers the entire space. The receiver matched filter correlates the received signal with the transmitted sequence, as described in the following equation where the mode is Z/symbol length: /=0 〇The summation of all transmit and receive antenna phase field types results in a maximum match The time delay of the filter output energy is selected as the maximum gain beam / • the time delay of the ray. In addition, the matched filter output is selected to sum over all of the transmit antenna phase field patterns, and the matched filter output at the selected time delay outputs the receive antenna phase field pattern having the greatest energy. In the next stage, in one embodiment, the beam search reverse job process is used to alternately change the total number of transmit phase field patterns and receive phase field patterns to (even) (e.g., 4, 0, 8, or 10) stages. In almost all cases, the 'transmit phase field pattern and the received phase field pattern converge toward the optimum value corresponding to the direction of the maximum gain beam. In some isolated situations, the transmit phase pattern and the receive phase pattern may fluctuate between different phase fields corresponding to similar beamforming gains. For the first-reverse operation, the receive phase field type is set to the phase pattern selected by p at the end of the last timing recovery phase. For Lu, set the receiver phase shift to the ith initial value (i=: 1, 2, 3, etc.). In one embodiment, the receive phase shift is set by the value of the Discrete Antenna Array Weight Vector (AWV). On the other hand, the emission mode is set equal to the ugly line of the Had code matrix, one line at a time. An example of a 3"% Had code (4) is given in Figure 8. Note that for a particular number of antennas, a unitary matHx can be used. In one embodiment, the receiver The antenna array weight vector (awv) with the transmitter is a complex weight vector that can have magnitude and/or phase information. In one embodiment, the weight vector is quantized into a phase shift vector. The transmitter transmits known symbols over the air. a sequence for estimating a single-input single-output (SiS〇) channel transfer function derived from an RF modulated signal before the # transmit antenna phase is rotated by the # receive antenna phase, before being rotated into a combined signal. The transmitter phase array antenna switches between the phase vectors derived from the rows of the matrix H (which spans the entire space). In one embodiment, the transmitter antenna array weight vector (AWV) includes 36 weighted orientations. Each transmit phase field type, the received signal is associated with the transmitted signal sequence at the selected optimal time delay, and then the complex value correlator output stone = d is used as the corresponding channel transfer function. Therefore, the sequential measurement measures the Ν_Τχ R Rx channel gain of each delay corresponding to the phase shift of the receiver, and selects the maximum energy delay (for example, cluster) as the optimal initial value. Second, #复复数通道率The vector of values is complex conjugated, and 118829.doc •28· 1378668 is multiplied by the matrix ugly. Then the angle of the complex-valued element of this vector is quantized to 2-4 bits' to form a vector of quantized phase This vector is referred to herein as an MRC-based transmitter quantized phase shift (qPS) vector (ie, transmitter AWV) and is sent back to the transmitter via a reverse radio channel (eg, the return channel described above), at the transmission On the device, it serves as a fixed transmit phase field pattern for the portion below the first repetitive operation. In one embodiment, the index of the transmitter AWV that produces the strongest signal at the receiver is also sent back to the transmission via the reverse channel. For the next part of the first repetitive operation, set the transmit phase field to be equal to the quantized phase vector calculated at the end of the last repetitive operation. That is, set the transmitter phase shift to The value calculated in the first part of the repetitive operation of the tuning of the transmitter AWV. On the other hand, setting the receiving phase field type equal to ugly, transmitting the same symbol sequence one line at a time and using the same association The program 'estimates the Sis〇 channel transfer function for each received phase field type.> In other words, the maximum energy delay at the receiver and the estimated value of the equivalent 1 X Μ channel are sequentially measured by the ι_Τχ X N-Rx channel gain. Similarly, 'iV The vectors of the complex-valued channel estimates are complex and lightly multiplied and multiplied by /ί. The complex-valued elements of this vector are then quantized into 2_4 bits' to form a quantized phase vector. The MRC based receiver quantizes the phase shift (qps) vector (ie, the receiver AWV). This AWV vector is used in the receiver as the fixed receive phase field for the next repetitive job. That is, the receiver phase shift (weight) is set to such a calculated value. Therefore 'the same step is repeated several times (for example, 3 times, 4 times, etc.), and its 118829.doc •29-1378668 alternately sets the transmit phase field type or the receive phase field type equal to the calculation from the pre-reverse operation. The quantized phase vector, while setting the mode of the opposite operation (ie, the receive or transmit mode) equal to the ugly #row-time-line 0 at the end of the repeated operation, using the calculated transmit and receive phase vectors to form The beam in the best direction. In one embodiment, the beam search (and beam tracking) signal is an OQPSK signal having a sampling frequency of Fs/2, where F^〇FDM sampling rate. In one embodiment, up to three different initial receiver qPs vectors are used to improve the performance of the optimal sampling time estimate. Moreover, in one embodiment, the implementation is performed by setting the transmitter (and receiver) weight vector to the matrix Hi n row (the next row) and by sequentially measuring the N corresponding scalar channel estimates. Order channel estimation. Each channel estimation phase is composed of an estimated time interval such that if V is the resulting i χΝ (Νχ υ estimated vector, the channel estimate is. During each timing recovery or repeated operation step, the received signal should be unsaturated or not too Degraded, in which the transmit or receive phase field type sweeps through the ugly line. Therefore 'automatic gain control (AGc) procedure is performed before each step. In the embodiment, in this AGC procedure, the same frequency is transmitted over the air. Any sequence of symbols that are wide, while changing the transmit and receive phase patterns in the same manner as the subsequent steps. Measure the received signal energy, and thus set the receiver gain to a value such that the received signal is for all transmit and receive phases The field pattern is neither saturated nor debilitated. If necessary, this procedure is repeated several times (high 3) until a suitable gain is found. 118829.doc • 30· 1378668 Figure 5 illustrates an embodiment of the beam searching process described above. Phase. Referring to Figure 5, stages 501-503 represent the timing recovery phase. During these phases, 'the initial junction phase shift vector and the optimal delay are selected. In the embodiment, the transmit energy is fixed during phases 501 and 052. After phase 503, a series of repeated jobs are performed. Each of the repeated jobs consists of three blocks, wherein stage 504·506 represents once An example of a repeat job. Stage 504 is a transmit channel estimation phase using a fixed receive phase field type, which allows the receiver vector giving the maximum energy to be selected and used to estimate the channel. As shown, stage 504 is received along with The block that uses the received vector to generate the Nxl channel estimate includes automatic gain control 504A, and the transmit phase shift vector is calculated in sub-phase 5042. The operation of sub-phase 5〇42 is shown as an extension of sub-phase 52〇2 The type of block is shown (since all blocks are the same). Initially, the transmit phase shift vector is changed to H1 (sub-phase 55〇ι)' and the guard interval (gUard intervai) is inserted (sub-stage 55〇2) Compensating for phase shift delay. For changes in the transmit weight vector, the guard interval is greater than the overall delay spread minus the transmit filter delay spread. Next, the first channel (Chi) is measured (block 55) 3) After measuring the channel, change the transmit phase shift vector to H2 (sub-phase 55〇4) and have a guard interval (sub-phase 55〇5) » Next, measure the second channel (Ch2) ( Sub-phase 55〇6). This continues until the last channel ChN is measured. The transmit phase shift vector is calculated and changed after all transmit phase shift vectors have been transmitted and the channel is estimated (in preparation for estimating the receiver channel). In one embodiment During this phase, the transmitter antenna weight vector that produces the strongest received signal at the receiver is repeated more than once to allow the receiver to compensate for the various inherentities of the transmitter and receiver analog circuits. 118829.doc 31 1378668 Phase inaccuracy Sex. After the phase shift vector has been calculated, in stage 5〇5, the receiver sends it back to the transmitter. In one embodiment, the receiver additionally sends back an index of the transmitter weight vector that produces the strongest received signal to be used during the next repeated job. This can be done using the return channel. Second, the receive channel estimation phase 506 is performed using a fixed transmit phase shift vector. Each stage of the receive channel estimation phase (phase 5〇6) and other receive channel estimation stages includes an automatic gain control sub-phase (sub-phase 506J and a 1 x N channel estimation and receive phase shift vector calculation phase (sub-phase) 5〇62). The AGC block 506 is illustrated as three AGC blocks 531 (numbers 1-3) 'all of which are identical. One of these is shown in detail and is an illustration of other blocks. First, The received phase shift vector is changed to H1 (sub-phase 531 ι), and AGC is performed on the phase shift vector (block 53 IQ. Next, the received phase shift vector is changed to H2 (sub-phase 5313), and the phase shift vector is added to The AGC is executed (sub-phase 53 14). This continues for all n received phase shift vectors. At the AGC sub-phase 506, channel estimation and reception phase shift vector calculations are then performed on sub-phase 5062. Sub-phases 5〇62 The operation is in the form of a block and is the same for all of the blocks in Figure 5. Initially, the received phase shift vector is changed to H1 (sub-phase 56〇1) and the guard interval is inserted (sub-phase) 56〇2) to compensate for the phase shift delay. For the change in the receive weight vector The guard interval is greater than the overall delay spread minus the receive filter delay spread. Next, the first channel (Chl) is measured (sub-phase 56〇3). After measuring the channel, the receive phase shift vector is changed to H2 (sub-phase) 56〇4), and has a guard interval (sub-phase 56〇5). Next, measure the second channel (Ch2) (sub-stage 118829.doc • 32-1378668 56〇6). This continues until the last measurement Channel ChN. After all the received phase shift vectors have been transmitted and the channel is estimated, the received phase shift vector is calculated and changed. In one embodiment, in the case of four repeated operations, there are fourteen stages. The AGC modulates the signals transmitted during the time interval using the same modulation but does not carry the information. The AGC gain should be constant during each channel estimation phase. Changing the transmit or receive weight vector (sweeping N lines) during each phase will result in rSSI fluctuation β In this case, agc is performed for all possible vector weight vectors, the AGC level is fixed to the minimum obtained value, and then channel estimation is performed. Figure 6 shows the beam search from Figure 5. Process Special beamforming. Figure 7 illustrates an embodiment of a beam search and tracking diagram on the source/transmitter. See Figure 7 'Using the oversampled pulse shaping filter 7〇2 for a BPSK beam search mode with a frequency of Fs/2 701 performs filtering, or generates a beam search mode with a frequency of 2. Then, this mode is sent to the 〇QpSK map 7〇3, which maps BPSK symbols-1 and 1 to complex qPSK symbols 1+j, respectively, and makes Q The half sample is delayed relative to the I component. The output of the OQPSK map 703 is converted to analog using Dac 704 and then filtered using an analog filter 705 prior to transmission. One example of a beam tracking algorithm In one embodiment, the beam tracking algorithm is performed by two repeated operations of the above-described repeated job beam search process (eg, the second repeated operation and the third inverse 118829.doc • 33 - 1378668 Job) composition. Figure 9 is a flow diagram of an embodiment of a beam tracking process. Referring to Figure 9, in a first repetitive operation (shown as block 901), the transmit phase % is not determined to be equal to the transmit phase vector corresponding to the current beam (i.e., the transmit phase shift is set to the current estimate), At the same time, the phase field type is received as the current line delays the ugly # lines. According to this operation, the MRC-based received quantized phase shift vector is calculated. The calculated quantized phase vector is then used as a fixed receive phase field for the second repetitive operation (shown as block 9〇2), while the transmit phase field sweeps through the ugly lines and the calculation is based on MRc. The quantized phase shift vector is transmitted. In one embodiment, the transmitter phase pattern that produces the strongest received signal at the receiver is repeated more than once during this phase to allow the receiver to compensate for various phase inaccuracies inherent to the transmitter and receiver analog circuits. Sex. In each of the repeated operations, the channel transfer function of the same time delay derived during the timing recovery phase of the beam search process is estimated. The transmitter quantized phase vector (903)' calculated in these repeated jobs is then fed back for use as the transmit phase pattern. In one embodiment, the index of the weight vector that produces the strongest received signal is additionally fed back for use in the next beam tracking instance. Note that blocks 901 and 902 are described in more detail in the same manner as Figure 5 above. The same AGC procedure described above during the beam search process is performed prior to each repetitive operation to ensure that the received signal is neither saturated nor degraded during subsequent operations. These are shown in detail in Figure 9 for an exemplary AGC tuning for the same channel as the other channels. Alternative Embodiment of Beam Search Algorithm A second alternative embodiment of one of the beam search procedures is shown in FIG. See 118829.doc -34- 1378668 Figure ίο, first, a known symbol sequence for estimating the channel is transmitted over the air. Second, set the transmit phase field type to equal the ugly lines, one line at a time. For each of the transmit phase field patterns, the receive phase pattern is then set equal to # 丑 (one row at a time), resulting in a combination of different transmit and receive phase fields.

然後,藉甴在最佳時間延遲上使接收的信號匹配給定的 符號序列來估計個相應的SISO頻道轉移函數(除應使用 發射天線模式及接收天線模式之所有組合外,時序復原程 序類似於波束搜尋過程之第一實施例)。將個估計值用 於形成化#矩陣Γ。然後如在下式中,使Γ與Η及Η之轉置相 乘: σ=ΗΓΗτ 其中,G為ΜΙΜΟ頻道轉移函數估計。Then, the corresponding SISO channel transfer function is estimated by matching the received signal to the given symbol sequence at the optimal time delay (except that all combinations of the transmit antenna mode and the receive antenna mode should be used, the timing recovery procedure is similar to A first embodiment of the beam search process). An estimate is used to form the #matrix. Then, as in the following equation, Γ is multiplied by the transposition of Η and Η: σ = ΗΓΗτ where G is the ΜΙΜΟ channel transfer function estimate.

然後執行以下反覆作業,女=1,…,从: z = c〇nj{G w. ,], Vk=qUant([Dzi,Dz2,...,nzN]) w = conj{pvkA\ uk=quant([lD w!,□ w2,…,口 wN]) 其中,W為任意初始接收相位場型。 在上述估計階段之前,進行類似於上述AGC程序之AGC 程序。此量測所有發射及相位場型組合之接收的信號能量 且可按需要重複數次之AGC程序確保接收的信號在估計期 間既不飽和亦不過於衰弱。 應用 在一項實施例中,上述波束成形方案適用於在57至64 GHz免執照頻帶(unlicensed band)下操作的系統。與其他較 118829.doc -35- 1378668 低頻率免執照頻帶(諸如2.4 GHz及5 GHz)相比’ 60 GHz頻 帶允許使用具有類似天線增益之更小的天線。理想情況 下’ 60 GHz天線可小於具有相同增益之5 GHz天線的12 倍。此意謂在實質上不增加無線系統尺寸,且因此不增加 成本之情況下,可使用更多數目之天線。Then perform the following repeated work, female=1,...,from: z = c〇nj{G w. ,], Vk=qUant([Dzi,Dz2,...,nzN]) w = conj{pvkA\ uk= Quant([lD w!,□ w2,...,port wN]) where W is any initial received phase field type. Prior to the above estimation phase, an AGC procedure similar to the AGC procedure described above is performed. This measurement of the received signal energy for all combinations of transmit and phase field types and can be repeated several times as needed to ensure that the received signal is neither saturated nor degraded during the estimation period. Application In one embodiment, the beamforming scheme described above is applicable to systems operating at 57 to 64 GHz unlicensed bands. Compared to other low frequency license-free bands (such as 2.4 GHz and 5 GHz), the '60 GHz band allows the use of smaller antennas with similar antenna gains. Ideally, the '60 GHz antenna can be less than 12 times the 5 GHz antenna with the same gain. This means that a larger number of antennas can be used without substantially increasing the size of the wireless system, and thus without increasing the cost.

此外’量測值展示:60 GHz頻帶傳播頻道比2.4 GHz及5 GHz頻帶更密地成叢集。此相當於說對於此頻帶,可將傳 播路徑分組成截然不同的叢集。圖U說明成叢集的傳播頻 道之表意圖。因而,上述波束成形過程理想地等效於具有 最大增益之叢集内的聚焦傳播。可見,對於此等成叢集的 頻道,在本文中描述之波束成形方案下之頻道容量往往非 常接近(如背景部分所述,經由多工傳輸可獲得的)最大 ΜΙΜΟ頻道容量。此外’叢集内之聚焦傳播意謂傳播延遲 擴展將等於可顯著低於總體頻道延遲擴展之叢集延遲擴 展sIn addition, the measured values show that the 60 GHz band propagation channel is clustered more densely than the 2.4 GHz and 5 GHz bands. This is equivalent to saying that for this frequency band, the propagation paths can be grouped into distinct clusters. Figure U illustrates the intent of the propagation channel into a cluster. Thus, the beamforming process described above is ideally equivalent to focus propagation within a cluster having maximum gain. It can be seen that for such clustered channels, the channel capacity under the beamforming scheme described herein tends to be very close (as described in the background section, the maximum channel capacity available via multiplex transmission). In addition, the focus propagation within the cluster means that the propagation delay spread will be equal to the cluster delay spread that can be significantly lower than the overall channel delay spread.

因此,所提出之波束成形方法非常適合於6〇他頻帶下 之無線應用。 儘管本發^許多變更及修改在熟f此項技術㈣Μ 前描述後,無疑將變得顯而易見,但應瞭解,以說 展示及描述之任何敎實施例決不意欲被視為具有_ 性。因此,針各種實施例之細節之引用並不意欲限制本身 的範了戍缺的特徵的申請專利範圍 【圖式簡單說明】 118829.doc • 36 · 1378668 圖1為一通信系統之一項實施例之方塊圖。 圖2為一整合裝置之一項實施例之方塊圖。 圖3A及3B說明各種波束搜尋步驟。 圖4說明波束操控狀態機之一項實施例。 圖5說明波束搜尋過程之一項實施例之階段。 圖6說明圖5之波束搜尋過程所引起之特定波束成形。 圖7說明分別在源/發射器及目標/接收器側上之波束搜尋 及追蹤圖的一項實施例。 圖8為哈德碼得矩陣之一實例。 圖9為波束追蹤過程之一項實施例之流程圖。 圖10說明波束搜尋過程之一替代實施例。 圖11說明成叢集的傳播頻道之表意圖。 【主要元件符號說明】 媒體接收器 内容Therefore, the proposed beamforming method is well suited for wireless applications in the 6 〇 band. It will be apparent that many variations and modifications of the present invention will become apparent to those skilled in the art, and it should be understood that any embodiment of the present invention is not intended to be considered as having a singularity. Therefore, the reference to the details of the various embodiments is not intended to limit the scope of the patent application of the present invention. [Illustration of the drawings] 118829.doc • 36 · 1378668 FIG. 1 is an embodiment of a communication system Block diagram. 2 is a block diagram of an embodiment of an integrated device. 3A and 3B illustrate various beam searching steps. Figure 4 illustrates an embodiment of a beam steering state machine. Figure 5 illustrates the stages of an embodiment of a beam search process. Figure 6 illustrates the particular beamforming caused by the beam search process of Figure 5. Figure 7 illustrates an embodiment of a beam search and tracking map on the source/transmitter and target/receiver sides, respectively. Figure 8 is an example of a Harder code matrix. 9 is a flow chart of an embodiment of a beam tracking process. Figure 10 illustrates an alternate embodiment of a beam search process. Figure 11 illustrates the table intent of a clustered propagation channel. [Main component symbol description] Media receiver Content

100 101 102 103 104 105 106 107 109 110 111 媒體接收器介面 處理器 基頻信號處理組件 相位陣列天線 無線通信頻道介面 無線通信璉路 無線通信頻道介面 相位陣列天線 基頻處理器組件 118829.doc •37· 1378668100 101 102 103 104 105 106 107 109 110 111 Media Receiver Interface Processor Baseband Signal Processing Component Phase Array Antenna Wireless Communication Channel Interface Wireless Communication Network Wireless Communication Channel Interface Phase Array Antenna Baseband Processor Component 118829.doc •37 · 1378668

112 處理器 113 媒體播放機介面 114 媒體播放機 115 顯示器 121 控制頻道 122 控制頻道 140 發射器裝置 141 接收器裝置 300 收發器 301 數位基頻處理模組 302 數位/類比轉換器 303 類比前端 304 IF放大器 305 混頻器 \ , 多工器 307, 量化移相器 3072 量化移相器 3〇7k 量化移相器 308! 功率放大器 3082 功率放大器 3〇8k 功率放大器 309! 天線元件 3092 天線元件 3〇9k 天線元件 118829.doc -38- 1378668 31〇! 天線 31〇2 天線 31〇k 天線 311, 低雜訊放大器 3112 低雜訊放大器 311k 低雜訊放大器 312! 移相器 3122 移相器 312k 移相器 313 RF組合器 314 RF混頻器 315 IF 316 類比/數位轉換器(ADC) 318 數位基頻處理模組 320 回返頻道 360 控制頻道 370 控制頻道 401 獲取(初始/閒置)狀態 402 波束搜尋狀態 403 資料傳送狀態 501、502、503 階段 504、505、506 階段 504! 、 5042 子階段 506i ' 5062 子階段 118829.doc -39- 1378668112 processor 113 media player interface 114 media player 115 display 121 control channel 122 control channel 140 transmitter device 141 receiver device 300 transceiver 301 digital baseband processing module 302 digital / analog converter 303 analog front end 304 IF amplifier 305 mixer\, multiplexer 307, quantized phase shifter 3072 quantized phase shifter 3〇7k quantized phase shifter 308! power amplifier 3082 power amplifier 3〇8k power amplifier 309! antenna element 3092 antenna element 3〇9k antenna Element 118829.doc -38- 1378668 31〇! Antenna 31〇2 Antenna 31〇k Antenna 311, Low Noise Amplifier 3112 Low Noise Amplifier 311k Low Noise Amplifier 312! Phase Shifter 3122 Phase Shifter 312k Phase Shifter 313 RF combiner 314 RF mixer 315 IF 316 analog/digital converter (ADC) 318 digital baseband processing module 320 return channel 360 control channel 370 control channel 401 acquisition (initial/idle) state 402 beam search state 403 data transfer State 501, 502, 503 Phase 504, 505, 506 Phase 504!, 5042 Subphase 5 06i ' 5062 Sub-stage 118829.doc -39- 1378668

52〇2 子階段 531 AGC區塊 53l! ' 5312 ' 5313 ' 5314 子階段 55〇! ' 5502 ' 5503 ' 5504 ' 550s ' 5506 子階段 56〇! ' 5602 ' 5603 ' 5604 ' 5605 ' 5606 子階段 701 BPSK波束搜尋模式 702 滤波器 703 OQPSK映射 704 DAC 705 類比濾波器 901 區塊 902 區塊 903 區塊 118829.doc 40-52〇2 Sub-phase 531 AGC block 53l! ' 5312 ' 5313 ' 5314 Sub-stage 55〇! ' 5502 ' 5503 ' 5504 ' 550s ' 5506 Sub-phase 56〇! ' 5602 ' 5603 ' 5604 ' 5605 ' 5606 Sub-phase 701 BPSK Beam Search Mode 702 Filter 703 OQPSK Mapping 704 DAC 705 Analog Filter 901 Block 902 Block 903 Block 118829.doc 40-

Claims (1)

申請專利範圍: 1. -種用於通信系統中之—接收器之方法立包含. 使用多個發射及接收天線執行適應性波束操控, 括反覆執行一對訓練操作,苴 /、I '、中反覆執灯該對訓練操竹 匕括估計一發射器天線陣列描旦 ’、 列權重向量,其中反覆執":里及一接收器天線陣 覆執仃該對訓練操作包括反覆改· 發射及接收相位場型以用於複數個反覆作業。 更 2. 如請求項1之用於通信系統中之一接收器之方法 該等接收天線祕至-❹個數位化路m中ς — 或多個數位化路徑之數目小於接收天線之數目。X 3. 如請求項丨之用於通信系統中之一接收器之方法,盆中 該等發射天線純至-或多個發射信號產生路#,且盆 中該-或多個發射信號產生路徑之數目小於發射: 數目。 4:月6項!之用於通信系統中之一接收器之方法,其中 執行適應性波束操控包含: 執行包括-波束搜尋過程以識別一波束方向之適應性 波束成形;及 執仃—波束追蹤過程以在—資料傳送階段期間追蹤該 波束。 。月求項1之用於通信系統中之一接收器之方法其中 在該發射器或該接收器請求時,或以有規律地經排程之 時間間隔執行該波束搜尋過程及該波束追蹤過程。 士明求項4之用於通信系統中之一接收器之方法,其中 2012/Ί"9無,J線替換頁 執仃該波束追蹤過程包含執行該對訓練操作之一單次反 覆作業。 :月求項1之用於通信系統中之一接收器之方法其中 “ § f練操作係在相同多輸入多輸出(mim〇)頻道上發 生。 /求項丨之用於通信系統中之一接收器之方法,其中 ^接收裔上執行對一發射器天線陣列權重向#及一接 收器天線陣列權重向量之估計。 月长項8之用於通信系統中之一接收器之方法,其進 —步包含將該經估計的發射器天線陣列權重向量反饋給 該發射器。 如明求項1之用於通信系統中之一接收器之方法其中 該等天線陣列權重向量中之權重僅限於相移及該等天線 之啟用及停用。 月求項1之用於通信系統中之_接收器之方法,其中 在估汁-亥發射盗天線陣列權重向量時設定該接收權重向 而在估计„玄接收器天線陣列權重向量時設定該發射 權重向量。 如清求項1之用於(士备+ 、通仏糸統中之—接收器之方法,其中 使用多個發射及接收天線執行適應性波束操控包含反覆 執行一組操作,該組操作包括: (a) 基於一初始權曹命旦+ 4。μ 惟置句里或相移向量,設定接收天線之 一接收權重向量; (b) 循序量測對應於各相位之頻道增益,以形成—第一 1378668 2012/1/19無劃線替換頁 組頻道增益; (C)基於該第一組頻道增益計算一第二權重向量; (d) 基於該第二權重向量設定發射天線之發射相移; (e) 在該接收器上,循序量測對應於各相位之頻道增 益,以形成一第二組頻道增益;及 (f) 基於該第二組經量測的頻道増益計算一第三權重向 量。 13.如請求項12之用於通信系統中之一接收器之方法,其進 一步包含: 自該第一組頻道增益估計一第一頻道,其中計算該第 一相移向量係基於該第一頻道之該估計;及 自該弟二組頻道增益估計一第二頻道,其中計算該第 二相移向量係基於該第二頻道之該估計。 14·如請求項13之用於通信系統中之一接收器之方法,其中 估計該第一頻道包含一次估計一個頻道向量元素,其中 將一定數目之循序估計時槽設定為一數目。 15·如請求項13之用於通信系統中之一接收器之方法,其中 估计s亥第一頻道包含使用一單式矩陣作為一轉移矩陣, 使得將發射天線權重向量設定為該單一矩陣之一行。 16,如請求項13之用於通信系統中之一接收器之方法,其中 估計該第一頻道包含使用一哈德碼得(Hadamard)型矩陣 作為一轉移矩陣,使得將發射天線權重向量設定為該哈 德碼得型矩陣之一行。 17·如請求項14之用於通信系統中之一接收器之方法,其中 -3- 1378668 - 2012/1/19無劃線替換頁 該循序估計數目與不同發射天線權重向量之數目相等。 18.如請求項14之用於通信系統中之一接收器之方法,其中 該數目為36。 • 19-如請求項14之用於通信系統中之一接收器之方法,其中 . 該循序估計數目大於不同發射天線權重向量之數目,且 不止一次地重複在該接收器上產生最強接收信號之發射 裔天線核重向量。 20. 如請求項14之用於通信系統中之一接收器之方法,其中 該循序估計數目為从· 46,且使在該接收器上產生最強接 收信號之發射器天線權重向量重複1〇次。 21. 如請求項12之用於通信系統中之一接收器之方法,其中 該操作序列進一步包含發射一已知訓練序列至該接收 器。 22. 23. 如請求項12之用於通信系統中之一接收器之方法,其中 該組操作進一步包含:當為下一反覆作業設定該等接收 天線之接收相移時,使用該第三相移向量來替代該第一 相移向量,及然後重複操作(a)至操作⑴。 如請求項12之用於通信系統中之一接收器之方法,其中 該第-、該第二及該第三相移向量為天線陣列權重向 量。 之一接收器之方法,其進 第二相移向量自該接收器 24·如請求項12之用於通信系統中 一步包含使用一反向頻道將該 發送至該發射器。 25.如請求項24之用於通信系 統中之一接收器之方法,其中 1378668 2〇12/1/i9無劃線替換頁 該頻道具有一低於自波束成形產生之頻道的傳送率。 26. 如請求項12之用於通信系統中之一接收器之方法其進 一步包含額外地發送在該第一頻道之該循序估計期間在 該接收器上產生最強接收信號之發射器相位向量的索 引。 27. 如請求項12之用於通信系統中之一接收器之方法,其中 若該發射器與該接收器處於閒置模式或若一形成於該發 射器與該接收器之間的波束受阻,則反覆執行該組操 作。 28. 如請求項12之用於通信系統中之一接收器之方法其中 反覆執行該組操作係以使得該組操作執行四次之方式執 行。 29. 如請求項12之用於通信系統中之一接收器之方法其進 一步包含在反覆執行該組操作之前,執行時序復原。 30. 如請求項12之用於通信系統中之一接收器之方法其進 一步包含在反覆執行該組操作之前執行延遲估計,以判 又具有最大增益之波束的到連時間。 31. 如請求項30之用於通信系統中之—接收器之方法,其中 執行延遲估計包含: 使用發射天線在空中發射—已知符號序列;及 經由一匹配遽波器在一接收器上匹配該已知符號序 列。 32. 一種用於一無線通信之系統,其包含: 一收發器,其具有一耦接至—第一相位陣列天線之第 1378668 33. 34. 35. 36. 37. 2012/1/19無劃線替換頁 一數位基頻處理單元;及 -接收器,其具有一耦接至一第二相位陣列天線之第 二數位基頻處理單元,其中該第—數位基頻處理單元與 該第二數位基頻處理單元協作以藉由反覆執行—對訓練 而使用多個發射及接收天線來執行適應性波束操控,其 中該對訓練包括估計-發射器天線陣列權重向量及一接 收器天線陣列權重向量’其中反覆執行該對訓練包括反 覆改變發射及接收相位場型以用於複數個反覆作業。 如請求項32之用於一無線通信之系統,其令該等接收天 線耦接至一或多個數位化路徑,且其中數位化路徑之數 目小於接收天線之數目。 如請求項32之用於一無線通信之系統,其中該等發射天 線輕接至一或多個發射信號產生路徑,且其中發射信號 產生路彳生之數目小於發射天線之數目。 如請求項32之用於一無線通信之系統,其中該第一數位 土頻處理單元與s亥第一數位基頻處理單元協作以藉由以 下方式來執行適應性波束操控: 執行包括一波束搜尋過程以確定一波束方向之適應性 波束成形;及 執行—波束追蹤過程以在一資料傳送階段期間追蹤該 波束。 Λ °月求項35之用於一無線通信之系統,其中該波束追縱 過程包含執行該對訓練之一單次反覆作業。 如凊求項32之用於一無線通信之系統,其中在該接收器 -6- 1378668 2012/1/19無劃線替換頁 上執行對—發射器天線陣列權重向量及一接收器天線陣 列權重向量之估計。 38-如請求項32之用於一無線通信之系統其進一步包含一 反饋頻道,以將該經估計的發射器天線陣列權重向量反 饋給該發射器。 39. 如請求項32之用於一無線通信之系統其中在估計該發 射器天線陣列權重向量時設定該接收權重向量,而在估 計該接收器天線陣列權重向量時設定該發射權重向量。 40. 如請求項32之用於一無線通信之系統,其中該第—數位 基頻處理單元與該第二數位基頻處理單元協作,以藉由 使用一組反覆執行之操作來執行適應性波束操控,該組 操作包括: U)該第二數位基頻處理單元基於一第一權重向量設定 該第二相位陣列天線之接收天線的接收相移; (b)該第二數位基頻處理單元致使對應於各相位之頻道 增益循序被量測,且形成一第一組頻道增益; 斤⑷該第二數位基頻處理單元基於該第—組頻道増益計 算一第二權重向量; 發里17 ⑷該第-數位基頻處理單元基於該第二權重向量机定 該第一相位陣列天線之發射天線的發射相移;。又 ⑷該第二數位基頻處理單元致使對應於各相位道 :益在該接收器上被量測’且形成-第二組頻道増益; (f)該第二數位基頻處 理單元基於該第二組經 量測的頻 1378668 • I 41. 42. 43. 44. 45. 2012/1/19 mmmm 道增益計算一第三權重向量。 如請求項40之用於一無線通信之系統,其中該第二數位 基頻處理單元自該第一組頻道增益估計一第一頻道, 基於該第一頻道之該估計計算該第二權重向量, 且另 外,其中該第一數位基頻處理單元自該第二組頻道增X 估計一第二頻道,且基於該第二頻道之該估計計算該第 三權重向量。 如請求項41之用於一無線通信之系統,其中該第二數位 基頻處理單元藉由一次估計一個頻道向量元素來估計兮 第一頻道,其中將一定數目之循序估計時槽設定為—數 目。 如請求項41之用於一無線通信之系統,其中該第二數位 基頻處理單元藉由使用一單式矩陣作為一轉移矩陣來估 計該第一頻道,使得將發射天線權重向量設定為該單式 矩陣之行。 如請求項41之用於一無線通信之系統,其中該第二數位 基頻處理單元藉由使用一哈德碼得型矩陣作為一轉移矩 陣來估計該第一頻道,使得將發射天線權重向量設定為 該哈德碼得型矩陣之行。 如請求項41之用於一無線通信之系統,其中不止一次地 重複在該接收器上產生最強接收信號之反射器天線權重 向量。 如請求項40之用於一無線通信之系統,其中該組操作進 一步包含該第二數位基頻處理單元在為下一反覆作業設 46. J37866B 2012/1/19 ___胃 定該等接收天線之接收相移時,使用該第三權重向量來 替代該第一權重向量’及然後重複操作(a)至操作(f)。 47. 如請求項40之用於一無線通信之系統,其進一步包含一 回返頻道,其中該第二數位基頻處理單元使用該回返頻 道將該第二權重向量自該接收器發送至該發射器。 48. 如請求項47之用於一無線通信之系統,其中該第二數位 基頻處理單元使用該回返頻道將在該第一頻道之連續估 s十期間’在該接收器上產生最強接收信號之發射相移向 量的一索引自該接收器發送至該發射器。 49. 如响求項32之用於一無線通信之系統,其中該回返頻道 具有一低於自波束成形產生之波束成形頻道的傳送率。 50. 如請求項40之用於一無線通信之系統,其中若該發射器 及該接收器處於閒置模式或若一形成於該發射器與該接 收器之間的波束受阻,則反覆執行該組操作。 5 1.如凊求項4〇之用於一無線通信之系統,其中該組操作執 行四次反覆作業。 如明求項40之用於一無線通信之系統,其中該第一 基頻處理單元與該第二數位基頻處理單it協作,以在 覆執行該組操作之前,執行時序復原。 如》月求項40之用於一無線通信之系統,其中該第一數 基頻處理單元與該第二數位基頻處理單元協作,以在 覆執打該組操作之前執行延遲估計,以判定具有最大. 益之波束的到達時間。 如明求項37之用於_無線通信之系、統,其中該第一數 52 双1 53 54 1378668 . · 2012/1/19無劃線麵頁 基頻處理單元與該第二數位基頻處理單元協作以藉由以 下來執行延遲估計: 該第一數位基頻處理單元致使該第一相位陣列天線在 空中發射一已知符號序列;及 該第二數位基頻處理單元致使該已知符號序列經由一 匹配濾波器在該接收器上匹配。 55. 一種用於與一接收器通信之發射器,該發射器包含: 一處理器;及 一相位陣列波束成形天線,其中該處理器包含一第一 手段用以控制該天線,以藉由反覆執行一組訓練操作來 結合該接收器之接收天線使用多個發射天線執行適應性 波束操控’包含反覆改變發射及接收相位場型以用於複 數個反覆作業; 第一手段用以在設定該接收器之一接收天線陣列權 重向量且一發射器天線陣列權重向量在權重向量之間與 一組權重向量交換時,致使於該組訓練操作之一的操作 期間該相位陣列波束成形天線發射一第一訓練序列,且 進一步; 一第二手段用以在一發射器天線陣列權重向量設定為 一計异該接收天線陣列權重向量之過程的一部分時致 使於該組訓練操作之另一的操作期間該相位陣列波束成 形天線發射一第二訓練序列。 一種用於與一發射器通信之接收器,該接收器包含: 一處理器;及 56. 1378668 • · 2012/1/19 相位陣列波束成形天線,其中該處理器包含-第一 、控制該天線,以藉由反覆執行一組訓練操作來 結合該發射器之發射天線使用多個接收天線執行適應性 波束操控’包含反覆改變發射及接收相位場型以用於複 數個反覆作業; 第一手段用以在一用於估計一發射天線陣列權重向 里之過程期間,在設定一接收天線權重向量時,藉由於 該組訓練操作之一的操作期間使該發射器發射一第一訓 練序列來設定該接收天線陣列權重向量,且進一步; 第二手段用以在設定該發射器天線陣列權重向量時 當該發射器發射一第二訓練序列時,於該組訓練操作之 另一的操作期間計算該接收天線陣列權重向量。 57. 如請求項1之用於通信系統中之一接收器之方法,其中 该反覆改變發射及接收相位場型向對應於用於波束成形 之一波束方向之一最佳值收斂。 • 58. 如请求項32之用於一無線通信之系統,其中該反覆改變 發射及接收相位場型向對應於用於波束成形之一波束方 向之—最佳值收斂。 -11 -Patent application scope: 1. A method for receiving a receiver in a communication system. Performing adaptive beam steering using multiple transmitting and receiving antennas, including performing a pair of training operations repeatedly, 苴/, I ', medium Repeatedly, the pair of training exercises includes estimating a transmitter antenna array, and a column weight vector, wherein the repeated execution ": and a receiver antenna array are performed, and the pair of training operations includes repeated modification and transmission. The phase field type is received for a plurality of repeated operations. 2. The method of claim 1 for a receiver in a communication system. The receiving antennas are secreted to - one digitized path m - or the number of the plurality of digitized paths is smaller than the number of receiving antennas. X 3. As claimed in the method for a receiver in a communication system, the transmitting antennas in the basin are pure to - or a plurality of transmitting signals generating a path #, and the one or more transmitting signals in the basin generate a path The number is less than the number of emissions: number. 4: 6 items in the month! A method for a receiver in a communication system, wherein performing adaptive beam steering comprises: performing an adaptive beamforming comprising: a beam searching process to identify a beam direction; and performing a beam tracking process to transmit data The beam is tracked during the phase. . The method of claim 1 for one of the receivers of the communication system wherein the beam search process and the beam tracking process are performed at the time of the transmitter or the receiver request, or at regularly scheduled intervals. The method of claim 4 for a receiver in a communication system, wherein 2012/Ί"9 is not, the J-line replacement page is executed. The beam tracking process includes performing a single-repeating operation of the pair of training operations. : The method of claim 1 for one of the receivers in the communication system, wherein "the f operation is performed on the same multiple input multiple output (mim) channel. / / is used in one of the communication systems a receiver method, wherein the receiver performs an estimation of a transmitter antenna array weight to # and a receiver antenna array weight vector. The monthly term 8 is used in a receiver in a communication system, The step includes feeding back the estimated transmitter antenna array weight vector to the transmitter. The method of claim 1 for a receiver in a communication system, wherein weights in the antenna array weight vectors are limited to phase Move and enable and disable the antennas. The method of claim 1 for a receiver in a communication system, wherein the receiving weight is set in an estimate when estimating a weight vector of the antenna array The transmit weight vector is set when the antenna antenna array weight vector is used. For example, the method of claim 1 for the use of multiple transmit and receive antennas for performing adaptive beam steering includes repeatedly performing a set of operations, the set of operations including: (a) Based on an initial weight Cao Shengdan + 4. μ only in the sentence or phase shift vector, set one of the receiving antennas to receive the weight vector; (b) Sequentially measure the channel gain corresponding to each phase to form - first 1378668 2012/1/19 no-line replacement page group channel gain; (C) calculating a second weight vector based on the first group channel gain; (d) setting a transmit phase shift of the transmit antenna based on the second weight vector; At the receiver, sequentially measuring channel gains corresponding to the phases to form a second set of channel gains; and (f) calculating a third weight vector based on the second set of measured channel gains. The method of claim 12 for a receiver in a communication system, further comprising: estimating a first channel from the first set of channel gains, wherein calculating the first phase shift vector is based on the first channel The estimate; and Estimating a second channel from the two sets of channel gains, wherein calculating the second phase shift vector is based on the estimate of the second channel. 14. The method of claim 13 for a receiver in a communication system, Wherein the first channel is estimated to include one channel vector element at a time, wherein a certain number of sequential estimation time slots are set to a number. 15. A method for requesting a receiver in a communication system, wherein the estimation is The first channel includes using a simple matrix as a transfer matrix such that the transmit antenna weight vector is set to one of the rows of the single matrix. 16. The method of claim 13 for a receiver in a communication system, wherein the estimate The first channel includes using a Hadamard type matrix as a transfer matrix such that the transmit antenna weight vector is set to one of the Had code matrix. 17. The communication system is as claimed in claim 14. One of the receiver methods, wherein -3- 1378668 - 2012/1/19 has no scribe line replacement page, the number of sequential estimates is equal to the number of different transmit antenna weight vectors 18. The method of claim 14, wherein the number is 36. The method of claim 14, wherein the method of claim 14 is for a receiver in a communication system, wherein the sequential estimation The number is greater than the number of different transmit antenna weight vectors, and the transmit antenna core weight vector that produces the strongest received signal at the receiver is repeated more than once. 20. The method of claim 14 for a receiver in a communication system , wherein the number of sequential estimates is from -46, and the transmitter antenna weight vector that produces the strongest received signal at the receiver is repeated one time. 21. The requesting item 12 is used in one of the receivers of the communication system The method, wherein the sequence of operations further comprises transmitting a known training sequence to the receiver. 22. The method of claim 12, wherein the group of operations further comprises: when setting a receive phase shift of the receive antennas for a next repeat job, using the third phase The vector is shifted to replace the first phase shift vector, and then operations (a) through (1) are repeated. A method for a receiver in a communication system of claim 12, wherein the first, second, and third phase shift vectors are antenna array weight vectors. A method of one of the receivers, wherein the second phase shift vector is from the receiver 24. The one used in the communication system as claimed in claim 12 includes transmitting to the transmitter using a reverse channel. 25. A method for a receiver in a communication system of claim 24, wherein the 1378668 2〇12/1/i9 no scribe line replacement page has a transmission rate that is lower than a channel resulting from beamforming. 26. The method of claim 12 for a receiver in a communication system, further comprising additionally transmitting an index of a transmitter phase vector that produces a strongest received signal at the receiver during the sequential estimation of the first channel . 27. The method of claim 12, wherein the transmitter is in an idle mode with the receiver or if a beam formed between the transmitter and the receiver is blocked, Repeat this set of operations. 28. The method of claim 12 for a receiver in a communication system, wherein the group of operating operations is repeated to cause the set of operations to be performed four times. 29. The method of claim 12 for a receiver in a communication system, further comprising performing a timing recovery prior to repeatedly performing the set of operations. 30. The method of claim 12 for a receiver in a communication system, further comprising performing a delay estimate prior to repeatedly performing the set of operations to determine a reach time of the beam having the greatest gain. 31. The method of claim 30, wherein the performing delay estimation comprises: transmitting, using a transmit antenna, over the air, a sequence of known symbols; and matching on a receiver via a matching chopper. This known symbol sequence. 32. A system for wireless communication, comprising: a transceiver having a first coupling to a first phase array antenna: 1378668 33. 34. 35. 36. 37. 2012/1/19 without a plan a line replacement page-digit baseband processing unit; and a receiver having a second digital baseband processing unit coupled to a second phase array antenna, wherein the first-digit baseband processing unit and the second digit The baseband processing unit cooperates to perform adaptive beam steering by repeatedly performing-using a plurality of transmit and receive antennas for training, wherein the pair of training includes an estimate-transmitter antenna array weight vector and a receiver antenna array weight vector' The repeated execution of the pair of training includes repeatedly changing the transmit and receive phase patterns for a plurality of repeated operations. A system for requesting a wireless communication, wherein the receiving antennas are coupled to one or more digitized paths, and wherein the number of digitized paths is less than the number of receiving antennas. A system for requesting a wireless communication, wherein the transmitting antennas are lightly coupled to one or more transmit signal generation paths, and wherein the number of transmit signal generation paths is less than the number of transmit antennas. A system for requesting a wireless communication, wherein the first digital terrestrial processing unit cooperates with a first digital baseband processing unit to perform adaptive beam steering by: performing a beam search The process determines adaptive beamforming of a beam direction; and performs a beam tracking process to track the beam during a data transfer phase. A system for wireless communication of claim 35, wherein the beam tracking process includes performing a single iteration of the pair of trainings. A system for a wireless communication, as in claim 32, wherein the transmitter-antenna antenna array weight vector and a receiver antenna array weight are performed on the receiver-6- 1378668 2012/1/19 non-line-replacement page. Estimate of the vector. 38. The system of claim 32 for a wireless communication further comprising a feedback channel to feed the estimated transmitter antenna array weight vector to the transmitter. 39. The system of claim 32 for a wireless communication wherein the receive weight vector is set when estimating the transmitter antenna array weight vector, and the transmit weight vector is set when the receiver antenna array weight vector is estimated. 40. The system of claim 32, wherein the first digital baseband processing unit cooperates with the second digital baseband processing unit to perform an adaptive beam by using a set of repeatedly performed operations. Manipulating, the group of operations includes: U) the second digital baseband processing unit sets a receive phase shift of the receive antenna of the second phase array antenna based on a first weight vector; (b) the second digital baseband processing unit causes Channel gains corresponding to the phases are sequentially measured and form a first set of channel gains; jin (4) the second digital baseband processing unit calculates a second weight vector based on the first set of channel gains; The first-bit baseband processing unit determines a transmit phase shift of the transmit antenna of the first phased array antenna based on the second weight vector; (4) the second digital baseband processing unit causes the corresponding phase channel to be measured: the benefit is measured on the receiver and forms a second group of channel benefits; (f) the second digital baseband processing unit is based on the first Two sets of measured frequencies 1378668 • I 41. 42. 43. 44. 45. 2012/1/19 mmmm track gain calculates a third weight vector. The system for requesting a wireless communication, wherein the second digital baseband processing unit estimates a first channel from the first set of channel gains, and calculates the second weight vector based on the estimate of the first channel, And additionally, wherein the first digital baseband processing unit estimates a second channel from the second group of channels, and calculates the third weight vector based on the estimate of the second channel. A system for requesting a wireless communication, wherein the second digital baseband processing unit estimates the first channel by estimating one channel vector element at a time, wherein a certain number of sequential estimation time slots are set to - number . A system for requesting a wireless communication, wherein the second digital baseband processing unit estimates the first channel by using a simple matrix as a transfer matrix such that a transmit antenna weight vector is set to the single The matrix of the line. The system for requesting a wireless communication, wherein the second digital baseband processing unit estimates the first channel by using a Had code matrix as a transition matrix, so that the transmit antenna weight vector is set. For the Had code to get the matrix line. A system for a wireless communication of claim 41, wherein the reflector antenna weight vector that produces the strongest received signal at the receiver is repeated more than once. The system of claim 40 for a wireless communication, wherein the group of operations further comprises the second digital baseband processing unit being configured for the next repeated operation. 46. J37866B 2012/1/19 ___ When the phase shift is received, the third weight vector is used instead of the first weight vector 'and then operations (a) through (f) are repeated. 47. The system of claim 40 for a wireless communication, further comprising a return channel, wherein the second digital baseband processing unit transmits the second weight vector from the receiver to the transmitter using the return channel . 48. The system of claim 47, wherein the second digital baseband processing unit uses the return channel to generate a strongest received signal on the receiver during the continuous evaluation of the first channel. An index of the transmit phase shift vector is sent from the receiver to the transmitter. 49. The system of claim 32 for use in a wireless communication, wherein the return channel has a transmission rate that is lower than a beamforming channel generated from beamforming. 50. The system of claim 40, wherein the transmitter and the receiver are in an idle mode or if a beam formed between the transmitter and the receiver is blocked, the group is repeatedly executed. operating. 5 1. A system for wireless communication as claimed in claim 4, wherein the group of operations performs four repeated operations. A system for wireless communication of claim 40, wherein the first baseband processing unit cooperates with the second digital baseband processing unit it to perform timing recovery prior to performing the set of operations. A system for a wireless communication, such as the monthly finding 40, wherein the first number of fundamental frequency processing units cooperate with the second digital baseband processing unit to perform delay estimation to determine before overwriting the set of operations The arrival time of the beam with the largest benefit. For example, the system for wireless communication, wherein the first number 52 double 1 53 54 1378668 . · 2012/1/19 unlined page base frequency processing unit and the second digital base frequency The processing unit cooperates to perform delay estimation by: causing the first digital baseband processing unit to cause the first phase array antenna to transmit a sequence of known symbols over the air; and the second digital baseband processing unit causes the known symbol The sequence is matched on the receiver via a matched filter. 55. A transmitter for communicating with a receiver, the transmitter comprising: a processor; and a phased array beamforming antenna, wherein the processor includes a first means for controlling the antenna to repeat Performing a set of training operations to perform adaptive beam steering using multiple transmit antennas in conjunction with the receive antenna of the receiver' includes repeatedly changing the transmit and receive phase patterns for a plurality of repeated operations; a first means for setting the receive One of the receivers receives the antenna array weight vector and a transmitter antenna array weight vector is exchanged between the weight vectors and a set of weight vectors, such that the phase array beamforming antenna transmits a first during operation of one of the set of training operations Training sequence, and further; a second means for causing the phase during operation of another of the set of training operations when a transmitter antenna array weight vector is set to a portion of the process of discriminating the receive antenna array weight vector The array beamforming antenna transmits a second training sequence. A receiver for communicating with a transmitter, the receiver comprising: a processor; and 56. 1378668 • a 2012/1/19 phase array beamforming antenna, wherein the processor includes - first, controlling the antenna To perform adaptive beam steering using multiple receive antennas by repeatedly performing a set of training operations in conjunction with the transmit antenna of the transmitter' including repeatedly changing the transmit and receive phase patterns for a plurality of repeated operations; During a process for estimating a transmit antenna array weight inward, when setting a receive antenna weight vector, the transmitter is configured to transmit a first training sequence during operation of one of the set of training operations. Receiving an antenna array weight vector, and further; a second means for calculating the reception during operation of another of the set of training operations when the transmitter transmits a second training sequence when setting the transmitter antenna array weight vector Antenna array weight vector. 57. The method of claim 1, wherein the repeatedly changing transmit and receive phase field patterns converge toward an optimum value corresponding to one of beam directions for beamforming. 58. The system of claim 32 for a wireless communication, wherein the repeatedly changing the transmit and receive phase field pattern converges to an optimum value corresponding to one of the beam directions for beamforming. -11 -
TW96105912A 2006-02-14 2007-02-14 Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas TWI378668B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77350806P 2006-02-14 2006-02-14

Publications (2)

Publication Number Publication Date
TW200746678A TW200746678A (en) 2007-12-16
TWI378668B true TWI378668B (en) 2012-12-01

Family

ID=40595670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96105912A TWI378668B (en) 2006-02-14 2007-02-14 Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas

Country Status (2)

Country Link
CN (1) CN101416416B (en)
TW (1) TWI378668B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068844B2 (en) 2008-12-31 2011-11-29 Intel Corporation Arrangements for beam refinement in a wireless network
US9425850B2 (en) * 2010-10-27 2016-08-23 Sai C. Kwok Simultaneous voice and data communication
US9312888B2 (en) 2012-06-29 2016-04-12 Qualcomm Incorporated Antenna interface circuits for carrier aggregation on multiple antennas
US9461727B2 (en) * 2013-09-05 2016-10-04 Intel Corporation Adaptive sectorization of a spational region for parallel multi-user transmissions
EP3038272B1 (en) * 2013-09-09 2019-11-06 Huawei Technologies Co., Ltd. Beam tracking method, apparatus and system
KR102171561B1 (en) * 2014-04-07 2020-10-29 삼성전자주식회사 Method and apparatus for uplink beam tracking in beamforming based cellular systems
EP3229380B1 (en) 2014-12-31 2019-05-29 Huawei Technologies Co. Ltd. Antenna alignment method and system
TWI560942B (en) * 2015-01-27 2016-12-01 Wistron Neweb Corp Wireless communication device and antenna search method thereof
WO2017075337A1 (en) * 2015-10-30 2017-05-04 Lattice Semiconductor Corporation Beamforming architecture for scalable radio-frequency front end
JPWO2018173891A1 (en) * 2017-03-22 2019-12-19 日本電気株式会社 First communication device, second communication device, method, program, recording medium, and system
CN110226343B (en) * 2017-03-24 2021-11-09 瑞典爱立信有限公司 Wireless device, radio network node and method performed therein for handling communication in a wireless communication network
US10256894B2 (en) * 2017-09-11 2019-04-09 Qualcomm Incorporated Hybrid beam former
CN108155927B (en) * 2017-12-06 2021-03-19 京信通信系统(中国)有限公司 Communication method and device
CN108614240B (en) * 2018-04-10 2021-07-02 北京航空航天大学 Adaptive space-time transmission weighting generator applied to centralized MIMO radar
CN111929675B (en) * 2020-06-30 2023-07-25 中国人民解放军63921部队 Four-phased array ultra-low elevation angle space domain tracking multi-target method and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030125040A1 (en) * 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
EP1445886B1 (en) * 2003-01-31 2015-05-20 Ntt Docomo, Inc. Multiple-output multiple-input (MIMO) communication system, MIMO receiver and MIMO receiving method

Also Published As

Publication number Publication date
TW200746678A (en) 2007-12-16
CN101416416A (en) 2009-04-22
CN101416416B (en) 2013-06-12

Similar Documents

Publication Publication Date Title
TWI378668B (en) Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas
US7710319B2 (en) Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas
US8040856B2 (en) System and method for wireless communication of uncompressed high definition video data using a beamforming acquisition protocol
US9300383B2 (en) Precoder selection method and apparatus for performing hybrid beamforming in wireless communication system
US8265177B2 (en) System and method for wireless communication of uncompressed high definition video data using beambook-constructed beamforming signals
KR100493068B1 (en) Method and apparatus for semi-blind transmit antenna array using feedback information in mobile communication system
US7092690B2 (en) Genetic algorithm-based adaptive antenna array processing method and system
US20080130778A1 (en) System and method for wireless communication of uncompressed high definition video data using a transfer matrix for beamforming estimation
TWI433484B (en) System, apparatus, and method for asymmetrical beamforming with equal-power transmissions
US8583055B2 (en) Beam forming method and multiple antenna system using the same
CN112311520A (en) Method for constructing full-duplex direction modulation wireless network
JP4648015B2 (en) Transmitting apparatus and transmitting method
US8503565B2 (en) Multi-antenna communication method and system thereof
TWI398111B (en) Method for transmitting data and a transmitter apparatus
KR20090066198A (en) Mobile terminal and base station in mimo system and method for combining receive signals
CN113489519A (en) Wireless communication transmission method for asymmetric large-scale MIMO system
Payami Hybrid beamforming for massive MIMO systems
WO2011075978A1 (en) Method and system for switching between beam forming and mimo beam forming
KR20090015299A (en) Apparatus and method for generating effective signal to noise ratio per stream in multiple input multiple output wireless communication system
KR100880000B1 (en) Method and apparatus for generating codebook considering antenna correlation, and multi-antenna communication system
JP2005191878A (en) Transmitter for multi-element antenna
Torkildson Millimeter Wave MIMO: Design and Evaluation of Practical System Architectures
CN101483461A (en) Method and apparatus for transmitting data through polarized antenna
CN104219188A (en) Method for searching double-end time-domain wave beams by aid of compressed sensing