1378267 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學膜,更具體來說,係關於一種具非 對稱透光率之光學膜的螢光發光裝置。 【先前技術】 液晶顯示器由於其厚度薄、質量輕且攜帶方便,且相較於 CRT更有低輻射的優點’近年來需求快速的增加,己在顯示 器的市場佔有一席之地。然而液晶顯示器中的液晶面板本身並 非發光顯示元件,需藉由背光模組提供所需的光源。換言之, 背光模組提供顯示晝面所需的亮度、亮度的均勻性、視角。然 而隨著液晶顯示器製造技術的提昇’在大尺寸及低價格的趨勢 下’背光模組亦需考量輕量化、薄型化、低耗電、高亮度及降 低成本等市場要求。 圖一係顯示習·知液晶顯示器之背光模組1〇的示意圖。習 知月光模組10主要由增亮膜12、13、擴散片14、導光板15、 反射板16、光源(例如冷陰極燈管)17、反射罩18及外框(未顯 示)組裝而成。背光模、组HH系利用光源17的線型光源經反射 罩18進入導光板μ,轉化線光源分佈成均勾的面光源,再經 擴散片14的均光作用與增亮膜12]3的集光作用以提高光源 的冗度與均齊度。其巾反射罩18_來防止光源17的光線逸 射,失’並盡量使光線射入導光板15内。為確保光線不會溢 射,散,’提向光的使用率,一般於光源17的外側加裝”匸”型 或U型的金屬反射罩】8。然而隨著液晶顯示器的尺寸越來越 1378267 大’為滿以度之需求’需增加絲數量或長度導致所需的 ^屬反射罩之尺寸及/或數量也隨之增加,如此-來不僅造成 背光模組之重量增加與體積變大,也成為背賴組之成本負 口此而要種可以降低成本及/或輕薄化背光模组之燈管 反射罩。 【發明内容】 與膜本提供—種於兩有非對稱之透光率的光 =$猎轉成,_缝,並在濺鍍 為輕薄之燈管反射罩。 自瓦η 第一二發明提供-種光學膜。該光學膜包含: 居上,心第:㈣I折射率;第二光學層,其位於第一光學 二楚:f 第三光學詹’其位於第二光學層上, 率,且ί-斤::皁::第第二折射率係具有虛數部之複數折射 同的透i率率均三折射率,以使光學膜之兩側具有不 前述實_巾,第—絲層、第二 利用猶或蒸鑛方式形成,且第:次弟—先于層係 率為實質上大於6〇%,而成自匕第-光學層峨 ,上小於5%。於另一實施例;:本透= 層位於第三光學層上,且第四光學層之 更已3弟四光學 光學層之第三折射率。於再—杏‘=折射率係小於第三 再貝_尹,本發明更包含基板位 於第一光學層上,係相對於m _ ΙΑ @ 声位純h 光學層之另—側,更包含反射 板中傳遞 板軸對於第—絲層之另—側,贿光線在基 及勒本ft另Γ目的係提供—種螢光發光裝置,具有輕薄之 叮=Q燈f之—部份,可用以取代習知金屬反射 而可降低背光模組之成本及達到輕薄之目的。 署勺!^rj t ’本發明提供—螢光發光裝置。縣發光裝 乂 “官靠提供光源以及接合於燈管上之反射元件。反射 =件包含:反射層;基板,位於反射層上;以及第-光學層、 第二光學層及第三光學層’依序軸於基板上,其巾第-光學 =H學層及第三光學層分別具有第—折射率、第二折射 二及第—折料’第二折射率係具有虛數部之複數折射率且 第一折射率大於第三折射率。 别述貫施例中’第—光學層之厚度係介於第二光學層之 度與第三光學層之厚度之間。於另—實施例巾,反射元件係包 覆燈管之-部份。於再—實施例中,本發明更包含黏著層,位 於第三光學層與燈管之間,用以接合燈管及反射元件。 【實施方式】 本發明之上述及其他面向 '特徵及優勢將在以下更特定之 I施例的詳述及伴_式下更㈣瞭,其中相_元件符號通 常表示本發明之範例實施例中的相同構件。另外並需瞭解的 是’本發明並不限於特定實施例的細節描述。 1378267 參考圖二’係為本發明於—實施例所揭露之螢光發光裝置 200之示意圖。於此實施射,言光發光裝置2〇〇包含燈管21〇 用以提供光源’以及反射元件22〇接合於@21〇上。於此實 施例中’燈管210係以作為液晶顯示器、液晶電視、數位相機 等背光源之冷陰極螢光燈管(CCFL)為繼行制,然並不以 此為限,燈管2H)也可是其他可作為背光源的燈源,例如無采 冷陰極螢光燈管或熱陰極螢光燈管等。另一方面,燈管21〇之 • 管徑大小和管長之選擇性絲關,可依設計s要而有所改 變。反射元件220係接合於部份的燈管21〇上,較佳係包覆一 半的燈官210,用q取代傳統由金屬材料製造的反射罩,藉以 減少背光模組之重量及空間。 參考圖二’係為本發明於上述實施例所揭露之螢光發光裝 置200之剖面示意圖。於一實施例中,螢光發光裝置2〇〇包含 燈官210及包覆燈管210約一半表面積的反射元件22〇。反射 元件220包含反射層22卜基板222及光學旗223。其中,反 擊射>f 221係形成於基板222之-側,光軸223係形成於基板 22之另一侧,並與燈管210接合。基板222可以是任何具有 可撓性之塑膠基板’例如苯S甲、酸乙二酯(pET)、聚碳酸 醋(PC)、聚乙烯(PE)、聚甲基丙烯酸曱酯(PMMA)等。基板222 之厚度係大於光學膜223之厚度,較佳係約4〇_2〇〇 μπι。反射 層221之材質係包含鋁、銀或銅等,可利用濺鍍或蒸鍍等方式 幵>成於基板222之一側,用以將燈管21〇所發出之光線反射回 基板222中,並利用基板222和具有非對稱透光率之光學膜 223將光線由基板222的兩側A、Β傳送出去,以達到如金屬 1378267 反射罩般可防止光線逸射散失和引導光線之目的。其中,反射 層221的厚度一般係不大於約200 nm 〇 接著請參考圖四A’係本發明於一實施例中所揭露之反射 兀件220之放大剖面示意圖。光學膜223可藉由濺鍍或蒸鍍形 、成於基板222上,於此不再贅述。於一實施例中,可先提供基 板222,然後依序形成第一光學層224、第二光學層及第 二光學層226於基板222上,其中第一光學層224、第二光學 • 層225一及第三光學層226分別由具有第一折射率、第二折射率 及第三折射率之材料卿成,且各絲層之厚度係小於 200nm。-般材料的折射率為具有實數部與虛數部的複數形 式,其中實數騎-般所說的物質折射率⑻,係說明光在真 空和在該物質中速率的比值1外,虛數部又稱為消光係數 (extmcton coefflcient),代表材料的吸收而產生_#_ 減,當消光絲為科,職示該材料為不吸光材料。本發明 於此定義第二折射率係具有虛數部之複數折射率(隱啦 r—e index) ’用以強調第二光學層225係由具有可吸收光 之材料所組成,例如折神為2_3i的含鉻(ehrQmium)材料。 此外’本發明之實施例中,光學膜223之第一光學層似 層226係具有不同的折射率,即第-折射“大於 ^折射率’使得光學膜223可根據斯奈爾定律㈣s _ …王^顧具有如上所述之麵稱透鲜的特點。換句話 =第-光學層224至第三光學層226的第—透光率tm、於 =第j學層226至第-光學層224的第二透 睛 地,光賴223«有_觀辦,例 1378267 小於第二透光率T2時,由第一光學層224至第三光學層挪 的第-反射率R1係大於由第三光學層至第一光學層的第曰二反 射率R2。 本發明之範例說明如下,當第二光學層225為折射率約 ϋ之含絡(Chr〇miUm)材料時,第—光學層224可為折射率係 實質上大於2之材料,例如折射率約2 1 2 45之含硫化辞邮) 材料另方面,第二光學層226可為折射率係實質上小於 材 =例如折射率約1 3之含氟銘化納(ClyQlite,Na3A1F6) 材料。〃中’第-光學層224、第二光學層225與第 加之厚度可分別為50 nm、K nm、5〇 nm,其中K = j 數,較佳_介於5G_刚之間。於另—範财,第^學; 賴介於第二光學層225之厚度與第三光學層226之 厚度之間’例如苐-光學層224、第二光學層225及第三 層226之厚度分別為K+1〇 nm、κ邮、κ靖咖 二一==5介於50至6°之間。舉例來說,當第: Τ 時,第一光學層224與第三光學層 稱透ΐΐΐΓιΓ65 nm及145 nm。因此,可獲得具有非對 = ’即由第一光學層224至第三光學層226 透光率T1係實f上大於·,較佳地係大於_。另 由光學層226至第—光學層224的第二透光率 係了貝質上小於15%,較佳地係小於5%。 以if Ξ’上述範例僅用以提供說明並未對本發明加 此技勢者應當瞭解,第一光學層224、第二辦 及第二先學層2%之厚度亦可依材料之折射率及設計^ -10· 1378267 而加以變化。此外,隨著第一光學層 增大,光學膜之第一透光率將可增大和以 的降低’贿光賴具有如單向鏡®透光之妓,雜當光^ 膜結合基板和反㈣可形成取代習知金屬反料之反射元件。 雖然,本發明於此係以具有第—光學層η4、第二光學声 225和第三辟層226之絲膜奶為例進行·,然並不二 此為限,本發明之光學膜223亦可進—步包含第四光學層奶 於第二光學層226上相對於第二光學層奶之另—側(如圖四b 所不)’且細光學層227具有小於第三折射率之第四折射率。 於另-實_中,本剌之光學膜亦可進—步包含第四光學声 227於第-光學層224上相對於第二光學層225之另一侧(如^ 四(:所示),且第四光學層227具有大於第一折射率之第四折 射率。換句話說’本發明之光學膜223 ,亦可依設計需要具有第 四光學層或第五光學層等,而其各光學層之位置可依其材料折 射率而^,且藉由所形成之光學層數量的增加,本發明之光學 膜223於第三光學層226往方向第-光學層224的第二透光率 亦可隨之增加。 接著請參考圖五’係顯示本發明依據另一實施例所揭露之 螢光發光裝置500之剖面示意圖。於此實施例中,螢光發光裝 置500包含燈管210、黏著層530及反射元件22〇。反射元件 220包含光學膜223、基板222及反射層221。相較於螢光發 光裝置200 (如圖三所示),於此實施例中,反射元件22〇係藉 由黏著層530接合於燈管2】〇上,藉以增加反射元件22〇和燈 管210之接著性,並可進一步簡化製造程序。例如,於一實施 1378267 ,中,黏著層530可藉由形成光學膜223於基板222之後,接 著濺鏟或洛鍍黏著膠於光學膜223上而形成。較佳地,形成於 .光學膜223上之黏著層530和基板222之折射率係相近的,更 “地,黏著層530和基板222之折射率係實質上相等。其中, 黏著層530的厚度可依設計需要而定,一般係介於1〇 —至 20/mi之間。在此需注意,黏著膠可為習知之壓克力共聚合類 感>1膠或喊概财鮮,且本發卿以麟或級方式為 例進行說明’然本發明並不以此為限,本發明亦可以習知利用 離型膜轉貼等方式形成黏著層53G於光學膜223上,於此不再 贅述。 •接著請參相六,細示本發明之-實施綱揭露之背光 f組60之剖面示意圖。背光模組60包含增亮膜62、63、擴 ,片64、導光板65、反射板66、勞光發光裝置。舉例說明, 背光模組60可以是液晶顯示器、液晶電視、車用顯示器、行 動電話、触械或可献DVD触鮮 背光模組。增魏62、63、擴散片64、導光板65及反射板 6^可為習知背光模組中所使用之材料,於此不再費述。勞光 發光裝置可以是前述實施例所揭露之螢光發光裝置·、5〇〇 或其類似者,於本實施例中,係以螢光發光裝置200為例進行 說明’穌發明並不以此為限。螢光發絲置包含燈管 67及反射耕68,其巾反射元件68翻以防止燈管π的光 線逸射散失’並盡量使統射人導光板65 Θ,故可用以取代 習知金屬反料’_可降财域社成本及達到輕薄之目 12 1378267 以上所述僅為本發明之較佳實施例而已,並非用以限定本 發明之^請專機圍;凡其它未_本發騎揭示之精神下所 完成之等效改變或修飾,均應包含在下述之申請專利範圍内。 【圖式簡單說明】 以下將配合圖表敘述本發明,其中類似的參考標號代表對 應的元件,其中: 圖一係顯示習知液晶顯示器之背光模組的示意圖。 圖二’係為本發明於一實施例所揭露之螢光發光裝置之示 意圖。 圖三’係為本發明於上述實施例所揭露之螢光發光裝置之 剖面示意圖。 圖四A,係本發.明於一實施例中所揭露之反射元件之放大 剖面示意圖。 圖四B,係本發明於一實施例中所揭露之反射元件之放大 剖面示意圖。 圖四C,係本發明於一實施例中所揭露之反射元件之放大 剖面示意圖。 圖五’係顯示本發明依據另一實施例所揭露之螢光發光裝 -13· 1378267 置之剖面示意圖。 圖六,係顯示本發明之一實施例所揭露之背光模組之剖面 示意圖。 【主要元件符號說明】 10 背光模組 12, 13 增亮膜 • 14 15 擴散片 導光板 16 反射板 17 光源 18 反射罩 200 螢光發光裝置 210 燈管 220 反射元件 221 反射層 • 222 基板 223 光學膜 224 第一光學層 225 226 第二光學層 第三光學層 227 第四光學層 500 螢光發光裝置 530 黏著層 60 背光模組 1378267 62,63 增亮膜 64 擴散片 65 導光板 66 反射板 67 燈管 68 反射元件1378267 IX. Description of the Invention: [Technical Field] The present invention relates to an optical film, and more particularly to a fluorescent light-emitting device having an optical film having an asymmetric light transmittance. [Prior Art] Since the liquid crystal display has a thin thickness, a light weight, and is easy to carry, and has a lower radiation than the CRT, the demand has rapidly increased in recent years, and it has a place in the market of the display. However, the liquid crystal panel in the liquid crystal display itself is not a light-emitting display element, and the required light source is provided by the backlight module. In other words, the backlight module provides brightness, uniformity of brightness, and viewing angle required to display the kneading surface. However, with the improvement of liquid crystal display manufacturing technology, the backlight module needs to consider market requirements such as light weight, thinness, low power consumption, high brightness, and low cost. Figure 1 is a schematic view showing a backlight module 1 of a conventional LCD display. The conventional moonlight module 10 is mainly assembled by the brightness enhancement film 12, 13, the diffusion sheet 14, the light guide plate 15, the reflection plate 16, the light source (for example, a cold cathode lamp) 17, the reflection cover 18, and the outer frame (not shown). . The backlight mode and the group HH use the linear light source of the light source 17 to enter the light guide plate μ through the reflection cover 18, and the conversion line light source is distributed into the surface light source of the uniform hook, and then passes through the uniform light action of the diffusion sheet 14 and the brightness enhancement film 12]3. Light acts to increase the redundancy and uniformity of the light source. The towel reflection cover 18_ prevents the light of the light source 17 from being escaping, and causes light to be incident into the light guide plate 15 as much as possible. In order to ensure that the light does not overflow, the usage rate of the light is generally increased by the "匸" type or the U-shaped metal reflector 8 on the outer side of the light source 17. However, as the size of the liquid crystal display becomes more and more 1,378,267, the 'requirement for fullness' needs to increase the number or length of the wire, which leads to an increase in the size and/or the number of required reflectors. The weight of the backlight module increases and the volume becomes larger, which also becomes a cost negative port of the group. Therefore, a lamp reflector that can reduce the cost and/or thin the backlight module can be used. SUMMARY OF THE INVENTION The film is provided with two kinds of light having an asymmetrical light transmittance = $ hunting, _ slit, and sputtered into a thin lamp reflector. The first two inventions provide an optical film. The optical film comprises: a top, a heart: (iv) I refractive index; a second optical layer, which is located in the first optical: f third optical, which is located on the second optical layer, rate, and ί-: Soap:: the second refractive index has a complex refractive index of the imaginary part and a uniform refractive index, so that the two sides of the optical film do not have the above-mentioned real, the first layer, the second layer or the second The steaming method is formed, and the first: the second generation—before the layer ratio is substantially greater than 6〇%, is formed from the 匕-optical layer 峨, and is less than 5%. In another embodiment; the present transparent layer is on the third optical layer, and the fourth optical layer has a third refractive index of the third optical optical layer. The invention further comprises a substrate on the first optical layer, which is opposite to the m _ ΙΑ @ vocal pure h optical layer, and further comprises a reflection. In the board, the plate shaft is transmitted to the other side of the first layer, and the bribe light is provided in the base and Leben ft. The fluorescent light emitting device has a light and thin 叮=Q lamp f-part, which can be used. Replacing the conventional metal reflection can reduce the cost of the backlight module and achieve the purpose of thinness. The present invention provides a fluorescent light emitting device. The county illuminating device "provides a light source and a reflective element bonded to the lamp tube. The reflection = member comprises: a reflective layer; the substrate is located on the reflective layer; and the first optical layer, the second optical layer and the third optical layer" Aligning the axis on the substrate, the towel-optical-H-layer and the third optical layer respectively have a first refractive index, a second refractive index, and a second refractive index, and the second refractive index has a complex refractive index of the imaginary part And the first refractive index is greater than the third refractive index. In other embodiments, the thickness of the first optical layer is between the degree of the second optical layer and the thickness of the third optical layer. The reflective element covers a portion of the tube. In a further embodiment, the invention further comprises an adhesive layer between the third optical layer and the tube for engaging the tube and the reflective element. The above and other features and advantages of the present invention will be further described in the following detailed description of the more specific embodiment of the invention and the accompanying drawings, wherein the elements of the elements generally represent the same elements in the exemplary embodiments of the invention. In addition, it should be understood that 'the invention is not limited DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 1378267 Referring to FIG. 2A is a schematic diagram of a fluorescent light emitting device 200 disclosed in the present invention. In this embodiment, the light emitting device 2 includes a lamp tube 21 A light source 'and a reflective element 22 are provided to be bonded to @21〇. In this embodiment, the 'light tube 210 is followed by a cold cathode fluorescent tube (CCFL) which is a backlight for a liquid crystal display, a liquid crystal television, a digital camera, etc. The system is not limited to this. The lamp 2H) can also be other sources of light that can be used as a backlight, such as a cold-free cathode fluorescent tube or a hot cathode fluorescent tube. On the other hand, the tube 21〇 • The diameter of the pipe and the length of the pipe length can be changed according to the design. The reflective element 220 is attached to a part of the lamp 21〇, preferably half of the lamp officer 210 Replacing the traditional reflector made of metal material with q, thereby reducing the weight and space of the backlight module. Referring to FIG. 2 is a schematic cross-sectional view of the fluorescent light emitting device 200 disclosed in the above embodiment. In the example, the fluorescent light-emitting device 2〇 The reflector 210 includes a reflector element 22 that covers about half of the surface area of the lamp tube 210. The reflective element 220 includes a reflective layer 22, a substrate 222, and an optical flag 223. The counter-attack >f 221 is formed on the side of the substrate 222. The optical axis 223 is formed on the other side of the substrate 22 and is bonded to the lamp tube 210. The substrate 222 can be any flexible plastic substrate such as benzene S, ethyl acetate (pET), polycarbonate. (PC), polyethylene (PE), polymethyl methacrylate (PMMA), etc. The thickness of the substrate 222 is greater than the thickness of the optical film 223, preferably about 4 〇 2 〇〇 μπι. It is made of aluminum, silver or copper, and can be formed on one side of the substrate 222 by sputtering or evaporation, for reflecting the light emitted by the lamp 21 回 back into the substrate 222, and using the substrate 222. And the optical film 223 having asymmetric light transmittance transmits light from both sides A and Β of the substrate 222 to achieve the purpose of preventing the light from being scattered and guiding the light, such as the metal 1378267 reflector. The thickness of the reflective layer 221 is generally not more than about 200 nm. Referring now to Figure 4A, an enlarged cross-sectional view of the reflective element 220 disclosed in an embodiment of the present invention is shown. The optical film 223 can be formed on the substrate 222 by sputtering or evaporation, and will not be described herein. In one embodiment, the substrate 222 is first provided, and then the first optical layer 224, the second optical layer, and the second optical layer 226 are sequentially formed on the substrate 222, wherein the first optical layer 224 and the second optical layer 225 are formed. The first and third optical layers 226 are respectively made of a material having a first refractive index, a second refractive index, and a third refractive index, and each of the silk layers has a thickness of less than 200 nm. The refractive index of a general material is a complex form having a real part and an imaginary part, wherein the real number riding refers to the refractive index of the substance (8), which indicates that the ratio of light to vacuum and the rate in the substance is 1, the imaginary part is also called For the extinction coefficient (extmcton coefflcient), which represents the absorption of the material, _#_ is reduced. When the extinction wire is a branch, the material is a non-absorbent material. The present invention hereby defines that the second refractive index has a complex refractive index of the imaginary part (rejected r-e index) to emphasize that the second optical layer 225 is composed of a material having absorbable light, for example, 2_3i Chromium-containing (ehrQmium) material. In addition, in the embodiment of the present invention, the first optical layer-like layer 226 of the optical film 223 has a different refractive index, that is, the first-refractive "greater than ^ refractive index" so that the optical film 223 can be based on Snell's law (four) s ... Wang Gu Gu has the characteristics of surface transparency as described above. In other words, the first light transmittance tm of the first-optical layer 224 to the third optical layer 226, the = jth layer 226 to the optical layer The second reflection of 224 is greater than the first reflectance R1 of the first optical layer 224 to the third optical layer when the first light transmittance T2 is smaller than the second light transmittance T2. The second optical layer to the first optical layer has a second reflectance R2. An example of the present invention is as follows. When the second optical layer 225 is a refractive index (Chr〇miUm) material, the first optical layer 224 The material may be a material having a refractive index system substantially greater than 2, such as a vulcanized content having a refractive index of about 2 1 2 45. In addition, the second optical layer 226 may have a refractive index system that is substantially smaller than the material = for example, a refractive index of about 1 3 fluorinated infusion (ClyQlite, Na3A1F6) material. In the middle of the 'the optical layer 224, the second optical layer 225 and the first thick The degrees can be 50 nm, K nm, 5 〇 nm, respectively, where K = j number, preferably _ between 5G_ just. In another - Fancai, the second learning; depends on the second optical layer 225 Between the thickness and the thickness of the third optical layer 226, for example, the thickness of the 苐-optical layer 224, the second optical layer 225, and the third layer 226 are respectively K+1〇nm, κ邮, κ靖咖二一==5 Between 50 and 6°. For example, when the first: Τ, the first optical layer 224 and the third optical layer are referred to as ΐΐΐΓιΓ65 nm and 145 nm. Therefore, it is possible to obtain a non-pair = 'that is, by the first The optical transmittance of the optical layer 224 to the third optical layer 226 is greater than ·, preferably greater than _. The second transmittance of the optical layer 226 to the optical layer 224 is less than that of the shell. 15%, preferably less than 5%. The above example is only used to provide an explanation. It should be understood that the first optical layer 224, the second office and the second school layer 2 should be understood. The thickness of % can also vary depending on the refractive index of the material and the design ^ -10· 1378267. In addition, as the first optical layer increases, the first transmittance of the optical film can be increased and decreased. The brittle light has a reflection element such as a one-way mirror® light transmissive, a hybrid light film bonded substrate and a reverse (four) can form a reflective element instead of a conventional metal counter material. Although the invention has a first optical layer η4 The second optical sound 225 and the third optical layer 226 of the silk film milk are taken as an example, but not limited thereto, the optical film 223 of the present invention may further comprise a fourth optical layer of milk to the second optical Layer 226 is on the other side of the milk of the second optical layer (as shown in Figure 4b) and the fine optical layer 227 has a fourth index of refraction that is less than the third index of refraction. In another embodiment, the optical film of the present invention may further include a fourth optical sound 227 on the first optical layer 224 opposite to the other side of the second optical layer 225 (eg, ^4 (:) And the fourth optical layer 227 has a fourth refractive index greater than the first refractive index. In other words, the optical film 223 of the present invention may also have a fourth optical layer or a fifth optical layer, etc., depending on the design, and each of them The position of the optical layer can be based on the refractive index of the material, and the second transmittance of the optical film 223 of the present invention to the third optical layer 226 toward the optical layer 224 is increased by the increase in the number of optical layers formed. FIG. 5 is a schematic cross-sectional view showing a fluorescent light emitting device 500 according to another embodiment of the present invention. In this embodiment, the fluorescent light emitting device 500 includes a lamp tube 210 and adheres thereto. The layer 530 and the reflective element 22. The reflective element 220 comprises an optical film 223, a substrate 222 and a reflective layer 221. In contrast to the fluorescent light emitting device 200 (shown in Figure 3), in this embodiment, the reflective element 22 is Attached to the tube 2 by the adhesive layer 530, thereby increasing the reflection The bonding between the member 22 and the tube 210 can further simplify the manufacturing process. For example, in an embodiment 1378267, the adhesive layer 530 can be formed by the optical film 223 after the substrate 222, followed by a splash shovel or a Luo plating adhesive. Preferably, the adhesive layer 530 formed on the optical film 223 and the substrate 222 have similar refractive indices, and more preferably, the refractive indices of the adhesive layer 530 and the substrate 222 are substantially equal. The thickness of the adhesive layer 530 may be determined according to the design requirements, and generally ranges from 1 〇 to 20/mi. It should be noted that the adhesive may be a conventional acryl copolymer type > The glue or the shouting is fresh, and the present invention is described by taking the lining or the grading method as an example. However, the present invention is not limited thereto, and the present invention can also be used to form the adhesive layer 53G by optical means. The film 223 will not be described here. • Next, please refer to the sixth section, which schematically shows a schematic cross-sectional view of the backlight f group 60 disclosed in the present invention. The backlight module 60 includes brightness enhancing films 62, 63, and expanded sheets. 64, the light guide plate 65, the reflector 66, the light-emitting device. The backlight module 60 can be a liquid crystal display, a liquid crystal television, a vehicle display, a mobile phone, a touch device or a DVD touch backlight module. The Wei 62, 63, the diffusion sheet 64, the light guide plate 65 and the reflection plate 6 can be The material used in the conventional backlight module is not mentioned here. The work light emitting device may be the fluorescent light emitting device disclosed in the foregoing embodiment, 5〇〇 or the like, in this embodiment. The fluorescent light-emitting device 200 is taken as an example for description. The invention is not limited thereto. The fluorescent hairline includes a lamp tube 67 and a reflection tiller 68, and the towel reflecting member 68 is turned over to prevent the light of the lamp tube π from escaping. The loss of radiation and the direct use of the light guide plate 65 Θ, so it can be used to replace the conventional metal counterfeit ' _ can reduce the cost of the financial sector and achieve the goal of thin and light 12 1378267 The above is only a preferred embodiment of the present invention However, it is not intended to limit the scope of the invention. Any equivalent changes or modifications made in the spirit of the disclosure are included in the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described in conjunction with the drawings, in which like reference numerals represent corresponding elements, in which: Figure 1 is a schematic diagram showing a backlight module of a conventional liquid crystal display. Figure 2 is a schematic illustration of a fluorescent light emitting device disclosed in an embodiment of the present invention. Fig. 3 is a schematic cross-sectional view showing the fluorescent light emitting device disclosed in the above embodiment. Figure 4A is an enlarged cross-sectional view of a reflective element disclosed in an embodiment. Figure 4B is an enlarged cross-sectional view showing a reflective element disclosed in an embodiment of the present invention. Figure 4C is an enlarged cross-sectional view showing a reflective element disclosed in an embodiment of the present invention. Figure 5 is a cross-sectional view showing a fluorescent light-emitting device of the present invention in accordance with another embodiment. Figure 6 is a cross-sectional view showing a backlight module according to an embodiment of the present invention. [Main component symbol description] 10 backlight module 12, 13 brightness enhancement film • 14 15 diffuser light guide plate 16 reflector 17 light source 18 reflector 200 fluorescent light device 210 lamp 220 reflective element 221 reflective layer • 222 substrate 223 optical Film 224 First Optical Layer 225 226 Second Optical Layer Third Optical Layer 227 Fourth Optical Layer 500 Fluorescent Light Emitting Device 530 Adhesive Layer 60 Backlight Module 1378267 62, 63 Brightness Enhancement Film 64 Diffusion Sheet 65 Light Guide Plate 66 Reflector Plate 67 Lamp 68 reflective element