TW201015159A - Structure for multi-layer coating composite optical film - Google Patents

Structure for multi-layer coating composite optical film Download PDF

Info

Publication number
TW201015159A
TW201015159A TW097141818A TW97141818A TW201015159A TW 201015159 A TW201015159 A TW 201015159A TW 097141818 A TW097141818 A TW 097141818A TW 97141818 A TW97141818 A TW 97141818A TW 201015159 A TW201015159 A TW 201015159A
Authority
TW
Taiwan
Prior art keywords
layer
diffusion
diffusion layer
coating
microstructure
Prior art date
Application number
TW097141818A
Other languages
Chinese (zh)
Other versions
TWI456299B (en
Inventor
sheng-ru Yang
Hua-Jie Chen
zhao-li Su
Bo-Zhao Huang
Original Assignee
Gigastorage Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigastorage Corp filed Critical Gigastorage Corp
Priority to TW097141818A priority Critical patent/TW201015159A/en
Publication of TW201015159A publication Critical patent/TW201015159A/en
Application granted granted Critical
Publication of TWI456299B publication Critical patent/TWI456299B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Abstract

Disclosed is a structure for multi-layer coating composite optical film, which is characterized in having a diffusion layer with an interface microstructure as a light diffusion mechanism, including a transparent substrate, a multi-layer coating and a protection coating layer, in which the diffusion layer combination of an inner layer of the multi-layer coating layer includes at least one or more diffusion layers containing interface microstructures, where a light focusing layer of the outermost surface of the multi-layer coating layer includes a light collection microstructure. As such, by adopting the composite design of diffusion and light focusing effects of a multi-layer coating technique to a light source, and integrating such into one single optical film sheet, the material cost may be effectively reduced. Under the condition of the diffusion layer with interface microstructures as a light diffusion mechanism, not only may the luminance performance be effectively improved, but quality deterioration owing to dispersion and film deflected by doped particles may also be reduced at the same time, while the film quality and optical characteristics of the composite optical film may be improved and the assembly of a backlight module may be simplified to enhance assembly efficiency thereof.

Description

201015159 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種多層塗佈複合型光學膜結 構’尤指一種以具介面微結構之擴散層作為光擴散機制 而可提供咼免度及尚品質光源之背光模組中使用之光 學膜片者。 【先前技術】 目前廣泛應用液晶顯示器(Liquid Crystal Display, ❹ LCD )中具背光源之液晶顯示裝置結構,主要包含前面 之面板部份及背面之光源模組部份。其中面板之部份包 含有液晶、配向膜、ITO導電玻璃、彩色濾光片、偏光 片及驅動1C模組等所組成’可提供彩色晝面顯色控 制;而背光模組之部份則包含有冷陰極管(C〇ldCath〇de201015159 IX. Description of the Invention: [Technical Field] The present invention relates to a multilayer coated composite optical film structure, particularly a diffusion layer having an interface microstructure as a light diffusion mechanism to provide liberation and The optical film used in the backlight module of the quality light source. [Prior Art] At present, a liquid crystal display device structure with a backlight in a liquid crystal display (LCD) is widely used, and mainly includes a front panel portion and a light source module portion on the back side. The panel includes a liquid crystal, an alignment film, an ITO conductive glass, a color filter, a polarizer, and a driving 1C module, which can provide color surface color control; and the backlight module includes There are cold cathode tubes (C〇ldCath〇de

Fluorescent Lamp, CCFL)或發光二極體(Light_EmittingFluorescent Lamp, CCFL) or LED (Light_Emitting)

Diode,LED)等燈源、反射片、導光板、擴散板、擴散 片及聚光片等,可提供高亮度、高品質之顯示用光源。 ❹ 由於背光模組之技術重點為如何有效地將線光源 (CCFL )與點光源(LED )轉換為高均勻性之面光源, 而同時在最少燈源使用量之下可獲得高增益之正視角 (On-axis )輝度。因此,其中反射片之使用可將反射與 散射之光源回收再利用,以充份提昇光源使用效率;導 光板與擴散板之使用可將光線行進方向引導為垂直板 面之高指向性出光’且同時消除燈源影像(Lamp Mura);擴散片之使用可增加面光源之均勻性且同時消 除或減少膜材本身或組裝過程等所造成光學可視暇 201015159 疫;而聚光片之使用則可大幅度提昇正視角之輝度增 盈。因此最佳化之背光模組設計將導致背光源品質與成 本效益上極佳之性價比。另外’過多之燈源使用除了增 加成本以外,亦會造成熱生成量增高,進而減損相關材 料之壽命及光學品質,並且對於可攜式裝置亦會導致 電能耗損增加,將不利於目前降低成本與輕量化之設計 趨勢。因為在節能減碳之全球趨勢下’如何再有效地整 合光學特性’已然為一重要之技術課題。 〇 關於上述擴散片之結構,其通常係於一透明基材上 塗佈擴散粒子,使光通過時會產生散射之效果,進而造 成光源之霧化,藉此達到提高光線分佈之均勻性。而上 述聚光片之結構,則通常係於一透明基材上塗佈一層具 有光束集中能力之微結構,其最常見之設計為稜鏡型 (Prism)之微結構,此將充份地利用光通量以提高液 晶顯示器正視角之亮度。 ° 又,目前之複合型光學膜設計,如第i 〇圖所示, Ο 其為美國專利公告第6,28〇,〇63號所揭,主要係將上述 兩種結構設計分別塗佈於一透明基材5 〇之兩面,意即 該透明基材5 0之上方係為具集光之稜鏡型結^ 1 ’該透明基材5 0之下方則為具均勻分散擴散粒子5 2 1之擴散層結構5 2,藉此達到光擴散效果。然而, 依照上述複合型光學膜5如此之設計,不僅易造成 之翹曲變異性控制困難,且其擴散粒子之分散性亦容易 有均勻性之變異等複雜技術問題’另外所塗佈的粒 造成下置光學膜片的表面刮傷減;同時,其光擴散粒 201015159 子亦合易使光穿透率下降,進而造成複合光學臈在光學 特性上之減損。故,一般習用者係無法滿足使用者於 際使用時之所期待。 ' 【發明内容】 、本發明之主要目的係在於,克服習知技藝所遭遇之 上述問題並提供-種以具介面微結構之擴散層作為光 擴散機制而可提供高亮度及高品質光源之背光模組中 使用之光學膜片者。 ❹ *發明之次要目的係在於,利用多層塗佈技術對光 源之擴散及聚光效果做複合式之設計,藉整合於單一光 學膜片可有效降低材料成本,並在具介面微結構之擴散 層作為光擴散機制下,不僅可有效地提昇輝度表現,同 3亦可減少因摻雜粒子之分散及膜材翹曲等所致之品 貝變因及粒子塗佈所致下置光學膜片刮傷瑕疵的問題。 #本發明之另—目的係在於,可在簡化背光模組之組 裝以提高其組裝效率之同時,亦提昇此複合型光學膜之 G 膜材品質與光學特性。 與為達以上之目的,本發明係一種多層塗佈複合型光 子膜結構,係以具介面微結構之擴散層作為光擴散機制 為其特徵者。依照本發明一較佳實施例,一種多層塗佈 複合型光學膜結構係包括一透明基材、一多層塗佈及一 保護塗佈層。其中該透明基材係具有兩相對面;該多層 塗佈内層之擴散層組合,係位於該透明基材兩相對面其 中之面上,且该擴散層組合係具有至少一個以上含介 201015159 面微結構之擴散層所組成’該些擴散層之塗佈厚度係介 於Ιμιη至50μΓη之間,且以單一擴散層其介面微結構之 粗糙度值(Ra )係大於〇.5μπι以上,其中該擴散層組合 係為用以將入射之光線作散射化處理之介面微結構;該 多層塗佈最表層之聚光層,係位於該擴散層組合上,且 該擴散層組合係位於該聚光層與該透明基材之間,其中 該聚光層係為用以將散射之光線作集中化處理之集光 性微結構;以及該保護塗佈層係位於該透明基材之另一 ❹ 相對面,用以提供整體結構之抗靜電及抗磨損。於其申 二上述該多層塗佈採用之材料折射率,以該聚光層為最 高,内層之擴散層組合中以最下層擴散層之折射率最低 ’其匕擴散層之折射率則介於此二層之間。 依照本發明另一較佳實施例,一種多層塗佈複合型 光學膜結構係包括一透明基材、一多層塗佈及一保護塗 佈層。其中該透明基材係具有兩相對面;該多層塗佈内 層之擴散層組合,係位於該透明基材兩相對面其中之一 ❹ 面上,且該擴散層組合係具有至少一個以上含介面微結 構之擴散層所組成,該些擴散層之塗佈厚度係介於1从⑺ 至50μηι之間,且其介面微結構之粗糙度值係大於〇 以上,其中該擴散層組合係為用以將入射之光線作散射 化處理之介面微結構;該多層塗佈最表層之聚光層,係 位於該透明基材之另—相對面上,其中該聚光層係為用 以將散射之光線作集中化處理之集光性微結構;以及該 保4塗佈層係位於該擴散層組合上,用以提供整體結構 之抗靜電及抗磨損。於其中,上述該擴散層組合中各擴Diode, LED, etc., such as a light source, a reflection sheet, a light guide plate, a diffusion plate, a diffusion sheet, and a condensing sheet, can provide a high-brightness, high-quality display light source. ❹ Because the technical focus of the backlight module is how to effectively convert the line source (CCFL) and the point source (LED) into a highly uniform surface source, while at the same time obtaining a high gain positive angle of view with minimal source usage. (On-axis) Brightness. Therefore, the use of the reflective sheet can recover and reuse the light source for reflection and scattering to fully enhance the efficiency of use of the light source; the use of the light guide plate and the diffuser plate can guide the direction of light travel to the high directivity of the vertical plate surface' and At the same time, the light source image (Lamp Mura) is eliminated; the use of the diffusion sheet can increase the uniformity of the surface light source and at the same time eliminate or reduce the optical appearance of the film itself or the assembly process, etc., and the use of the concentrating film can be large. The amplitude increases the brightness of the positive viewing angle. Therefore, the optimized backlight module design will result in excellent cost performance for backlight quality and cost. In addition, in addition to increasing the cost of the use of excessive light sources, it will also increase the heat generation, thereby reducing the life and optical quality of the related materials, and also increasing the electrical energy consumption for portable devices, which will not be conducive to the current cost reduction. Lightweight design trends. Because of the global trend of energy saving and carbon reduction, how to effectively integrate optical properties has become an important technical issue. 〇 Regarding the structure of the above-mentioned diffusion sheet, it is generally applied to a transparent substrate to coat the diffusion particles, so that the effect of scattering occurs when the light passes, thereby causing atomization of the light source, thereby achieving uniformity of light distribution. The structure of the concentrating sheet is usually coated on a transparent substrate with a microstructure having a beam concentrating ability, and the most common design is a Prism microstructure, which will be fully utilized. Luminous flux to increase the brightness of the positive viewing angle of the liquid crystal display. ° Further, the current composite optical film design, as shown in Fig. ,, is disclosed in U.S. Patent No. 6,28, 〇63, which mainly applies the above two structural designs to one. The transparent substrate 5 has two sides, that is, the upper surface of the transparent substrate 50 is a light-collecting type of junction 1 'the lower surface of the transparent substrate 50 is a uniformly dispersed diffusion particle 5 2 1 The diffusion layer structure 52 is thereby achieved by the light diffusion effect. However, according to the design of the above-mentioned composite optical film 5, not only the control of the warpage variability which is easily caused is difficult, but also the dispersion of the diffusing particles is likely to have a complicated technical problem such as variation of uniformity. The surface scratch of the lower optical film is reduced; at the same time, the light diffusing particle 201015159 is also easy to reduce the light transmittance, thereby causing the optical optical properties of the composite optical fiber to be degraded. Therefore, the average user cannot satisfy the expectations of the user when using it. SUMMARY OF THE INVENTION The main object of the present invention is to overcome the above problems encountered in the prior art and to provide a backlight having a high-brightness and high-quality light source with a diffusion layer having an interface microstructure as a light diffusion mechanism. The optical film used in the module. ❹ * The secondary purpose of the invention is to use a multi-layer coating technology to make a composite design of the diffusion and concentrating effect of the light source. By integrating into a single optical film, the material cost can be effectively reduced, and the diffusion of the interface microstructure is achieved. As a light diffusion mechanism, the layer can not only effectively improve the luminance performance, but also reduce the variation of the doped particles and the warpage of the film, and the underlying optical film caused by particle coating. The problem of scratching flaws. Another object of the present invention is to improve the assembly efficiency of the backlight module and to improve the quality and optical characteristics of the G film of the composite optical film while simplifying the assembly of the backlight module. For the purpose of the above, the present invention is a multilayer coated composite photonic film structure characterized by a diffusion layer having an interface microstructure as a light diffusion mechanism. In accordance with a preferred embodiment of the present invention, a multilayer coated composite optical film structure includes a transparent substrate, a multilayer coating, and a protective coating layer. Wherein the transparent substrate has two opposite faces; the diffusion layer combination of the multilayer coated inner layer is located on a surface of the opposite faces of the transparent substrate, and the diffusion layer combination has at least one of the inclusions 201015159 The diffusion layer of the structure is composed of a coating thickness of between Ιμιη and 50μΓη, and the roughness value (Ra) of the interface microstructure of the single diffusion layer is greater than 〇.5μπι or more, wherein the diffusion The layer combination is an interface microstructure for scattering incident light; the multi-layer coating the outermost layer of the concentrating layer is located on the diffusion layer combination, and the diffusion layer combination is located in the concentrating layer Between the transparent substrates, wherein the concentrating layer is a concentrating microstructure for concentrating the scattered light; and the protective coating layer is located on the opposite side of the transparent substrate. Used to provide anti-static and anti-wear properties of the overall structure. In the second embodiment of the present invention, the refractive index of the material used in the multi-layer coating is the highest, and the diffusion layer of the inner layer has the lowest refractive index of the lowermost diffusion layer, and the refractive index of the diffusion layer is between Between the second floor. In accordance with another preferred embodiment of the present invention, a multilayer coated composite optical film structure includes a transparent substrate, a multilayer coating, and a protective coating layer. Wherein the transparent substrate has two opposite faces; the diffusion layer combination of the multilayer coated inner layer is located on one of the opposite faces of the transparent substrate, and the diffusion layer combination has at least one interface micro a diffusion layer of the structure, the coating thickness of the diffusion layer is between 1 (7) and 50 μm, and the roughness of the interface microstructure is greater than 〇, wherein the diffusion layer combination is used to The incident light is used as a scattering microstructure of the interface microstructure; the multi-layer coated outermost layer of the light-concentrating layer is located on the other opposite surface of the transparent substrate, wherein the light-concentrating layer is used to make the scattered light The concentrated photo-collecting microstructure; and the protective coating layer is disposed on the diffusion layer combination to provide antistatic and anti-wear properties of the overall structure. In the above diffusion layer combination

II 201015159 散層之材料折射率係以最靠近該透明基材之折射率最 低,離該透明基材最外層之折射率最高。 …依照本發明再一較佳實施例,一種多層塗佈複合型 光干臈〜構係包括一透明基材、一多層塗佈及一保護塗 佈層。其中該該透明基材係具有兩相對面;該多層塗佈 内層之兩擴散層組合,係位於該透明基材之兩相對面 上,且該擴散層組合係具有至少一個以上含介面微結構 之擴散層所組成,該些擴散層之塗佈厚度係介於1μιη ❹ 至之間,且其介面微結構之粗糙度值係大於〇 5μηι 以上,其中該擴散層組合係為用以將入射之光線作散射 化處理之介面微結構;該多層塗佈最表層之聚光層,係 位於該兩擴散層組合其中之一上,其中該聚光層係為用 以將散射之光線作集中化處理之集光性微結構;以及該 保濩塗佈層係位於該兩擴散層組合另一之上,用以提供 整體結構之抗靜電及抗磨損。。 【實施方式】 ® 本發明係一種多層塗佈複合型光學膜結構, 其特徵係在於以具介面微結構之擴散層作為光擴 散機制者。本發明係為一利用多層塗佈技術,擴 月欠層介面控制(Interface-Dominating)微結構 (Microstructure)設計,並配以有效之塗佈層 間折射率差值以獲得提供光擴散效果之材料,且 在結構機制上亦利用最表層之集光性微結構將散 射之光線作集中化處理,藉以提高正視角( 201015159 〇n-axiS )之輝度值。上述介面控制微結構設計並 無特殊限制’其例如但不限於散亂型(Random ) 之"面微結構設計,且於以下實施例中其介面微 結構之粗糙度值(Ra )’欲得一定之霧度效果, 係將其控制在〇·5微米(^)以上,並以大於 為佳;另亦可將此介面微結構設計為稜鏡型( ❹II 201015159 The refractive index of the material of the dispersion layer is the lowest with the refractive index closest to the transparent substrate, and the highest refractive index from the outermost layer of the transparent substrate. In accordance with still another preferred embodiment of the present invention, a multi-layer coating composite optical drying system comprises a transparent substrate, a multilayer coating and a protective coating. Wherein the transparent substrate has two opposite faces; the two diffusion layer combinations of the multilayer coated inner layer are located on opposite sides of the transparent substrate, and the diffusion layer combination has at least one interface-containing microstructure. a diffusion layer, wherein the diffusion layer has a coating thickness of between 1 μm and ,, and a roughness value of the interface microstructure is greater than 〇5 μηι or more, wherein the diffusion layer is used for the incident light. An interfacial microstructure for the scattering treatment; the multi-layer coating of the outermost layer of the concentrating layer is located on one of the two diffusion layer combinations, wherein the concentrating layer is used for centralizing the scattered light The light-collecting microstructure; and the protective coating layer is located on the other of the two diffusion layer combinations to provide antistatic and anti-wear properties of the overall structure. . [Embodiment] The present invention is a multilayer coated composite optical film structure characterized by a diffusion layer having an interface microstructure as a light diffusion mechanism. The invention is a multi-layer coating technology, an interface-dominating microstructure design, and an effective coating layer refractive index difference to obtain a material for providing light diffusion effect. In the structural mechanism, the scattered light is also used to concentrate the scattered light to improve the luminance of the positive viewing angle (201015159 〇n-axiS). The interface control microstructure design described above is not particularly limited, and is, for example, but not limited to, a "Random" "surface microstructure design, and the roughness value (Ra) of the interface microstructure in the following embodiments is desired. For a certain haze effect, it should be controlled above 〇·5 μm (^), and it is better to be larger than that; the interface microstructure can also be designed as 稜鏡 type ( ❹

、角錐型(c〇ne)、透鏡型(Lens)及金 子塔型(Py ram i d )等不同具集光能力之微結構, 且除了上述散亂型之結構外,其它之結構於其結 構表面具有更細化散亂性破壞之凹凸點處理以增 加光擴散之功能,進而可獲致具不同光學特性之 複合型光學臈材。本實施例之描述係為了說明以 具介面微結構之擴散層為光擴散機制之設計原理 不應視為限制之觀點,並藉由以下具體之實施 例,以說明本發明之實施方式。 請參閱『第1圖』所示,係、本發 施例之橫剖面示意圖。如 , ^划圆所不.於本實施例中 徵=If塗佈複合型光學膜結構1,其特 ;弋機制:Ϊ亂型介面微結構之擴散層作為光 12及-保護塗佈層f3基材11、-多層塗佈 係具有兩相對面。 该夕層塗佈i 2内層之擴散層 , 係位於該透明基材11兩相對面政中:一面二, 用以將入射之光線作埒射 /、中之面上 政射化處理。其中該擴散肩 201015159 组合1 9 π >* υ係具有至少一個以上含介面微結構1 2 ^ 1 2 1 b之擴散層工2 Λ、工2 2所組成 :該些擴散層1 2 1、1 2 2之塗佈厚度係介於. V m至5〇 “ m之間,並可進一步加入無機性 機性之粒子材料。 該多層塗佈1 2最表層之聚光層1 2 3 ,係 位於該擴散層組合丄2 0上,且該擴散層組合丄、 2 0係位於該聚光層1 2 3與該透明基材丄丄之 間。其中該聚光層1 2 3係具有用以將散射之光 線作集中化處理之集光性微結構i 2 3 a,並可為 棱鏡型、角錐型、透鏡型及金字塔型。 ’ 該保護塗佈層1 3係位於該透明基材1 1 & 另一相對面,用以提供整體結構之抗&電及抗= 損。以上所述,係構成一全新之多層塗 光學膜結構1。 1 2採用之材料折射 ’内層之擴散層組 2 1之折射率最低 則介於此二層之間 採用高折射率之材 科,以提供不同的, a pyramidal type (c〇ne), a lens type (Lens), and a py ram id (Py ram id), and other microstructures having light collecting ability, and other structures other than the above-mentioned scattered type structure, The bump treatment with finer and more sporadic damage increases the function of light diffusion, and thus the composite optical material with different optical properties can be obtained. The description of the present embodiment is intended to illustrate the design principle of the diffusion layer having the interface microstructure as the light diffusion mechanism, and the following specific embodiments are used to illustrate the embodiments of the present invention. Please refer to Fig. 1 for a cross-sectional view of the present embodiment. For example, in the present embodiment, the composite optical film structure 1 is coated with a coating mechanism, and the diffusion mechanism of the disordered interface microstructure is used as the light 12 and the protective coating layer f3. The substrate 11 and the multilayer coating have two opposite faces. The diffusion layer of the inner layer of the i 2 layer is disposed on the opposite side of the transparent substrate 11 : one side two, for illuminating the incident light on the surface of the transparent medium. Wherein the diffusion shoulder 201015159 is combined with a 9 9 π >* lanthanide system having at least one diffusion layer 2 2 1 1 2 1 b containing interface microstructures: 2: 1 The coating thickness of 1 2 2 is between .V m and 5 〇" m, and further inorganic particle material can be added. The multilayer coating 1 2 the most concentrated concentrating layer 1 2 3 Located on the diffusion layer assembly 丄20, and the diffusion layer combination 丄, 20 is located between the concentrating layer 213 and the transparent substrate 。, wherein the concentrating layer 1 2 3 has The light-collecting microstructure i 2 3 a of the concentrated light is concentrated, and may be a prism type, a pyramid type, a lens type, and a pyramid type. ' The protective coating layer 13 is located on the transparent substrate 1 1 & the other opposite side, used to provide the overall structure of the resistance & electrical and anti-loss. As described above, it constitutes a new multi-layer coated optical film structure 1. 1 2 material used to refract the inner layer of the diffusion layer The lowest refractive index of 2 1 is between the two layers using a high refractive index material to provide different

其中,上述該多層塗佈1 率,以該聚光層123為最高 合1 2 〇中以最下層擴散層1 ’其它擴散層1 2 2之折射率 ,另外亦可"於1 2 1和1 2 3 料’ 1 2 2採用低折射率之特 光學特性表現。 請參閱『第2圖』所示 實施例之橫杳丨面示意圖。如圖所本發8月另一較佳 中,本發明之多層塗佈複合细示·於本實施例 , I光學膜結構2,其 201015159 〇 特徵係在 光擴散機 佈2 2及 該透 該多 於該透明 用以將入 其中該擴 介面微結 2 2 2所 佈厚度係 入無機性 於以具散亂型介面微結構之擴 制者,包括一透明基材2 1、 一保護塗佈層2 3。 明基材2 1 ’係具有兩相對面 層塗佈2 2之擴散層組合2 2 基材21兩相對面其中之一面 射之光線作散射化處理之介面 散層組合2 2 0係具有至少一 構2 2 la、2 2 2a之擴散層 組成,該些擴散層2 2 1、2 "於1以m至5 0 // m之間,並可 或有機性之粒子材料。 散層作為 一多層塗Wherein, the multi-layer coating 1 rate is such that the concentrating layer 123 is the highest combined with the refractive index of the lowermost diffusion layer 1 'the other diffusion layer 1 2 2, and may also be <1 1 1 and 1 2 3 Material ' 1 2 2 is characterized by special optical properties of low refractive index. Please refer to the horizontal cross-sectional view of the embodiment shown in Fig. 2. In another preferred embodiment of the present invention in August, the multi-layer coating composite of the present invention is shown in the present embodiment. The optical film structure 2 of the present invention has a 201015159 〇 characteristic in the light diffuser cloth 2 2 and the More than the transparency is used to incorporate the thickness of the expanded surface microjunction 2 2 2 into a mineralizer having a dispersive interface microstructure, including a transparent substrate 2 1 , a protective coating Layer 2 3. The bright substrate 2 1 ' has two opposite surface layers coated with 2 2 diffusion layer combination 2 2 The opposite surface of the substrate 21 is irradiated by one of the opposite surfaces, and the interface layer 2 2 0 has at least one structure 2 2 la, 2 2 2a diffusion layer composition, the diffusion layer 2 2 1 , 2 " between 1 m to 50 // m, and may be organic particle material. Scattered layer as a multi-layer coating

該多層塗佈22之聚光層223, 透明基材2 1之另一相對面上,其中該 2 3係為用以將散射之光線作集中化處 性微結構2 2 3 a ’並可為稜鏡型、角錐 型及金字塔型。 該保護塗佈層2 3係位於該擴散層 0上,用以提供整體結構之抗靜電及抗 上所述,係構成另一全新之多層塗佈複 臈結構2。 其中,上述該擴散層組合2 2 〇中 2 2 1 2 2 2之材料折射率係以最靠 基材2 1之折射率最低,離該透明基材 層之折射率最高,另外亦可於2 2 1和 0,係位 上,係為 微結構。 個以上含 2 2 1、 2 2之塗 進一步加 係位於該 聚光層2 理之集光 型、透鏡 組合2 2 磨損。以 合型光學 各擴散層 近該透明 2 1最外 2 3採用 201015159 南折射率之材料,2 2 2採用低折射率之材料以 提供不同的光學特性表現。 請參閱『第3圖』所示’係本發明再一較佳 實施例之橫剖面示意圖。如圖所示:於本實施例 中’本發明之多層塗佈複合型光學膜結構3,其 特徵係在於以具散亂型介面微結構之擴散層作為 光擴政機制者’包括一透明基材3 1 、一多層塗 佈3 2及一保護塗佈層3 3。 © 該透明基材3 1 ,係具有兩相對面。 該多層塗佈32之兩擴散層組合320、3 2 1 ’係位於該透明基材3 1之兩相對面上,係 為用以將入射之光線作散射化處理之介面微結構 。其中該擴散層組合3 2 0、3 2 1係具有至少 ::以上含介面微結構3 2 2 a、3 2 3 a之擴散 曰 2 2 3 2 3所組成,該些擴散層3 2 2、 323之塗佈厚声 π手度係介於1以m至50以m之間,並 Ο 可進二步加入無機性或有機性之粒子材料。 該多層塗佈3 2之聚光層3 2 4,係位於該 兩擴散層組合3 2 Q、3 2 1其中之-上,其中 s玄聚光層3 2係為用以將散射之光線作集中化處 理之集光性微結構3 2 4 a,並可為稜鏡型、角錐 型、透鏡型及金字塔型。 $保5隻塗佈層3 3係位於該兩擴散層組合3 2 0 ·' 3 2 1另一之上’用以提供整體結構之抗 201015159 靜電及抗磨損。以上所 & + Ah 、技人 ^ 1 乐構成再一全新之多 層塗佈複s型光學臈結構3。 ’其多層塗佈内層之 之數量獲得一個或一 2層塗佈(含聚光層 ’3層塗佈可得具2 上述第1圖〜第3圖中 擴政層組合,係可依其塗佈 個以上擴散層之結構,例如 )可得具1個擴散層之結構 個擴政層之結構,依此類推 ❹The concentrating layer 223 of the multi-layer coating 22, the other opposite surface of the transparent substrate 21, wherein the 203 is used to concentrate the scattered light into a local microstructure 2 2 3 a '稜鏡 type, pyramid type and pyramid type. The protective coating layer 2 is located on the diffusion layer 0 to provide an antistatic and anti-static structure of the overall structure, and constitutes a new multi-layer coated ruthenium structure 2. Wherein, the refractive index of the material of the diffusion layer combination 2 2 〇 2 2 1 2 2 2 is the lowest refractive index of the substrate 2 1 , the highest refractive index of the transparent substrate layer, and 2 2 1 and 0, in the position, is a microstructure. More than one coating containing 2 2 1 and 2 2 is further applied to the concentrating layer of the concentrating layer 2, and the lens combination 2 2 is worn. Combining optics Diffusion layers Nearly transparent 2 1 Outer 2 3 uses 201015159 South refractive index material, 2 2 2 uses low refractive index material to provide different optical properties. Referring to the "Fig. 3", a cross-sectional view of a further preferred embodiment of the present invention is shown. As shown in the figure: In the present embodiment, the multilayer coated composite optical film structure 3 of the present invention is characterized in that a diffusion layer having a dispersive interface microstructure is used as a light diffusion mechanism to include a transparent substrate. The material 3 1 , a multi-layer coating 3 2 and a protective coating layer 3 3 . © The transparent substrate 3 1 has two opposite faces. The two diffusion layer combinations 320, 3 2 1 ' of the multilayer coating 32 are located on opposite sides of the transparent substrate 31 as an interface microstructure for scattering incident light. Wherein the diffusion layer combination 3 2 0, 3 2 1 has at least: a diffusion layer 2 2 3 2 3 containing an interface microstructure 3 2 2 a, 3 2 3 a, and the diffusion layer 3 2 2 The 323 coating thick π hand system is between 1 m and 50 m, and the inorganic or organic particle material can be added in two steps. The multi-layer coating 3 2 concentrating layer 3 2 4 is located on the two diffusion layer combinations 3 2 Q, 3 2 1 , wherein the s-spot light layer 32 is used for scattering light The concentrated collection of the microstructures 3 2 4 a, and can be 稜鏡 type, pyramid type, lens type and pyramid type. $5 coat layer 3 3 is located on the other of the two diffusion layer combinations 3 2 0 · ' 3 2 1 ' to provide the overall structure of the anti-201015159 static and anti-wear. The above & + Ah, technician ^ 1 music constitutes a new multi-layer coating complex s-type optical 臈 structure 3. 'The number of layers coated in the inner layer is obtained by one or two layers of coating (including the concentrating layer '3 layers can be obtained with 2 combinations of the above-mentioned 1st to 3rd expansion panels, which can be coated The structure of the above diffusion layer, for example, the structure of a diffusion layer having a diffusion layer structure, and the like

請參y第4圖』戶斤示,係第工圖中a之局 。伞大不思圖。如圖所*,並請同時參閱第丄圖 :虽本發明於組裝時’卩第1圖多層塗佈複合型 光學膜結構丄為例。該透明基材i工使用之材料 二可為,所屬技術領域中通常知識所已知者,並 可為具南光學穿透率之玻璃或塑膠材料,例如聚 乙烯對笨一甲酸醋(poly ethyl ene Ter epht ha late ,PET )、聚碳酸酯(p〇iycarb〇nate,)或聚 甲基丙烯8文甲®旨(Polymethylmethacrylate, PMM A )等,並以介於30# m至3〇〇以m之間之厚度範圍 為佳者。 於該透明基材1 1上方之多層塗佈1 2 ,包 含有最表層具聚光效果之集光性微結構1 2 3 a 之聚光層1 2 3 ’及内層具擴參效果之數個含介 面微結構1 2 la、1 22a之擴散層1 2 1、1 2 2所組成之擴散層組合1 2 〇。其中該聚光層 1 2 3及該擴散層1 2 1、1 2 2之材料折射率 為愈往上層折射率愈高為最佳’亦或1 2 1和1 201015159 :材料,122採用低折射率材 4並^為紫外光固化(uvcuring)或熱固化(Please refer to y 4th picture, "The house is shown in the figure. The umbrella is big and not thinking. As shown in the figure, please refer to the same figure: Although the present invention is assembled, the multilayer coated composite optical film structure of Fig. 1 is taken as an example. The material used for the transparent substrate can be any known in the art, and can be a glass or plastic material having a south optical transmittance, such as polyethylene to polyethyl acetonate (poly ethyl) Ene Ter epht ha late , PET ), polycarbonate (p〇iycarb〇nate,) or polymethylmethacrylate (PMM A ), etc., with a range of 30# m to 3〇〇 The thickness range between m is preferred. The multi-layer coating 1 2 above the transparent substrate 1 1 comprises a concentrating layer 1 2 3 ′ having the most concentrated light-collecting microstructure 1 2 3 a having a concentrating effect and a plurality of spreading effects of the inner layer The diffusion layer combination of the diffusion layers 1 2 1 and 1 2 2 containing the interface microstructures 1 2 la and 1 22a is 1 2 〇. Wherein the refractive index of the concentrating layer 1 2 3 and the diffusion layer 1 2 1 , 1 2 2 is the higher the refractive index of the upper layer is the best 'or 1 2 1 and 1 201015159 : material, 122 uses low refraction Rate material 4 and ^ UV curing (uvcuring) or heat curing (

Th=alSetting)之樹醋材料。且各介面微結構 U 1 a、1 2 2 a及集光性微結構丄 & Ο ❹ =滾輪(R〇ller)或平板作為模具,於該透明 基材1 1或該擴散層;[2 i、丄2 2上再塗佈上 了層樹酯材料,並進行壓印製程(Emb〇ssing), 最後以紫外光固化或熱固化後完成。其中,依本 實施例中以散亂型作為介面微結構,^擴 佈厚度控制係介於一至25…間為 ,亦可在該擴散層組合i 2 〇中之各擴散層丄2 1、1 2 2選擇加入適量之粒子,以改變材料或 光學特性。 由於在s亥多層塗佈1 2最表層之聚光層1 2 3需具有高集光能力,因此其材料係為高折射率 材料’一般係介於1 · 4至1. 7之間,並以大於1. 5 以上為佳。而該擴散層組合1 2 〇則為低折射率 材料,一般係介於1. 3至1. 6之間,並以小於i. 5 以下為佳。其中,若該擴散層組合1 2 〇包含三 層塗佈’則第一層與第三層係使用低折射率之樹 賴材料,而第二層則類似於最表層之聚光層1 2 3宜使用高折射率之樹酯材料。 此外’本發明為了改善一般光學膜材因表面 電阻過高易產生高靜電問題而導致組裝品質不良 ’此實施例亦可於該透明基材1 1之下方施加一 201015159 可抗靜電及抗磨損之保護塗佈層i 3,藉、 β 高此光學膜材產品應用上之品質條件。:=更提 完成該多層塗佈複合型光學膜結構丄之組^,即 當本發明於運用時,平行入射光之.二° ❹Th=alSetting) tree vinegar material. And each interface microstructure U 1 a, 1 2 2 a and light-collecting microstructure 丄 & Ο ❹ = roller (R〇ller) or plate as a mold on the transparent substrate 1 1 or the diffusion layer; [2 i, 丄2 2 is coated with a layer of resin material, and is embossed (Emb〇ssing), and finally completed by UV curing or heat curing. Wherein, according to the embodiment, the scattered type is used as the interface microstructure, and the thickness control system is between 1 and 25, and the diffusion layers 丄2 1 and 1 in the diffusion layer combination i 2 〇 can also be used. 2 2 Select the right amount of particles to change the material or optical properties. The coating of the high-refractive-index material is generally between 1. 4 and 1.7, and is greater than 1. 5 or above is better. 5以下以下。 Preferably, the diffusion layer combination of 1 2 〇 is a low-refractive-index material, generally between 1. 3 to 1.6, and less than i. 5 or less. Wherein, if the diffusion layer combination 1 2 〇 comprises three layers of coating 'the first layer and the third layer use a low refractive index slab material, and the second layer is similar to the outermost layer concentrating layer 1 2 3 High refractive index resin materials should be used. In addition, the present invention can also improve the assembly quality due to the high surface resistance caused by the high surface resistance of the general optical film. This embodiment can also apply a 201015159 anti-static and anti-wear property under the transparent substrate 11. Protect the coating layer i 3, borrowing, and β high quality conditions for the application of this optical film product. := Further, the structure of the multi-layer coating composite optical film structure is completed, that is, when the invention is applied, the parallel incident light is 2° ❹

1、1 0 2、1 0 3及1 〇 4 ’經過具散亂 面微結構121a之擴散層121,將因該擴散層 組合1 2 0之折射率差而產生具散射特性之 光,其光線201、202、203及2〇4行 進將由原本之平行入射狀變化成散射狀。據此足 以明顯顯示光擴散之霧度(Haze )效果可在適合 之材料組合設計下以介面之微結構設計來達成。 在本發明中,以一個具單一介面微結構設計 之擴散層,其散亂型結構之粗糙度值係大於 5 // m,且該聚光層與該擴散層之折射率差值係 為〇. 05以上,可得到此擴散層之霧度值係介於5〇/〇 至4 0%之間’而全穿透率約小於92%以下。因此於 最佳化之材料設計與介面微結構設計下,除了可 得到一定光擴散功能之霧度外,亦可得到與相同 純聚光層光學膜97%至1〇〇%間之輝度增益表現。 最後’當散射之光線201、202、20 3及2 〇 4進入最表層之聚光層1 2 3時,即可 被特殊之集光性微結構1 2 3 a設計將其光線有 效之集中化。因此,利用多層塗佈技術所製之光 學膜材再透過材料技術之設計、介面微結構之設 201015159 計以及結合最表層之集光性微結構設計,將可以 製造出高亮度及高品質之複合型光學膜結構1 Ο 請參閱『第5圖〜第9圖』所示,係分別為 本發明之散«L型介面微結構立體示意圖、本發明 之稜鏡型介面微結構立體示意圖、本發明之角錐 型’I面微結構立體示意圖、本發明之透鏡型介面 微結構立體示意圖及本發明之金字塔型介面微鈐 構立體示意圖。如圖所示:上述各實施例中之介 ❹ 面微結構,係利用物理方法之機械性表面加工^ 糙化或化學方法之表面腐蝕粗糙化等,並以滾輪 或平板之表面作為加工模具,使成為具有微細~紐 糙化之散亂結構表面,再用以進行擴散層之塗佈 壓印製程,藉以得此具散亂型4 a介面微結構之擴 散層。另外,本發明之介面微結構並無特殊限制 ,除了上述之散亂型外,亦可為稜鏡型4 b、角錐1, 1 0 2, 1 0 3 and 1 〇 4 'through the diffusion layer 121 having the scattered surface microstructure 121a, the diffusion layer is combined with the refractive index difference of 1 2 0 to generate light having scattering characteristics, and the light The travel of 201, 202, 203, and 2〇4 will change from the original parallel incidence to a scattering shape. Accordingly, the Haze effect, which clearly shows the light diffusion, can be achieved by the interface microstructure design under a suitable material combination design. In the present invention, the diffusion layer having a single interface microstructure is designed to have a roughness value greater than 5 // m, and the difference in refractive index between the concentrating layer and the diffusion layer is 〇 Above 05, the haze value of the diffusion layer is between 5 〇 / 〇 to 40% ' and the total penetration is less than 92%. Therefore, in the optimized material design and interface microstructure design, in addition to the haze of a certain light diffusion function, the luminance gain performance between 97% and 1% of the same pure concentrating optical film can be obtained. . Finally, when the scattered light rays 201, 202, 20 3 and 2 〇 4 enter the outermost layer of the light-concentrating layer 1 2 3 , the light can be effectively concentrated by the special light-collecting microstructure 1 2 3 a design. . Therefore, the design of the optical film re-transmission material technology, the design of the interface microstructure, and the collection of the light-collecting microstructure of the outermost layer by the multi-layer coating technology can produce a composite of high brightness and high quality. Optical film structure 1 Ο Please refer to FIG. 5 to FIG. 9 , which are respectively a schematic diagram of a loose-type L-type interface microstructure of the present invention, a schematic diagram of a 稜鏡-type interface microstructure of the present invention, and the present invention. A three-dimensional schematic diagram of a pyramidal 'I-surface microstructure, a three-dimensional schematic diagram of a lens-type interface microstructure of the present invention, and a three-dimensional schematic diagram of a pyramid-type interface micro-frame structure of the present invention. As shown in the figure, the micro-structure of the interface in the above embodiments is a mechanical surface processing, roughening or chemical surface roughening, and the surface of the roller or the flat plate is used as a processing die. The surface of the scattered structure having a fine to new roughening is used to perform a coating imprint process of the diffusion layer, thereby obtaining a diffusion layer having a dispersive type 4 a interface microstructure. In addition, the interface microstructure of the present invention is not particularly limited, and besides the above-mentioned scattered type, it may be a 稜鏡 type 4 b, a pyramid

型4c、透鏡型4d及金字塔型4e等之介面微妹 ❹構設計。 Q 綜上所述,本發明係一種多層塗佈複合型光 學膜結構,可有效改善習用之種種缺點,利用多 層塗佈技術對光源之擴散及聚光效果做複合式: &又什’藉整合於單一光學膜片可有效降低材料成 本,並在具介面微結構之擴散層作為光擴散機制 下不僅可有效地提昇輝度表現,同時亦可减少 因摻雜粒子之分散及膜材翹曲等所致之品質變^ 及因粒子塗佈所致下置光學膜片刮傷瑕疵的問題 20 201015159 ’藉此在簡化背光模組之組裝以提高其組裝效率 之同時’亦提昇此複合型光學膜之膜材品質與光 學特性,進而使本發明之産生能更進步、更實用 、更符合使用者之所須,確已符合發明專利申請 之要件’爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而 已’當不能以此限定本發明實施之範圍;故,凡 依本發明申請專利範圍及發明說明書内容所作之 ❺ 簡單的等效變化與修飾,皆應仍屬本發明專利涵 蓋之範圍内。 【圖式簡單說明】 第1圖,係本發明一較佳實施例之橫剖面示 意圖。 第2圖’係本發明另一較佳實施例之橫剖面 示意圖。 第3圖,係本發明再一較佳實施例之橫剖面 不意圖。 第4圖’係第1圖中a之局部放大示意圖。 第5圖’係本發明之散亂型介面微結構立體 示意圖。 第6圖’係本發明之棱鏡型介面微結構立體 示意圖。 第7圖’係本發明之角錐型介面微結構立體 示意圖。 201015159 第8圖,係本發明之透鏡型介面微結構立體 示意圖。 第9圖,係本發明之金字塔型介面微結構立 體示意圖。 第1 0圖,係習知技術之複合型光學膜橫剖 面示意圖。 【主要元件符號說明】 (本發明部分) © 多層塗佈複合型光學膜結構1 透明基材1 1 多層塗佈1 2 擴散層組合1 2 0 擴散層121、122 介面微結構1 2 1 a、1 2 1 b 聚光層1 2 3 集光性微結構1 2 3 a 〇 保護塗佈層1 3 多層塗佈複合型光學膜結構2 透明基材2 1 多層塗佈2 2 擴散層組合2 2 0 擴散層2 2 1、2 2 2 介面微結構2 2 1 a、2 2 2 a 聚光層2 2 3 22 201015159 集光性 護塗佈 多層塗 透明基 多層塗 擴散層 擴散層 介面微 聚光層 集光性 保護塗 散亂型 棱鏡型 角錐型 透鏡型 金字塔 (習用部分 複合型 透明基 稜鏡型 擴散層 擴散粒 結構2 2 3 a 2 3 複合型光學膜結構3 3 1 3 2 合 3 2 0、3 2 1 2 2、3 2 3 構 322a、323a 2 4 結構3 2 4 a 層3 3 d 4 e 學膜5 5 0 構5 1 構5 2 5 2 1 23Type 4c, lens type 4d and pyramid type 4e interface design. Q In summary, the present invention is a multi-layer coating composite optical film structure, which can effectively improve various disadvantages of the conventional use, and utilizes a multi-layer coating technology to compound the diffusion and concentrating effects of the light source: & Integrating into a single optical film can effectively reduce the material cost, and can not only effectively improve the luminance performance under the diffusion layer with the interface microstructure as a light diffusion mechanism, but also reduce the dispersion of the doped particles and the warpage of the film. The resulting quality change ^ and the problem of scratching the lower optical film due to particle coating 20 201015159 'This improves the assembly efficiency of the backlight module to improve its assembly efficiency while also improving the composite optical film The quality and optical properties of the film, in turn, make the invention more progressive, more practical, and more in line with the needs of the user, and indeed meet the requirements of the invention patent application '爰 patent application according to law. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto; therefore, the simple equivalent changes and the contents of the patent application scope and the description of the invention are Modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a preferred embodiment of the present invention. Fig. 2 is a schematic cross-sectional view showing another preferred embodiment of the present invention. Fig. 3 is a cross section of still another preferred embodiment of the present invention. Fig. 4 is a partially enlarged schematic view showing a in Fig. 1. Fig. 5 is a perspective view showing the scattered interface microstructure of the present invention. Fig. 6 is a perspective view showing the prism type interface microstructure of the present invention. Fig. 7 is a perspective view showing the pyramidal interface microstructure of the present invention. 201015159 Fig. 8 is a perspective view showing the lens type interface microstructure of the present invention. Fig. 9 is a schematic view showing the pyramid type interface microstructure of the present invention. Fig. 10 is a schematic cross-sectional view showing a composite optical film of the prior art. [Description of main component symbols] (part of the present invention) © multilayer coating composite optical film structure 1 transparent substrate 1 1 multilayer coating 1 2 diffusion layer combination 1 2 0 diffusion layer 121, 122 interface microstructure 1 2 1 a, 1 2 1 b concentrating layer 1 2 3 light collecting microstructure 1 2 3 a 〇 protective coating layer 1 3 multilayer coating composite optical film structure 2 transparent substrate 2 1 multilayer coating 2 2 diffusion layer combination 2 2 0 diffusion layer 2 2 1 , 2 2 2 interface microstructure 2 2 1 a, 2 2 2 a concentrating layer 2 2 3 22 201015159 concentrating protective coating multi-layer coating transparent substrate multi-layer coating diffusion layer diffusion layer interface micro-concentration Layer concentrating protective coating scattered prism type pyramidal lens type pyramid (conventional partial composite transparent type 扩散 type diffusion layer diffusion grain structure 2 2 3 a 2 3 composite optical film structure 3 3 1 3 2 3 2 0, 3 2 1 2 2, 3 2 3 structure 322a, 323a 2 4 structure 3 2 4 a layer 3 3 d 4 e film 5 5 0 structure 5 1 structure 5 2 5 2 1 23

Claims (1)

201015159 十、申請專利範圍: 1 ’ 一種多層塗佈複合型先學膜結構,其特徵係 在於以具散亂型(Random )介面微結構之擴 散層作為光擴散機制者,包括—透明基材、 一多層塗佈及一保護塗佈層,其中: 該透明基材’係具有兩相對面,且其厚 度範圍係介於30微米(μ m)至300 /z m之間 f ❹ 該多層塗佈内層之擴散層組合,係位於 該透明基材兩相對面其中之一面上,且該擴 散層組合係具有至少一個以上含介面微結構 之擴散層所組成’該些擴散層之塗佈厚度係 介於1 V m至5 0 // m之間,且以單一擴散層其 介面微結構之粗糙度值(Ra )係大於〇. 5 a m 以上’其中該擴散層組合係為用以將入射之 光線作散射化處理之介面微結構; ❹ 該多層塗佈最表層之聚光層,係位於該 擴散層組合上,且該擴散層組合係位於該聚 光層與該透明基材之間,其中該聚光層係為 用以將散射之光線作集中化處理之集光性微 結構; 該保護塗佈層,係位於該透明基材之另 一相對面’用以提供整體結構之抗靜電及抗 磨損;以及 24 201015159 其中,該擴散層組合之拍 5 1 R ^ β <新·制·率係介於 至1. 6之間’該聚光層之 ^ 。 w <折射率係介於 至1. 7之間。201015159 X. Patent application scope: 1 ' A multi-layer coating composite type membrane structure, characterized by a diffusion layer with a random interface (Random) interface as a light diffusion mechanism, including - a transparent substrate, a multilayer coating and a protective coating layer, wherein: the transparent substrate has two opposite faces and a thickness ranging from 30 micrometers (μm) to 300 /zm f ❹ the multilayer coating The diffusion layer combination of the inner layer is located on one of the opposite faces of the transparent substrate, and the diffusion layer combination is composed of at least one diffusion layer containing the interface microstructure. The coating thickness of the diffusion layers is Between 1 V m and 5 0 // m, and the roughness value (Ra ) of the interface microstructure of the single diffusion layer is greater than 〇. 5 am or more, wherein the diffusion layer combination is used to make the incident light Interfacial microstructure for the scattering treatment; ❹ the multi-layer coating of the outermost layer of the concentrating layer is located on the diffusion layer combination, and the diffusion layer combination is located between the concentrating layer and the transparent substrate, wherein Concentrating layer is used a light-collecting microstructure that concentrates the scattered light; the protective coating layer is located on the opposite side of the transparent substrate to provide antistatic and anti-wear properties of the overall structure; and 24 201015159 wherein The diffusion layer combination of the shot 5 1 R ^ β < new system rate is between 1. 6 'the concentrating layer ^. w之间。 The refractive index is between 1.7. 2 · 依據申請專利範圍第1 合型光學膜結構,其中 光學穿透率之玻璃或塑 烯對苯二甲酸 Terephthalate , PET 項所述之多層塗佈複 ’該透明基材係為高 膠材料,並可為聚乙 酉曰(Polyethylene )、聚碳酸酯 ( Ο Polycarbonate,PC)或聚曱基丙烯酸曱醋( Polymethylmethacrylate, PMMA)。2 · According to the patent application scope, the first type of optical film structure, wherein the optical transmittance of the glass or the terephthalate terephthalate, the multilayer coating described in the PET article is a high-glue material. It may be Polyethylene, Polycarbonate (PC) or Polymethylmethacrylate (PMMA). 依據申請專利範圍第1項所述之多層塗佈複 合型光學膜結構’其中,該些擴散層之塗佈 厚度係介於1 " m至50 μ m之間,以3 “ m至 2 5 y m之間為佳。 Q 4 ·依據申請專利範圍第1項所述之多層塗佈複 合型光學膜結構,其中,該擴散層組合中之 擴散層亦可為稜鏡型(prism)、角錐型(C〇ne )、透鏡型(Lens)及金字塔型(Pyramid) 之介面微結構。 5 ·依據申請專利範圍第4項所述之多層塗佈複 合型光學膜結構,其中,該棱鏡型、角錐型 及金字塔型之介面微結構,其結構表面係具 有更細化散亂性破壞之凹凸點處理。 6 ·依據申請專利範圍第1項所述之多層塗佈複 合型光學膜結構,其中,該擴散層其介面微 25 201015159 結構之粗糙度值係大於〇. 5 y m,以大於 為佳。 μ 7 ·依據申請專利範圍第1項所述之多層塗佈複 合型光學骐結構,其中,該聚光層係可為稜 鏡型、角錐型、透鏡型及金字塔型之集 微結構。 8 ·依據申請專利範圍第1項所述之多層塗佈複 合型光學膜結構,其中,該聚光層係為高折 ❹ 射率材料,其折射率係介於1. 4至1. 7,以大 於1. 5以上為佳。 9 .依據申請專利範圍第i項所述之多層塗佈複 合型光學臈結構,其中,該擴散層組合之各 擴散層係為低折射率材料,其折射率係介於 1 · 3至1. 6,以小於丨.5以下為佳。 1 ◦·依據申請專利範圍第1項所述之多層塗佈 複合型光學膜結構,其中,該擴散層組合可 © 包含三層塗佈’且第一層與第三層係為低折 射率之樹醋材料,第二層則類似該聚光層係 為高折射率之樹酯材料。 1 1 ·依據申請專利範圍第1項所述之多層塗佈 複合型光學膜結構,其中,該聚光層與該擴 散層之折射率差值係為0 〇5以上,且該擴散 層之霧度值係介於5%至40%之間。 1 2 .依據申請專利範圍第1項所述之多層畫佈 複合型光學膜結構,其中,該擴散層組合中 26 201015159 之各擴散層係可進一步| 少加入粒子材料 子材料並可為盔機性布 β ”·、愧丨王或有機性材料。 3 · —種多層塗佈複合型% 九千膜結構,其特徵 係在於以具散亂型介面 ,,/灿&仙 叫做結構之擴散層作為 光擴散機制者’包括一诱 边明基材、一多層塗 佈及一保護塗佈層,其中: 該透明基材,係具有兩相對面,且其厚 度範圍係介於30//m至3〇〇;(/m之間; ❹ ❹ 該多層塗佈之擴散層組合,係位於該透 明基材兩相對面其中之一面上,且該擴散層 組合係具有至少一個以上含介面微結構之擴 散層所組成’該些擴散層之塗佈厚度係介於 1 μ m至5 0 // m之間’且其介面微結構之粗糙 度值係大於0.5# m以上’其中該擴散層組合 係為用以將入射之光線作散射化處理之介面 微結構; 該多層塗佈之聚光層’係位於該透明基 材之另一相對面上’其中該聚光層係為用以 將散射之光線作集中化處理之集光性微結構 該保護塗佈層,係位於該擴散層組合上 ’用以提供整體結構之抗靜電及抗磨損;以 及 27 201015159 其中’該擴散層組合之折射率係介於1. 3 至1. 6之間,該聚光層之折射率係介於1. 4 至1. 7之間。 1 4 ·依據申請專利範圍第1 3項所述之多層塗 佈複合型光學臈結構,其中,該擴散層組合 中之擴散層亦可為棱鏡型、角錐型、透鏡型 及金字塔型之介面微結構。 1 5 ·依據申請專利範圍第1 3項所述之多層塗 〇 佈複合型光學膜結構,其中,該聚光層與該 擴散層之折射率差值係為0. 0 5以上,且該擴 散層之霧度值係介於5%至40%之間,全穿透 率係小於92%以下。 1 Θ ·依據申請專利範圍第1 3項所述之多層塗 佈複合型光學膜結構,其中,該擴散層組合 中之各擴散層係可進一步加入粒子材料,該 ^ 1 粒子材料並可為無機性或有機性材料。 7 / 一種多層塗佈複合型光學膜結構,其特徵 係在於以具散亂型介面微結構之擴散層作為 光擴散機制者,包括一透明基材、一多層塗 佈及一保護塗佈層,其中: θ °亥透.明基材,係具有兩相對面,且其厚 度範圍係介於30// m至300 " m之間; 該多層塗佈之兩擴散層組合,係位於該 =明基材之兩相對面上,且該擴散層組合係 /、有至少一個以上含介面微結構之擴散層所 28 201015159 f4些擴散層之塗佈厚度係介於i从讯至 =之間,且其介面微結構之粗糙度值係大 ;·以m以上,其中該擴散層組合係為用以 將入,之《線作散射化處理之介面微結構; 4夕層塗佈之聚光層,係位於該兩擴散 ,口其中之一上’其中該聚光層係為用以 將政射之光線作集中化處理之集光性微結構 0 一。亥保4塗佈層,係位於該兩擴散層組合 \ 之上,用以提供整體結構之抗靜電及抗 磨損;以及 其中’該擴散層組合之折射率係介於1.3 至1 · 6之間,該聚光層之折射率係介於丄.4 至1 · 7之間。 18依據申凊專利範圍第1 7項所述之多層塗 佈複合型光學膜結構,其中,該擴散層組合 〇 中之擴散層亦可為稜鏡型、角錐型、透鏡型 及金字塔型之介面微結構。 1 9 .依據申請專利範圍第i 7項所述之多層塗 佈複合型光學膜結構,其中,該聚光層與該 擴散層之折射率差值係為0. 05以上,且該擴 月文層之霧度值係介於5 %至4 〇 %之間。 2 0 ·依據申請專利範圍第1 7項所述之多層塗 佈複合型光學膜結構,其中,該擴取層組合 29 201015159 中之各擴散層係可進一步加入粒子材料, 粒子材料並可為無機性或有機性材料。The multilayer coated composite optical film structure according to claim 1, wherein the diffusion layer has a coating thickness of between 1 " m and 50 μ m, and 3" m to 2 5 The multilayer coating composite optical film structure according to claim 1, wherein the diffusion layer in the diffusion layer combination may be a prism or a pyramid. (C〇ne), lens type (Lens) and pyramid type (Pyramid) interface microstructure. 5 . The multilayer coated composite optical film structure according to claim 4, wherein the prism type and the pyramid The structure of the interface and the microstructure of the pyramid type, the surface of the structure has a finer and more scattered damage. 6 · The multi-layer coating composite optical film structure according to claim 1 of the patent application, wherein The multi-layer coated composite optical raft structure according to the first aspect of the patent application, wherein the concentrating layer has a roughness value greater than 〇. 5 ym. Light layer can be 稜鏡 type The multi-layer coating composite optical film structure according to the first aspect of the invention, wherein the concentrating layer is a high-deflection fluorescing material, The multi-layer coating composite optical raft structure according to claim i, wherein the diffusion layer is combined, is preferably greater than 1.5. Each of the diffusion layers is a low-refractive-index material, and the refractive index is preferably from 1. 3 to 1.6, preferably less than 丨5. 1 ◦·Multilayer coating compound according to claim 1 An optical film structure, wherein the diffusion layer combination can comprise a three-layer coating 'and the first layer and the third layer are low refractive index vinegar materials, and the second layer is similar to the concentrating layer is high refractive index The multi-layer coating composite optical film structure according to claim 1, wherein the refractive index difference between the concentrating layer and the diffusion layer is 0 〇 5 or more. And the haze value of the diffusion layer is between 5% and 40%. The multi-layer canvas composite optical film structure according to the item 1, wherein the diffusion layer combination of the diffusion layer combination 26 201015159 can further add less particle material sub-materials and can be a helmet-like cloth β ··· King or organic material. 3 · Multi-layer coating composite type % 9000 membrane structure, characterized by a distracting interface, /can & fairy called the diffusion layer of the structure as a light diffusion mechanism 'including a lure-bending substrate, a multi-layer coating and a protective coating layer, wherein: the transparent substrate has two opposite faces, and the thickness ranges from 30//m to 3 〇〇; (/m; ❹ ❹ The multi-layer coated diffusion layer combination is located on one of the opposite faces of the transparent substrate, and the diffusion layer combination has at least one diffusion layer containing the interface microstructure to form a coating thickness of the diffusion layers. The system is between 1 μm and 50 // m' and the roughness of the interface microstructure is greater than 0.5# m or more. The diffusion layer combination is the interface for scattering the incident light. a microstructure; the multi-layer coated concentrating layer is located on the opposite surface of the transparent substrate, wherein the concentrating layer is a concentrating microstructure for centralizing the scattered light. a coating layer on the diffusion layer combination The refractory layer has a refractive index of between 1. 3 and 1-6. The refractive index of the concentrating layer is between 1. 4 and 1. The multi-layer coated composite optical raft structure according to claim 13 wherein the diffusion layer in the diffusion layer combination may also be a prism type, a pyramid type, a lens type, and The multi-layer coated cloth composite optical film structure according to the above-mentioned patent application, wherein the refractive index difference between the light-concentrating layer and the diffusion layer is 0. 0 5 or more, and the haze value of the diffusion layer is between 5% and 40%, and the total transmittance is less than 92%. 1 Θ · Multi-layer coating according to item 13 of the patent application scope A composite optical film structure, wherein each diffusion layer in the diffusion layer combination may further be added to a particle material, and the material may be an inorganic or organic material. 7 / A multilayer coating composite optical film structure Characterized by the expansion of the interface-type microstructure As a light diffusion mechanism, the dispersion layer comprises a transparent substrate, a multi-layer coating and a protective coating layer, wherein: θ °Heiling. The bright substrate has two opposite faces and the thickness range is 30 Between m and 300 "m; the two-diffusion two-diffusion layer combination is located on two opposite faces of the substrate, and the diffusion layer combination / has at least one interface-containing microstructure Diffusion layer 28 201015159 f4 The coating thickness of some diffusion layers is between i from the signal to the =, and the roughness of the interface microstructure is large; · above m, wherein the diffusion layer combination is used The interface micro-structure of the line for scattering treatment; the concentrating layer coated on the 4th layer is located on the two diffusions, one of the mouths, wherein the concentrating layer is used for the political The light collecting microstructure of the light is concentrated. The Haibao 4 coating layer is located on the combination of the two diffusion layers to provide antistatic and anti-wear properties of the overall structure; and wherein the refractive index of the diffusion layer combination is between 1.3 and 1.6. The refractive index of the concentrating layer is between 丄.4 and 1.7. The multilayer coated composite optical film structure according to claim 17, wherein the diffusion layer in the diffusion layer combination may be a 稜鏡 type, a pyramid type, a lens type, and a pyramid type interface. microstructure. And the refractive index difference between the concentrating layer and the diffusion layer is 0.05 or more, and the expansion is in accordance with the above-mentioned application. The haze value of the layer is between 5% and 4%. The multi-layer coating composite optical film structure according to claim 17, wherein the diffusion layer of the diffusion layer combination 29 201015159 can be further added to the particle material, and the particle material can be inorganic Sexual or organic materials.
TW097141818A 2008-10-02 2008-10-30 Structure for multi-layer coating composite optical film TW201015159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097141818A TW201015159A (en) 2008-10-02 2008-10-30 Structure for multi-layer coating composite optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW97138005 2008-10-02
TW097141818A TW201015159A (en) 2008-10-02 2008-10-30 Structure for multi-layer coating composite optical film

Publications (2)

Publication Number Publication Date
TW201015159A true TW201015159A (en) 2010-04-16
TWI456299B TWI456299B (en) 2014-10-11

Family

ID=42215052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097141818A TW201015159A (en) 2008-10-02 2008-10-30 Structure for multi-layer coating composite optical film

Country Status (2)

Country Link
KR (1) KR20100038024A (en)
TW (1) TW201015159A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458634B (en) * 2010-12-09 2014-11-01 Asahi Kasei E Materials Corp Construction method of fine structure layered body, fine structure layered body and manufacturing method of fine structure
TWI493235B (en) * 2010-12-07 2015-07-21 Hon Hai Prec Ind Co Ltd Light guide body and method for fabricating same
TWI614537B (en) * 2012-04-20 2018-02-11 3M新設資產公司 Brightness enhancement film with substantially non-imaging embedded diffuser
TWI638713B (en) 2016-05-16 2018-10-21 友輝光電股份有限公司 Optical sheet having a composite structure thereon
CN109270611A (en) * 2018-12-11 2019-01-25 宁波激智科技股份有限公司 A kind of complex optical film that high brightness height covers
TWI818782B (en) * 2022-03-24 2023-10-11 詠巨科技有限公司 Multilayer optical film structure and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407187A (en) * 2018-12-15 2019-03-01 上海鲲游光电科技有限公司 A kind of multilayered structure optical diffusion sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995288A (en) * 1997-04-22 1999-11-30 Dai Nippon Printing Co., Ltd. Optical sheet optical sheet lamination light source device, and light-transmissive type display apparatus
JP4135092B2 (en) * 2003-09-29 2008-08-20 ソニー株式会社 Backlight and diffusion plate manufacturing method, and liquid crystal display device
TW200730886A (en) * 2005-12-21 2007-08-16 Nippon Catalytic Chem Ind Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device employing the same
TWM296993U (en) * 2006-03-16 2006-09-01 Eternal Chemical Co Ltd Anti-scraping condenser sheet
TWM307764U (en) * 2006-09-19 2007-03-11 Eternal Chemical Co Ltd Composite optical film
TWM326173U (en) * 2007-05-08 2008-01-21 Zho Optronics Ltd Optical film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493235B (en) * 2010-12-07 2015-07-21 Hon Hai Prec Ind Co Ltd Light guide body and method for fabricating same
TWI458634B (en) * 2010-12-09 2014-11-01 Asahi Kasei E Materials Corp Construction method of fine structure layered body, fine structure layered body and manufacturing method of fine structure
TWI614537B (en) * 2012-04-20 2018-02-11 3M新設資產公司 Brightness enhancement film with substantially non-imaging embedded diffuser
US10571711B2 (en) 2012-04-20 2020-02-25 3M Innovative Properties Company Brightness enhancement film with substantially non-imaging embedded diffuser
TWI638713B (en) 2016-05-16 2018-10-21 友輝光電股份有限公司 Optical sheet having a composite structure thereon
CN109270611A (en) * 2018-12-11 2019-01-25 宁波激智科技股份有限公司 A kind of complex optical film that high brightness height covers
TWI818782B (en) * 2022-03-24 2023-10-11 詠巨科技有限公司 Multilayer optical film structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI456299B (en) 2014-10-11
KR20100038024A (en) 2010-04-12

Similar Documents

Publication Publication Date Title
TWI794456B (en) optical device
CN101738649B (en) Composite optical film structure with multiple coatings
TWI468742B (en) A light diffusion element, a polarizing plate for a light diffusion element, a polarizing element, and a liquid crystal display device using the same
TWI497105B (en) Multi-function composite optical film
TWI547736B (en) Composite optical film and backlight module using the same
TWI328702B (en) Backlight system
US8351119B2 (en) Multi-coated hybrid optical film structure
TWI468740B (en) A light diffusion film, a liquid crystal display device, and a lighting fixture
TW200907420A (en) Diffuser prism sheet comprising light diffuser in the valley of prism and LCD back light unit thereby
TW201018973A (en) Light guide device
KR20080088047A (en) Optical prism sheet having a certain roughness thereon
WO2017088237A1 (en) Backlight module and reflecting layer thereof
TW201015159A (en) Structure for multi-layer coating composite optical film
CN113296312A (en) Display device
US7929211B2 (en) Optical film
CN101630028A (en) Compound type diffusion plate structure, backlight module and liquid crystal display
KR20130041335A (en) Light-diffusing element, polarizer having light-diffusing element, and liquid crystal display device having same
TWI442137B (en) Backlight device
KR20120036293A (en) Back light guide plate and manufacturing method for the same
JP2001235606A (en) Optical member having reflective function and transmissive function
KR20090083688A (en) Multifunctional condensing film and direct type backlight unit
TW200905257A (en) Diffusion brightness enhancement sheet
KR100980068B1 (en) Multi-functional optic film
TWI398699B (en) Light-diffusing sheet and optical sheet for a back light unit
JP2009211924A (en) Sheet for backlight

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees