TWI377331B - Manufacturing apparatus and manufacturing method for carbon nanotube heat sink - Google Patents
Manufacturing apparatus and manufacturing method for carbon nanotube heat sink Download PDFInfo
- Publication number
- TWI377331B TWI377331B TW98129622A TW98129622A TWI377331B TW I377331 B TWI377331 B TW I377331B TW 98129622 A TW98129622 A TW 98129622A TW 98129622 A TW98129622 A TW 98129622A TW I377331 B TWI377331 B TW I377331B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon nanotube
- substrate
- heat sink
- carbon
- free end
- Prior art date
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
1377331 101年08用07日修正替换頁 六、發明說明: 【發明所屬之技術領威】 [0001]本發明涉及散熱器的製備裝置及方法,尤其涉及一種奈 米碳管散熱器的製備裝置及方法。 [先前技術] [0002]自上世紀九十年代初以來,以奈米碳管為代表的奈米材 料以其獨特的結構及性質引起了人們極大的關注。奈米 碳管具有機械強度馬且密度較小的優點。近幾年來,隨 著對奈㈣管研㈣不斷深人,其廣_應用前景不斷 顯現出來。例如,由於奈米碳管具有獨特的電磁學、光 學、力學、化學等性能,大量有關其在場發射電子源、 感測器、Μ光學材料、軟鐵磁材料等領域的應用研究 不斷被報導。由於奈$碳管沿其徑向具有良好的熱傳導 性,因此奈米碳管陣列可在半導體領域用作散熱器。 請參見於2005年11月11日申請,於2〇〇7年〇5月16日公 開的第CN1 964028A號中國大陸公開專利申請所揭示的 種散熱器及其製備方法。該散熱器包括:一基底及複數 奈米碳管》所述基底具有一第一表面及一與所述第—表 面相對的第二表面。所述複數奈米碳管從基底的第一表 面穿透所述第二表®並向外延伸。所述散熱器的製備方1377331 101 years 08 with 07 correction replacement page six, invention description: [Technology of the invention] [0001] The present invention relates to a heat sink preparation apparatus and method, and more particularly to a carbon nanotube heat sink preparation device and method. [Prior Art] [0002] Since the early 1990s, nanomaterials represented by carbon nanotubes have attracted great attention due to their unique structure and properties. The carbon nanotubes have the advantage of being mechanically strong and having a low density. In recent years, with the deep research on Nai (four) management research (four), its application prospects are constantly emerging. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to their applications in field emission electron sources, sensors, germanium optical materials, and soft ferromagnetic materials have been reported. . Since the carbon nanotubes have good thermal conductivity along their radial direction, the carbon nanotube array can be used as a heat sink in the semiconductor field. Please refer to the heat sink disclosed in Chinese Patent Application No. CN1 964028A, filed on Nov. 11, 2005, which is hereby incorporated by reference. The heat sink includes: a substrate and a plurality of carbon nanotubes. The substrate has a first surface and a second surface opposite the first surface. The plurality of carbon nanotubes penetrate the second surface of the substrate from the first surface and extend outward. Preparation method of the heat sink
[0003] 法具體包括以下步驟:提供一基板;在所述基板上形成 複數奈米碳管;在所述複數奈米碳管的一末端固定一基 底,去除所述基板。該方法所製備的散熱器採用奈米碳 官可作為散熱鰭片。然而,該種方法製備的散熱器中齐 米碳官密度較大,使奈米碳管中的熱量不易傳導至办5 09_产單编號Α〇101 第4頁/共32頁 1〇13299661-〇 Γ377331 中,因此,該種散熱器的熱對流效果較差 1101年.08月0>日修正;1 [〇〇〇4]為了克服上述問題,“Chip cooling with integrated carbon nanotube microfin architectures" (K. Kordas et al. Appl. Phys.The method specifically includes the steps of: providing a substrate; forming a plurality of carbon nanotubes on the substrate; and fixing a substrate at one end of the plurality of carbon nanotubes to remove the substrate. The heat sink prepared by the method can be used as a heat sink fin by using a carbon carbon. However, the heat density of the carbon nanotubes in the heat sink prepared by this method is relatively large, so that the heat in the carbon nanotubes is not easily transmitted to the office. 5 09_Product No. Α〇101 Page 4 / Total 32 pages 1〇 13299661 -〇Γ377331, therefore, the heat convection effect of this kind of radiator is poor. 1101.08 months gt; day correction; 1 [〇〇〇4] In order to overcome the above problem, "Chip cooling with integrated carbon nanotube microfin architectures" (K Kordas et al. Appl. Phys.
Lett· 90· 123105(2007))中揭示了一種散熱器及其製A heat sink and its system are disclosed in Lett. 90. 123105 (2007)
備方法。所述散熱器包括一矽基底,所述矽基底上呈方 陣狀生長有10x10個奈米碳管陣列,所述奈米碳管陣列的 尺寸為1. 2x10x10立方毫米。所述散熱器的製備方法包 括以下步驟:在矽基底上生長奈米碳管陣列;採用脈衝 雷射以50毫米/秒的掃描速率處理奈米碳管陣列,使被雷 射處理過的奈米碳管被去除,從而形成1〇χ1〇個奈米碳管 陣歹!"玄種散熱益令各個奈米碳管陣列之間有—定間隙 ,從而提高了散熱器的熱對流效果。 _]然而,上述散熱H的製備方法,由於其所採用的用於生 長奈米碳管陣列的基底為一平面,因此每次僅可於基底 上形成-個奈米碳管_,從而每次於基底上製借出的 奈米碳管陣列也僅可製得—個散熱器。因此,該種散熱 器的製備方法成本較高,效率較低。 【發明内容】 _6]有H於此,提供_種有效製備奈米碳管散熱器的裝置及 採用該裝置製備奈米碳管散熱器的方法實為必要。 剛-種奈米碳管散熱器的製備裝置,其包括—基板,該基 板具有-表面’其中,該基板的表面上形成有複數第— 奈米奴管及複數第二奈米碳管,所述基㈣所述表面上Preparation method. The heat sink comprises a crucible substrate having a matrix of 10 x 10 carbon nanotubes grown in a matrix, the carbon nanotube array having a size of 1.2 x 10 x 10 cubic millimeters. The method for preparing the heat sink comprises the steps of: growing a carbon nanotube array on a crucible substrate; processing the carbon nanotube array with a pulsed laser at a scan rate of 50 mm/sec to enable the laser treated nanometer The carbon tube is removed, thereby forming a 1 〇χ 1 carbon nanotube array 歹! " 玄 散热 heat dissipation benefits between the various carbon nanotube arrays - a fixed gap, thereby improving the heat convection effect of the radiator. _] However, the above-mentioned method for preparing the heat dissipation H is such that since the substrate for growing the carbon nanotube array is a flat surface, only one carbon nanotube can be formed on the substrate at a time, so that each time Only a heat sink can be made from the array of carbon nanotubes that are lent on the substrate. Therefore, the preparation method of the heat dissipator is costly and inefficient. SUMMARY OF THE INVENTION [6] There is a need for a device for efficiently preparing a carbon nanotube heat sink and a method for preparing a carbon nanotube heat sink using the device. A device for preparing a carbon nanotube heat sink, comprising: a substrate having a surface, wherein a plurality of first-nano tubes and a plurality of second carbon tubes are formed on a surface of the substrate On the surface of the base (4)
設有複數凹槽,該凹槽具有—底面 _962卢單編號麵 第5頁/共32 S 1013299661-0 1377331 101年08月07日修正替換頁 生長於所述基板的所述表面上,所述第二奈米碳管生長 於所述凹槽的底面内,所述第二奈米碳管超出所述基板 的表面,所述第一及第二奈米碳管均自基板朝同一生長 方向生長,所述第一奈米碳管及第二奈米碳管的長度相 同,所述第一奈米碳管的自由端與第二奈米碳管的自由 端之間具有一高度差。a plurality of grooves are provided, the grooves having a bottom surface _962 lux numbered surface 5th page / a total of 32 S 1013299661-0 1377331 101. The modified replacement page is grown on the surface of the substrate, The second carbon nanotube is grown in the bottom surface of the groove, the second carbon nanotube is beyond the surface of the substrate, and the first and second carbon nanotubes are all from the substrate toward the same growth direction. For growth, the first carbon nanotube and the second carbon nanotube have the same length, and a height difference between the free end of the first carbon nanotube and the free end of the second carbon nanotube.
[0008] —種奈米碳管散熱器的製備方法,其包括以下步驟:提 供一基板;在所述基板的一表面開設凹槽;於所述基板 上沿同一方向生長複數第一奈米碳管及複數第二奈米碳 管,其中,於基板的所述表面上生長所述第一奈米碳管 ,於凹槽的底面内生長所述第二奈米碳管,所述第二奈 米碳管超出所述基板的表面,所述第一奈米碳管及第二 奈米碳管的長度相同,第一奈米碳管的自由端與第二奈 米碳管的自由端具有一高度差;提供一第一基底及一第 二基底,將距離基板較遠的第一奈米碳管的自由端固定 於所述第一基底中;將自由端固定於第一基底中的第一 奈米碳管從基板上去除,使其獨立地形成於所述第一基 底上從而得到一第一奈米碳管散熱器;將第二奈米碳管 的自由端固定於所述第二基底中;將自由端固定於第二 基底中的第二奈米碳管從基板上去除,使其獨·立地形成 於所述第二基底上從而得到一第二奈米碳管散熱器。 [0009] 相對於先前技術,本發明提供的用於製備奈米碳管散熱 器的裝置,其包括一基板,該基板的表面上形成有複數 第一奈米碳管及複數第二奈米碳管,且所述第一奈米碳 管的自由端與第二奈米碳管的自由端之間具有一高度差 09812962# 車編號删1 第 6 頁 / 共 32 頁 1013299661-0 Γ377331[0008] A method for preparing a carbon nanotube heat sink, comprising the steps of: providing a substrate; forming a groove on a surface of the substrate; and growing a plurality of first nanocarbons in the same direction on the substrate And a plurality of second carbon nanotubes, wherein the first carbon nanotube is grown on the surface of the substrate, and the second carbon nanotube is grown in a bottom surface of the recess, the second nano tube The carbon nanotubes extend beyond the surface of the substrate, the first carbon nanotubes and the second carbon nanotubes have the same length, and the free ends of the first carbon nanotubes and the free ends of the second carbon nanotubes have a a height difference; providing a first substrate and a second substrate, fixing a free end of the first carbon nanotube farther from the substrate in the first substrate; and fixing the free end to the first in the first substrate The carbon nanotubes are removed from the substrate, and are independently formed on the first substrate to obtain a first carbon nanotube heat sink; the free end of the second carbon nanotube is fixed to the second substrate a second carbon nanotube having a free end fixed in the second substrate from the substrate In addition, single-site so formed on the second substrate to obtain a second carbon nanotube radiator. [0009] Compared with the prior art, the apparatus for preparing a carbon nanotube heat sink according to the present invention includes a substrate having a plurality of first carbon nanotubes and a plurality of second nanocarbons formed on the surface of the substrate a tube, and a height difference between the free end of the first carbon nanotube and the free end of the second carbon nanotube 98912962# Vehicle number deletion 1 Page 6 / Total 32 pages 1013299661-0 Γ 377331
10Γ年_08月07日修正替換頁 。採用該種製備奈米碳管散熱器的裝置可製備複數奈米 碳管散熱器,提高了奈米碳管散熱器的製備效率,降低 了生產成本》 【實施方式】 [0010] 為了對本發明作更進一步的說明,舉以下具體實施例並 配合附圖詳細描述如下。 [0011] 請參閱圖1,其為本發明具體實施例提供製備奈米碳管散 熱器的方法的流程圖。請參閱圖2至圖7為本發明具體實 施例提供的製備奈米碳管散熱器的方法的工藝流程圖。 該方法包括從S10到S60六個步驟。 [0012] 步驟S10,請參閱圖2,提供一基板12,該基板12具有一 第一表面即底表面,一第二表面即頂表面,且該第一表 面平行於第二表面。該第二表面上設有複數相互間隔的 凹槽130,從而使基板12形成有兩個不同高度且相互間隔 的第一生長表面120及第二生長表面140。所述凹槽130 於基板的第二表面呈點陣狀排列。所述第一生長表面120 及基板12的第二表面共面。凹槽130的底表面為第二生長 表面140。所述第一生長表面120的高度較每一第二生長 表面140的高度高。 [0013] 所述基板12可選用P型或N型矽基板,或選用形成有氧化 層的矽基板。本實施例中基板12採用矽基板。所述凹槽 130的形狀及層數不限。可以理解地,所述凹槽130可以 為一層凹槽、二層凹槽、三層凹槽或N層凹槽等。同一層 凹槽的底面到基板12的第一表面的距離相等,不同層的 凹槽的底面到基板12的第一表面的距離不等。所述凹槽 1013299661-0 09812062^單編號A〇101 第7頁/共32頁 1377331 101年.08月07日桉正替g頁 130可以呈階梯形亦即臺階狀,如圖8所示,也可設置成 同心狀的,如圖9所示。所述凹槽130可以為交錯排列的 點陣形成於所述基板12的表面,如圖13所示《所述凹槽 130可通過铸造或姓刻基板12的方法形成。如圖11所示, 本實施例中矽基板12上形成有6個凹槽130。所述6個凹槽 呈3x2點陣狀排列在矽基板12的表面,即所述6個凹槽排 列成2行,每行間隔設置有3個凹槽130。所述每一凹槽 130均只有一層且每一凹槽130的底面均為第二生長表面 140,且該第二生長表面14〇的形狀為矩形。 | [0014] 步驟S20,請參閱圖3,於所述基板12的第一生長表面 120及第二生長表面14〇上形成長度大致相等的奈米碳管 陣列’其中形成於基板12的第一生長表面120上的奈米碳 管陣列為第一奈米碳管陣列1 〇,形成於第二生長表面丨4 〇 上的奈米碳管陣列為第二奈米碳管陣列2〇 ^第一奈米碳 管陣列10及第二奈米碳管陣列2 〇的生長方向相同。控制 所生長的奈米碳管陣列的長度,從而使得第二奈米碳管 陣列20中的奈米碳管超出基板12的第一生長表面丨2(^由 · 於第一生長表面120高於第二生長表面14〇,且第一奈米 碳管陣列1 0及第二奈米碳管陣列2 〇的長度相同。因此, 第一奈米碳管陣列1 〇高於第二奈米碳管陣列2 〇,即第一 奈米碳管陣列1〇的自由端及第二奈米碳管陣列2〇的自由 知Ϊ具有一尚度差。 [0015] 請參閲圖10,在所述第-生長表面120及第二生長表面 140上分別形成第一奈米碳管陣列丨〇及第二奈米碳管陣列 20的方法包括以下步驟: 09812962#單编號 A0101 第8頁/共32頁 1013299661-0 Γ377331 [0016] 101年.08月07日修正替換頁 步驟S201,在所述基板12的第一生長表面120的部分區 域及第二生長表面140上均·勻形成一催化劑層。所述催化 劑層的材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組 合的合金之一。本實施例中催化劑的材料為鐵。Correction replacement page for 10 years _ August 07. The apparatus for preparing a carbon nanotube heat sink can prepare a plurality of carbon nanotube heat sinks, improve the preparation efficiency of the carbon nanotube heat sink, and reduce the production cost. [Embodiment] [0010] For the purpose of the present invention The following further embodiments are described in detail below with reference to the accompanying drawings. [0011] Please refer to FIG. 1, which is a flow chart of a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 2 to FIG. 7 are process flow diagrams of a method for preparing a carbon nanotube heat sink according to a specific embodiment of the present invention. The method includes six steps from S10 to S60. [0012] Step S10, referring to FIG. 2, a substrate 12 is provided. The substrate 12 has a first surface, that is, a bottom surface, and a second surface, that is, a top surface, and the first surface is parallel to the second surface. The second surface is provided with a plurality of mutually spaced grooves 130 such that the substrate 12 is formed with two different heights and spaced apart from each other by the first growth surface 120 and the second growth surface 140. The grooves 130 are arranged in a lattice on the second surface of the substrate. The first growth surface 120 and the second surface of the substrate 12 are coplanar. The bottom surface of the recess 130 is the second growth surface 140. The height of the first growth surface 120 is higher than the height of each of the second growth surfaces 140. [0013] The substrate 12 may be a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer. In the embodiment, the substrate 12 is a ruthenium substrate. The shape and number of layers of the groove 130 are not limited. It can be understood that the groove 130 can be a layer of grooves, a two-layer groove, a three-layer groove or an N-layer groove or the like. The distance from the bottom surface of the same layer groove to the first surface of the substrate 12 is equal, and the distance from the bottom surface of the groove of the different layers to the first surface of the substrate 12 is not equal. The groove 1013299661-0 09812062^ single number A 〇 101 page 7 / total 32 pages 1377331 101. 08. 07 桉 g g g page 130 can be stepped or stepped, as shown in Figure 8, It can also be set to be concentric, as shown in Figure 9. The grooves 130 may be formed in a staggered array of dots on the surface of the substrate 12, as shown in Fig. 13 "the grooves 130 may be formed by casting or surname the substrate 12. As shown in FIG. 11, in the present embodiment, six recesses 130 are formed on the cymbal substrate 12. The six grooves are arranged in a 3x2 dot pattern on the surface of the ruthenium substrate 12, that is, the six grooves are arranged in two rows, and three grooves 130 are arranged at intervals of each row. Each of the grooves 130 has only one layer and the bottom surface of each groove 130 is a second growth surface 140, and the shape of the second growth surface 14 is rectangular. [0014] Step S20, referring to FIG. 3, forming a carbon nanotube array having substantially the same length on the first growth surface 120 and the second growth surface 14 of the substrate 12, wherein the first surface of the substrate 12 is formed. The carbon nanotube array on the growth surface 120 is a first carbon nanotube array 1 , and the carbon nanotube array formed on the second growth surface 丨 4 为 is a second carbon nanotube array 2 〇 ^ first The carbon nanotube array 10 and the second carbon nanotube array 2 have the same growth direction. The length of the carbon nanotube array grown is controlled such that the carbon nanotubes in the second carbon nanotube array 20 extend beyond the first growth surface 基板2 of the substrate 12 (which is higher than the first growth surface 120) The second growth surface 14 is, and the first carbon nanotube array 10 and the second carbon nanotube array 2 are the same length. Therefore, the first carbon nanotube array 1 is higher than the second carbon nanotube Array 2 〇, that is, the free end of the first carbon nanotube array 1 及 and the free knowledge of the second carbon nanotube array 2 Ϊ have a degree of difference. [0015] Please refer to FIG. 10, in the The method of forming the first carbon nanotube array 丨〇 and the second carbon nanotube array 20 on the growth surface 120 and the second growth surface 140 respectively comprises the following steps: 09812962#单号A0101 Page 8 of 32 1013299661-0 Γ 377331 [0016] 101. August 07, the revised replacement page step S201, a catalyst layer is uniformly formed on a partial region of the first growth surface 120 of the substrate 12 and the second growth surface 140. The material of the catalyst layer may be one of alloys of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof. The catalyst material of Example of the present embodiment is iron.
[0017] 在基板12的第一生長表面120形成催化劑的區域可為任意 形狀。本實施例中,請參閱圖11,圖中陰影區域為形成 有催化劑的區域,其中形成於基板12的第一生長表面120 的催化劑區域50為4x2排列的8個矩形區域,每個矩形區 域均與一凹槽130相鄰接。所述凹槽130排列成2行,所述 催化劑區域50與凹槽130同行排列、並間隔設置。所述凹 槽130及所述催化劑區域50形成相互平行的兩行。所述圖 11中形成於凹槽130中的催化劑區域為3x2排列的複數矩 形區域。 [0018] 步驟S202,將上述形成有催化劑層的基板12在700 °C 〜900 °C的空氣中退火約30分鐘〜90分鐘。 [0019] 步驟S203,將退火處理過的基板12置於反應爐中,在保 護氣體環境下加熱到500 °C〜740 °C,然後通入碳源氣體 反應約5分鐘~30分鐘,在基板12的第一生長表面120形 成有催化劑的區域50生長得到第一奈米碳管陣列10,在 第二生長表面140上生長得到第二奈来碳管陣列20。其中 ,碳源氣可選用乙炔、乙烯、曱烷等化學性質較活潑的 碳氫化合物,保護氣體為氮氣或惰性氣體。本實施例中 所述碳源氣為乙炔,保護氣體為氬氣。由於第一奈米碳 管陣列10及第二奈米碳管陣列20為一次生長奈米碳管的 過程同時製得,因此,第一奈米碳管陣列10及第二奈米 1013299661-0 09812962#單編號A〇101 第9頁/共32頁 1377331 101年08月07日楱正替換頁 碳管陣列20中的奈米碳管的生長時間及生長速度相同, 因此第一奈米碳管陣列1 0及第二奈米碳管陣列20的長度 大致相同。[0017] The region where the catalyst is formed on the first growth surface 120 of the substrate 12 may be of any shape. In this embodiment, referring to FIG. 11, the shaded area is a region where a catalyst is formed, wherein the catalyst region 50 formed on the first growth surface 120 of the substrate 12 is 8 rectangular regions arranged in a 4×2 arrangement, and each rectangular region is Adjacent to a groove 130. The grooves 130 are arranged in two rows, and the catalyst regions 50 are arranged in parallel with the grooves 130 and spaced apart. The groove 130 and the catalyst region 50 form two rows parallel to each other. The catalyst regions formed in the grooves 130 in Fig. 11 are a plurality of rectangular regions arranged in a 3x2 arrangement. [0018] Step S202, the substrate 12 on which the catalyst layer is formed is annealed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes. [0019] Step S203, placing the annealed substrate 12 in a reaction furnace, heating to 500 ° C to 740 ° C in a protective gas atmosphere, and then introducing a carbon source gas for about 5 minutes to 30 minutes to react on the substrate. The region 50 in which the first growth surface 120 of the 12 is formed is grown to obtain the first carbon nanotube array 10, and the second growth surface 140 is grown to obtain the second carbon nanotube array 20. Among them, the carbon source gas may be selected from acetylene, ethylene, decane and other chemically active hydrocarbons, and the shielding gas is nitrogen or an inert gas. In the present embodiment, the carbon source gas is acetylene and the shielding gas is argon. Since the first carbon nanotube array 10 and the second carbon nanotube array 20 are simultaneously produced by the process of growing the carbon nanotubes, the first carbon nanotube array 10 and the second nanometer 1013299661-0 09812962 #单编号A〇101 Page 9 of 32 pages 1373731 The following is the replacement of the carbon nanotube array 20 in the carbon nanotube array 20 growth time and growth rate are the same, so the first carbon nanotube array The lengths of 10 and second carbon nanotube arrays 20 are substantially the same.
[0020] 步驟S30,請參閱圖4,提供一第一基底18,將所述基板 12及生長於其上的奈米碳管陣列10、20倒置,使第一奈 米碳管陣列10的遠離基板12的自由端固定於所述第一基 底18中。可選擇地,也可以不倒置所述基板12及生長於 其上的奈米碳管陣列10、20,使第一奈米碳管陣列10的 遠離基板12的自由端固定於所述第一基底18中。 [0021] 所述第一基底18的材料可以為聚合物相變材料也可以為 低烙點金屬材料。[0020] Step S30, referring to FIG. 4, a first substrate 18 is provided, and the substrate 12 and the carbon nanotube arrays 10, 20 grown thereon are inverted to make the first carbon nanotube array 10 far away. The free end of the substrate 12 is fixed in the first substrate 18. Alternatively, the substrate 12 and the carbon nanotube arrays 10 and 20 grown thereon may not be inverted, and the free ends of the first carbon nanotube array 10 remote from the substrate 12 may be fixed to the first substrate. 18 in. [0021] The material of the first substrate 18 may be a polymer phase change material or a low-burn metal material.
[0022] 所述聚合物相變材料係指在一定溫度(相變點)下能熔 融的聚合物,例如,矽橡膠、聚酯、聚氯乙烯、聚乙烯 醇、聚乙烯、聚丙烯、環氧樹脂、聚曱醛、聚縮醛或石 蠟等。可選擇地,該聚合物相變材料中添加有至少一種 添加劑。所述添加劑也可為聚合物。添加劑用於改善聚 合物材料的柔韌性及穩定性,還可調節聚合物材料的相 變溫度,如二曱基亞砜添加在石蠟基體材料中,可起到 上述作用。可選擇地,聚合物基體材料中填充有一些非 奈米碳管導熱材料微粒。所述非奈米碳管導熱材料微粒 在熱介面材料中的含量介於0. 1 wt%〜5wt%,該微粒導熱 無方向性,可提高熱介面材料的導熱性能。該非奈米碳 管導熱材料微粒包括奈米金屬粉體及奈米陶瓷粉體,如 鋁、銀、銅、氧化鋁、氮化鋁、氮化硼等。 09812962产單編號 A〇101 第10頁/共32頁 1013299661-0 [0023] [0023] 1377331 [0024][0022] The polymer phase change material refers to a polymer that can be melted at a certain temperature (phase change point), for example, ruthenium rubber, polyester, polyvinyl chloride, polyvinyl alcohol, polyethylene, polypropylene, ring Oxygen resin, polyacetal, polyacetal or paraffin. Optionally, at least one additive is added to the polymeric phase change material. The additive may also be a polymer. Additives are used to improve the flexibility and stability of the polymeric material, as well as to adjust the phase transition temperature of the polymeric material, such as the addition of dimercaptosulfoxide to the paraffinic matrix material. Alternatively, the polymeric matrix material is filled with particles of non-carbon nanotube heat conductive material. The content of the non-carbon nanotube heat conductive material particles in the thermal interface material is between 0.1 wt% and 5 wt%, and the particles are thermally conductive and non-directional to improve the thermal conductivity of the thermal interface material. The non-nanocarbon tube heat conductive material particles include nano metal powder and nano ceramic powder such as aluminum, silver, copper, aluminum oxide, aluminum nitride, boron nitride and the like. 09812962Bill No. A〇101 Page 10 of 32 1013299661-0 [0023] [0023] 1377331 [0024]
101 年 08月 0>日 所述低熔點金屬包括錫、銅、銦、鉛、錄、金、銀、叙 、铭及前述各材料的合金或混合物,如錫鉛合金、銦錫 合金、錫銀銅合金、金矽合金、金鍺合金等。本實施例 中’所述第一基底18的材料為石蠟,第一基底18的厚度 為1毫米》本實施方式中,所述第一奈米碳管陣列10中的 奈米碳管的高度為3毫米,其中奈米碳管有丨毫米高的部 分位於石蠟基底中,2毫米高的奈米碳管暴露在空氣中。 其中,將所述第一奈米碳管陣列10遠離基板12的自由端 固定於一第一基底18中的方法具體包括以下步驟:步驟 S301,將第一奈米碳管陣列1〇的遠離基板12的自由端浸 入一熔融態的第一基底材料中,並且第二奈米碳管陣列 20不被&入該炫融態的第一基底材料中;步驟“ο?,固 化所述第一基底材料。 [0025] 所述第一基底18具有相對的第一表面18〇及第二表面182 。所述第一奈米碳管陣列由第一基底18的所述第一表 面180延伸至所述第二表面182並沿垂直於第二表面182 的方向向外延伸,即第一奈米碳管陣列1〇貫穿第一基底 18。所述第一基底18的厚度依據實際需要確定如所需 散熱量的大小,及所需奈米碳管的固持力的大小❶優選 地,所述第一基底18的厚度為〇. i毫米〜丨厘米。所述第二 奈米碳管陣列20的自由端與第一基底18之間形成一間隙 17,使第二奈米碳管陣列2〇與第一基底18不接觸。 [0026] 步驟S40,請參閱圖5,從基板12的第一生長表面12〇上 去除第一奈米碳管陣列1〇,使第一奈米碳管陣列1〇脫離 基板12而獨立形成於第一基底18上從而得到第一奈米碳 09812962^^^51 A0101 第 Π 頁 / 共 32 頁 1013299661-0 1377331 101年08月07日接正雜百 管散熱器100。該第一奈米碳管散熱器100包括一第一基 底18及第一奈米碳管陣列1〇,所述第一奈米碳管陣列1〇 貫穿第一基底18。本實施例中,第一奈米碳管陣列1〇為 呈4x2排列且相互間隔的8個矩形區域。由於該8個矩形區 域間隔排列’因此奈米碳管密度較小,使奈米碳管中的 熱量容易傳導至空氣中,因此’該種奈米碳管散熱器的 熱對流效果較好。 [0027]所述去除第一奈米碳管陣列10的方法有多種,如機械研 磨、化學蝕刻等。本實施例中,去除第一奈米碳管陣列 《 10的方法為直接拉拔第一基底18使第一奈米碳管陣列 從基板12的第一生長表面120脫離。由於第一奈米碳管陣 列10僅僅為生長於基板12的表面,第一奈米碳管陣列 同基板12的結合力較弱。然而第一奈米碳管陣列1 〇貫穿 第一基底18且固定於第一基底ist,第一奈米碳管陣列 10同第一基底18的結合力較強。因此,在較小的作用力 下即可使得第一奈米碳管陣列1〇及基板丨2分離從而得到 第一奈米碳管散熱器100。 4 [〇〇28]可選擇地對第一散熱器1〇〇的第一基底18的第二表面182 進行蝕刻去除部分第一基底材料,使更多的奈米碳管露 出。蝕刻第一基底材料的方法可以為氧電漿蝕刻或酸腐 蝕法。若第一基底的材料為石蠟可以用氧電漿蝕刻去除 石蠟從而使第一散熱器1〇〇漏出奈米碳管,若第一基底18 的材料為低熔點金屬,則用酸腐蝕金屬基體材料從而漏 出奈米碳管。第一奈米碳管陣列10在第—基底18的第一 表面180及第二表面182均露頭,可以使第—散熱器1〇{) 〇9812962产單编號A0101 第I2頁/共32頁 1013299661-0 Γ377331 101年08月ΟV日接正㈣頁 更好地與熱源或空氣接觸,從而使第一散熱器100的散熱 效果更好。The low-melting-point metals mentioned in the previous year, including the tin, copper, indium, lead, recorded, gold, silver, Syrian, and alloys or mixtures of the foregoing materials, such as tin-lead alloy, indium tin alloy, tin-silver Copper alloy, gold-bismuth alloy, gold-bismuth alloy, and the like. In the embodiment, the material of the first substrate 18 is paraffin, and the thickness of the first substrate 18 is 1 mm. In this embodiment, the height of the carbon nanotubes in the first carbon nanotube array 10 is 3 mm, in which the carbon nanotubes have a height of 丨 mm and are located in the paraffin base, and the 2 mm high carbon nanotubes are exposed to the air. The method for fixing the free end of the first carbon nanotube array 10 away from the substrate 12 in a first substrate 18 specifically includes the following steps: Step S301, moving the first carbon nanotube array 1 远离 away from the substrate The free end of 12 is immersed in a first substrate material in a molten state, and the second carbon nanotube array 20 is not & into the first substrate material in the molten state; step "o?, curing the first [0025] The first substrate 18 has opposing first and second surfaces 18 and 182. The first array of carbon nanotubes extends from the first surface 180 of the first substrate 18 to the The second surface 182 extends outwardly in a direction perpendicular to the second surface 182, that is, the first carbon nanotube array 1 〇 penetrates the first substrate 18. The thickness of the first substrate 18 is determined according to actual needs as needed The magnitude of the amount of heat dissipation, and the magnitude of the holding force of the desired carbon nanotubes. Preferably, the thickness of the first substrate 18 is 〇.i mm to 丨cm. The freedom of the second carbon nanotube array 20 Forming a gap 17 between the end and the first substrate 18 to make the second carbon nanotube array 2〇 is not in contact with the first substrate 18. [0026] Step S40, referring to FIG. 5, the first carbon nanotube array 1〇 is removed from the first growth surface 12〇 of the substrate 12 to make the first carbon nanotube The array 1 is separated from the substrate 12 and formed on the first substrate 18 independently to obtain the first nano carbon 09812962^^^51 A0101 Π page / total 32 pages 1013299661-0 1377331 101. The first carbon nanotube heat sink 100 includes a first substrate 18 and a first carbon nanotube array 1 , and the first carbon nanotube array 1 〇 penetrates the first substrate 18 . In the example, the first carbon nanotube array 1 is 8 rectangular regions arranged in a 4x2 arrangement and spaced apart from each other. Since the 8 rectangular regions are arranged at intervals, the carbon nanotube density is small, so that the carbon nanotubes are in the carbon nanotubes. The heat is easily conducted to the air, so the heat convection effect of the carbon nanotube heat sink is better. [0027] There are various methods for removing the first carbon nanotube array 10, such as mechanical grinding, chemical etching, and the like. In this embodiment, the method of removing the first carbon nanotube array "10" is to directly pull the first base. The bottom 18 detaches the first carbon nanotube array from the first growth surface 120 of the substrate 12. Since the first carbon nanotube array 10 is only grown on the surface of the substrate 12, the first carbon nanotube array is the same as the substrate 12. The bonding force is weak. However, the first carbon nanotube array 1 〇 penetrates the first substrate 18 and is fixed to the first substrate ist, and the first carbon nanotube array 10 has a strong binding force with the first substrate 18. Therefore, The first carbon nanotube array 1 and the substrate 丨 2 are separated by a small force to obtain the first carbon nanotube heat sink 100. 4 [〇〇28] Alternatively to the first heat sink 1 The second surface 182 of the first substrate 18 of the crucible is etched to remove portions of the first substrate material to expose more of the carbon nanotubes. The method of etching the first substrate material may be an oxygen plasma etching or an acid etching method. If the material of the first substrate is paraffin, the paraffin wax may be removed by oxygen plasma etching to cause the first heat sink 1 to leak out of the carbon nanotubes. If the material of the first substrate 18 is a low melting point metal, the metal base material is corroded with acid. Thereby leaking the carbon nanotubes. The first carbon nanotube array 10 has an outcrop on the first surface 180 and the second surface 182 of the first substrate 18, so that the first heat sink 1〇{) 〇9812962 is produced by the number A0101, page I2, total 32 pages. 1013299661-0 Γ377331 August 101 ΟV-day is connected (4) to better contact with heat source or air, so that the heat dissipation effect of the first heat sink 100 is better.
[0029],步驟S50,請參閱圖6,提供一第二基底22,將所述基板 12及生長於第二生長表面140上的第二奈米碳管陣列20倒 置,將所述第二奈米碳管陣列20的遠離基板12的自由端 固定於所述第二基底22令。可選擇地,也可以不倒置所 述基板12及生長於第二生長表面140上的第二奈米碳管陣 列20,將所述第二奈米碳管陣列20的遠離基板12的自由 端固定於所述第二基板22中。步驟S50與步驟S30相似。 所述第二基底22的材料為聚合物相變材料或低熔點金屬 材料。所述第二基底22的材料同第一基底18的材料可以 相同也可以不同。本實施例中,第二基底22的材料為石 蠟。所述將第二奈米碳管陣列20的遠離基板12的自由端 固定於所述第二基底22中的方法與步驟S30中所述的將所 述第一奈米碳管陣列10遠離基板12的自由端固定於一第 一基底18中的方法相似。所述將第二奈米碳管陣列20的 遠離基板12的自由端固定於所述第二基底22中的方法包 括以下步驟:步驟S501,將第二奈米碳管陣列20的遠離 基板12的自由端浸入一熔融態的第二基底材料中;步驟 S502,固化所述第二基底材料。由於在步驟S20中,所製 備的第二奈米碳管陣列20中的奈米碳管超出基板12的第 一生長表面120,因此可實現將第二奈米碳管陣列20的自 由端固定於第二基底22中。 [0030] 步驟S60,請參閱圖7,從基板12的第二生長表面140上 去除所述第二奈米碳管陣列20使第二奈米碳管陣列20脫 09812962产單编號 Α〇101 第13頁/共32頁 1013299661-0 1377331 101年08月0>日修正替換頁 離基板12使其獨立地形成於第二基底22上從而得到第二 奈米碳管散熱器200。該第二奈米碳管散熱器20 0包括一 第二基底22及第二奈米碳管陣列20。本實施例中,去除 第二奈米碳管陣列20的方法為直接拉拔第二基底22使第 二奈米碳管陣列20從基板的第二生長表面140脫離。本實 施例中,第二奈米碳管陣列20為3x2排列且相互間隔的6 個矩形區域。由於該6個矩形區域間隔排列,因此奈米碳 管密度較小,使奈米碳管中的熱量容易傳導至空氣中, 因此,該種奈米碳管散熱器的熱對流效果較好。 胃 [0031] 可選擇地,對第二奈米碳管散熱器200形成有奈米碳管的 表面進行蝕刻,使更多的奈米碳管露出。所述蝕刻第二 奈米碳管散熱器200的方法同蝕刻第一奈米碳管散熱器 100的方法相同。[0029] Step S50, referring to FIG. 6, a second substrate 22 is provided, and the substrate 12 and the second carbon nanotube array 20 grown on the second growth surface 140 are inverted, and the second nanometer is inverted. The free end of the carbon nanotube array 20 remote from the substrate 12 is fixed to the second substrate 22. Alternatively, the substrate 12 and the second carbon nanotube array 20 grown on the second growth surface 140 may not be inverted, and the free ends of the second carbon nanotube array 20 away from the substrate 12 may be fixed. In the second substrate 22 . Step S50 is similar to step S30. The material of the second substrate 22 is a polymer phase change material or a low melting point metal material. The material of the second substrate 22 may be the same as or different from the material of the first substrate 18. In this embodiment, the material of the second substrate 22 is paraffin wax. The method of fixing the free end of the second carbon nanotube array 20 away from the substrate 12 in the second substrate 22 and the step of disposing the first carbon nanotube array 10 away from the substrate 12 in step S30 The method in which the free end is fixed in a first substrate 18 is similar. The method of fixing the free end of the second carbon nanotube array 20 away from the substrate 12 in the second substrate 22 includes the following steps: Step S501, moving the second carbon nanotube array 20 away from the substrate 12 The free end is immersed in a molten second substrate material; in step S502, the second substrate material is cured. Since the carbon nanotubes in the prepared second carbon nanotube array 20 exceed the first growth surface 120 of the substrate 12 in step S20, the free end of the second carbon nanotube array 20 can be fixed to In the second substrate 22. [0030] Step S60, referring to FIG. 7, the second carbon nanotube array 20 is removed from the second growth surface 140 of the substrate 12, and the second carbon nanotube array 20 is removed from the 09012962 production number Α〇101. Page 13 / Total 32 pages 1013299661-0 1377331 101 August 0> Day correction replacement page is separated from the substrate 12 to be independently formed on the second substrate 22 to obtain the second carbon nanotube heat sink 200. The second carbon nanotube heat sink 20 0 includes a second substrate 22 and a second carbon nanotube array 20. In the present embodiment, the second carbon nanotube array 20 is removed by directly drawing the second substrate 22 to detach the second carbon nanotube array 20 from the second growth surface 140 of the substrate. In the present embodiment, the second carbon nanotube array 20 is 6 rectangular regions arranged in 3x2 and spaced apart from each other. Since the six rectangular regions are arranged at intervals, the density of the carbon nanotubes is small, so that the heat in the carbon nanotubes is easily conducted to the air. Therefore, the heat convection effect of the carbon nanotube heat sink is better. Stomach [0031] Alternatively, the surface of the second carbon nanotube heat sink 200 formed with a carbon nanotube is etched to expose more of the carbon nanotubes. The method of etching the second carbon nanotube heat sink 200 is the same as the method of etching the first carbon nanotube heat sink 100.
[0032] 本實施例中,利用具有一層凹槽130的基板12可在一次生 長奈米碳管陣列的過程中同時製備兩個處於不同水平面 的奈米碳管陣列即第一奈米碳管陣列1 0及第二奈米碳管 陣列20。可以理解,若所述基板12的第一生長表面120所 具有的階臺式凹槽130為二層凹槽時,則利用本發明提供 的奈米碳管散熱器的製備方法可以在一次生長奈米碳管 陣列的過程中製備三個奈米碳管散熱器。若所述基板12 上的凹槽為N層凹槽時,則利用本發明提供的奈米碳管散 熱器的製備方法可以在一次生長奈米碳管陣列的過程中 製備出N + 1個奈米碳管散熱器。請參閱圖12,為本發明提 供的具有二層凹槽的基板12上生長有三個不同高度的奈 米碳管陣列,所述奈米碳管陣列包括複數奈米碳管,利 09812962^^^^ A〇101 第14頁/共32頁 1013299661-0 Γ377331 101年.08月0>日核正替換頁 用該基板12可以一次製備出三個奈米碳管散熱器。 [0033] 本發明提供的用於製備奈米碳管散熱器的裝置,其包括 一基板,該基板的表面上形成有複數第一奈米碳管及複 數第二奈米碳管,且所述第一奈米碳管的自由端與第二 奈米碳管的自由端之間具有一高度差。採用該種製備奈 米碳管散熱器的裝置可製備複數奈米碳管散熱器,提高 了奈米碳管散熱器的製備效率,降低了生產成本。 【圖式簡單說明】 [0034] 圖1係本發明實施例奈米碳管散熱器的製備方法流程圖。 [0035] 圖2至圖7係本發明實施例奈米碳管散熱器的製備方法的 工藝流程圖。 [0036] 圖8係本發明實施例奈米碳管散熱器的製備方法中採用的 具有二層階梯狀凹槽的基板的俯視圖。 [0037] 圖9係本發明實施例奈米碳管散熱器的製備方法中採°用的 具有同心狀凹槽的基板的俯視圖。[0032] In this embodiment, the substrate 12 having a layer of grooves 130 can simultaneously prepare two carbon nanotube arrays at different levels, that is, the first carbon nanotube array, in the process of growing the carbon nanotube array. 10 and a second carbon nanotube array 20. It can be understood that if the stepped groove 130 of the first growth surface 120 of the substrate 12 is a two-layer groove, the preparation method of the carbon nanotube heat sink provided by the present invention can be used in a single growth. Three carbon nanotube heat sinks were prepared during the carbon nanotube array process. If the groove on the substrate 12 is an N-layer groove, the preparation method of the carbon nanotube heat sink provided by the present invention can prepare N + 1 Nye in the process of growing the carbon nanotube array once. Carbon tube radiator. Referring to FIG. 12, a carbon nanotube array having three different heights is grown on a substrate 12 having a two-layer groove provided by the present invention, and the carbon nanotube array includes a plurality of carbon nanotubes, and the number is 10912962^^^ ^ A〇101 Page 14 of 32 Page 1013299661-0 Γ377331 101.08.08 gt; Day nucleus replacement page With the substrate 12, three carbon nanotube heat sinks can be prepared at one time. [0033] The apparatus for preparing a carbon nanotube heat sink according to the present invention includes a substrate having a plurality of first carbon nanotubes and a plurality of second carbon nanotubes formed on a surface thereof, and There is a height difference between the free end of the first carbon nanotube and the free end of the second carbon nanotube. The device for preparing a carbon nanotube radiator can prepare a plurality of carbon nanotube radiators, thereby improving the preparation efficiency of the carbon nanotube radiator and reducing the production cost. BRIEF DESCRIPTION OF THE DRAWINGS [0034] FIG. 1 is a flow chart of a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 2 to FIG. 7 are process flow diagrams of a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 8 is a plan view of a substrate having two stepped grooves used in a method of fabricating a carbon nanotube heat sink according to an embodiment of the present invention. 9 is a plan view of a substrate having concentric grooves for use in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. [0037] FIG.
[0038] 圖1 0係本發明實施例奈米碳管散熱器製備方法中採用的 奈米碳管陣列的製備方法流程圖。 [0039] 圖11係本發明實施例奈米碳管散熱器製備方法中於基板 表面形成催化劑的區域的示意圖。 [0040] 圖12係本發明實施例奈米碳管散熱器製備方法中採用的 具有二層凹槽的奈米碳管散熱器的製備裝置的主視圖。 [0041] 圖13係本發明實施例奈米碳管散熱器製備方法中採用的 具有交錯排列凹槽的基板的示意圖。 09812962#單編號 A〇101 第15頁/共32頁 1013299661-0 1377331 101年.08月07日修正替&頁 【主要元件符號說明】 [0042] 第一奈米碳管陣列:1 0 [0043] 基板:12 [0044] 間隙:1 7 [0045] 第一基底:18 [0046] 第二奈米碳管陣列:20 [0047] 第二基底:22 [0048] 催化劑區域:5 0 [0049] 第一奈米碳管散熱器:100 [0050] 第一生長表面:120 [0051] 凹槽:130 [0052] *第二生長表面:140 [0053] 第一基底的第一表面:180 [0054] 第一基底的第二表面:182 [0055] 第二奈米碳管散熱器:20010 is a flow chart of a method for preparing a carbon nanotube array used in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 11 is a schematic view showing a region where a catalyst is formed on a surface of a substrate in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 12 is a front view of a preparation apparatus of a carbon nanotube heat sink having a two-layer groove used in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 13 is a schematic view of a substrate having staggered grooves used in a method for preparing a carbon nanotube heat sink according to an embodiment of the present invention. 09812962#单号A〇101 Page 15/32 pages 1013299661-0 1377331 101.08.07 Revision 7 &Page [Key component symbol description] [0042] First carbon nanotube array: 1 0 [ 0043] Substrate: 12 [0044] Gap: 1 7 [0045] First substrate: 18 [0046] Second carbon nanotube array: 20 [0047] Second substrate: 22 [0048] Catalyst region: 5 0 [0049 First carbon nanotube heat sink: 100 [0050] First growth surface: 120 [0051] Groove: 130 [0052] * Second growth surface: 140 [0053] First surface of the first substrate: 180 [ 0054] Second surface of the first substrate: 182 [0055] Second carbon nanotube heat sink: 200
09812962#單编號 A〇101 第16頁/共32頁 1013299661-009812962#单号 A〇101 Page 16 of 32 1013299661-0
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98129622A TWI377331B (en) | 2009-09-03 | 2009-09-03 | Manufacturing apparatus and manufacturing method for carbon nanotube heat sink |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98129622A TWI377331B (en) | 2009-09-03 | 2009-09-03 | Manufacturing apparatus and manufacturing method for carbon nanotube heat sink |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201109609A TW201109609A (en) | 2011-03-16 |
TWI377331B true TWI377331B (en) | 2012-11-21 |
Family
ID=44835996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98129622A TWI377331B (en) | 2009-09-03 | 2009-09-03 | Manufacturing apparatus and manufacturing method for carbon nanotube heat sink |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI377331B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103367556B (en) | 2012-03-28 | 2016-01-20 | 清华大学 | Epitaxial substrate |
CN103367553B (en) | 2012-03-28 | 2016-01-20 | 清华大学 | The preparation method of epitaxial substrate |
CN103367569B (en) | 2012-03-28 | 2016-01-20 | 清华大学 | epitaxial structure |
CN103367121B (en) | 2012-03-28 | 2016-04-13 | 清华大学 | The preparation method of epitaxial structure |
TWI582370B (en) * | 2015-03-17 | 2017-05-11 | Method for Making High Thermal Conductivity Elements |
-
2009
- 2009-09-03 TW TW98129622A patent/TWI377331B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201109609A (en) | 2011-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5330336B2 (en) | Structure and manufacturing method for manufacturing carbon nanotube heat dissipation device | |
JP5102328B2 (en) | Manufacturing method of heat conduction member | |
US7569425B2 (en) | Method for manufacturing thermal interface material with carbon nanotubes | |
EP2546871B1 (en) | Method for producing a heat dissipating structure | |
TWI377331B (en) | Manufacturing apparatus and manufacturing method for carbon nanotube heat sink | |
JP5001387B2 (en) | Manufacturing method of heat conduction structure | |
US9219193B2 (en) | Method for making epitaxial structure | |
US20100172101A1 (en) | Thermal interface material and method for manufacturing the same | |
JP4713301B2 (en) | Thermally conductive material and method for producing the same | |
CN101572255B (en) | Method for making carbon nanotube composite thermal interface material | |
US20060073332A1 (en) | Thermal interface material and method for manufacturing same | |
CN101864280A (en) | Thermal interface material for packaging and radiating chip and preparation method thereof | |
US10177082B2 (en) | Method for forming semiconductor package using carbon nano material in molding compound | |
KR102070741B1 (en) | Thermal interface materials, methods of making thermal interface materials, thermally conductive pads and heat sink systems | |
JP2006265550A (en) | Heat conduction material and its production method | |
CN101121497A (en) | Carbon nano-tube composite material and preparation method thereof | |
JP2011110694A (en) | Composite structure of graphene and nanostructure, and method for manufacturing the same | |
Li et al. | Nanowelding in Whole‐Lifetime Bottom‐Up Manufacturing: From Assembly to Service | |
CN1614772A (en) | Radiator and producing method thereof | |
TWI417404B (en) | Thermal interface material and method for making same | |
KR102686636B1 (en) | metal graphene composite structure heat pipe and manufacturing method thereof | |
JP2011049489A (en) | Semiconductor device, and method of manufacturing the same | |
TWI233331B (en) | Heat sink and a method for making the same | |
TWI382083B (en) | Method for manufacturing thermal interface material | |
Wang et al. | Method of fabricating vertically aligned group III-V nanowires |